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Abstract

A new class of random vectors is introduced, where the components
are obtained through trend-transforms of independent random variables.
Such a vector is called trend-transformed independent vector. The new
class includes many models from the previous literature, such as sequen-
tial and intermediate order statistics, or the vectors formed by the first ar-
rival times in classical counting processes such as trend renewal/extended
Pólya/non-homogeneous pure-birth processes. This allows to treat all
these different models in a unified way. New multivariate stochastic com-
parison results are obtained between trend-transformed independent vec-
tors with different parameters, which are shown to enlarge previous results
from the literature.
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1 Introduction

In [Lindqvist(2003)], B. Lindqvist & al introduced a new type of counting pro-
cess, which they called trend renewal processes. Such counting processes enlarge
both renewal and non-homogeneous Poisson processes, which makes them quite
flexible in an application context. For instance, in reliability theory, renewal and
non-homogeneous Poisson processes are commonly used for the modeling of suc-
cessive failures of a system subject to perfect or minimal instantaneous repairs,
respectively. Trend renewal processes hence allow to model repairs whose effi-
ciency can range from minimal up to perfect. Also, under technical assumptions,
their arrival points exhibit interesting positive dependence properties as shown
in [Bad́ıa et al(2018)b], where the authors also provide stochastic comparison
results between trend renewal processes with different trend functions.

A trend renewal process is obtained through transforming the points of a
renewal process by a so-called trend function Λ (say). To be more specific,
a vector (T1, . . . , Tn) stands for the n first points of a trend renewal process
as soon as the increments (say) X1 = Λ(T1), X2 = Λ(T2) − Λ(T1), . . . , Xn =
Λ(Tn)− Λ(Tn−1) are independent and identically distributed. We here suggest
to enlarge this model in several ways:

1. The trend function Λ can differ from one transformed inter-epoch time to
the other, that is, in the definition of the increments (the Xi’s), we set
Xi = Λi(Ti)−Λi(Ti−1), where the Λi’s can differ from one i to the other;

2. TheXi’s are still required to be independent but not necessarily identically
distributed;

3. The trend functions Λi’s are not required to be strictly increasing any
more nor assumed to be defined on R+ (as for the original trend function
from [Lindqvist(2003)]).

In this setting, the vector (T1, . . . , Tn) is obtained through transforming the in-
dependent random variables X1, . . . , Xn and we call it trend-transformed inde-
pendent vector. Going back to the illustration in reliability theory, assumptions
1. and 2. allow to model some possible change of trend and/or distribution
for the Xi’s according to the number of failures already suffered by the system.
Note that assumption 3. requires some care to deal with, wherever the inverse
function of the trend function is required as we have to consider a generalized
version of this inverse function. Also, the trend function can have a bounded
support, which allows it to stand for the cumulative hazard rate of a bounded
random variable, such as a beta or uniform one for instance.

All these extensions of the assumptions when compared with those for trend-
renewal processes allow the class of trend-transformed independent vectors to
encompass many other models from the literature and treat them in a uni-
fied way. For instance, the new class contains the vectors of arrival times in
several classical processes in applied probability such as extended Pólya pro-
cesses [Bad́ıa et al(2018a)] (which include the generalized Pólya processes from
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[Cha(2014)]) or general non-homogeneous pure-birth processes [Belzunce et al(2001)].
It also encompasses sequential order statistics [Zhuang et al(2007)] (which in-
clude the generalized order statistics from [Belzunce et al(2005)]) or intermedi-
ate order statistics [Bad́ıa et al(2018)b, Papadatos(1995)].

This paper first focuses on the construction of trend-transformed indepen-
dent vectors under the general assumptions previously described, which is done
in next section (Section 2), together with the derivation of first probabilistic
properties and the development of several examples from the literature as spe-
cific cases. We next come to stochastic comparison results in Section 3, where
trend-transformed independent vectors with different trend functions and/or
different distributions for the increments (the Xi’s) are considered. The results
are provided in terms of the multivariate stochastic or likelihood ratio ordering.
As we will see, they extend several other results from the literature, which were
developed for specific trend-transformed independent vectors. Finally, conclud-
ing remarks and perspective are given in Section 4.

2 Definition, construction and first properties

We begin by defining what is called trend function in all the following.

Definition 1 A function Λ (·) is called a trend function if:

• There exists M ∈ R ∪ {∞} such that Λ (·) : (−∞,M)→ R+,

• Λ(·) is non-decreasing and continuous on (−∞,M)

• limt↑M Λ (t) =∞.

• limt↓−∞ Λ (t) = 0.

Remark 1 For some specific applications, Λ(·) will stand for the cumulative
hazard rate function of a continuous random variable in the sequel. That is,
if X has a continuous distribution function F with F (x) < 1, x < M and
limx→M− F (x) = 1, then

Λ(t) = − ln(F̄ (t)), t ∈ (−∞,M) (1)

is a trend function. When M < ∞, the restriction of the domain of Λ(·) to
(−∞,M) allows Λ(·) to remain finite on its whole domain, even in case of a
random variable with a bounded support.

Remark 2 The previous definition of trend function extends several similar
notions from the literature. For instance, it enlarges the notion of cumulative
intensity function used in [Bad́ıa et al(2018a)], where only non-negative random
variables are considered, and therefore the domain of Λ is of the shape [0,M).
It also enlarges the notion of trend function used in [Lindqvist(2003)] for the
definition of trend-renewal processes (see Example 4 below), where the domain
of Λ is R+ and where Λ is assumed to be strictly increasing. As will be seen in
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the sequel, this last assumption can be avoided, but one needs to be very careful
wherever the ”inverse” of Λ is required.

To better connect our model with others from the literature, we now come
to the case where Λ is absolutely continuous. We begin with defining so-called
intensity functions.

Definition 2 A function λ (·) is called intensity function if:

• There exists M ∈ R ∪ {∞} such that λ (·) : (−∞,M)→ R+,

• λ(·) is a measurable (Borel) function,

•
∫ t
−∞ λ (u) du < +∞ for all t < M ,

•
∫M
−∞ λ (u) du =∞.

Starting from an intensity function λ(·), it is easy to check that the function

Λ (t) :=

∫ t

−∞
λ (u) du,−∞ < t < M (2)

is a trend function. Conversely, starting from Λ(·), there exists λ(·) such that
(2) is true as soon as Λ(·) is absolutely continuous.

We are now ready to define the notion of trend-transformed independent
vector.

Definition 3 Let Λ = (Λ1, . . . ,Λn) be a vector of trend functions such that Λi
is defined on (−∞,Mi), i = 1, 2, . . . , n and Mi ≤ Mi+1, i = 1, 2, . . . n − 1. Let
F1, . . . , Fn be continuous distribution functions on R+ (so that Fi(0) = 0, i =
1, . . . , n). Then, a random vector (T1, . . . , Tn) is said to be a trend-transformed
independent vector with trend vector Λ = (Λ1, . . . ,Λn) and increment distribu-
tion vector F = (F1, . . . , Fn) (or parameter (Λ,F) for short) if

(a) P(Ti < Mi) = 1, i = 1, 2, . . . , n;

(b) Λ1(T1),Λ2(T2)−Λ2(T1), . . .Λn(Tn)−Λn(Tn−1) are (non-negative) indepen-
dent random variables, with respective distribution functions F1, . . . , Fn.

A trend-transformed independent sequence (Tn)n=1,2,... with trend sequence (Λn)n=1,2,...,
and increment distributions (Fn)n=1,2,... is defined in a similar way, under sim-
ilar assumptions for the Λn’s and Fn’s.

Remark 3 Assume (T1, . . . , Tn) to be a trend-transformed independent vector
with trend vector Λ = (Λ1, . . . ,Λn) and increment distribution vector F =
(F1, . . . , Fn). Considering a vector (a1, . . . , an) of (strictly) positive numbers, let
us set Λ̂i = aiΛi and F̂i(x) = Fi(x/ai) for each i ∈ {1, . . . , n}. Then it is easy to
check that (T1, . . . , Tn) still is a trend-transformed independent vector with trend
vector Λ̂ = (Λ̂1, . . . , Λ̂n) and increment distribution vector F̂ = (F̂1, . . . , F̂n),
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whatever a1, . . . , an are. This shows that different parameters (Λ,F) in Defini-
tion 3 can provide identical distributions for (T1, . . . , Tn) and the model is not
identifiable. A possibility might be to impose that the Fi’s should have expected
values equal to 1, as in [Lindqvist(2003)] for trend-renewal processes. We how-
ever prefer to keep the definition in its present form, which allows an easier way
to identify models from the literature as specific trend-transformed independent
vectors.

Starting from (Λ,F) as in the definition, we already know that each Λi
is continuous on (−∞,Mi), i = 1, . . . , n. Assume further that each Λi is in-
creasing (and hence one-to-one) on (−∞,Mi). Then, it is easy to construct a
trend-transformed independent vector with parameter (Λ,F): Let us start from
independent non negative random variables X1, . . . , Xn such that Xi has (con-
tinuous) distribution function Fi, i = 1, . . . , n and let T1, . . . , Tn be recursively
defined through

T1 = Λ−1
1 (X1) and Ti+1 = Λ−1

i+1(Xi+1 + Λi+1(Ti)), i = 1, . . . , n− 1. (3)

Note that based on P(Xi > 0) = 1, i = 1, . . . , n, the random variables T1, . . . , Tn
are almost surely finite and hence well defined. Also, it is easy to check that
(T1, . . . , Tn) fulfills points (a) and (b) in the definition and it is a trend-transformed
independent vector with parameter (Λ,F). Based on (3), it is clear that start-
ing from independent random variables X1, . . . , Xn, the trend-transform al-
lows to construct a random vector (T1, . . . , Tn) where the inter-arrival times
(T1, T2 − T1, . . . , Tn − Tn−1) are not independent any more. As will be seen in
the following, a similar construction to (3) will remain valid even if the trend
functions are not strictly increasing. More attention will be required however,
for the handling of the inverse trend functions. As already told in the introduc-
tion, our model enlarges many others from the literature. We here provide first
examples of well-known counting processes, for which successive arrival times
are observed to follow a trend-transformed independent vector.

Example 4 (Trend renewal processes) Let Λ be a trend function such that
Λ(0) = 0 and M = ∞ and let F be a continuous distribution function on
R+. Following the definition from [Lindqvist(2003)], the sequence of arrival
times (Tn)n=1,2,... in a trend renewal process with parameter (Λ, F ) can be
seen as a trend-transformed independent sequence with parameters Λi = Λ
and Fi = F for all i ∈ N∗. Note that in [Berman (1981)], the authors con-
sider a specific trend renewal process where F is gamma distributed Γ(κ, 1) and
Λ is as above. They observe that, when κ ∈ N∗, then (T1, . . . , Tn) is iden-
tically distributed as (Sκ, S2κ, . . . , Snκ), where (Sn)n=1,2,... is the sequence of
arrival points in a non homogeneous Poisson process with cumulative intensity
Λ. More generally, it is easy to check that, considering κ1, . . . , κn ∈ N∗, then
(Sκ1

, Sκ1+κ2
, . . . , Sκ1+...+κn) is a trend-transformed independent vector, where

Fi is the gamma distribution function Γ(κi, 1), for all i = 1, . . . , n.

Example 5 (Extended Pólya processes) Let h (·) : N→ R∗+ and for each
i = 1, 2, . . ., let Fi be the exponential distribution function with mean 1/h(i−1).
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Also, let Λ be a trend function on [0,M). Then, based on [Bad́ıa et al(2018a),
Prop. 2(b)], one can check that a trend-transformed independent sequence with
parameters (Fi,Λi = Λ), i = 1, 2, . . . corresponds to the arrival times of an
Extended Pólya process with parameter (Λ, h). Based on Remark 3, a trend-
transformed independent sequence with standard exponential increments (with
mean 1) and Λi = h(i − 1) Λ correspond to the arrival times of the same
Extended Pólya process with parameter (Λ, h). As a by-product, the arrival
times in a Generalized Pólya process as introduced by Cha [Cha(2014)] also
form a trend-transformed independent sequence, as a Generalized Pólya process
is a specific Extended Pólya process, where h is a linear increasing function
(h(i) = α i+ β, i = 1, 2, . . ., α ≥ 0, β > 0).

We now come to the construction of a trend-transformed independent vector
in the most general case, where the trend functions Λi’s need not be (strictly)
increasing. With that aim, let us consider a generic trend function Λ, which
is non-decreasing and has range Λ((−∞,M)) = R+, whatever M is. Then, we
can introduce its generalized inverse function Λ−1 : R+ → [−∞,M), with:

Λ−1(s) = inf{t < M : Λ(t) ≥ s} = sup{t < M : Λ(t) < s}, (4)

for all s > 0, and Λ−1(0) = −∞. The function Λ−1 is known to be left-
continuous on (0,∞) and such that Λ(Λ−1(s)) = s for all s > 0 (based on
the right-continuity of Λ and on its range). Also, for all s > 0, t ∈ (−∞,M),
we have Λ(t) < s if and only if t < Λ−1(s) (based on the right-continuity of
Λ ). Finally, Λ−1 is (strictly) increasing, based on the continuity of Λ. See
[Embrechts and Hofert(2013)] or [Boyer and Roux(2016)] for more details on
generalized inverse functions. Note that for a given distribution function G, its
quantile function G−1 is usually defined as in (4), with s ∈ [0, 1].

If a trend function Λ is not strictly increasing, we have to deal with the
technical problem that its inverse function is not a continuous function. With
that aim, let us introduce the set

D := {s ∈ (−∞,M)| Λ−1(Λ(s)) < s}. (5)

In a similar way as in [Bad́ıa et al(2018a)], one can check that the set D can be
decomposed into (at most) countably many intervals, that is:

D =
⋃
j∈J

Ij (6)

where J is at most countable and Ij = (aj , bj ], j ∈ J . Moreover Ij represents
an interval in which Λ is a constant function. If Λ(x) = 0, x ≤ m, then the
first interval is of the shape (−∞,m] and Λ is strictly positive on the interval
(m,M). Note that if ΛDc stands for the restriction of Λ to Dc, the function
ΛDc now is a one-to-one function from Dc to R+. As a consequence, for all
s > 0 and t ∈ Dc, we have Λ(t) > s if and only if t > Λ−1

Dc(s), namely if and
only t > Λ−1(s).
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For each Λi in Definition 3, the corresponding set is denoted by Di. Next
Lemma shows that in a trend-transformed independent vector (T1, . . . , Tn), the
probability that Ti belongs to the set Di is zero, for each i = 1, . . . , n.

Lemma 6 Let Λ = (Λ1, . . . ,Λn) be a vector of trend functions and let F =
(F1, . . . , Fn) be an increment distribution vector, as in Definition 3. Let (T1, . . . , Tn)
be a trend-transformed independent vector with parameter (Λ,F). Let X1 =
Λ1(T1) and Xi = Λi(Ti)− Λi(Ti−1), i = 2, . . . , n. Then we have

P (Ti ∈ Dc
i for all i = 1, . . . , n) = 1, (7)

where the Di’s are the sets defined in (5). Also, (3) holds with probability 1.

Proof. Assume first that Equation (7) is true. Then we have

1 = P(Λi(Ti) = Xi + Λi(Ti−1)) = P(Λi(Ti) = Xi + Λi(Ti−1), Ti ∈ Dc
i )

= P(Ti = Λ−1
i (Xi + Λi(Ti−1)))

for each i = 2, . . . , n, as Λ−1
i (Λi(s)) = s for all s ∈ Dc

i . Also, P
(
T1 = Λ−1

1 (X1)
)

=
1 in a similar way. Thus, Equation (7) implies that (3) is verified for all
i = 1, 2, . . . , n with probability 1. Hence the only point to prove is Equation
(7).

Now Equation (7) can be readily seen to be equivalent to

P (Ti ∈ Di) = 0, for all i = 1, 2, . . . , n, (8)

which we next show by induction. For the case i = 1, let us consider any interval
I1j = (a1j , b1j ] ⊆ D1. As Λ1 is constant on I1j , we have

P(T1 ∈ I1j) = P (Λ1(T1) = Λ1(b1j)) = 0,

because X1 = Λ1(T1) has a continuous distribution function for the last equality.
Hence P(T1 ∈ D1) = 0. Similarly, let us take 1 < k ≤ n and assume that
P (Ti ∈ Di) = 0 holds true for each i = 1, . . . , k − 1. To show the result for k,
let us notice that from the first part of this proof, we know that Ti = Λ−1

i (Xi +
Λi(Ti−1)) holds almost surely for each i = 2, . . . , k − 1. Hence Tk−1 depends
only on X1, . . . , Xk−1 (almost surely) and the random variables Xk and Tk−1

are independent. Based on

Λk(Tk) = Xk + Λk(Tk−1),

we derive that Λk(Tk) is a convolution between Tk−1 and the continuous random
variable Xk. Hence Λk(Tk) also is a continuous random variable. Thus, as in
the first case, let us consider any interval Ikj = (akj , bkj ] ⊆ Dk. We have

P(Tk ∈ Ikj) = P(Λk(Tk) = Λk(bkj)) = 0,

and therefore P(Tk ∈ Dk) = 0. Hence (8) has been verified, which achieves the
proof.

We have the following result, which shows us that a vector (T1, . . . , Tn) as
in Definition 3 is unequivocally determined using (3).
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Proposition 7 Let Λ = (Λ1, . . . ,Λn) be a vector of trend functions and let
F = (F1, . . . , Fn) be an increment distribution vector, as in Definition 3.

(a) Let X1, . . . , Xn be independent random variables, where each Xi has dis-
tribution function Fi, i = 1, . . . , n. Then the random vector (T1, . . . , Tn)
constructed by (3) is a trend-transformed independent vector with parame-
ter (Λ,F).

(b) Let (T1, . . . , Tn) be a trend-transformed independent vector with parameter
(Λ,F) and let us set X1 = Λ1(T1) and Xi = Λi(Ti)−Λi(Ti−1), i = 2, . . . , n.
Then, (3) is satisfied with probability 1.

Proof. We only show point (a), as point (b) has already been proved in Lemma
6. Then, let (T1, . . . , Tn) be constructed by (3), as described in point (a). Let
us first show that this construction provides a random vector with a proper
distribution, that is that there is no ”escape” of mass to −∞. More specifically,
let us show that

P (Ti > −∞) = 1, i = 1, 2, . . . , n. (9)

To show that, let us first note that for any trend function Λ, we have

Λ−1(y) > −∞ if and only if y > 0. (10)

Indeed, if y > 0, then there exists t < M such that Λ(t) < y. Hence

Λ−1(y) = sup{t < M : Λ(t) < y} > −∞.

Based on Λ−1(0) = −∞, the converse is clear and (10) is true. Thus, by the
previous property and (3):

P(T1 > −∞) = P(X1 > 0) = 1,

as F1(0) = 0. The other cases i = 2, 3, . . . , n in (9) are proved in a similar
way. Then it remains to show that (T1, . . . , Tn) fulfills conditions (a) and (b) in
Definition 3. Condition (a) is clear. As for condition (b), note that (3) and the
property Λ(Λ−1(s)) = s, s > 0 allow us to write

Λ1(T1) = X1 and Λi+1(Ti+1) = Xi+1 + Λi+1(Ti). (11)

Thus, condition (b) from Definition 3 is also satisfied, which achieves the proof.

Remark 4 (a) Though it is not assumed in Definition 3, we always have Ti ≤
Ti+1, i = 1, 2, . . . , n − 1 almost surely (a.s.), for any trend-transformed
independent vector (T1, . . . , Tn). Indeed, based on (3), we know that Ti+1 ≥
Λ−1
i+1(Λi+1(Ti)) a.s. If Ti ∈ Dc

i+1, then Λ−1
i+1(Λi+1(Ti)) = Ti a.s. and the

result is clear. If Ti ∈ (ai,j+1, bi,j+1] ⊆ Di+1, then bi,j+1 < Ti+1 because
Ti+1 ∈ Dc

i+1 and

Λi+1(Ti+1) ≥ Λi+1(Ti) = Λi+1(bi,j+1).

This entails that Ti ≤ bi,j+1 < Ti+1 a.s. and the required result.
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(b) In the specific case where Λi = Λ, i = 1, . . . , n, it is easy to check that

Λ(Ti) = X1 + . . .+Xi, i = 1, . . . , n,

which entails that

Ti = Λ−1(X1 + . . .+Xi), i = 1, . . . , n, (12)

because Ti ∈ Dc.

(c) Assume that (Λ1, . . . ,Λn) are the cumulative hazard rates of some distri-
bution functions (G1, . . . , Gn), as in (1). Note that Λi = L ◦ Gi, where
L(x) = − ln(1−x), 0 ≤ x < 1. Thus, using [Embrechts and Hofert(2013),
Prop 1(8)], Λ−1

i = G−1
i ◦L−1. As L−1(u) = 1− e−u, u ≥ 0, we can write

Λ−1
i (u) = G−1

i (1− e−u), u ≥ 0, (13)

and therefore, (3) can be alternatively expressed in terms of the quantile
functions (G−1

1 , . . . , G−1
n ).

Now we are in a position to give the following additional examples included in
our model.

Example 8 (Sequential order statistics and generalized order statistics)
Sequential order statistics (SOS) include many examples of ordered random vari-
ables. They have been intensively studied from their introduction in Kamps
[Kamps(1995b)] to nowadays. In particular, Cramer and Kamps [Cramer and Kamps (2003)]
gave an alternative definition of SOS which is coincident with the one in [Kamps(1995b)]
for continuous random variables, and inspired the following definition given in
[Lenz(2008), p.37] (see also [Torrado(2012)]). For given distribution functions
G1, . . . , Gn with G−1

1 (1) ≤ . . . ≤ G−1
n (1), their sequential order statistics are

recursively defined as X?
0,n = −∞ and

X?
i,n = G−1

i (1− UiḠi(X?
i−1,n)), (14)

where (U1, . . . , Un) is a vector of independent uniform random variables on
the interval (0, 1). This is a slightly different definition than the one used in
[Kamps(1995b), Cramer and Kamps (2003)]. The original definition of SOS
(with associate distributions G?i ) is obtained by (14), by means of the substitu-
tion

G?i (t) = 1− (1−Gi(t))1/(n−i+1). (15)

In order to see that sequential order statistics satisfy (3) and, therefore, Defini-
tion 3, let us consider Mi = G−1

i (1), i = 1, 2 . . . , n and let Λ = (Λ1, . . . ,Λn) be
the vector of cumulative hazard rate functions associated to (G1, . . . , Gn), as de-
fined in (1) Now consider (X1, . . . , Xn) the random vector with Xi = − ln(Ui),
i = 1, . . . , n. It is readily seen that Xi are exponential random variables with
mean 1. Now consider the vector (T1, . . . , Tn) as defined in (3). Using (13) this
expression can be rewritten as

Ti = Λ−1
i (Xi + Λi(Ti−1)) = G−1

i (1− e−Xie−Λi(Ti−1)) = G−1
i (1− UiḠi(Ti−1)),
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which coincides with (14), thus obtaining that (T1, . . . , Tn) =st (X?
1,n, . . . , X

?
1,n).

In other words, sequential order statistics are trend-transformed independent
vectors with trend vector defined as the cumulative hazard rates of G1, . . . , Gn
and exponential increment distributions with rate 1. Finally, remember that gen-
eralized order statistics (GOS) are a particular case of sequential order statistics,
where Gi = Gai , i = 1, . . . , n. In that case, the cumulative hazard rates of each
Gi is Λi = aiΛ, where Λ is the cumulative hazard rate of G. Hence, GOS are
trend-transformed independent vectors with Λi = aiΛ and exponential increment
distributions with rate 1. Equivalently (recall Remark 3), they can be seen as
trend-transformed independent vectors with Λi = Λ and exponential increment
distributions with mean 1/ai. Note that they can also be seen as Generalized
Pólya processes (see Example 5), as already noticed in [Bad́ıa et al(2018a)].

Example 9 (Non-homogeneous pure-birth processes) Following the study
by Belzunce et al. [Belzunce et al(2001)], a non-homogeneous pure-birth process
is a counting processes (N(t), t ≥ 0) provided with a Markovian structure, in
which for each i = 0, 1, . . ., λi(t) is an intensity function on R+ such that

lim
h↓0

P(N(t+ h)−N(t) = 1|N(t) = i) = λi(t), t ≥ 0

As noticed by [Lenz(2008), p.39], the n first interarrival times of this class
of processes are sequential order statistics in which the associated distribution
functions are those with cumulative hazard rates

Λi(t) =

∫ t

0

λi(u) du, t ≥ 0 (0 if t < 0).

Thus, the arrival times in a non-homogeneous pure-birth processes are a par-
ticular case of trend-transformed i.i.d. exponential random variables with mean
1.

Example 10 (Intermediate order statistics) The class of intermediate or-
der statistics was considered in the pioneer paper by Papadatos [Papadatos(1995)].
Their definition is based on the ordered Dirichlet distribution defined as follows.
A random vector U = (U1, . . . , Un) follows the ordered Dirichlet distribution
with parameters νi > 0, i = 1, 2, . . . , n+ 1, if its joint pdf is given by

Γ(ν1 + ν2 + · · ·+ νn+1)

Γ(ν1)Γ(ν2) · · ·Γ(νn+1)
xν1−1

1

n∏
i=2

(xi − xi−1)νi−1(1− xn)νn+1−1, (16)

for 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1 (0 otherwise), where Γ is the standard gamma
function. Let 0 = p0 < 1 ≤ p1 < p2 < · · · < pn ≤ n. The intermediate order
statistics of order p1, . . . , pn issued from a distribution function G is the ran-
dom vector (W1 := G−1(U1), . . . ,Wn := G−1(Un)), where (U1, . . . , Un) is an
ordered Dirichlet random vector with parameters νi = pi − pi−1, i = 1, 2, . . . , n,
and νn+1 = n + 1 − pn. In the case where pi = i, i = 1, 2, . . . , n these
intermediate order statistics are the classical order statistics. As noticed by
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[Beutner and Kamps(2008)], the baseline random vector (U1, . . . , Un) can be
written with respect to independent beta random variables as follows:

Ui = 1−
i∏

j=1

Bj , i = 1, 2, . . . , n,

where Bj is a beta random variable with parameters a = n − pj + 1 and b =
pj − pj−1. Let us recall that the beta distribution with parameters a > 0 and
b > 0 admits the following pdf:

1

B(a, b)
xa−1(1− x)b−1, 0 ≤ x ≤ 1,

where B(., .) is the standard beta function. Setting Λ to be the cumulative hazard
rate associated to G and using (13), we now get

Wi = G−1

1−
i∏

j=1

Bj

 = G−1
(

1− eln(
∏i
j=1 Bj)

)
= Λ−1(−

i∑
j=1

ln(Bj))

and therefore, using Remark 4(b), intermediate order statistics are trend-transformed
independent vectors with trend vector (Λ1 = Λ, . . . ,Λn = Λ) and increments de-
fined as Xi = − ln(Bi), i = 1, . . . , n. Note that if B is a beta distributed random
variable with parameters a > 0 and b > 0, then the density of X = − ln(B) is
given by

1

B(a, b)
e−ay(1− e−y)b−1, 0 ≤ y <∞.

3 Multivariate dependence properties and stochas-
tic comparisons results

Our aim in this section is to obtain multivariate dependence properties between
the components of a trend-transformed independent vector, as well as stochastic
comparison results. Those results are of practical interest, for instance, in relia-
bility theory: If we consider that (T1, . . . , Tn) represent successive failure times
of a device subject to instantaneous (imperfect) repairs at failure, stochastic
comparison results between two different trend-transformed independent vec-
tors allow to compare the failure times of two different devices and know which
one is expected to have shorter failure times for instance. In the same relia-
bility context, a positive dependence property between successive failure times
means that the later the arrivals of the first failures, the later the following fail-
ures are expected to occur. Negative dependence properties mean the contrary.
These concepts are dealt with in many text books of applied probability, see for
instance [Müller and Stoyan(2002)].
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There are also several monographic books dealing with stochastic orders, see
for instance [Shaked and Shanthikumar(2007)] .

In some places and under appropriate conditions, we shall need the joint
density function of (T1, . . . , Tn), that we now provide.

Proposition 11 Let (T1, . . . , Tn) be a trend-transformed independent vector
with trend function Λ = (Λ1, . . . ,Λn) and increment distributions F = (F1, . . . , Fn).
If each Λi is absolutely continuous with corresponding intensity function λi and
if each Fi admits a density fi, then the joint density function for (T1, . . . , Tn)
exists and is given by

f(T1,...,Tn)(t1, . . . , tn) =

n∏
i=1

λi(ti)

n∏
i=1

fi(Λi(ti)− Λi(ti−1))1A(t1, . . . , tn),

(0 otherwise), where A := {(t1, . . . , tn) ∈ Rn| − ∞ = t0 < t1 < t2 < · · · <
tn, ti < Mi, i = 1, . . . , n}.

Proof. The existence of the joint density can easily be proved recursively,
starting from the construction of (T1, . . . , Tn) given in (3) and we skip the details.
Now, using successive conditioning and based on the fact that Ti+1 depends on
(T1, . . . , Ti) only through Ti, we may write

f(T1,...,Tn)(t1, . . . , tn) = fT1(t1)

n−1∏
i=1

fTi+1|Ti=ti(ti+1). (17)

Based on (3) and on the independence between Xi+1 and Ti, we have

fTi+1|Ti=ti(ti+1) = fΛ−1
i+1(Xi+1+Λi+1(ti))

(ti+1)

= λi+1(ti+1)fXi+1(Λi+1(ti+1)− Λi+1(ti)),

which easily provides the result, after substitution into (17).

In the next result, we present some dependence properties for a trend-
transformed independent vector. Let us recall that the concept of Multivariate
Total Positivity of order 2 (MTP2) is one of the strongest concept of positive
dependence, which implies, in particular, the Conditionally Increasingness in
Sequence (CIS). The negative counterpart of this property is the Conditionally
Decreasingness in Sequence (CDS). A thorough study of MTP2 random vectors
is given in [Karlin and Rinott(1980)]. The definitions for the other multivariate
dependence concepts can be found in [Müller and Stoyan(2002), Ch.3.10], for
instance.

In order to derive the multivariate results below, we need conditions ex-
pressed through aging properties of univariate random variables. We recall that
a univariate random variable is said to be Increasing Failure Rate (IFR) when its
survival function is log-concave and Decreasing Failure Rate (DFR) when it is
log-convex. These classical reliability concepts can be found in many text books
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of applied probability and reliability (see, [Müller and Stoyan(2002), p.46] for
instance). Recall from Remark 1 that a trend function Λ can be seen as the
cumulative hazard rate of a univariate random variable Y . Then, aging prop-
erties of this random variable can be translated into shape properties for Λ. In
particular, Y is IFR (DFR) if and only if Λ is concave (convex).

Proposition 12 Let (T1, . . . , Tn) be a trend-transformed independent vector
with trend function Λ = (Λ1, . . . ,Λn) and increment distributions F = (F1, . . . , Fn).

(a) Assume that each Λi is absolutely continuous with corresponding intensity
function λi and that each Fi admits a density fi. If fi are log-concave
functions, i = 1, 2 . . . , n, then (T1, . . . , Tn) is MTP2;

(b) Let Yi be a random variable with cumulative hazard rate Λi, i = 1, . . . , n.
Let (W1, . . . ,Wn) be the vector of inter-arrival times, where Wi = Ti −
Ti−1, i = 1, . . . , n (with W0 = 0). Then, if each Yi is DFR (IFR), i =
1, 2 . . . , n, the vector (W1, . . . ,Wn) is CIS (CDS).

Proof:
(a) The proof is similar to [Bad́ıa et al(2018)b, Thm. 1(a)]. Recall by (11)

that the joint density function of (T1, . . . , Tn) is given by

f(T1,...,Tn)(t1, . . . , tn) =

n∏
i=1

λi(ti)

n∏
i=1

fi(Λi(ti)− Λi(ti−1))1A(t1, . . . , tn),

(0 otherwise), where A := {(t1, . . . , tn) ∈ Rn| − ∞ = t0 < t1 < t2 < · · · <
tn, ti < Mi, i = 1, . . . , n}

As the product of MTP2 functions is also MTP2 [Karlin and Rinott(1980),
Prop. 3.3], it is sufficient to check this property for each term. First of all, 1A
is MTP2, because A is a lattice (closed under minimum and maximum). The
terms λi(ti) and f1(Λ1(t1) (case j = 1 in the previous product) are also MTP2
because they are unidimensional. Thus, it only remains to check the MTP2
property for:

g(t1, . . . , tn) = fi(Λi(ti)− Λi(ti−1)), j = 2, . . . , n.

As fi is log-concave, fi(x− y) is TP2 (see [Marshall and Olkin (2007), p. 696])
and thus g∗(t1, . . . , tn) =

∏n
j=2 fi(tj − tj−1) is MTP2. The MTP2 for g now

follows because Λi is increasing and this property is preserved by increasing
transforms ([Karlin and Rinott(1980), Prop. 3.6]).

(b) The proof follows the ideas of [Bad́ıa et al(2018)b, Thm. 1(c)], but we
provide the details here. Based on (3), the properties of the inverse function
and straightforward algebra, we have

P(Wi+1 > x|W1 = w1, . . . ,Wi = wi)

= P(Ti+1 > x+ Ti|W1 = w1, . . . ,Wi = wi)
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= P(Λ−1
i+1(Xi+1 + Λi+1(Ti)) > x+ Ti|W1 = w1, . . . ,Wi = wi)

= P(Xi+1 + Λi+1(Ti) > Λi+1(x+ Ti)|W1 = w1, . . . ,Wi = wi)

= P(Xi+1 > Λi+1(x+ Ti)− Λi+1(Ti)|W1 = w1, . . . ,Wi = wi)

= F̄i+1(Λi+1(x+

i∑
j=1

wj)− Λi+1(

i∑
j=1

wj))

for all i = 1, . . . , n − 1. Now, assuming that Yi+1 is DFR (IFR), its survival
function is log-convex (log-concave) and its cumulative hazard rate is concave

(convex). Then, Λi+1(x+
∑i
j=1 wj)−Λi+1(

∑i
j=1 wj) is decreasing (increasing)

in (w1, . . . , wi). The conclusion follows as F̄i+1 is decreasing. �

Remark 5 Property (b) in the previous result, applied in the setting of Exam-
ple 8 provides us with results concerning dependence properties of spacings in
either sequential or generalized order statistics. As said before, the proof of the
previous proposition is based on [Bad́ıa et al(2018)b, Thm. 1], thus extending
several dependence properties for a trend renewal process to trend-transformed
independent vectors. Moreover, in [Bad́ıa et al(2018)b, Thm. 1] a result con-
cerning the multivariate increasing failure rate property for the vector of arrival
times in a trend renewal process is provided. This result can also be generalized
to trend-transformed independent vectors. Details are omitted, as the definitions
and results are quite technical. Besides, the previous result includes some known
properties for Generalized Pòlya Processes (see [Bad́ıa et al(2018a), Prop. 10
and 11]).

Remembering that a trend function Λ can be seen as the cumulative hazard
rate of a random variable Y , many multivariate stochastic comparison results
previously obtained in the literature for specific (T1, . . . , Tn) (as described in
Examples 4, 5, 8 or 9) rely on comparison assumptions on the corresponding
random variable Y (see, e.g. [Belzunce et al(2001), Zhuang et al(2007)]). In this
way, hazard rate comparisons are used between such random variables in differ-
ent models in order to obtain, for instance, stochastic comparisons for general
sequential order statistics or non-homogeneous pure-birth processes. However
for some specific models (GOS [Belzunce et al(2005)], or trend renewal processes
[Bad́ıa et al(2018)b], for instance), these conditions can be weaken to compari-
son assumptions in the usual stochastic order. Our aim here is to give a general
result including both cases. To begin with, we give a new characterization of
the hazard rate ordering, which is adapted to the construction of (T1, . . . , Tn),
as provided by (3). Recall that two random variables Y1 and Y2 with respec-
tive survival functions F̄1 and F̄2 are ordered in the hazard rate order if and
only if F̄2/F̄1 is an increasing function (see [Müller and Stoyan(2002), p.8], for
instance).

Proposition 13 Let Λ and Λ̃ be two trend functions with respective endpoints
M (j), j = 1, 2, and such that M (1) ≤ M (2). Let us introduce two random
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variables Y (j), j = 1, 2 with respective cumulative hazard rates Λ and Λ̃. Then,
we have the following equivalence: Y (1) ≤hr Y (2) if and only if

Λ−1(x+ Λ(y)) ≤ Λ̃−1(x+ Λ̃(y)), x > 0, y ≤M (1). (18)

Proof. First, we recall from (1) that the survival function of a random variable
with cumulative hazard rate Λ can be written as e−Λ(x) and therefore, it is easy
to check from the definition of hazard rate order that

Y (1) ≤hr Y (2) ⇔ e−(Λ̃−Λ) is an increasing function on (−∞,M (1))

⇔ Λ̃− Λ is a decreasing function on (−∞,M (1)). (19)

Now, assume that Y (1) ≤hr Y (2), so that Λ̃ − Λ is a decreasing function.
Our aim is to prove (18). To begin with, let us notice that

Λ̃−1(x+ Λ̃(y)) > y x > 0, y ≤M (2). (20)

This is because
Λ̃(Λ̃−1(x+ Λ̃(y)) = x+ Λ̃(y) > Λ̃(y),

which clearly implies (20). From now on, assume that Λ̃−1(x + Λ̃(y)) ≤ M (1)

(otherwise (18) holds trivially as the first term is less or equal that M (1)). Based

on the fact that Λ̃−Λ is a decreasing function and Λ̃(Λ̃−1(s)) = s for all s > 0,
we have

x = Λ̃(Λ̃−1(x+ Λ̃(y)))− Λ̃(y) ≤ Λ(Λ̃−1(x+ Λ̃(y)))− Λ(y)

and therefore
x+ Λ(y) ≤ Λ(Λ̃−1(x+ Λ̃(y))). (21)

Now let us denoteD and D̃ the sets defined in (5). Note thatD ⊆ D̃ (as on an in-

terval Ij ⊆ D, Λ̃ has to be constant too, because otherwise Λ̃−Λ would not be de-

creasing, thus Ij ⊆ D ⊆ D̃). Therefore, D̃c ⊆ Dc. Applying Λ−1 to both terms
of (21) and taking into account that

Λ̃−1
(
x+ Λ̃(y))

)
∈ Dc, we obtain

Λ−1(x+ Λ(y)) ≤ Λ−1(Λ(Λ̃−1(x+ Λ̃(y)))) = Λ̃−1(x+ Λ̃(y)),

which completes the proof of the ”if” part. For the ”only if” part, assume (18) to

hold. Based on (19), the point is to show that Λ̃−Λ is a decreasing function on (−∞,M (1)),
that is

Λ̃(y)− Λ(y) ≤ Λ̃(x)− Λ(x), x < y ≤M (1). (22)

Let x < y ≤M (1). If Λ̃(y) = Λ̃(x), the result is clear. Now, assume that Λ̃(y) >

Λ̃(x). If y ∈ Ĩj = (aj , bj ] ⊆ D̃, then x < aj , because Λ̃(aj) = Λ̃(y) > Λ̃(x).
Note that we have

Λ̃(y)− Λ(y) ≤ Λ̃(aj)− Λ(aj).
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Hence, it is enough to show that

Λ̃(aj)− Λ(aj) ≤ Λ̃(x)− Λ(x),

with x < aj and aj ∈ D̃c to conclude. Clearly, this is true if we know that

(22) is true for all y ∈ D̃c. Then we can reduce the study to this case. From

now on, we hence assume that y ∈ D̃c and Λ̃(y) > Λ̃(x). Applying (18) with

x? = Λ̃(y)− Λ̃(x)(> 0) and y? = x, we obtain

y = Λ̃−1(Λ̃(y)) = Λ̃−1(Λ̃(y)− Λ̃(x) + Λ̃(x)) ≥ Λ−1(Λ̃(y)− Λ̃(x) + Λ(x)).

Now, (22) is derived by applying Λ in both terms.

In the following result, we give conditions for comparison in the multivariate
stochastic ordering.

Proposition 14 Let us consider two trend-transformed independent vectors

(T
(j)
1 , . . . , T

(j)
n ), j = 1, 2 with respective trend vectors Λ (with endpoint vector

M(1)) and Λ̃ (with endpoint vector M(2)) and increment distributions (X
(j)
1 , . . . , X

(j)
n ), j =

1, 2. Assume that for each i = 1, . . . , n, we have M
(1)
i ≤ M

(2)
i , X

(1)
i ≤st X(2)

i

and Λi ≥ Λ̃i (on (−∞,M (1)
i ). Moreover, assume that there exists 1 ≤ n′ ≤ n

such that

Λi ◦ Λ−1
i−1 ≤ Λ̃i ◦ Λ̃−1

i−1 for 2 ≤ i ≤ n′, (23)

Λ̃i − Λi is decreasing on (−∞,M (1)
i ) for n′ < i ≤ n. (24)

Then,

(T
(1)
1 , . . . , T (1)

n ) ≤st (T
(2)
1 , . . . , T (2)

n ) (25)

Also, it is possible to construct the two vectors (T
(j)
1 , . . . , T

(j)
n ), j = 1, 2 on the

same probability space in such a way that(
T

(1)
1 , · · · , T (1)

n

)
≤
(
T

(2)
1 , · · · , T (2)

n

)
a.s. (26)

Proof. It is enough to show the second result, as the almost sure order
implies the usual stochastic one. On one hand, the ordering condition for

the vectors (X
(j)
1 , . . . , X

(j)
n ), j = 1, 2 allows us to construct the two vectors

(X
(j)
1 , . . . , X

(j)
n ), j = 1, 2 on the same probability space in such a way that(

X
(1)
1 , · · · , X(1)

n

)
≤
(
X

(2)
1 , · · · , X(2)

n

)
a.s. (27)

On the other hand, the two vectors (T
(j)
1 , . . . , T

(j)
n ), j = 1, 2 can be defined in

this probability space using (3), which is also valid a.s. The case i = 1 is then

obvious, as Λ1 ≥ Λ̃1 implies Λ−1
1 ≤ Λ̃−1

1 , and therefore

T
(1)
1 = Λ−1

1 (X
(1)
1 ) ≤ Λ̃−1

1 (X
(2)
1 ) = T

(2)
1 .
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Now, based on (3), we have

T
(1)
2 = Λ−1

2

(
X

(1)
2 +

(
Λ2 ◦ Λ−1

1

)
(X

(1)
1 )
)
,

T
(1)
3 = Λ−1

3

(
X

(1)
3 +

(
Λ3 ◦ Λ−1

2

)
(X

(1)
2 +

(
Λ2 ◦ Λ−1

1

)
(X

(1)
1 ))

)
.

Clearly, any T
(1)
i can be expressed in a similar way, with

T
(1)
i = Λ−1

i

(
X

(1)
i +

(
Λi ◦ Λ−1

i−1

) (
X

(1)
i−1 +

(
Λi−1 ◦ Λ−1

i−2

) (
. . .+

(
Λ2 ◦ Λ−1

1

)
(X

(1)
1 )
)))

,

where only Λ−1
i and Λk◦Λ−1

k−1, k = 2, . . . , i are involved, with a similar expression

for T
(2)
i with respect to Λ̃−1

i and Λ̃k ◦ Λ̃−1
k−1, k = 2, . . . , i.

Let n′ be as in (23). Using that Λi ◦ Λ−1
i−1 ≤ Λ̃i ◦ Λ̃−1

i−1, it is easy to derive

from the previous expressions that T
(1)
i ≤ T

(2)
i (a.s.). Thus, this inequality is

true up to n′.
For i ≥ n′, we proceed by induction, where the case i = n′ is already known

to be true. Let i be such that n′ ≤ i ≤ n− 1 and assume that T
(1)
i ≤ T (2)

i . Let

Y
(j)
i+1, j = 1, 2 be two random variables with respective cumulative hazard rate

functions Λi+1 and Λ̃i+1. Condition (24) is equivalent to say that Y
(1)
i+1 ≤hr Y

(2)
i+1

(recall (19)). Thus, applying Proposition 13, we derive that

T
(1)
i+1 = Λ−1

i+1(X
(1)
i+1 + Λi+1(T

(1)
i )) ≤ Λ̃−1

i+1(X
(1)
i+1 + Λ̃i+1(T

(1)
i )))

≤ Λ̃−1
i+1(X

(2)
i+1 + Λ̃i+1(T

(2)
i )) = T

(2)
i+1

We then conclude that T
(1)
i ≤ T (2)

i for 1 ≤ i ≤ n, and thus (26) holds.

Remark 6 (a) If Λi = Λ and Λ̃i = Λ̃, i = 1, 2, . . . n, we recall that
(
Λ ◦ Λ−1

)
(s) =(

Λ̃ ◦ Λ̃−1
)

(s) = s, s > 0 and (23) in the previous result holds true triv-

ially (with n′ = n). Thus, in this case the problem reduces to check that

M (1) ≤ M (2), Λ ≥ Λ̃ and X
(1)
i ≤st X(2)

i for each i = 1, . . . , n. These con-
ditions are the same as the ones given in [Bad́ıa et al(2018)b, Thm. 3(a)]
for trend renewal processes.

(b) Let h(j) : {0, 1, . . . , n−1}→ R∗+ be given functions and let F
(j)
i stand for the

exponential distribution function with mean 1/h(j)(i− 1), with i = 1, . . . , n

and j = 1, 2. Assume further that Λi = Λ and Λ̃i = Λ̃, i = 1, 2, . . . n. Based
on point (a), the problem reduces to check that M (1) ≤ M (2), Λ ≥ Λ̃ and
h(1) ≥ h(2). Hence, the previous result extends in a natural way those ob-
tained in Belzunce et al. [Belzunce et al(2005), Thm. 3.10(i)] for General-
ized Order Statistics (see Example 8) and in Bad́ıa et al [Bad́ıa et al(2018c),
Lemma 2] for the arrival times of an Extended Pólya process (see Example
5).

17



(c) If, for instance, Λi = Λ̃i, i = 1, . . . , n′, but Λn′+1 6= Λ̃n′+1, then condi-

tion (23) is contradictory with Λn′+1 ≥ Λ̃n′+1. Thus, condition (24) could
be helpful in these situations. The general results for multivariate stochas-
tic order for non-homogeneous pure-birth processes [Belzunce et al(2001),
Thm.3.11] or for sequential order statistics [Zhuang et al(2007), Thm. 3.7]
were given under similar conditions with n′ = 2. Thus, our previous propo-
sition enlarges such results.

(d) In view of Examples (a) and (b), it might be tempting to think that the

conditions M
(1)
i ≤ M

(2)
i , X

(1)
i ≤st X(2)

i and Λi ≥ Λ̃i could be sufficient for
the stochastic order to hold. But it is easy to construct a counterexample as
follows. Let Λ1(x) = Λ̃1(x) = x, x > 0. Assume that Λ̃2 and Λ2 are equal

to 0 on (−∞, 0] such that M
(1)
i = M

(2)
i =∞ for each i and that Λ̃2 −Λ2 is

not a decreasing function. According to Proposition 13, there exists x, y > 0
such that

Λ−1
2 (x+ Λ2(y)) > Λ̃−1

2 (x+ Λ̃2(y)). (28)

Take two independent uniform random variables U1 and U2 (on the same

probability space), and consider X
(1)
1 = X

(2)
1 = y − hU1 and X

(1)
2 = X

(2)
2 =

x− hU2 (h small enough). Let us next set

T
(1)
2 = Λ−1

2 (x−hU2 +Λ2(y−hU1)) and T
(2)
2 = Λ̃−1

2 (x−hU2 +Λ̃2(y−hU1)).

If T
(1)
2 ≤ T

(2)
2 a.s. for all h > 0, taking limits as h ↓ 0 (recall that the

inverse functions are left-continuous) leads to a contradiction with (28).

Hence, T
(1)
2 ≤ T (2)

2 cannot be almost surely true for all h > 0.

In the following corollary, we next express the previous conditions from
Proposition 14 for sequential and intermediate order statistics, in terms of their
associated distribution functions.

Corollary 15 We have the following.

(a) Let (Ḡ1,j , . . . , Ḡn,j), j = 1, 2 be two vectors of survival functions such that

M1,j =
(
Ḡ1,j

)−1
(0) ≤ . . . ≤ Mn,j =

(
Ḡn,j

)−1
(0) for j = 1, 2, and let

(X?,j
1,n, . . . , X

?,j
n,n), j = 1, 2 be the sequential order statistics for the corre-

sponding distribution functions (see Example 8). If we have Mi,1 ≤ Mi,2,
Ḡi,2 ≥ Ḡi,1 for all i = 1, . . . , n and if there exists some 1 ≤ n′ ≤ n such
that:

(i) there exist two vectors of positive real numbers (r1,j , . . . , rn′,j), j = 1, 2

such that ri,1 ≥ ri,2 for all i = 1, . . . , n and Ḡ
ri,1
i,1 ◦

(
Ḡ
ri−1,1

i−1,1

)−1 ≤
Ḡ
ri,2
i,2 ◦

(
Ḡ
ri−1,2

i−1,2

)−1
for 2 ≤ i ≤ n′,

(ii) Ḡi,1 ≤hr Ḡi,2 for n′ < i ≤ n (where the hazard rate order stands for
the corresponding random variables),

18



then (X?,1
1,n, . . . , X

?,1
n,n) ≤st (X?,2

1,n, . . . , X
?,2
n,n).

(b) Let G1 and G2 be two distribution functions and let (W
(j)
1 , . . . ,W

(j)
n ), j =

1, 2 be the associate vector of intermediate order statistics of order 0 =

p
(j)
0 ≤ p(j)

1 ≤ p(j)
2 ≤ · · · ≤ p(j)

n ≤ n (see Example 10). If G1 ≥ G2 and p
(1)
i −

p
(1)
i−1 ≤ p

(2)
i − p

(2)
i−1, i = 1 . . . n, then (W

(1)
1 , . . . ,W

(1)
n ) ≤st (W

(2)
1 , . . . ,W

(2)
n ).

Proof. For point (a), let us first remember from Example 8 that sequential
order statistics are trend-transformed independent vectors with trend functions
Λi,j , 1 ≤ i ≤ n, j = 1, 2, defined as the cumulative hazard rates of the Ḡi,j ’s and

exponential increments with rate 1. Alternatively, we can also consider Λ̂i,j =

ri,jΛi,j and exponential random variables X̂i,j with means 1/ri,j (see Remark
3). Our aim is to show that the conditions from Proposition 14 are true for
this last parameterization. As ri,1 ≥ ri,2, we already know that X̂i,1 ≤sto X̂i,2.
Also, based on Λi,j = − ln ◦Ḡi,j , it is clear that Λi,1 ≥ Λi,2 due to Ḡi,2 ≥ Ḡi,1
by assumption. This implies that Λ̂i,1 ≥ Λ̂i,2 because ri,1 ≥ ri,2. For 2 ≤ i ≤ n′,
let us show (23), namely

Λ̂i,1 ◦
(

Λ̂i−1,1

)−1

≤ Λ̂i,2 ◦
(

Λ̂i−1,2

)−1

. (29)

We have

Λ̂i,j ◦
(

Λ̂i−1,j

)−1

= ri,jΛi,j ◦ (ri−1,jΛi−1,j)
−1

= −ri,j ln ◦Ḡi,j ◦
(
−ri−1,j ln ◦Ḡi−1,j

)−1

= − ln ◦Ḡri,ji,j ◦
(
− ln ◦Ḡri−1,j

i−1,j

)−1
.

Based on((
− ln ◦Ḡri−1,j

i−1,j

)−1
)

(t) =
((
Ḡ
ri−1,j

i−1,j

)−1 ◦ (− ln)
−1
)

(t) =
(
Ḡ
ri−1,j

i−1,j

)−1 (
e−t
)

for all t ≥ 0 (see [Embrechts and Hofert(2013)] for the first equality), we now
get (

Λ̂i,j ◦
(

Λ̂i−1,j

)−1
)

(t) = −
(

ln ◦Ḡri,ji,j ◦
(
Ḡ
ri−1,j

i−1,j

)−1
) (
e−t
)
, t ≥ 0,

from where (29) is easily derived, based on the assumptions. Now, for n′ < i ≤
n, as Ḡi,1 ≤hr Ḡi,2, we know from (19) that Λi,2 − Λi,1 decreases and hence,

Λ̂i,2 − Λ̂i,1 = ri,2(Λi,2 − Λi,1)− (ri,1 − ri,2)Λi,1

also decreases and (24) is true. This completes the proof of point (a). For point
(b), let Λj be the cumulative hazard rate for Gj , j = 1, 2. We recall from Ex-
ample 10 that intermediate order statistics are trend-transformed independent
vectors with trend vector (Λ1,j = Λj , . . . ,Λn,j = Λj) and increment distribu-
tions defined as Xi,j = − lnBi,j , i = 1, . . . , n, j = 1, 2, where Bi,j is a beta
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random variable with parameters a = n − p
(j)
i + 1 and b = p

(j)
i − p

(j)
i−1. As

Λj = − ln(1 − Gj), we have Λ1 ≥ Λ2. Based on Remark 6(a), conditions (23)
and (24) hence hold and there only remains to check that Xi,1 ≤sto Xi,2. We
recall that for beta random variables

B(a, b) ≤st B(a?, b?) if a ≤ a? and b ≥ b?,

and therefore, as − ln(· ) is a decreasing function,

− lnB(a, b) ≤st − lnB(a?, b?) if a ≥ a? and b ≤ b?.

In our setting, sufficient conditions hence are:

n− p(1)
i + 1 ≥ n− p(2)

i + 1, and p
(1)
i − p

(1)
i−1 ≤ p

(2)
i − p

(2)
i−1, i = 1, . . . , n.

Under the second condition, we have

p
(1)
i =

i∑
k=1

(p
(1)
k − p

(1)
k−1) ≤

i∑
k=1

(p
(2)
k − p

(2)
k−1) = p

(2)
i , i = 1, 2, . . . , n,

which implies the first condition. The second condition is hence sufficient to
ensure that Xi,1 ≤sto Xi,2, which completes the proof.

We now provide comparison results in the likelihood ratio ordering. Recall
that two random variables Y1 and Y2 with respective density functions f̄1 and f̄2

are ordered in the likelihood ratio ordering if and only if f̄2/f̄1 is an increasing
function (see [Müller and Stoyan(2002), p.12], for instance). We are going to
use the multivariate generalization of this order (see [Müller and Stoyan(2002),
p.129], for instance), whose definition is provided in (41). In order to obtain as
accurate as possible conditions, we consider a specific case where the increments
are identically gamma distributed, with identical parameters for the two trend-
transformed independent vectors to be compared.

Theorem 16 Let us consider two trend-transformed independent vectors, (T
(j)
1 , . . . , T

(j)
n ),

j = 1, 2 with respective trend vectors Λ(j), j = 1, 2, which are assumed to be
absolutely continuous with respective intensity functions λ(j), j = 1, 2 and end-

points M(j), j = 1, 2. Assume that M
(1)
i ≤M (2)

i for each i = 1, . . . , n, and that

the vectors of increment distribution (X
(j)
1 , . . . , X

(j)
n ), j = 1, 2 are identically

distributed, and such that each X
(j)
i has the following gamma density:

fi(x) =
αpxp−1

Γ(p)
e−αx, x > 0, α > 0 and p ≥ 1.

Let Y
(j)
i be random variables with intensity functions λ

(j)
i , i = 1, . . . , n, j = 1, 2.

Assume that the following conditions hold:

(a) Y
(1)
i ≤hr Y (2)

i , i = 1, . . . , n,
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(b) λ
(2)
i /λ

(1)
i is increasing, i = 1, . . . , n,

(c) Λ
(1)
i − Λ

(1)
i+1 − Λ

(2)
i + Λ

(2)
i+1 is increasing, i = 1, . . . , n− 1.

Then, (T
(1)
1 , . . . , T

(1)
n ) ≤lr (T

(2)
1 , . . . , T

(2)
n ).

Proof. Let f (j) be the joint density functions corresponding to each (T
(j)
1 , . . . , T

(j)
n ),

j = 1, 2. Let x and y be two vectors in Rn. In order to check the likelihood
ratio order, we need to prove that

f (1)(x)f (2)(y) ≤ f (1)(x ∧ y)f (2)(x ∨ y). (30)

According to Proposition 11, the product of the two joint pdf can be written as

f (1)(x)f (2)(y) = C
∏n
i=1 λ

(1)
i (xi)λ

(2)
i (yi)× e−αΛ(1)

n (xn)e−αΛ(2)
n (yn)

×
∏n−1
i=1 e

−α(Λ
(1)
i (xi)−Λ

(1)
i+1(xi))e−α(Λ

(2)
i (yi)−Λ

(2)
i+1(yi))

×
(∏n

i=1(Λ
(1)
i (xi)− Λ

(1)
i (xi−1))(Λ

(2)
i (yi)− Λ

(2)
i (yi−1))

)p−1

1A(1)(x)1A(2)(y),(31)

where C is a constant term and A(j), j = 1, 2 are the sets defined in Proposition
11. We will assume, from now on, that x ∈ A(1) and y ∈ A(2), as otherwise (30)
is trivial. Note that, obviously, if g2/g1 is increasing, then

g1(x)g2(y) ≤ g1 (x ∧ y) g2 (x ∨ y) (32)

for all x, y. Then, assumption (b) ensures that the functions gj(x) = λ
(j)
i (x),

j = 1, 2 satisfy (32). In the same way, the functions gj(x) = e−αΛ
(j)
i (x), j = 1, 2,

also satisfy (32) as, in this case,

e−αΛ
(2)
i (x)

e−αΛ
(1)
i (x)

=

(
F̄
Y

(2)
i

(x)

F̄
Y

(1)
i

(x)

)α
increases with respect to x, due to assumption (a). Finally, the functions

gj(x) = e−α(Λ
(j)
i (x)−Λ

(j)
i+1(x)) satisfy the same property too, due to assumption

(c). Applying the previous observations to (31), we get:

f (1)(x)f (2)(y) ≤ C
n∏
i=1

λ
(1)
i (xi ∧ yi)λ(2)

i (xi ∨ yi)× e−αΛ(1)
n (xn∧yn)e−αΛ(2)

n (xn∨yn)

×
n−1∏
i=1

e−α(Λ
(1)
i (xi∧yi)−Λ

(1)
i−1(xi∧yi))e−α(Λ

(2)
i (xi∨yi)−Λ

(2)
i−1(xi∨yi))

×

(
n∏
i=1

(Λ
(1)
i (xi)− Λ

(1)
i (xi−1))(Λ

(2)
i (yi)− Λ

(2)
i (yi−1))

)p−1

. (33)

Let us now set

l
(j)
i (x1, x2) = (Λ

(j)
i (x2)− Λ

(j)
i (x1))1{x1<x2}. (34)
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Based on (33), the claim follows if we prove that

l
(1)
i (x1, x2)l

(2)
i (y1, y2) ≤ l(1)

i (x1 ∧ y1, x2 ∧ y2)l
(2)
i (x1 ∨ y1, x2 ∨ y2)). (35)

It is readily seen that l
(1)
i (x1, x2) is MTP2, based on the fact that the function

(x2−x1)+ is MTP2 and that the MTP2 property is preserved under increasing
transforms. Then, following similar arguments as in [Shaked and Shanthikumar(2007),
p. 291] for the proof of Theorem 6.D.1., it is now sufficient to show that

l
(2)
i (x1, x2)l

(1)
i (y1, y2) ≤ l(2)

i (y1, y2)l
(1)
i (x1, x2), (x1, x2) ≤ (y1, y2). (36)

Based on assumption (b), this can be done in a similar way as for the proof of
Theorem 2(c) in [Bad́ıa et al(2018)b, p.180], and it is omitted.

Remark 7 Note that Theorem 16 includes [Belzunce et al(2001), Thm.3.13]
as condition (c) holds if its derivative is positive (which is condition (3.11)
in [Belzunce et al(2001), Thm.3.13]). Thus, under the same conditions on the
trend functions, we extend this theorem to situations where the increment dis-
tribution is gamma (which include sequential order statistics, as the increment
distribution is exponential in this case). However, more specific results can be
obtained in the exponential case and a more detailed analysis will be done in the
next section. Our previous theorem also includes the result for trend-renewal
processes given in [Bad́ıa et al(2018)b, Thm 2 (c)], as condition (c) is immedi-

ately satisfied if Λ
(j)
i = Λ(j), i = 1, . . . , n, j = 1, 2. It also includes the result

for trend-renewal processes given in [Bad́ıa et al(2018)b, Thm 3 (c)], in which

Λ
(j)
i = Λ(j), i = 1, . . . , n, j = 1, 2 and the increments are gamma distributed

with the same shape parameter p ≥ 1 and (possibly) different scale parameters
α1 ≥ α2 . . . ≥ αn. To see that, one only needs to use Remark 3 and consider

an equivalent representation by taking Λ̂
(j)
i = αiΛ

(j)
i = αiΛ

(j) (and thus the in-
crement distributions are gamma with scale parameter = 1). If the initial trend
vectors Λ(j), j = 1, 2 satisfy the conditions in Theorem 16, it is readily seen that
the vectors Λ̂(j), j = 1, 2 also do, which allows to conclude.

Remark 8 As Theorem 16 is shown for log-concave gamma densities, it could
be tempting to think that it could be generalized to any increment distributions
having log-concave density. However, the specific conditions for the trend func-
tions in the multivariate likelihood ratio order strongly depend on the specific
form of the increment distribution. For instance, if we consider Weibull in-
crements, the conditions given in Theorem 16 are not sufficient to ensure the
likelihood ratio comparison results, as we next show. With that aim, let us con-
sider i.i.d. Weibull increments with density:

f(x) = αxα−1e−x
α

, x ≥ 0, α ≥ 1.

If Λ is a trend function, then, for Λi = Λ, i = 1, 2, the density of (T1, T2) is
given by

f(T1,T2)(t1, t2) = λ(t1)λ(t2)α2(Λ(t2)−Λ(t1))α−1Λ(t1)α−1e−(Λ(t2)−Λ(t1))αe−Λ(t1)α .
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Now let us consider λ(1)(x) = 2 and λ(2)(x) = 1 for x ≥ 0 (0 otherwise). Then
we have Λ(1)(x) = 2x and Λ(2)(x) = x and the conditions concerning the trend
functions in Theorem 16 are obviously satisfied. Moreover,

f
(T

(2)
1 ,T

(2)
2 )

(t1, t2)

f
(T

(1)
1 ,T

(1)
2 )

(t1, t2)
∝ e(2α−1)((t2−t1)α+tα1 )

It can be easily checked that for α > 1 and t2 fixed, the previous function first
decreases and next increases with respect to t1.

4 Multivariate likelihood ratio comparison re-
sults for trend-transformed vectors with ex-
ponential increments

As shown in Examples 8 and 9, the case of standard exponential increments
(with mean 1) includes Sequential Order Statistics and, in particular, non-
homogeneous pure-birth processes. Multivariate likelihood ratio comparison
results were obtained in Belzunce et al. [Belzunce et al(2001)] for the arrival
times in a general pure-birth process and in [Zhuang et al(2007)] for sequential
order statistics. Such results are particular cases of Theorem 16. Consider-
ing standard exponential increments (which are specific gamma ones), we here
extend the sufficient conditions from Theorem 16 to more general conditions.
When the trend functions share the same support, we also provide necessary
and sufficient conditions.

Let us first recall the expression for the density of (T1, . . . , Tn) given in
Proposition 11:

f(t1, . . . , tn) =

n∏
i=1

gi(ti), −∞ = t0 < t1 < t2 < · · · < tn, ti < Mi (37)

(0 otherwise), where

gi(x) : = λi (x) eΛi+1(x)−Λi(x), x < Mi, i = 1, . . . , n− 1 (38)

gn(x) : = λn (x) e−Λn(x), x < Mn (39)

(0 otherwise).
We now provide the main result of this section.

Theorem 17 Let us consider two trend-transformed independent vectors, (T
(j)
1 , . . . , T

(j)
n ),

j = 1, 2 with respective trend vectors Λ(j), j = 1, 2, assumed to be absolutely
continuous with respective intensity function vectors λ(j), j = 1, 2 and endpoints

M(j), j = 1, 2. Assume that for each i = 1, . . . , n, we have M
(1)
i ≤ M

(2)
i , and

that the increments X
(j)
i , i = 1, . . . , n, j = 1, 2, are identically standard expo-

nentially distributed, that is with common density f
(j)
i (x) = e−x, x > 0. For
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each j = 1, 2, let g
(j)
i , i = 1, 2 . . . , n be the functions defined in (38) and (39)

corresponding to Λ
(j)
i , i = 1, . . . , n. We have the following

(a) (T
(1)
1 , . . . , T

(1)
n ) ≤lr (T

(2)
1 , . . . , T

(2)
n ) is true under the following condition

g
(2)
i (x)g

(1)
i (y) ≤ g(2)

i (y)g
(1)
i (x), −∞ < x < y < M

(1)
i , i = 1, 2, . . . , n. (40)

(b) If for each j = 1, 2, the functions λ
(j)
i , i = 1, . . . , n share the same support,

then (T 1
1 , . . . , T

1
n) ≤lr (T 2

1 , . . . , T
2
n) is equivalent to (40).

Proof. Let f (j) be the density function of (T
(j)
1 , . . . , T

(j)
n ) for j = 1, 2. For the

likelihood ratio order to hold, we need to check that

f (1)(x)f (2)(y) ≤ f (1)(x ∧ y)f (2)(x ∨ y), for all x and y. (41)

Assuming (40) to be true, we always have g
(1)
i (xi)g

(2)
i (yi) ≤

g
(1)
i (xi ∧ yi)g(2)

i (xi ∨ yi) when taking arbitrary xi and yi. This entails (41)
based on (37), and point (a) is true. For point (b), assume (41) to hold and let
us show (40). Assume also the following.

There exists i = 1, . . . , n and 0 < x < y such that g
(2)
i (x)g

(1)
i (y) > 0. (42)

(as if there is no such i and (x, y), the result is clear). Let (i, x, y) fulfills (42).

Note that this means that λ
(1)
i (y)λ

(2)
i (x) > 0 and hence λ

(1)
1 (y)λ

(2)
1 (x) > 0,

as for each j = 1, 2, the functions λ
(j)
i , i = 1, . . . , n share the same sup-

port. Moreover, based on the preservation of the likelihood ratio order un-

der marginalization, (41) implies that T
(1)
1 ≤lr T (2)

1 . As the density of T
(j)
1 is

g
(j)
1 (x) = λ

(j)
1 (x)e−Λ

(j)
1 (x), x ∈ R, we now get

0 < λ
(1)
1 (y)λ

(2)
1 (x) e−Λ

(1)
1 (y)e−Λ

(2)
1 (x) ≤ λ(1)

1 (x)λ
(2)
1 (y) e−Λ

(1)
1 (x)e−Λ

(2)
1 (y).

From the previous inequality and the fact that for each j, the functions λ
(j)
i ,

i = 1, . . . , n share the same support, we now derive the following.

If (i, x, y) fulfills (42), then λ
(j)
i (x) > 0 and λ

(j)
i (y) > 0

for all i = 1, . . . , n and j = 1, 2. (43)

Now consider m(j) := inf{x ∈ R|Λ(j)
i (x) > 0}, j = 1, 2. If m(j) > −∞, we

can assume, without lost of generality that λ
(j)
i (x) = 0, x ≤ m(j) (this only

entails to modify the definition of the λ
(j)
i on a set with Lebesgue measure 0,

if needed). By (42), we know that x ∈ (m(2),M (2)) and y ∈ (m(1),M (1)). By

definition of m(2), we now have Λ
(2)
1 (x) =

∫ x
m(2) λ

(2)(y)dy > 0, which entails that

λ
(2)
1 does not almost surely cancel on (m(2), x). It is hence possible to construct

xk, k = 1, . . . , i − 1 such that m(2) < x1 < . . . < xi−1 < x with λ
(2)
1 (xk) > 0.
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In the same way, we can construct yk′ , k
′ = i + 1, . . . , n such that y < yi+1 <

. . . < yn < M (1) with λ
(1)
1 (yk′) > 0. Based on (43) and xk < yk′ (because

x < y), we derive that λ
(j)
i (xk) > 0 and λ

(j)
i (yk′) > 0 for all k, k′, i and j. Tak-

ing x := (x1, . . . , xi−1, y, yi+1, . . . , yn) and y := (x1, . . . , xi−1, x, yi+1, . . . , yn) in

(41), we derive from (37) that g
(1)
i (y)g

(2)
i (x) ≤ g(2)

i (x)g
(1)
i (y), as asserted.

Remark 9 Based on Example 8, the previous result gives necessary conditions
for likelihood ratio comparisons of sequential order statistics (among others),
which become necessary under mild conditions. Using the notations of Example
8, let Λ?i and Λi, i = 1, . . . , n stand for the cumulative hazard rate functions
corresponding to G?i and Gi, respectively. Then, it is easy to check that

Λi(x) = (n− i+ 1)Λ?i (x), i = 1, . . . , n,

due to (1) and (15). Applying Theorem 17 in this setting allows us to recover
Theorem 3.1 from [Zhuang et al(2007)], and Theorem 17 hence enlarges this
result.

When considering non-homogeneous pure birth processes, we are able to find
situations not included in the general results provided in [Belzunce et al(2001)],
as the following example shows.

Example 18 Let (T
(j)
1 , T

(j)
2 ), j = 1, 2, be two trend-transformed independent

vectors with corresponding intensity functions λ
(1)
1 (x) = 2+x, λ

(1)
2 (x) = 1+x/2,

λ
(2)
1 = 1 and λ

(2)
2 = 1/2, x > 0, and both with standard exponential increments.

Let us consider g
(j)
i , as defined in (38) and (39). A straightforward calculus

shows us that

g
(2)
1 (x)

g
(1)
1 (x)

=
g

(2)
2 (x)

g
(1)
2 (x)

=
1

2 + x
ex/2+x2/4, x > 0

which is an increasing function on (0,∞). From Theorem (17), we thus have

that (T
(1)
1 , T

(1)
2 ) ≤lr (T

(2)
1 , T

(2)
2 ). However, we cannot use the result for non-

homogeneous pure-birth processes given in [Belzunce et al(2001), Thm.3.13], as
λ
(2)
1 (x)

λ
(1)
1 (x)

= 1
2+x is a decreasing function.

As an illustration of Theorem 17, let us consider a given intensity function λ
and its corresponding Λ. We now particularize the previous results to trend
functions of the form

Λi = aiΛ, ai > 0, i = 1, . . . , n, (44)

thus including generalized order statistics and extended Pólya processes, as
explained at the end of Example 8.

In the specific case where the two trend-transformed vectors share the same

Λ in (44), but the coefficients a
(j)
i , j = 1, 2 differ, the previous proposition
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allows to easily write down necessary and sufficient conditions in terms of the
coefficients to get the likelihood ratio comparison results. The reasoning is clear
and the proof is omitted.

Corollary 19 For a given intensity function λ, let us consider two trend-

transformed independent vectors, (T
(j)
1 , . . . , T

(j)
n ), j = 1, 2 with respective trend

functions a
(j)
i Λ, i = 1, . . . , n, j = 1, 2 and both with standard exponential in-

crements. Then (T
(1)
1 , . . . , T

(1)
n ) ≤lr (T

(2)
1 , . . . , T

(2)
n ) if and only if the following

inequalities hold:

a(1)
n ≥ a(2)

n (45)

a
(1)
i+1 − a

(1)
i ≤ a

(2)
i+1 − a

(2)
i , i = 1, 2, . . . , n− 1 (46)

Remark 10 This set of conditions is similar to the sufficient conditions ap-
pearing in [Belzunce et al(2001), Thm 3.13] for theses specific pure-birth pro-
cesses. Notice that we show that they are also necessary. However, they are
quite restrictive. Indeed, we can rewrite these inequalities as

0 ≤ a(1)
n − a(2)

n ≤ a
(1)
n−1 − a

(2)
n−1 ≤ . . . ≤ a

(1)
1 − a

(2)
1 .

If we consider EPPs with the supplementary assumption a
(1)
1 = a

(2)
1 , this con-

dition entails that a
(1)
i = a

(2)
i for all i ∈ {1, . . . , n} .

We now derive necessary and sufficient conditions for comparing specific
Extended Pólya processes in the likelihood ratio ordering, please see Example
5 for the notations. The first result is for generalized Pólya processes. It is a
direct consequence of Corollary 19 and it is stated without proof.

Corollary 20 Let us consider two generalized Pólya processes (h(j), λ), j =
1, 2, with h(j)(i) = αj i + βj, i = 1, 2, . . ., αj ≥ 0, βj > 0, j = 1, 2. Then we

have (T
(1)
1 , . . . , T

(1)
n ) ≤lr (T

(2)
1 , . . . , T

(2)
n ) for some n ≥ 2 if and only if α1 ≤ α2

and β1 − β2 ≥ (α2 − α1)(n− 1).

Remark 11 From the previous result, we deduce easily that the likelihood ratio
ordering between two generalized Pólya processes holds for all n if and only if
α1 = α2 and β1 ≥ β2.

In the following result, we derive stochastic comparisons for extended Pólya
processes sharing the same λ with non-linear functions h(i) = qi + β.

Corollary 21 Let us consider two extended Pólya processes (h(j), λ), j = 1, 2,

with h(j)(n) = qnj + βj, where qj > 0, βj ≥ 0. Let (T
(j)
n )n=1,2,..., j = 1, 2 be

their respective arrival times. We have that (T
(1)
1 , . . . , T

(1)
n ) ≤lr (T

(2)
1 , . . . , T

(2)
n )

for some n ≥ 2 if and only if q1 ≤ q2 and qn−1
1 + β1 ≥ qn−1

2 + β2, with the
additional condition qn−1

2 − qn−1
1 ≥ qn−2

2 − qn−2
1 if q2 < 1.
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Proof. We apply Corollary 19 with a
(j)
i = h(j)(i− 1), i = 1, . . . , n. Condition

qn−1
1 +β1 ≥ qn−1

2 +β2 is just equivalent to (45). The point hence is to show that
(46) is equivalent to the other conditions, that is to q1 ≤ q2 with the additional
condition qn−1

2 − qn−1
1 ≥ qn−2

2 − qn−2
1 if q2 < 1. Now (46) is just equivalent to

qi1 − qi2 − qi−1
1 + qi−1

2 ≤ 0 (47)

for all 1 ≤ i ≤ n−1. The previous condition for i = 1 gives us q1 ≤ q2. Thus, this
is a necessary condition. On the other hand, if we divide the previous expression
by qi−1

1 and rearrange terms, we have the following equivalent inequality:

(1− q2)

(
q2

q1

)i−1

≤ 1− q1 (48)

If q2 ≥ 1, the expression on the left-hand side is decreasing with respect to i
and hence maximal for i = 1. Thus q1 ≤ q2 is a sufficient condition to derive
(47). If q2 < 1, the previous expression is increasing on i, thus to have (47) for
all i, we need to check it for i = n− 1, which gives the additional condition for
q2 < 1.

Remark 12 Observe that, considering q2 = 1, the previous likelihood ratio
comparison result is valid for all n if q1 ≤ 1 and β1−β2 ≥ 1. As a consequence,
by taking β2 = β1−1 the arrival times in an EPP(h(1), λ) with h(1)(n) = qn1 +β1,
q1 < 1, β1 > 0 are bounded (in the multidimensional likelihood ratio sense) by
the ones of a non-homogeneous Poisson process with intensity (1 + β2)λ = β1λ.
On the other hand, for q2 6= 1, the previous result cannot be valid for all n,
unless q2 = q1 and β1 ≥ β2. Indeed, if q1 < q2 < 1, (48) cannot hold for all i,
and if q1 < q2 and q2 > 1 the condition qn−1

1 + β1 ≥ qn−1
2 + β2 cannot hold for

all n, as we can rewrite this as

qn−1
2

(
1−

(
q1

q2

)n−1
)
≤ β1 − β2.

5 Concluding remarks and perspective

In this paper, we have proposed a new model which includes many others from
the literature, and hence allows to treat in a unified way. Multivariate stochas-
tic comparison results have also been provided in the usual and likelihood ratio
orders, which extend others, previously developed under specific assumptions.
Clearly, there remain many other points to study for trend-transformed indepen-
dent vectors. First, we could consider multivariate stochastic comparison with
respect to other stochastic orders such as the multivariate hazard rate order or
the dispersive and mean residual life orders, trying to extend the results from
[Belzunce et al(2001), Belzunce et al(2005)] on these points. Also, Proposition
12 could be extended to study other dependence properties between the epoch
or inter-epoch times.
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It might be of interest too to study the counting process (Nt)t≥0 correspond-
ing to a trend-transformed independent sequence, that is such that the vector
of the n first arrival times is a trend-transformed independent vector. As for the
distribution of the number of arrivals Nt in a fixed time interval [0, t], it does not
seem to be available in a nice full form expression in a general setting. Maybe
one could look at specific parameterized cases? Beyond that, it should however
be possible to extend the stochastic comparisons results for the arrival times
in trend-transformed independent vectors (n fixed) to the arrival times in two
counting processes associated to two different trend-transformed independent
sequences, as is done in [Bad́ıa et al(2018)b, Thm. 3 (e),(f)] for two different
trend-renewal processes. The practical applications of those results would be
relevant for comparing cumulative shock models associated to those counting
processes, as is done in [Bad́ıa et al(2018)b, Application 4.1] for shock processes
associated to trend-renewal processes.

Finally, for a practical use of the new model in an application context, there
is a clear need to develop estimation procedures. As noted by one referee,
based on the fact that a trend-transformed independent vector implies n trend
functions and n distribution functions in its definition, it is essential to consider
parameterizing these functions. Considering Remark 3, we already know that
we can impose that the Fi’s should have expected values equal to 1, as in
[Lindqvist(2003)] for trend-renewal processes. Now, to quote only one possible
parametrization among many others, one could consider gamma distributions
G (ai, ai) for the Fi’s with E (Xi) = 1 and var (Xi) = 1/ai. Parameter ai could
next be parameterized (example: αi = σ1 σ

i
2). As for the trend functions, we

could envision the classical power-law shape function Λi (t) = αi t
βi . Next,

according to the context, one parameter among αi and βi could be considered
as fixed (say βi for instance) and the other one to have a parametric shape
(example : αi = γ1i + γ2). Then, one could try to estimate the parameters
(σ1, σ2, β, γ1, γ2) through maximizing the likelihood function, which is easy to
write down from the joint density function given in (11).

Clearly these estimation procedures deserve further work, firstly to under-
stand which kind of parametrization to be used according to the data (and for
this, experts advice might be of great interest), secondly to explore the maxi-
mum likelihood method (or others) in this context.
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