
HAL Id: hal-02917566
https://hal.science/hal-02917566v1

Submitted on 25 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TailX: Scheduling Heterogeneous Multiget Queries to
Improve Tail Latencies in Key-Value Stores

Vikas Jaiman, Sonia Ben Mokhtar, Etienne Rivière

To cite this version:
Vikas Jaiman, Sonia Ben Mokhtar, Etienne Rivière. TailX: Scheduling Heterogeneous Multiget
Queries to Improve Tail Latencies in Key-Value Stores. 20th International Conference on Distributed
Applications and Interoperable Systems, Jun 2020, Valletta, Malta. pp.73-92, �10.1007/978-3-030-
50323-9_5�. �hal-02917566�

https://hal.science/hal-02917566v1
https://hal.archives-ouvertes.fr

TailX: Scheduling Heterogeneous Multiget Queries to
Improve Tail Latencies in Key-Value Stores

Vikas Jaiman1,2, Sonia Ben Mokhtar3, and Etienne Rivière2

1 Université Grenoble Alpes, LIG (CNRS UMR 5217), France
er.vikasjaiman@gmail.com
2 ICTEAM, UCLouvain, Belgium

etienne.riviere@uclouvain.be
3 INSA Lyon, LIRIS, CNRS, France

sonia.benmokhtar@insa-lyon.fr

Abstract. Users of interactive services such as e-commerce platforms have high
expectations for the performance and responsiveness of these services. Tail latency,
denoting the worst service times, contributes greatly to user dissatisfaction and should
be minimized. Maintaining low tail latency for interactive services is challenging
because a request is not complete until all its operations are completed. The challenge is
to identify bottleneck operations and schedule them on uncoordinated backend servers
with minimal overhead, when the duration of these operations are heterogeneous and
unpredictable. In this paper, we focus on improving the latency of multiget operations
in cloud data stores. We present TailX, a task-aware multiget scheduling algorithm that
improves tail latencies under heterogeneous workloads. TailX schedules operations
according to an estimation of the size of the corresponding data, and allows itself
to procrastinate some operations to give way to higher priority ones. We implement
TailX in Cassandra, a widely used key-value store. The result is an improved overall
performance of the cloud data stores for a wide variety of heterogeneous workloads.
Specifically, our experiments under heterogeneous YCSB workloads show that TailX
outperforms state-of-the-art solutions and reduces tail latencies by up to 70% and
median latencies by up to 75%.

Keywords: Distributed storage · Performance · Scheduling.

1 Introduction

Serving users requests in interactive applications or websites generally involves handling
a number of operations to backend services and databases. For instance, the display of a
social network page may involve fetching and aggregating a number of images, posts, ads,
etc. NoSQL cloud databases increasingly offer multi-get operations in their APIs, enabling
to fetch values associated with a collection of keys with a single call [3, 17, 27, 32]. In
practice, multiget requests vary in the number of accessed keys and value size. A workload
analysis at Facebook [32] shows that a request contains an average of 24 keys while 5% of
the requests contain more than 95 keys. Another analysis from a SoundCloud trace presented
by the authors of Rein [35] shows a heavy-tailed distribution of the number of keys: 40%
of the requests involve multiple keys with an average size of 8.6 keys and the maximum
number of keys reaches up to ∼2,000 keys. Similarly, another analysis of key-value stores
production workloads at Facebook [4] shows that value size typically ranges from a few
Bytes to several MBs: Value sizes are highly skewed towards smaller sizes but very few
large value sizes consume a large share of computational resources [11].

A multiget request finishes when all of its operations complete. The response time of a
request depends on the response time of the slowest operation in that multiget request and,
as a result, multiget operations are affected more often by high tail latencies [11, 15, 17, 28].
Reducing tail latency is of uttermost importance in online services, as high service delays
may have serious consequences on user quality-of-experience and satisfaction.

2 V. Jaiman et al.

Several past works have considered the problem of reducing tail latency by scheduling
single-key requests in key-value stores [20, 24, 37]. These approaches offer solutions to the
head-of-line-blocking problem that results from the heterogeneity in the value sizes stored
in the database: single-key requests for small values may get scheduled after a request for a
large value (incurring, therefore, a long processing time). Requests for small values may
be delayed after requests for large values, increasing average and tail latencies. In contrast,
other works have considered the scheduling of multiget requests in key-value stores [14, 35],
but under the assumption of homogeneous service times for operations, i.e., of requests for
fixed-size values. Scheduling multiget requests is more involved than scheduling single-key
requests but also offers more opportunities when it is performed in a task-aware manner, i.e.,
when taking into account the entirety of the request for scheduling its constituents rather
than considering these constituents independently. In particular, as the completion time of a
multiget requests is, in fine, that of its longest operation, a task-aware scheduling algorithm
may decide to delay the processing of non-critical operations of a multiget request in favor
of more critical operations of another multiget request. The occurrence of long operations
is intrinsically linked with the number but also with the size of the values fetched by these
requests and, thus, by the heterogeneity in the size of queried data.
Contributions. We present TailX, a task-aware multiget scheduling algorithm that reduces
tail latencies under heterogeneous workloads i.e. (i) when multiget requests are formed of
operations for values of different sizes and (ii) when the number of operations for different
multiget requests vary. TailX addresses two key challenges associated with the scheduling
of multiget requests in a distributed, horizontally-scalable key-value store:

– First, a multiget request arrives at an entry point server in the key-value store, called the
coordinator, which must split it into multiple sub-requests called opset, fetch values
from different replicas, and send an aggregated response to the client. Selecting the
appropriate replica for each opset must be performed in an online fashion, and service
time cannot be known a priori and based solely on the keys. In other words, requests are
processed in a non-clairvoyant fashion [31]. This is a result of two factors: (i) the load
at the different replicas (amount of pending requests) is unknown by the coordinator
and (ii) the size of the values corresponding to the keys is known by the replicas who
hold them, but unknown to the coordinator that performs request splitting and replica
selection.

– Second, once an opset reaches the selected replica, it must be scheduled for execution at
that replica based on the overall execution time for the corresponding multiget request.
Ideally, opset that are more critical for the overall execution time of a multiget query
should be executed with higher priority than opset that are not as critical. The notion of
“criticality” of a specific opset is, however, unknown to the replica, as the knowledge
of the overall multiget requests is at the coordinator. As a result, a replica may take
non-optimal decisions in processing opset, such as answering opset that could have
been postponed without impacting the latency of the corresponding multiget requests,
and conversely postponing critical opset.

TailX implements the sharing of information between coordinators and replicas and associ-
ated algorithms for end-to-end, task-aware scheduling of multiget requests:

– For coordinators, it enables awareness of the load of the different replicas and awareness
of the size of values associated with given keys. The necessary information is exchanged
between all nodes (coordinators and replicas–in many designs, nodes assume both roles)
using an efficient and fast gossip protocol. The load of replicas, as indicated by the
length of their queues of pending requests, enables avoiding overloads and reduces the
impact of head-of-line-blocking. As sharing globally a map between all keys and the
size of corresponding values would be impractical in terms of costs and scalability, and
as request splitting and scheduling happen in the critical path of the request/response
loop, TailX favors the pragmatic and efficient use of a compact data structure–a Bloom

TailX: Scheduling Heterogeneous Multiget Queries . . . 3

Node 1

Node 2

Node 3

Node 4

[4
]

[5
]

Client

[1
]

[6
]

Partitioner

Primary

 Key

Token

[2]

[3]

 Coordinator

A,B

C,D

E,Fm
ge

t(A
,B

,C
)

mge
t(A

,B
)

 mget(C)[4]
[5]

 v
al

ue
(A

,B
,C

)
va

lue(
A,B

)

value(C)

G,H

Fig. 1: Handling of a multiget request in Cassandra.

filter [6]–that probabilistically indicates keys that are associated to large values (i.e.
above a threshold size).

– For replicas, TailX scheduling takes into account the possible influence of opset on tail
latency and supports procrastinating non-critical opset in favor of the execution of more
critical opset. These decisions are based on information embedded by the coordinator in
an opset, indicating how much this opset is estimated to be allowed to wait before it can
influence negatively the latency of its enclosing multiget request.

We implement TailX in the industry-grade key/value store Cassandra [25]. We compare
TailX with Rein [35], a state-of-the-art algorithm for multiget requests scheduling, using a
deployment on a cluster of 16 servers on the Grid’5000 testbed [5]. We use YCSB [10] to
generate workloads that contain various proportions of accessed keys and value size, based
on the description of production traces by Facebook [4]. Compared to Rein, TailX improves
median latency by 75% as well as tail latency by up to 70%.

The remaining of this paper is structured as follows. We first present background on
multiget scheduling in key-value stores (§2) and explain state-of-the-art algorithms. Next,
we further detail the design of TailX (§3) and present its implementation and performance
evaluation (§4). Finally, we discuss related work (§5) and conclude the paper (§6).

2 Multiget requests in key-value stores

We detail the execution of multiget queries in key-value stores with the example of
Cassandra [25]. We note that the operation of other horizontally scalable, hash-partitioned
key-value stores [3, 17, 27, 32] supporting multiget queries are very similar. In the example
of Figure 1, nodes 1, 2 and 3 are replicas for the values associated with keys (A,B), (C,D)
and (E,F) respectively. The example uses a single replica per key, but replication is used in
practice to guarantee data availability. A client sending a multiget request mget(A, B, C)
connects to any of the nodes that will act as coordinator (step 1). The coordinator uses a
partitioner that returns tokens, as hash values for these keys (steps 2 and 3). These tokens
together with the knowledge of the replication policy allow identifying the replicas holding
copies of the values associated with the keys. The coordinator is in charge of (1) splitting

4 V. Jaiman et al.

Fig. 2: An example scenario. Left: Requests assigned to server facing delayed response time.
Right: Procrastinate opsets into delay queue to take benefits of delay allowance

the multiget request into a set of requests for one or more keys and (2) fetching the values
from the corresponding replicas (steps 4 and 5). When all opsets have been answered, the
coordinator may serialize the result and send it back to the client (step 6).

We illustrate the difficulty in scheduling multi-get requests efficiently to obtain low
overall latencies with an example in Figure 2 where the same request mget(A, B, C) is
processed in a system where other single-key and multiget requests are ongoing. On the left
of Figure 2 servers 1, 2, 3 hold values for keys (A, B), (C, D) and (E, F, G, H, I) respectively.
A small box represents a request to a small value and a large rectangle box (in this example
for key D) represents a request to a large value. For the sake of simplicity, we assume that
all replicas have a service time of 1 operation per unit time for serving a small value and of
5 unit time for serving a large value. For the request mget(A,B,C), (A,B) and (C) are the two
opsets. With a FIFO scheduling as shown on the left of the figure, mget(A, B, C), mget(D,
E), mget(F, G) and mget(H, I) will complete in 2, 6, 3 and 5 time units respectively, yielding
an average response time of 4 time units.

We note that task awareness in scheduling individual opset at the replicas can allow
reducing the average response time. A key observation is that each opset can be associated
with a delay allowance that the replica can use to schedule other operations from its queue
with higher priority (and, therefore, not necessarily in FIFO order). The delay allowance
can be calculated as the difference in time between an approximated execution time for
the largest or costliest opset. In the multiget request mget(D, E), the collection of D takes
6 time units whereas the collection of E will take 1 time unit. It is, therefore, possible to
postpone (or procrastinate) the request for key E by at most 5 time units, leaving way for
other requests. In this scenario, on the right side of the figure, mget(A, B, C), mget(D, E),
mget(F, G) and mget(H, I) will complete in 2, 6, 2 and 4 time units respectively yielding an
average response time of 3.5 time units.

Multiget scheduling state-of-the-art. The state-of-the-art in multiget requests scheduling
is represented by Rein [35]. It uses two policies which include the Shortest Bottleneck
First (SBF) and Slack-Driven Scheduling (SDS). In SBF, every operation of a multiget
request has a priority which corresponds to the cost of the bottleneck opset while in SDS,
it deprioritizes the operations based on how long they can afford to be slacked. The goal
of Rein is to improve tail latency. To this end, Rein predicts which of the operations will
likely be a bottleneck, i.e. create a head-of-line-blocking situation. This detection is based
on the number of keys in the opset. The opset(s) with the highest number of keys is or are
simply considered as the bottleneck opset. Based on this information, Rein uses a client-side

TailX: Scheduling Heterogeneous Multiget Queries . . . 5

 Replica
Selection

 Load
 Estimation

 Splitter Delay allowance
Estimation

 Size
 Estimation

 Delay
Queue

 Procrastination S
er

ve
r

S
el

ec
t io

n

Coordinator

Servers
request

Fig. 3: Overview of TailX.

priority assignment that prioritizes multiget requests with a smaller number of keys in their
bottleneck opset. The determination of the bottleneck requests in Rein, however, does only
take into account the number of keys in the opset but never the size of the corresponding
values. The result is that the detected bottleneck opset may execute much faster than another
opset from the same multiget query that is not detected as such.

3 TailX design and implementation

An overview of the architecture of TailX is given by Figure 3. When a request is issued,
the coordinator node selects the best replica out of total target replicas based on the past
read performance of replica servers. An appropriate replica selection mechanism (dynamic
snitching [39]) is applied to select the best replica.

Afterwards, the request goes to a splitter where it is split into opsets by a partitioner
(Murmur3 [34]). The number of operations and value sizes associated with keys varies
in these opsets. Among these, some opsets that contain smaller operations with shorter
execution time will finish earlier whereas opsets that contain operations with larger execution
time finish later. To execute a multiget request with minimum latency, all the opsets should
finish at the approximately same time. Therefore, to correctly estimate the total execution
time of each opset, TailX identifies the operations that take more time. For this, it passes
through size estimation module. The objective of this module is to estimate whether a given
operation will access a small or a large value. It keeps track of keys that associated with
large values and store the keys of those operations.

Once the value size of an operation is identified, delay allowance estimation module
estimates the cost of each opset i.e. approximate total execution time and calculates the
approximate delay allowance that occurred by each opset. This delay allowance is inserted
as metadata in each operation of an opset. After delay allowance assignment, opsets go
through the delay queue. The objective of this step is to procrastinate each opset which
has delay allowance and let other requests execute at that time. If an operation has delay
allowance then it inserted in a delay queue with given procrastinating time. The operations
reside in the delay queue until the given procrastinate time expires.

Finally, operations go to the required server that is holding the data. Once the operations
finish, they return the data to the coordinator. We present in the following sections the details
of all proposed modules. First, we present the replica selection mechanism based on the load
estimated among servers (§3.1). Next, we describe the request splitting based on the data
storage (§3.2). Finally, we explain the delay allowance policies including delay estimation
of operations and scheduling mechanism (§3.3).

6 V. Jaiman et al.

Request Queue
Server 1

Request

Response

Server 2

Value Size
Estimator

(1) (2)

Coordinator

Small

Large

[o
p

se
t 1

,o
p

se
t2

, …
 o

p
se

t N
]

opset1

opset2

opset3

A,B
opset1

opset2

opset3

D
e
la

y
 E

st
im

a
ti

o
n

Tw

T
w

Collection of keys
of large values

Delay Queue

S
e
r v

e
r

S
e
l e

c
t i

o
n

op3op2 C,D
(3) (4)Value Size

Estimator

Request Queue
(1)

Collection of keys
of large values
Collection of keys
of large values

(2)

Response

Request

Fig. 4: Operating principle of TailX scheduling.

3.1 Load estimation and replica selection

The operations of a multiget request select the target replicas according to the hash-
based mechanism followed by the replica server. The number of replicas depends on the
replication factor followed by the storage systems. Afterwards, a replica selection algorithm
(dynamic snitching [25] which considers past read performance of the replicas) is applied
for scoring the replicas and a faster replica is chosen to complete the operation. The role of
this component is to select the replica that is expected to serve a given request faster than
other replicas.

3.2 Request splitting

In a key-value store, all storage nodes are divided into hash-based token ranges. After
selecting the intended replica, request splits into opset according to the partitioner (e.g.
Murmur3 [34]). Each opset goes to a different replica server and contains a varied number
of operations with different value size. Our goal is to schedule the operations in a way that
can complete each opset at the approximately same time. This gives better flexibility to
other requests to execute at that time.

3.3 Delay allowance policies

The algorithms for delay allowance policies are described in Algorithm 1 and Algo-
rithm 2. The role of these algorithms is to procrastinate the opsets which are finishing earlier
than the other opsets.
Every opset has a different completion time due to the variations in value size and the
number of operations in it. Therefore, some operations of an opset have to wait for bottleneck
operations. This results in increasing the latency of the overall request.
To overcome this situation, the delay allowance module calculates the cost of each opset
(opcost) i.e. opset execution time on the server. Calculation of the opset cost is based on
the value size estimation since we need to know the number of operations for large values
(NL) in each opset. The operations of large values are the sole reason for inflating the
operation cost. Therefore, we match the keys of large value to the keys stored in Bloom
filter [6] (step 4 of Algorithm 1). Next, it calculates the opset cost of each opset based on the
request service time for small value (TS) and request service time for large value (TL) (step

TailX: Scheduling Heterogeneous Multiget Queries . . . 7

5 of Algorithm 1). Afterwards, it calculates delay allowance Tw ((step 8 of Algorithm 1))
and tags the allowance to each opset. Finally, it procrastinates operations that have delay
allowance (step 11 of Algorithm 1) otherwise send the opset to the corresponding replica
server. In Algorithm 2, if the delay allowance time has finished then the request is dequeued
and sent to the corresponding replica server.

Delay allowance estimation The role of delay estimation is to estimate the approximate
execution cost of each opset and calculate the approximate delay allowance which can
be occurred at each opset. The calculation of delay allowance is based on the value size
estimation of each operation.

Value size estimation. An important question that TailX addresses is to determine whether
an operation will access a large or a small value. In this context, we set a threshold (say
THRL) where values above this threshold are considered as large by TailX. We assume that
this choice is application dependent and that it is up to the database administrator to set the
value of THRL according to the data distribution over her database.

TailX uses Bloom filters to keep track of keys corresponding to large values. A Bloom
filter [6] is a space-time efficient probabilistic data structure that allows performing to test
whether a given item belongs to a predefined set. It is a vector of m bits initially set to
0, with an associated set of k hash functions (generally k � m). Inserting an element in
the Bloom filter is done by hashing the element using the k hash functions and setting the
corresponding bit positions to 1. Testing the presence of an element in the Bloom filter is
done similarly by hashing the element using the k hash functions and testing whether all the
corresponding bit positions are set to 1. Querying a Bloom filter may lead to false-positive
but will never lead to false-negative.
After identifying keys that correspond to the large value, it calculates the opset cost i.e. how
much time the opset will take to execute. To estimate the opset cost (opcost), it calculates
the service time of operations for large values (TL) and small values (TS). Afterwards, it
multiplies them by their respective number of operations to get the overall cost of the opset.
Further, it calculates the delay allowance (Tw) for each opset. Delay allowance is calculated
based on the cost difference of maximum opset cost (opcostmax) and cost of opset for which
it is calculating the delay allowance. It means every opset has the allowance time in which it
can wait and let other operations to complete.

Delay scheduling The role of a delay queue is to procrastinate the opset which has some
delay allowance. This gives better flexibility for other queries to execute in the delay
allowance time.

Delay queue design. Delay queue (Qd) is an unbounded blocking queue implemented in
Java for opsets which have delayed allowance. The idea of the delay queue is to procrastinate
some operations. An element can be taken out once the delay has expired. The element
which is at the head of the queue has the expired delay furthest in the past.

Scheduling of requests which has delay allowance. If the request is tagged by delay
allowance (Tw > 0) during delay estimation then the request will be sent to delay queue.
The scheduler adds the system current time in the delay allowance i.e. procrastinate time
(Td), which helps to correctly estimate the procrastinated opset.

Scheduling of requests with zero delay allowance. If the request is tagged by delay allowance
(Tw == 0) during delay estimation then the request will be sent directly to the server without
delay. Since these are the requests which take time to execute and don’t offer any allowance
for slacking that opset.
Finally, operations are sent to the intended server directly or after completion of the procras-
tination time.

8 V. Jaiman et al.

Algorithm 1: Opset delay allowance algorithm
Data: ksName = keyspace name, K = set of keys, CF = tablename, op = opset,

opcostmax= max opset cost, req = multiget request, opsets = set of opsets, NL = set
of keys correspond to large values in an opset, Qd = delay queue, BF = bloom filter;

Input: req (ksName,K,CF);
Output: Procrastinated opsets.

1 begin
2 opcostmax = 0;
3 for op ∈ opsets do

/* Calculate number of keys correspond to large values
in an opset */

4 NL := {opr ∈ op | match(BF, opr.key) = 1};
/* Calculate opset cost */
// TL= request service time (in nanosec) for large value

// TS= request service time (in nanosec) for small value

// opsize = number of keys in an opset
5 opcost = TL ∗ |NL|+ TS ∗ (opsize− |NL|);

/* Calculate max opset cost */
6 opcostmax = max(opcost, opcostmax);

7 for op ∈ opsets do
/* Calculate delay allowance */

8 Tw = opcostmax − op.opcost;
/* Tag Tw to each opset */

9 tag(Tw, op);
/* Calculate procrastinating time */
// Tcurrent = current system time

10 Td ←− Tcurrent + Tw;
11 if op.Tw > 0 then

/* insert opset in delay queue */
12 Qd.enqueue(op, Td);

13 else
14 send op to corresponding replica;

Algorithm 2: Opset dequeue algorithm
1 begin
2 while Qd 6= ∅ && Tcurrent − Td ≥ 0 do
3 deque from Qd;
4 send op to corresponding replica;

TailX: Scheduling Heterogeneous Multiget Queries . . . 9

4 Evaluation

We implement TailX as an extension of Cassandra [25], a very popular key-value store.
We evaluate its effectiveness in reducing tail latency using synthetic dataset generated
using the Yahoo! Cloud Serving Benchmark (YCSB) [10]. We compare different latency
percentiles, particularly the tail, under TailX, against state-of-the-art algorithm i.e. Rein. We
conduct extensive experiments on Grid’5000 [5], exploring the impact of varying ratios of
multiget request sizes and their value sizes. Overall, our evaluation answers the following
questions:

1. How does TailX performance effects by the multiget request sizes in the key-value
stores? (§4.2)

2. How does TailX performance effects by the proportion of large values in the key-value
stores? (§4.2)

We start this section by presenting our evaluation setup (§4.1) before presenting our results
(§4.2).

4.1 Experimental setup

Experimental Platform. We evaluate TailX on Grid’5000 [5]. We use a 16 node cluster in
which each machine is equipped with 2 Intel Xeon X5570 CPUs (4 cores per CPU), 24GB
of RAM and a 465GB HDD. The machines are running the Debian 8 GNU/Linux operating
system.

Configuration. We evaluate TailX in Cassandra. We used the industry-standard Yahoo!
Cloud Serving Benchmark (YCSB) [10] to generate datasets and run our workloads. As
YCSB only generates a single value size datasets for each given client, we modified its source
code to allow generation of mixed size datasets. Specifically, for mixed size workloads, we
kept the proportion of large values compared to small values the same. For generating client
workloads, we configured YCSB on a separate node.
Moreover, in all the generated workloads, the access pattern of stored values (whether small
or large) follows a Zipfian distribution (with a Zipfian parameter ρ=0.99). To have an idea
of the size a given synthetic dataset, we insert 20 million of small records (1KB size) and
100K of large records (2 MB size). This approximately represents 4̃1GB of data per node.
We kept the replication factor as 3 which means each piece of value is available on 3 servers.
Each measurement involves 1 million or 10 million requests and is repeated 5 times. Each
multiget request access various operations with different value sizes. We test the cluster of
its maximum attainable throughput and kept the 75% system load for all our experiments.

4.2 TailX on variable configurations of the synthetic dataset

We evaluate in this section the effectiveness of TailX along different dimensions of
heterogeneous workloads, i.e., the impact of long operations on multiget requests and the
impact of operations correspond to large values.

Impact of multiget requests containing large number of operations To study the impact
of the proportion of long multiget requests (i.e. multiget request size is large) on the system
performance, we fix the size of multiget request as 100 and short multiget request to 5.
We keep the ratio of long multiget request to 20% i.e. for each 100 multiget requests, 80
multiget are of size 5 and 20 multiget are of size 100. Through this, we can see the impact of
long multiget over short multiget requests. We present the improvement of TailX over Rein
for 1 million operations and 10 million operations in Figure 5 and 6 respectively. Figure 7
shows the different latency percentiles to give a closer look in system. In this experiment,

10 V. Jaiman et al.

Median Average 90th 95th 99th

0

50

100

150

L
at

en
cy

(i
n

m
s)

TailX Rein

Fig. 5: Improvement of TailX over latency with different multiget request sizes (80% multiget
of size 5 and 20% multiget of size 100) for 1 million operations

we start by generating datasets in which each multiget request contains 1KB values. Results
show that TailX reduces the tail latencies over Rein by up to 63% while reducing the median
latency by up to 71%. TailX achieves a better gain for median latency compare to tail latency.
In terms of absolute latency (for 1 million operations), say for 99th percentile, it is 56 ms
for TailX but roughly 152 ms for Rein respectively. For median latency, absolute value is
4.57 ms for TailX whereas it is around 14.3 ms for Rein.

Median Average 90th 95th 99th
0

20

40

60

L
at

en
cy

(i
n

m
s)

TailX Rein

Fig. 6: Improvement of TailX over latency with different multiget request sizes (80% multiget
of size 5 and 20% multiget of size 100) for 10 million operations

Impact of multiget requests having keys of large value sizes To study the impact of
the proportion of large requests (request having large value i.e. 2 MB) on the system
performance, we fix the size of multiget request as 20. We keep the percentage of large
multiget requests as 20% and vary the proportion of large values.

Varying proportion of large value sizes. We vary the proportion of large value from 10% to
50% in a multiget request. As specified before, these variations are only for 20% of multiget
requests. We present the latency reduction of TailX over Rein for 1 million operations. In
the following, we zoom into the specific percentage of large value sizes.

TailX: Scheduling Heterogeneous Multiget Queries . . . 11

10th 30th 50th 70th 90th
0

5

10

15

20

25

30

Latency percentiles
L

at
en

cy
(i

n
m

s)

TailX Rein

Fig. 7: Analysis of different latency percentiles for different multiget request sizes (80%
multiget of size 5 and 20% multiget of size 100) for 10 million operations

Multiget of 10% large values. In this experiment, 20% of each multiget contains 10% of
large values. Figure 8 and 9 show the improvement of TailX over Rein i.e., 30% latency
reduction in 95th and 99th percentiles. TailX achieves a better gain for median latency
compare to tail latency, i.e., roughly 75% v.s. 30%. In terms of absolute latency, say for
99th percentile, it is 97 ms for TailX but roughly 135 ms for Rein respectively. For median
latency, absolute value is 11 ms for TailX whereas it is around 43 ms for Rein.

Median Average 90th 95th 99th 99.9th
0

50

100

150

200

250

300

350

L
at

en
cy

(i
n

m
s)

TailX Rein-SBF Rein-SDS

Fig. 8: Improvement of TailX over latency with different multiget request value sizes (80%
multiget requests have small values (1 KB) and rest 20% multiget requests have 10% of
large values) for 1 million operations

Multiget of 20% large values. Figure 10 and 12 show the improvement of TailX over
Rein i.e., 40% and 45% latency reduction in 95th and 99th percentiles respectively. TailX
achieves a better gain for median latency compare to tail latency, i.e., roughly 56% v.s. 45%.
In terms of absolute latency, say for 99th percentile, it is 112 ms for TailX but roughly 203
ms for Rein respectively. For median latency, absolute value is 8 ms for TailX whereas it is
around 18 ms for Rein.

Multiget of 50% large values. Figure 11 and 12 show the improvement of TailX over
Rein i.e., 18% and 27% latency reduction in 95th and 99th percentiles respectively. TailX
achieves a little less gain for median latency compare to tail latency, i.e., roughly 13%. In

12 V. Jaiman et al.

10th 30th 50th 70th 90th
0

20

40

60

80

Latency percentiles

L
at

en
cy

(i
n

m
s)

TailX Rein-SBF Rein-SDS

Fig. 9: Analysis of different latency percentiles for different multiget request value sizes
(80% multiget requests have small values (1 KB) and rest 20% multiget requests have 10%
of large values) for 1 million operations

Median Average 90th 95th 99th 99.9th

0

100

200

300

400

500

600

700

L
at

en
cy

(i
n

m
s)

TailX Rein-SBF Rein-SDS

Fig. 10: Improvement of TailX over latency with different multiget request value sizes (80%
multiget requests have small values (1 KB) and rest 20% multiget requests have 20% of
large values) for 1 million operations

TailX: Scheduling Heterogeneous Multiget Queries . . . 13

terms of absolute latency, say for 99th percentile, it is 109 ms for TailX but roughly 150 ms
for Rein respectively. For median latency, absolute value is 5.9 ms for TailX whereas it is
around 6.76 ms for Rein.

Median Average 90th 95th 99th 99.9th

0

50

100

150

200

250

300

350

L
at

en
cy

(i
n

m
s)

TailX Rein-SBF Rein-SDS

Fig. 11: Improvement of TailX over latency with different multiget request value sizes (80%
multiget requests have small values (1 KB) and rest 20% multiget requests have 50% of
large values) for 1 million operations

10th 30th 50th 70th 90th
0

10
20
30
40
50
60
70
80

Latency percentiles

L
at

en
cy

(i
n

m
s)

(a) Analysis of 20% of large values

10th 30th 50th 70th 90th
0

5

10

15

20

25

30

Latency percentiles

L
at

en
cy

(i
n

m
s)

(b) Analysis of 50% of large values

TailX Rein-SBF Rein-SDS

Fig. 12: Analysis of different latency percentiles for different multiget request value sizes
(80% multiget requests have small values (1 KB) and rest 20% multiget requests have a)
20% of large values b) 50% of large values) for 1 million operations.

Summarizing, TailX outperforms Rein in most of the configurations. TailX is effective when
there are some long requests in the systems. Also, the effectiveness of TailX can be seen
when some multiget requests have some percentage of large values. We note that TailX
is designed to handle heterogeneous workloads that have high variance across requests
sizes w.r.t number of operations and their value sizes. When the proportion of value sizes
of requests increases, the impact of TailX is visible more. TailX improves the tail latency
till 20% whereas while workload having 50% of large value, the improvement decreases
compare to the 20%. Since TailX filter the requests with large values with bloom filter
and therefore if there are bulk of requests which have large value it increases the overhead.

14 V. Jaiman et al.

Therefore, less impact is seen in this case. Overall in these configurations, TailX reduces the
median latency up to 75% and tail latency by up to 70%.

5 Related Work

Several works addressed the problem of tail latency in distributed storage systems. Some
have addressed the impact of incoming workloads that are coming on the system. We present
our related work as follows:

Web workloads. Atikoglu et al. [4] described the workload analysis of a Memcached [32]
traffic at Facebook. It studies 284 billion requests over 58 days for five different Memcached
use cases. It presents the CDFs of value size in different Memcached pools. ETC pool is the
largest and most heterogeneous value size pool where value sizes vary from few bytes to
MBs.

Network-specific. Orchestra [8] uses weighted fair sharing where each transfer is assigned
a weight and each link in the network is shared proportionally to the weight of the transfer.
Baraat [15] is a decentralized task-aware scheduling system that dynamically changes the
level of multiplexing in the network to avoid head-of-line-blocking. It uses task arrival time
to assign a globally unique identifier and put a priority for each task. All flows of a task use
this priority irrespective of the network they traverse. Varys [9] is another coflow scheduling
system that decreases communication time for data-intensive jobs and provides predictable
communication time. It assumes complete prior knowledge of coflow characteristics such as
the number of flows, their sizes, etc. Aalo [7] is another scheduling policy that improves
performance in data-parallel clusters without prior knowledge. To improve the performance
in datacenters, pFabric [2] decouples flow scheduling from rate control mechanisms.

Redundancy-specific. Redundancy is a powerful technique in which clients initiate an op-
eration multiple times on multiple servers. The operation which completes first is considered
and the rest of them is discarded. Vulimiri et al. [38] characterize the scenarios where redun-
dancy improves latency even under exceptional conditions. It introduces a queuing model
that gives an analysis of system utilization and server service time distribution. Sparrow [33],
a stateless distributed scheduler that adapts the power of two choices technique [29] by
selecting two random servers. It put the tasks on the server which has fewer queued tasks.
Sparrow [33] uses batch sampling where instead of sampling each task it places m tasks of
a job on least loaded randomly selected servers. This approach performs better for parallel
jobs since they are sensitive to tail task wait time.

Task-aware schedulers. Hawk [13] and Eagle [12] are two systems proposing a hybrid
scheduler that schedules jobs according to their sizes. In Hawk [13], long jobs are scheduled
using a centralized scheduler while small jobs are scheduled in a fully distributed way.
Omega [36] is a shared-state scheduler in which a separate centralized resource manager
maintains a shared scheduling state.

Request reissues and parallelism. Kwiken [21] optimizes the end-to-end latency using a
DAG of interdependent jobs. It further uses latency reduction techniques such as request
reissues to improve the latency of request-response workflows. Haque et al. [19] propose
solutions for decreasing tail latencies by dynamically increasing the parallelism of individual
requests in interactive services. Few-to-Many (FM) selectively parallelizes the long running
requests since that are the ones contributing the most to the tail latency. Recent efforts [22,23]
show that it is challenging to schedule tasks during the arrival of variable size jobs. These
works try to predict the long-running queries and parallelize them selectively. Instead of
targeting the more general problem of predicting job sizes, which in some cases involves
costly computations.

TailX: Scheduling Heterogeneous Multiget Queries . . . 15

Jeon et al. [23] focus on the parallelizing long running queries which are few compared to
the short ones. It aims to achieve consistent low response time for web search engines.

Multiget scheduling. In key-value stores, multiget scheduling is a common pattern for
scheduling requests efficiently. Systems like Cassandra [25], MongoDB [30] offer such
algorithms in these systems. Rein [35] uses a multiget scheduling algorithm to schedule the
multiget request in a fashion that can reduce the median as well as tail latency.

Tail latency specific. Minos [14] is another in-memory key-value store that uses size aware
sharding to send small and large requests to different cores. It ensures that small requests
never wait due to the large request which improves tail latencies. Metis [26] is an auto-tuning
service to improve tail latency by using customized Bayesian optimization. SyncGC [18]
tries to reduce the tail latency in Cassandra by proposing a synchronized garbage collection
technique that schedules multiple GC instances to sync with each other. Sphinx [16] uses a
thread-per-core approach to reduce tail latency in a key-value store by using application-level
partitioning and inter-thread messaging. Some authors [1] provide bounds on tail latency
for distributed storage systems by using erasure coding. It helps to provide optimization to
minimize weighted tail latency probabilities.

6 Conclusion

In this paper, we addressed the problem of tail latencies in key-value stores under het-
erogeneous workloads for multiget requests. For multiget scheduling, an in-depth study of
state-of-the-art has highlighted the fact that it doesn’t perform well under heterogeneous
workloads. We proposed TailX, a task-aware multiget scheduling algorithm that effectively
deals with heterogeneous multiget requests. It identifies the bottleneck operations apriori and
procrastinates them to avoid head-of-line-blocking. The result is an improved overall perfor-
mance of the key-value store for a wide variety of heterogeneous workloads. Specifically, our
experiments under heterogeneous YCSB workloads in a Cassandra based implementation
shows that TailX outperforms state-of-the-art algorithm and reduces the tail latencies by up
to 70% while reducing the median latency by up to 75%.

Acknowledgments

Experiments presented in this paper were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations. This work was partially supported
by the European Union's Horizon 2020 research and innovation programme under grant
agreement No 692178 (EBSIS project), by CHIST-ERA under project DIONASYS, and by
the Swiss National Science Foundation (SNSF) under grant 155249.

References

1. Al-Abbasi, A.O., Aggarwal, V., Lan, T.: Ttloc: Taming tail latency for erasure-coded cloud storage
systems. IEEE Transactions on Network and Service Management (2019)

2. Alizadeh, M., Yang, S., Sharif, M., Katti, S., McKeown, N., Prabhakar, B., Shenker, S.: pfabric:
Minimal near-optimal datacenter transport. In: SIGCOMM (2013)

3. Ananthanarayanan, G., Ghodsi, A., Warfield, A., Borthakur, D., Kandula, S., Shenker, S., Stoica,
I.: Pacman: Coordinated memory caching for parallel jobs. In: NSDI (2012)

4. Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M.: Workload analysis of a large-scale
key-value store. In: SIGMETRICS (2012)

5. Balouek, D., Carpen Amarie, A., Charrier, G., Desprez, F., Jeannot, E., Jeanvoine, E., Lèbre, A.,
Margery, D., Niclausse, N., Nussbaum, L., Richard, O., Pérez, C., Quesnel, F., Rohr, C., Sarzyniec,
L.: Adding virtualization capabilities to the Grid’5000 testbed (2013)

16 V. Jaiman et al.

6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications of the
ACM (1970)

7. Chowdhury, M., Stoica, I.: Efficient coflow scheduling without prior knowledge. In: SIGCOMM
(2015)

8. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing data transfers in computer
clusters with orchestra. In: SIGCOMM (2011)

9. Chowdhury, M., Zhong, Y., Stoica, I.: Efficient coflow scheduling with varys. In: SIGCOMM
(2014)

10. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving
systems with YCSB. In: SoCC (2010)

11. Dean, J., Barroso, L.A.: The tail at scale. Communications of the ACM (2013)
12. Delgado, P., Didona, D., Dinu, F., Zwaenepoel, W.: Job-aware scheduling in Eagle: Divide and

stick to your probes. In: SoCC (2016)
13. Delgado, P., Dinu, F., Kermarrec, A.M., Zwaenepoel, W.: Hawk: Hybrid datacenter scheduling.

In: USENIX ATC (2015)
14. Didona, D., Zwaenepoel, W.: Size-aware sharding for improving tail latencies in in-memory

key-value stores. In: NSDI (2019)
15. Dogar, F.R., Karagiannis, T., Ballani, H., Rowstron, A.: Decentralized task-aware scheduling for

data center networks. In: SIGCOMM (2014)
16. Enberg, P., Rao, A., Tarkoma, S.: The impact of thread-per-core architecture on application

tail latency. In: ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS) (2019)

17. Fan, B., Andersen, D.G., Kaminsky, M.: Memc3: Compact and concurrent memcache with dumber
caching and smarter hashing. In: NSDI (2013)

18. Han, S., Lee, S., Hahn, S.S., Kim, J.: Syncgc: A synchronized garbage collection technique for
reducing tail latency in cassandra. In: Proceedings of the 9th Asia-Pacific Workshop on Systems.
APSys (2018)

19. Haque, M.E., Eom, Y.h., He, Y., Elnikety, S., Bianchini, R., McKinley, K.S.: Few-to-many:
Incremental parallelism for reducing tail latency in interactive services. In: ASPLOS (2015)

20. Jaiman, V., Mokhtar, S.B., Quéma, V., Chen, L.Y., Rivière, E.: Héron: Taming tail latencies in
key-value stores under heterogeneous workloads. In: SRDS (2018)

21. Jalaparti, V., Bodik, P., Kandula, S., Menache, I., Rybalkin, M., Yan, C.: Speeding up distributed
request-response workflows. In: SIGCOMM (2013)

22. Jeon, M., He, Y., Kim, H., Elnikety, S., Rixner, S., Cox, A.L.: TPC: Target-driven parallelism
combining prediction and correction to reduce tail latency in interactive services. In: ASPLOS
(2016)

23. Jeon, M., Kim, S., Hwang, S.w., He, Y., Elnikety, S., Cox, A.L., Rixner, S.: Predictive paralleliza-
tion: Taming tail latencies in web search. In: SIGIR (2014)

24. Jiang, W., Xie, H., Zhou, X., Fang, L., Wang, J.: Understanding and improvement of the selection
of replica servers in key–value stores. Information Systems (2019)

25. Lakshman, A., Malik, P.: Cassandra: A decentralized structured storage system. SIGOPS Oper.
Syst. Rev. (2010)

26. Li, Z.L., Liang, C.J.M., He, W., Zhu, L., Dai, W., Jiang, J., Sun, G.: Metis: Robustly tuning tail
latencies of cloud systems. In: USENIX ATC (2018)

27. Lim, H., Han, D., Andersen, D.G., Kaminsky, M.: Mica: A holistic approach to fast in-memory
key-value storage. In: NSDI (2014)

28. Misra, P.A., Borge, M.F., Goiri, I.n., Lebeck, A.R., Zwaenepoel, W., Bianchini, R.: Managing tail
latency in datacenter-scale file systems under production constraints. In: EuroSys (2019)

29. Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE Transactions
on Parallel and Distributed Systems (2001)

30. MongoDB: https://www.mongodb.com/
31. Motwani, R., Phillips, S., Torng, E.: Non-clairvoyant scheduling. In: Proceedings of the Fourth

Annual ACM-SIAM Symposium on Discrete Algorithms. SODA (1993)
32. Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H.C., McElroy, R., Paleczny,

M., Peek, D., Saab, P., Stafford, D., Tung, T., Venkataramani, V.: Scaling Memcache at Facebook.
In: NSDI (2013)

33. Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: Distributed, low latency scheduling.
In: SOSP (2013)

https://www.mongodb.com/

TailX: Scheduling Heterogeneous Multiget Queries . . . 17

34. Partitioners: https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/
archPartitionerAbout.html

35. Reda, W., Canini, M., Suresh, L., Kostić, D., Braithwaite, S.: Rein: Taming tail latency in key-value
stores via multiget scheduling. In: EuroSys (2017)

36. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: Flexible, scalable
schedulers for large compute clusters. In: EuroSys (2013)

37. Suresh, L., Canini, M., Schmid, S., Feldmann, A.: C3: Cutting tail latency in cloud data stores via
adaptive replica selection. In: NSDI (2015)

38. Vulimiri, A., Godfrey, P.B., Mittal, R., Sherry, J., Ratnasamy, S., Shenker, S.: Low latency via
redundancy. In: CoNEXT (2013)

39. Williams, B.: Dynamic snitching in Cassandra: past, present, and future. http://www.datastax.
com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future (2012)

https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archPartitionerAbout.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/architecture/archPartitionerAbout.html
http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future
http://www.datastax.com/dev/blog/dynamic-snitching-in-cassandra-past-present-and-future

	TailX: Scheduling Heterogeneous Multiget Queries to Improve Tail Latencies in Key-Value Stores

