
HAL Id: hal-02917561
https://hal.science/hal-02917561v1

Submitted on 19 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dependences in Strategy Logic
Patrick Gardy, Patricia Bouyer, Nicolas Markey

To cite this version:
Patrick Gardy, Patricia Bouyer, Nicolas Markey. Dependences in Strategy Logic. Theory of Comput-
ing Systems, 2020, 64 (3), pp.467-507. �10.1007/s00224-019-09926-y�. �hal-02917561�

https://hal.science/hal-02917561v1
https://hal.archives-ouvertes.fr

Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Dependences in Strategy Logic

Patrick Gardy · Patricia Bouyer ·
Nicolas Markey

Abstract Strategy Logic (SL) is a very expressive temporal logic for specifying
and verifying properties of multi-agent systems: in SL, one can quantify over
strategies, assign them to agents, and express LTL properties of the resulting
plays. Such a powerful framework has two drawbacks: first, model checking SL has
non-elementary complexity; second, the exact semantics of SL is rather intricate,
and may not correspond to what is expected. In this paper, we focus on strategy

dependences in SL, by tracking how existentially-quantified strategies in a formula
may (or may not) depend on other strategies selected in the formula, revisiting
the approach of [Mogavero et al., Reasoning about strategies: On the model-
checking problem, 2014]. We explain why elementary dependences, as defined by
Mogavero et al., do not exactly capture the intended concept of behavioral strategies.
We address this discrepancy by introducing timeline dependences, and exhibit a
large fragment of SL for which model checking can be performed in 2 -EXPTIME

under this new semantics.

1 Introduction

Temporal logics. Since Pnueli’s seminal paper [36] in 1977, temporal logics have
been widely used in theoretical computer science, especially by the formal-veri-
fication community. Temporal logics provide powerful languages for expressing
properties of reactive systems, and enjoy efficient algorithms for satisfiability and
model checking [13]. Since the early 2000s, new temporal logics have appeared to
address open and multi-agent systems. While classical temporal logics (e.g. CTL [12,
37] and LTL [36]) could only deal with one or all the behaviours of the whole system,

This work was supported by ERC project EQualIS (StG-308087). A preliminary version of this
paper appeared in the proceedings of STACS’18 [19].

Patrick Gardy · Patricia Bouyer · Nicolas Markey
LSV, CNRS & ENS Paris-Saclay, Univ. Paris-Saclay, France

Patrick Gardy
Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China

Nicolas Markey
Irisa, Univ. Rennes & CNRS & Inria, France

2 P. Gardy, P. Bouyer, N. Markey

ATL [2] expresses properties of (executions generated by) behaviours of individual
components of the system. This can be used to specify that a controller can enforce
safety of a whole system, whatever the other components do. This is usually seen
as a game where the controller plays against the other components, with the aim
of maintaining safety of the global system; ATL can then express the existence
of a winning strategy in such a game. ATL has been extensively studied since its
introduction, both about its expressiveness and about its verification algorithms [2,
20,28].

Adding strategic interactions in temporal logics. Strategies in ATL are handled in
a very limited way, and there are no real strategic interactions in that logic (which,
in return, enjoys a polynomial-time model-checking algorithm). Indeed, ATL ex-
presses properties such as “Player A has a strategy to enforce ϕ” (denoted 〈〈A〉〉ϕ),
where ϕ is a property to be fulfilled along any execution resulting from the selected
strategy; in other terms, this existential quantification over strategies of A always
implicitly contains a universal quantification over all the strategies of all the other
players. This only allows to express zero-sum objectives.

Over the last 10 years, various extensions have been defined and studied in
order to allow for more strategy interactions [1,11,8,30,39]. Strategy Logic (SL

for short) [11,30] is such a powerful approach, in which strategies are first-class
objects; formulas can quantify (universally and existentially) over strategies, store
those strategies in variables, assign them to players, and express properties of
the resulting plays. As a simple example, the existence of a winning strategy
for Player A (with objective ϕA) against any strategy of Player B would be
written as ∃σA. ∀σB . assign(A 7→ σA;B 7→ σB). ϕA. This precisely corresponds to
formula 〈〈A〉〉ϕA of ATL (if the game only has two players).

SL can express much more: for example, it can express the existence of a strategy
for Player A which allows Player B to satisfy one of two goals ϕB or ϕ′B : we would
write

∃σA. [(∃σB . assign(A 7→ σA;B 7→ σB). ϕB) ∧ (∃σ′B . assign(A 7→ σA;B 7→ σ′B). ϕ′B).

This expresses collaborative properties which are out of reach of ATL: formula
〈〈A〉〉 (〈〈B〉〉ϕB∧ 〈〈B〉〉ϕ′B) in ATL is equivalent to (〈〈B〉〉ϕB∧ 〈〈B〉〉ϕ′B , since 〈〈B〉〉ϕB
is understood as the existence of a winning strategy against any strategy of the
other player(s).

As a last example, SL can express classical concepts in game theory, such as
Nash equilibria with Boolean objectives. This provides an easy way of showing
decidability of rational synthesis [18,26,14] or assume-admissible synthesis [7]):
for instance, the existence of an admissible strategy for objective ϕ of Player A
(i.e., a strategy that is strictly dominated by no other strategies [7]) is expressed as

∃σA. ∀σ′A.

[
∨
∃σB . assign(A 7→ σA, B 7→ σB).ϕ ∧ assign(A 7→ σ′A, B 7→ σB).¬ϕ

∀σ′B . assign(A 7→ σA, B 7→ σ′B).ϕ ∨ assign(A 7→ σ′A, B 7→ σ′B).¬ϕ

]
.

Such a formula shows that complex strategy interactions may be useful for express-
ing classical properties of multi-player games.

This series of examples illustrates how SL is both expressive and convenient,
at the expense of a very high complexity: SL model checking has non-elementary

Dependences in Strategy Logic 3

complexity (and satisfiability is undecidable, unless the problem is restricted to
turn-based game structures) [30,27].

The high expressiveness of this logic, together with the decidability of its
model-checking problem, has led to numerous studies around SL, either considering
fragments of the logic with more efficient algorithms, or more expressive variants of
the logic (e.g. with quantitative aspects), or variations on the notion of strategies
(e.g. with limited observation of the game).

On the one hand, limitations have been imposed to strategic interactions in
order to get more efficient algorithms [29,32]. A goal is an LTL condition imposed
to a strategy profile (built from quantified strategies). The fragment SL[1G] then
contains formulas in prenex form with a single goal (and nested combinations
thereof); this fragment is very close to ATL? [2] in terms of expressiveness, and its
model-checking problem is 2 -EXPTIME-complete. A BDD-based implementation
of the model-checking algorithm for SL[1G], using a translation to parity games,
is implemented in the tool MCMAS [10]. Several other fragments have been
considered, e.g. allowing conjunctions (SL[CG]), disjunctions (SL[DG]), or general
boolean combinations of goals (SL[BG]); model checking still is in 2 -EXPTIME for
the first two fragments [32], but it is non-elementary for SL[BG] [5].

On the other hand, various extensions have also been considered, in order to
see how far the logic can be extended while preserving decidable model checking.
In Graded SL, (existential) strategy quantifiers are decorated with quantitative
constraints on the cardinality of the set of strategies satisfying a formula; this can
be used e.g. to express uniqueness on Nash equilibria. Model checking is decidable
(with non-elementary complexity) for Graded SL [3]. On a different note, Prompt SL

extends SL with a parameterized modality F≤n ϕ, which bounds the number of
steps within which ϕ has to hold. Similarly, Bounded-Outcome SL adds a bound
on the number of outcomes that must satisfy a given path formula. Again, model
checking is decidable for those extensions [17].

Finally, SL has also been studied with different notions of strategies. When
limiting strategy quantification to memoryless strategies, model checking is PSPACE-
complete (as there are exponentially many strategies), but satisfiability is undecid-
able even for turn-based game structures [27]. Different types of strategies, based on
sequences of actions, states or atomic propositions, are also considered in [22], with
a focus on bisimulation invariance. When considering partial-observation strategies,
model checking is undecidable (as is already the case for ATL [15]); a decidable
fragment of SL is identified in [4], with a hierarchical restriction on nested strategy
quantifiers. This study of imperfect-information games has been extended with
epistemic variants of SL, which allows to reason about the knowledge of agents.
Model checking is undecidable in the general case, but several papers identify
specific settings where model checking is decidable [21,9,25].

Understanding SL. It has been noticed in recent works that the nice expressiveness
of SL comes with unexpected phenomena. One such phenomenon is induced by the
separation of strategy quantification and strategy assignment: when selecting a
strategy to be played later, are the intermediary events part of the memory of that
strategy? While both options may make sense depending on the applications, only
one of them makes model checking decidable [6].

A second phenomenon—which is the main focus of the present paper—concerns
strategy dependences [30]: in a formula such as ∀σA. ∃σB . ϕ, the existentially-

4 P. Gardy, P. Bouyer, N. Markey

quantified strategy σB may depend on the whole strategy σA; in other terms,
the action returned by strategy σB after some finite history ρ may depend on what
strategy σA would play on any other history ρ′. Again, in some contexts, it may be
desirable that the value of strategy σB after history ρ can be computed based solely
on what has been observed along ρ (see Fig. 2 for an illustration). This approach
was initiated in [30,33], conjecturing that large fragments of SL (subsuming ATL∗)
would have 2 -EXPTIME model-checking algorithms with such limited dependences.

Our contributions. We follow this line of work by performing a more thorough
exploration of strategy dependences in (a fragment of) SL. We mainly follow the
framework of [33], based on a kind of Skolemization of the formula: for instance, a for-
mula of the form (∀xi∃yi)i. ϕ is satisfied if there exists a dependence map θ defining
each existentially-quantified strategy yj based on the universally-quantified strate-
gies (xi)i. In order to recover the classical semantics of SL, it is only required that
the strategy θ((xi)i)(yj) (i.e. the strategy assigned to the existentially-quantified
variable yj by θ((xi)i)) only depends on (xi)i<j .

Based on this definition, other constraints can be imposed on dependence
maps, in order to refine the dependences of existentially-quantified strategies on
universally-quantified ones. Elementary dependences [33] only allows existentially-
quantified strategy yj to depend on the values of (xi)i<j along the current history.
This gives rise to two different semantics in general, but on several fragments of SL

(namely SL[1G], SL[CG] and SL[DG]), the classic and elementary semantics would
coincide [29,32].

The coincidence actually only holds for SL[1G]. As we explain in this paper,
elementary dependences as defined and used in [29,32] do not exactly capture the
intuition that strategies should depend on the “behavior [of universal strategies] on
the history of interest only” [32]: indeed, they only allow dependences on universally-
quantified strategies that appear earlier in the formula, while we claim that the
behaviour of all universally-quantified strategies should be considered. We address
this discrepancy by introducing another kind of dependences, which we call timeline

dependences, and which extend elementary dependences by allowing existentially-
quantified strategies to additionally depend on all universally-quantified strategies
along strict prefixes of the current history (as illustrated on Fig. 5).

We study and compare those three dependences (classic, elementary and time-
line), showing that they correspond to three distinct semantics. Because the
semantics based on dependence maps is defined in terms of the existence of a
witness map, we show that the syntactic negation of a formula may not correspond
to its semantic negation: there are cases where both a formula ϕ and its syntactic
negation ¬ϕ fail to hold (i.e., none of them has a witness map). This phenomenon
is already present, but had not been formally identified, in [30,33]. The main
contribution of the present paper is the definition of a large (and, in a sense,
maximal) fragment of SL for which syntactic and semantic negations coincide under
the timeline semantics. As an (important) side result, we show that model checking
this fragment under the timeline semantics is 2 -EXPTIME-complete.

Related works. To the best of our knowledge, strategy dependences have only
been considered in a series of recent works by Mogavero et al. [29,32,30,33], both
as a way of making the semantics of SL more realistic in certain situations, and as

Dependences in Strategy Logic 5

a way of lowering the algorithmic complexity of verification of certain fragments
of SL.

The question of the dependence of quantifiers in first-order logic is an old topic:
in [23], branching quantifiers are introduced to define how quantified variables may
depend on each other. Similarly, Dependence Logic [38] and Independence-Friendly
Logic [24] also add such restrictions on dependences of quantified variables on top
of first-order logic. While the settings are quite different to ours, the underlying
ideas are similar, and in particular share an interpretation in terms of games of
imperfect information.

2 Definitions

2.1 Concurrent game structures

Let AP be a set of atomic propositions, V be a set of variables, and Agt be a
set of agents. A concurrent game structure is a tuple G = (Act,Q,∆, lab) where
Act is a finite set of actions, Q is a finite set of states, ∆ : Q × ActAgt → Q is
the transition function, and lab : Q → 2AP is a labelling function. An element
of ActAgt will be called a move vector. For any q ∈ Q, we let succ(q) be the set
{q′ ∈ Q | ∃m ∈ ActAgt. q′ = ∆(q,m)}. For the sake of simplicity, we assume in the
sequel that succ(q) 6= ∅ for any q ∈ Q. A game G is said turn-based whenever for
every state q ∈ Q, there is a player own(q) ∈ Agt (named the owner of q) such
that for any two move vectors m1 and m2 with m1(own(q)) = m2(own(q)), it holds
∆(q,m1) = ∆(q,m2). Figure 1 displays an example of a (turn-based) game.

Fix a state q ∈ Q. A play in G from q is an infinite sequence π = (qi)i∈N of
states in Q such that q0 = q and qi ∈ succ(qi−1) for all i > 0. We write PlayG(q) for
the set of plays in G from q. In this and all similar notations, we might omit to
mention G when it is clear from the context, and q when we consider the union
over all q ∈ Q. A (strict) prefix of a play π is a finite sequence ρ = (qi)0≤i≤L,
for some L ∈ N. We write Pref(π) for the set of strict prefixes of play π. Such
finite prefixes are called histories, and we let HistG(q) = Pref(PlayG(q)). We extend
the notion of strict prefixes and the notation Pref to histories in the natural way,
requiring in particular that ρ /∈ Pref(ρ). A (finite) extension of a history ρ is any
history ρ′ such that ρ ∈ Pref(ρ′). Let ρ = (qi)i≤L be a history. We define first(ρ) = q0
and last(ρ) = qL. Let ρ′ = (q′j)j≤L′ be a history from last(ρ). The concatenation

of ρ and ρ′ is then defined as the path ρ · ρ′ = (q′′k)k≤L+L′ such that q′′k = qk when
k ≤ L and q′′k = q′k−L when L ≥ k (notice that we required q′0 = qL).

A strategy from q is a mapping δ : HistG(q) → Act. We write StratG(q) for
the set of strategies in G from q. Given a strategy δ ∈ Strat(q) and a history ρ

from q, the translation δ−→ρ of δ by ρ is the strategy δ−→ρ from last(ρ) defined by

δ−→ρ (ρ′) = δ(ρ · ρ′) for any ρ′ ∈ Hist(last(ρ)). A context (sometimes also called
valuation) from q is a partial function χ : V ∪ Agt ⇀ Strat(q). As usual, for any
partial function f , we write dom(f) for the domain of f .

Let q ∈ Q and χ be a context from q. If Agt ⊆ dom(χ), then χ induces a unique
play from q, called its outcome, and defined as out(q, χ) = (qi)i∈N such that q0 = q

and for every i ∈ N, we have qi+1 = ∆(qi,mi) with mi(A) = χ(A)((qj)j≤i) for
every A ∈ Agt.

6 P. Gardy, P. Bouyer, N. Markey

2.2 Strategy Logic with boolean goals

Strategy Logic (SL for short) was introduced in [11], and further extended and
studied in [34,30], as a rich logical formalism for expressing properties of games.
SL manipulates strategies as first-order elements, assigns them to players, and
expresses LTL properties on the outcomes of the resulting strategic interactions. This
results in a very expressive temporal logic, for which satisfiability is undecidable [34,
31] and model checking is TOWER-complete [30,5]. In this paper, we focus on a
restricted fragment of SL, called SL[BG][(where BG stands for boolean goals [30],
and the symbol [indicates that we do not allow nesting of (closed) subformulas;
we discuss this latter restriction below).

Syntax. Formulas in SL[BG][are built along the following grammar

SL[BG][3 ϕ ::= ∃x. ϕ | ∀x. ϕ | ξ ξ ::= ¬ξ | ξ ∧ ξ | ξ ∨ ξ | ω
ω ::= assign(σ). ψ ψ ::= ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ | p

where x ranges over V, σ ranges over the set VAgt of full assignments, and p ranges
over AP. A goal is a formula of the form ω in the grammar above; it expresses an
LTL property ψ on the outcome of the mapping σ. Formulas in SL[BG][are thus
made of an initial block of first-order quantifiers (selecting strategies for variables
in V), followed by a boolean combination of such goals.

Free variables. With any subformula ζ of some formula ϕ ∈ SL[BG][, we associate
its set of free agents and variables, which we write free(ζ). It contains the agents
and variables that have to be associated with a strategy in order to unequivocally
evaluate ζ (as will be seen from the definition of the semantics of SL[BG][below).
The set free(ζ) is defined inductively:

free(p) = ∅ for all p ∈ AP free(Xψ) = Agt ∪ free(ψ)

free(¬α) = free(α) free(ψ1 Uψ2) = Agt ∪ free(ψ1) ∪ free(ψ2)

free(α1 ∨ α2) = free(α1) ∪ free(α2) free(∃x. ϕ) = free(ϕ) \ {x}
free(α1 ∧ α2) = free(α1) ∪ free(α2) free(∀x. ϕ) = free(ϕ) \ {x}

free(assign(σ). ϕ) = (free(ϕ) ∪ σ(Agt ∩ free(ϕ))) \ Agt

Subformula ζ is said to be closed whenever free(ζ) = ∅. We can now comment on
our choice of considering the flat fragment of SL[BG]: the full fragment, as defined
in [30], allows for nesting closed SL[BG] formulas in place of atomic propositions.
The meaning of such nesting in our setting is ambiguous, because our semantics
(in Sections 3 to 5) are defined in terms of the existence of a witness, which does not
easily propagate in formulas. In particular, as we explain later in the paper, the
semantics of the negation of a formula (there is a witness for ¬ϕ) does not coincide
with the negation of the semantics (there is no witness for ϕ); thus substituting a
subformula and substituting its negation may return different results.

Semantics. Fix a state q ∈ Q, and a context χ : V∪Agt ⇀ Strat(q). We inductively
define the semantics of a subformula α of a formula of SL[BG][at q under context χ,
requiring free(α) ⊆ dom(χ). We omit the easy cases of boolean combinations and
atomic propositions.

Dependences in Strategy Logic 7

q0

q1

q2

p1

p2

ϕ = ∀y.∃z.∀xA.∀xB .
∨{

assign(7→ xA; 7→ y; 7→ z). F p1
assign(7→ xB ; 7→ y; 7→ z). F p2

Fig. 1 A game and a SL[BG] formula.

Given a mapping σ : Agt→ V, the semantics of strategy assignments is defined
as follows:

G, q |=χ assign(σ). ψ ⇔ G, q |=χ[A∈Agt7→χ(σ(A))] ψ.

Notice that, writing χ′ = χ[A ∈ Agt 7→ χ(σ(A))], we have free(ψ) ⊆ dom(χ′) if
free(α) ⊆ dom(χ), so that our inductive definition is sound.

We now consider path formulas ψ = Xψ1 and ψ = ψ1 Uψ2. Since Agt ⊆
free(ψ) ⊆ dom(χ), the context χ induces a unique outcome out(q, χ) = (qi)i∈N
from q. For n ∈ N, we write outn(q, χ) = (qi)i≤n, and define χ−→n as the context
obtained by shifting all the strategies in the image of χ by outn(q, χ). Under the
same conditions, we also define q−→n = last(outn(q, χ)). We then set

G, q |=χ Xψ1 ⇔ G, q−→
1
|=χ−→

1
ψ1

G, q |=χ ψ1 Uψ2 ⇔ ∃k ∈ N. G, q−→
k
|=χ−→

k
ψ2 and ∀0 ≤ j < k. G, q−→

j
|=χ−→

j
ψ1.

In the sequel, we use classical shorthands, such as > for p∨¬p (for any p ∈ AP),
Fψ for >Uψ (eventually ψ), and Gψ for ¬F¬ψ (always ψ). It remains to define
the semantics of the strategy quantifiers. This is actually what this paper is all
about. We provide here the original semantics, and discuss alternatives in the
following sections:

G, q |=χ ∃x.ϕ ⇔ ∃δ ∈ Strat(q). G, q |=χ[x 7→δ] ϕ.

Example 1. We consider the (turn-based) game G is depicted on Fig. 1. We name
the players after the shape of the state they control. The SL[BG] formula ϕ to the
right of Fig. 1 has four quantified variables and two goals. We show that this formula
evaluates to true at q0: fix a strategy δy (to be played by player); because G
is turn-based, we identify the actions of the owner of a state with the resulting
target state, so that δy(q0q1) will be either p1 or p2. We then define strategy δz (to
be played by) as δz(q0q2) = δy(q0q1). Then clearly, for any strategy assigned
to player , one of the goals of formula ϕ holds true, so that ϕ itself evaluates
to true.

Subclasses of SL[BG]. Because of the high complexity and subtlety of reasoning
with SL and SL[BG], several restrictions of SL[BG] have been considered in the
literature [29,32,33], by adding further restrictions to boolean combinations in the
grammar defining the syntax:

– SL[1G] restricts SL[BG] to a unique goal. SL[1G][is then defined from the
grammar of SL[BG][by setting ξ ::= ω in the grammar;

– the larger fragment SL[CG] allows for conjunctions of goals. SL[CG][corresponds
to formulas defined with ξ ::= ξ ∧ ξ | ω;

8 P. Gardy, P. Bouyer, N. Markey

– similarly, SL[DG] only allows disjunctions of goals, i.e. ξ ::= ξ ∨ ξ | ω;
– finally, SL[AG] mixes conjunctions and disjunctions in a restricted way. Goals

in SL[AG][can be combined using the following grammar: ξ ::= ω ∧ ξ | ω ∨ ξ | ω.

In the sequel, we write a generic SL[BG][formula ϕ as (Qixi)1≤i≤l. ξ(βj . ψj)j≤n
where:

– (Qixi)i≤l is a block of quantifications, with {xi | 1 ≤ i ≤ l} ⊆ V and Qi ∈ {∃,∀},
for every 1 ≤ i ≤ l;

– ξ(g1, ..., gn) is a boolean combination of its arguments;
– for all 1 ≤ j ≤ n, βj . ψj is a goal: βj is a full assignment and ψj is an LTL

formula.

3 Strategy dependences

We now follow the framework of [30,33] and define the semantics of SL[BG][in
terms of dependence maps. This approach provides a fine way of controlling how
existentially-quantified strategies depend on other strategies (in a quantifier block).
Using dependence maps, we can limit such dependences.

Dependence maps. Consider an SL[BG][formula ϕ = (Qixi)1≤i≤l. ξ(βj . ϕj)j≤n,

assuming w.l.o.g. that {xi | 1 ≤ i ≤ l} = V. We let V∀ = {xi | Qi = ∀} ⊆ V be

the set of universally-quantified variables of ϕ. A function θ : StratV
∀
→ StratV is

a ϕ-map (or map when ϕ is clear from the context) if θ(w)(xi)(ρ) = w(xi)(ρ) for

any w ∈ StratV
∀
, any xi ∈ V∀, and any history ρ. In other words, θ(w) extends w

to V. This general notion allows any existentially-quantified variable to depend on
all universally-quantified ones (dependence on existentially-quantified variables is
implicit: all existentially-quantified variables are assigned through a single map,
hence they all depend on the others); we add further restrictions later on. Using
maps, we may then define new semantics for SL[BG][: generally speaking, formula
ϕ = (Qixi)1≤i≤l. ξ(βj . ϕj)j≤n holds true if there exists a ϕ-map θ such that, for

any w : V∀ → Strat, the valuation θ(w) makes ξ(βj . ϕj)j≤n hold true.
Classic maps are dependence maps in which the order of quantification is

respected:

∀w1, w2 ∈ StratV
∀
. ∀xi ∈ V \ V∀.(

∀xj ∈ V∀ ∩ {xj | j < i}. w1(xj) = w2(xj)
)
⇒
(
θ(w1)(xi) = θ(w2)(xi)

)
. (C)

In words, if w1 and w2 coincide on V∀ ∩ {xj | j < i}, then θ(w1) and θ(w2) coincide
on xi.

Elementary maps [30,29] have to satisfy a more restrictive condition: for those
maps, the value of an existentially-quantified strategy at any history ρ may only
depend on the value of earlier universally-quantified strategies along ρ. This may
be written as:

∀w1, w2 ∈ StratV
∀
. ∀xi ∈ V \ V∀. ∀ρ ∈ Hist.(

∀xj ∈ V∀ ∩ {xk | k < i}. ∀ρ′ ∈ Pref(ρ) ∪ {ρ}. w1(xj)(ρ
′) = w2(xj)(ρ

′)
)
⇒(

θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ)
)
. (E)

Dependences in Strategy Logic 9

In this case, for any history ρ, if two valuations w1 and w2 of the universally-
quantified variables coincide on the variables quantified before xi all along ρ, then
θ(w1)(xi) and θ(w2)(xi) have to coincide at ρ.

The difference between both kinds of dependences is illustrated on Fig. 2: for
classic maps, the existentially-quantified strategy x2 may depend on the whole
strategy x1, while it may only depend on the value of x1 along the current history
for elementary maps. Notice that a map satisfying (E) also satisfies (C). Indeed,
consider a map θ satisfying (E), and pick two strategy valuations w1 and w2 and
an existential variable xi such that

∀xj ∈ V∀ ∩ {xj | j < i}. w1(xj) = w2(xj).

In particular, for those xj , we have w1(xj)(ρ) = w2(xj)(ρ) for any history ρ (hence
also for any of its prefixes). By (E), it follows θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ). Since
this holds for any history, we have shown θ(w1)(xi) = θ(w2)(xi).

∀x1∀x1 ∃x2 ∀x3 ∀x1∀x1 ∃x2 ∀x3

Fig. 2 Classical (left) vs elementary (right) dependences for a formula ∀x1. ∃x2. ∀x3. ξ

Satisfaction relations. Pick a formula ϕ = (Qixi)1≤i≤l. ξ
(
βj . ϕj

)
j≤n in SL[BG][.

We define:

G, q |≡C ϕ iff ∃θ satisfying (C). ∀w ∈ StratV
∀
. G, q |=θ(w) ξ

(
βj . ϕj

)
j≤n

As explained above, this actually corresponds to the usual semantics of SL[BG][

as given in Section 2 [30, Theorem 4.6]. When G, q |≡C ϕ, a map θ satisfying the
conditions above is called a C-witness of ϕ for G and q. Similarly, we define the
elementary semantics [30] as:

G, q |≡E ϕ iff ∃θ satisfying (E). ∀w ∈ StratV
∀
. G, q |=θ(w) ξ

(
βj . ϕj

)
j≤n

Again, when such a map exists, it is called an E-witness. Notice that since Prop-
erty (E) implies Property (C), we have G, q |≡E ϕ⇒ G, q |≡C ϕ for any ϕ ∈ SL[BG][.
This corresponds to the intuition that it is harder to satisfy a SL[BG][formula
when dependences are more restricted. The contrapositive statement then raises
questions about the negation of formulas.

The syntactic vs. semantic negations. If ϕ = (Qixi)1≤i≤lξ(βj . ϕj)j≤n is an

SL[BG][formula, its syntactic negation ¬ϕ is the formula (Qixi)i≤l(¬ξ)(βj . ϕj)j≤n,

where Qi = ∃ if Qi = ∀ and Qi = ∀ if Qi = ∃. Looking at the definitions of |≡C
and |≡E , it could be the case that e.g. G, q |≡C ϕ and G, q |≡C ¬ϕ: this only

10 P. Gardy, P. Bouyer, N. Markey

q0

q1

q2

p1

p2

ϕ = ∀x.∃y.
∧{

assign(7→ y). F q1
assign(7→ x). F p1 ⇔ assign(7→ y). F p1

Fig. 3 A game G and an SL[BG][formula ϕ such that G, q0 6|≡E ϕ and G, q0 6|≡E ¬ϕ.

requires the existence of two adequate maps. However, since |≡C and |= coin-
cide, and since G, q |= ϕ ⇔ G, q 6|= ¬ϕ in the classical semantics of SL, we get
G, q |≡C ϕ ⇔ G, q 6|≡C ¬ϕ. Also, since G, q |≡E ϕ ⇒ G, q |≡C ϕ, we also get
G, q |≡E ϕ ⇒ G, q 6|≡E ¬ϕ. As we now show, the converse implication holds for
SL[1G][, but may fail to hold for SL[BG][.

Proposition 1. There exist a game G with initial state q0 and a formula ϕ ∈ SL[BG][

such that G, q0 6|≡E ϕ and G, q0 6|≡E ¬ϕ.

Proof. Consider the formula and the one-player game of Fig. 3. We start by proving
that G, q0 6|≡E ϕ. For a contradiction, assume that a witness map θ satisfying (E)
exists, and pick any valuation w for the universal variable x. First, for the first
goal in the conjunction to be fulfilled, the strategy assigned to y must play to q1
from q0. We abbreviate this as θ(w)(y)(q0) = q1 in the sequel. Now, consider two
valuations w1 and w2 such that w1(x)(q0) = w2(x)(q0) = q2 and w1(x)(q0 · q1) =
w2(x)(q0 · q1), but such that w1(x)(q0 · q2) = p1 and w2(x)(q0 · q2) = p2. In order to
fulfill the second goal under both valuations w1 and w2, we must have θ(w1)(y)(q0 ·
q1) = p1 and θ(w2)(y)(q0 · q1) = p2. But this violates Property (E): since w1(x) and
w2(x) coincide on q0 and on q0 ·q1, we must have θ(w1)(y)(q0 ·q1) = θ(w2)(y)(q0 ·q1).

We now prove that G, q0 6|≡E ¬ϕ. Indeed, following the previous discussion,
we easily get that G, q0 |≡C ϕ, by letting θ(w)(y)(q0) = q1 and θ(w)(y)(q0 · q1) =
w(x)(q0 · q2) if w(x)(q0) = q2, and θ(w)(y)(q0 · q1) = w(x)(q0 · q1) if w(x)(q0) = q1.
As explained above, this entails G, q0 6|≡C ¬ϕ, and G, q0 6|≡E ¬ϕ.

The proof above uses only one player and two quantifiers, but a complex
combination of goals. The game and formula of Fig. 1 provide an alternative proof,
with three players and four quantifiers, but a formula in SL[DG][(which also entails
the result for SL[CG][).

Indeed, we already proved (see Example 1) that G, q0 |≡C ϕ, by making strategy z
play in q2 in the same direction as what strategy y plays in q1. Then it cannot be
G, q0 |≡E ¬ϕ, since this would imply G, q0 |≡C ¬ϕ, and both ϕ and ¬ϕ would hold,
which is impossible in the classical semantics. Thus G, q0 6|≡E ¬ϕ.

Now, in the elementary semantics, we require the existence of a dependence
map θ, defining in particular θ(w)(z)(q0 · q2), and such that θ(w)(z)(q0 · q2) =
θ(w′)(z)(q0 · q2) whenever w(y)(q0) = w′(y)(q0). Consider the following two valua-
tions w and w′:

w(y)(q0) = q1 w(y)(q0q1) = p1 w(xA)(q0) = q2 w(xB)(q0) = q1

w′(y)(q0) = q1 w′(y)(q0q1) = p2 w(xA)(q0) = q1 w(xB)(q0) = q2.

Since w(y)(q0) = w′(y)(q0), we must have θ(w)(z)(q0 · q2) = θ(w′)(z)(q0 · q2). Then

– if θ(w)(z)(q0 · q2) = p2, then under the strategies prescribed by θ(w), both
disjuncts in ϕ are false.

Dependences in Strategy Logic 11

– otherwise, θ(w)(z)(q0 · q2) = p1, and under the strategies prescribed by θ(w′),
again both disjuncts are false.

It follows that G, q0 6|≡E ϕ. �

We now prove hat this phenomenon does not occur in SL[1G]:

Proposition 2. For any game G with initial state q0, and any formula ϕ ∈ SL[1G][,

it holds G, q0 |≡E ϕ⇔ G, q0 6|≡E ¬ϕ.

Notice that this result follows from [30, Corollary 4.21], which states that |≡C
and |≡E coincide on SL[1G]. However, since it is central to our approach, we develop
a (new) full proof of this result.

Proof. We begin with intuitive explanations before giving full details. We encode
the satisfaction relation G, q0 |≡E ϕ into a two-player turn-based parity game:
the first player of the parity game will be in charge of selecting the existentially-
quantified strategies, and her opponent will select the universally-quantified ones.
This will be encoded by replacing each state of G with a tree-shaped module as
depicted on Fig. 4. Following the strategy assignment of the SL[1G] formula ϕ,
the strategies selected by those players will define a unique play, along which the LTL

objective has to be fulfilled; this verification is encoded into a (doubly-exponential)
parity automaton.

We prove that G, q0 |≡E ϕ if, and only if, the first player wins; conversely,
G, q0 6|≡E ϕ if the second player wins. Both claims crucially rely on the existence of
memoryless optimal strategies for two-player parity games. Finally, by determinacy
of those games, we get the expected result.

Notice that in this construction, Player P∃ has full observation, hence her
moves may depend on all moves of Player P∀ along the current history. As a result,
in our encoding, existentally-quantified strategies may depend on the value of all

universally-quantified strategies along the current history; in the example of Fig 4,
this means that the moves selected by Player P∃ for x1 may depend on the moves
selected by Player P∀ for x2 earlier in the game. However, memoryless strategies are
sufficient for both players to win parity games; a memoryles strategy for Player P∃
then precisely corresponds to an elementary dependence map, which proves our
result. We now give a full proof following this intuition.

Building a turn-based parity game H from G and ϕ. For the rest of the proof, we fix
a game G and a SL[1G] formula ϕ = (Qixi)i≤lβ. ϕ. Each state of G is replaced with
a copy of the tree-shaped quantification game depicted on Fig. 4. A quantification
game Qϕ is formally defined as follows:

– it involves two players, P∃ and P∀;
– the set of states is Sϕ = {m ∈ Act∗ | 0 ≤ |m| ≤ l}, thereby defining a tree of

depth l + 1 with directions Act. A state m in Sϕ with 0 ≤ |m| < l belongs to
Player P∃ if, and only if, Q|m|+1 = ∃.

– from each m with 0 ≤ |m| < l, for all a ∈ Act, there is a transition to m · a.
The empty word ε ∈ Sϕ is the starting node of the quantification game, and
currently has no incoming transitions; states with |m| = l also currently have
no outgoing transitions.

A leaf (i.e., a state m with |m| = l) in a quantification game represents a move
vector of domain V = {xi | 1 ≤ i ≤ l}: we identify each leaf m with the move
vector m, hence writing m(xi) for m(i).

12 P. Gardy, P. Bouyer, N. Markey

We let D be a deterministic parity automaton over 2AP associated with ϕ.
We write d0 for the initial state of D. Using quantification games, we can now
define the turn-based parity game H:

– it involves players P∃ and P∀;
– for each state q of G and each state d of D,H contains a copy of the quantification

game Qϕ, which we call the (q, d)-copy. Hence the set of states ofH is the product
of the state spaces of G, D and Qϕ.

– the transitions in H are of two types:
– internal transitions in each copy of the quantification game are preserved;
– consider a state (q, d,m) where |m| = l; this is a leaf in the quantification

game. Let q′ = ∆(q,mβ), where mβ : Agt → Act is the move vector over
Agt defined by mβ(A) = m(i − 1) where xi = β(A) (i.e., assigning to each
player A ∈ Agt the action m(β(A))); then we add a transition from (q, d,m)
to (q′, d′, ε) where d′ is the state of D reached from d when reading lab(q′).
Notice that (q, d,m) then has at most one outgoing transition.

– the priorities are inherited from those in D: state (q, d,m) has the same priority
as d.

Correspondence between G and H. We begin with building a correspondence
between the runs and strategies in G and those in H. In a sense, each step of a
history in G is split into several steps in H; we thus refine the notion of history
in G in order to establish our correspondence.

Definition 1. A lane in G is a tuple (ρ, u, b, t) made of

– a history ρ = (qj)0≤j≤a (for some integer a);
– a function u : V × Pref(ρ)→ Act;

q0

q1
q2

?

|≡E ∀x. ∃y. ∀z. assign(A 7→ x,B 7→ y). ψ

q0

ε

0 1

00 01 10 11

q1

ε

0 1

00 01 10 11

q2

ε

0 1

00 01 10 11

× Aψ

deterministic
parity automaton

Fig. 4 Expressing G, q0 |≡E ϕ as a two-player turn-based parity game

Dependences in Strategy Logic 13

– an integer b ∈ [0; l];
– a function t : {x1, ..., xb} → Act (t is the empty function if b = 0);

and such that

∀0 ≤ j < a. ∆(qj , (mj(β(A)))A∈Agt) = qj+1 withmj : V → Act

x 7→ u(x, ρ≤j)
(1)

We can then build a one-to-one application Gp between histories in H and lanes
in G. With a history π in H, written

π =
(∏
0≤j<a

∏
0≤i≤l

(qj , dj ,mj,i)
)
·
∏

0≤i≤b
(qa, da,ma,i),

having length a · (l + 1) + b + 1 with 0 ≤ b < l, we associate a lane Gp(π) =
((qj)j≤a, u, b, t) with

u : V × Pref(ρ)→ Act t : {x1, ..., xb} → Act

xi, (qj)j≤c 7→ mc,i (∀c < a) xi 7→ ma,i

The resulting function Gp is clearly injective (different histories will correspond
to different lanes), but also surjective. To prove the latter statement, we build the
inverse function Hp: for a lane ((qj)j≤a, u, b, t), we set Hp((qj)j≤a, u, b, t) = π where
π is the history in H of length a · (l + 1) + b+ 1 defined as

π =
∏

0≤j<a

∏
0≤i≤l

(
qj , dj , u(xi, (qj′)j′≤j)

)
·
∏

0≤i≤b

(
qa, da, t(xi, (qj)j≤a)

)
where dj is the state of D reached on input (qk)0≤k≤j−1.

Because of the coherence condition (1), Hp((qj)j≤a, u, i, t) is indeed a history
in H. From the definitions, one can easily check that

Hp(Gp(π)) = π

and deduce that Hp is the inverse function of Gp; therefore

Lemma 1. The application Gp is a bijection between lanes of G and histories in H,

and Hp is its inverse function.

Extending the correspondence. We can use Gp to describe another correspon-
dence G between strategies for P∃ in H and maps in G. Remember that a map

in G is a function θ : (HistG → Act)V
∀
→ (HistG → Act)V . Remember also that if

Qj = ∀, then θ(w)(xi)(ρ) = w(xi)(ρ), so that we only have to define the map for
existentially-quantified variables.

Formally, the application G takes as input a strategy δ for player P∃ in H, and
returns a map in G. It will enjoy the following properties:

– for any finite outcome π of δ in H ending at the root of a quantification game,
there exists a function w such that Gp(π) = (ρ, u, 0, t∅) where ρ is the outcome
of G(δ)(w) in G under the assignment defined by β;

– conversely, for any path ρ in G that is an outcome of G(δ)(w) for some w

and under the assignment defined by β, then letting u(x, ρ′) = G(δ)(w)(x)(ρ′),
we have that (ρ, u, 0, t∅) is a lane in G and Hp(ρ, u, 0, t∅) is an outcome of δ
in H ending in the root of a quantification game.

14 P. Gardy, P. Bouyer, N. Markey

We fix δ, and for all w, ρ and xi, we define G(δ)(w)(xi)(ρ) by a double induction,
first on the length of the history ρ in G, and second on the sequence of variables xi.
We prove the properties above alongside the definition.

– Initial step: we begin with the case where ρ is the single state q0. We proceed
by induction on existentially-quantified variables, merging the initialization step
with the induction step as they are similar. Consider an existentially-quantified
variable xi in V. Given w : V∀ × Pref(ρ) ∪ {ρ} → Act, we define a function
ti,w : [x1;xi−1] → Act such that ti,w(x) = w(x, q0) for x ∈ V∀ ∩ [x1;xi−1], and

ti,w(x) = G(δ)(w)(x)(q0) for x ∈ V∃ ∩ [x1;xi−1], assuming that they have been
defined in the previous induction steps on variables. We can then create the
lane lanei,w = (ε, u∅, i− 1, t) and define

G(δ)(w)(xi)(q0) = δ(Hp(lanei,w))

Pick an outcome π of δ in H of length l + 2, and write m for its l + 1-st state:
it defines a valuation for the variables in V, hence defining a move vector mβ

under the assignment β in Act. By construction of H, this outcome ends in
the state (q1, d1, ε) where q1 = ∆(q0,mβ) and d1 is the successor of the initial
state d0 of D when reading lab(q1). We now prove that q0 · q1 is the outcome of
G(δ)(w) for some w. For this, we let w(xi) = mi for all xi ∈ V∀. By construction,
G(δ)(w)(xj)(q0) precisely corresponds to m(j), for all xj ∈ V∃. In the end, under
assignment β, G(δ)(w) precisely returns the move vector mβ , hence proving our
result.
The proof of the converse statement follows similar arguments: consider an
outcome ρ = q0 · q1 of G(δ)(w) for some w. The lane (ρ, u, 0, t∅) defined with
u(x, q0) = G(δ)(w)(x)(q0) then corresponds through Hp to a play ending in
(q1, d1, ε), and visiting the leaf m defined as mi = u(xi, q0). By construction,
this is an outcome of δ in H.

– induction step: we consider a history ρ in G, assuming we have already de-
fined G(δ)(w)(xi)(ρ

′) for all prefix ρ′ of ρ, and for all w and all variable xi.
We now define G(δ)(w)(xi)(ρ), by induction on the list of variables. Again, the
initialization step is merged with the induction step as they rely on the same
arguments.
Consider an existentially-quantified variable xi, and w : V∀ × Pref(ρ) ∪ {ρ} →
Act. We define a function ti,w : [x1;xi−1] → Act where ti,w associate with

x ∈ V∀ ∩ [x1;xi−1] the action w(x)(π), and with x ∈ V∃ ∩ [x1;xi−1] the
action G(δ)(w)(x)(ρ). We also define uw : V × Pref(ρ) → Act as uw(x, ρ′) =
G(δ)(w)(x)(ρ′), for all prefixes ρ′ of ρ. We can then create the lane lanei,w =
(π, uw, i− 1, ti,w) and finally define

G(δ)(w)(xi)(ρ) = δ(Hp(lanei,w)).

Using the same arguments as in the initial step, we prove our correspondence
between the outcomes of δ in H and the outcomes of G(δ) in G.

Notice that in the construction above, G(δ)(w)(xi)(ρ) may depend on the value
of w(xj , ρ

′) for j > i and ρ′ ∈ Pref(ρ): indeed, in the inductive definition, we define
G(δ)(w)(xj)(ρ

′) before defining G(δ)(w)(xi)(ρ). Hence in general G(δ) is not an
elementary map.

Dependences in Strategy Logic 15

However, in case δ is memoryless, we notice that G(δ)(w)(xi)(ρ) only depends
on value of δ in the last state of the lane lanei,w, hence in particular not on uw.
This removes the above dependence, and makes G(δ) elementary.

Finally, notice that we can define a dual correspondence G relating strategies
of Player P∀ and elementary maps in G where existential and universal variables
are swapped.

Concluding the proof. Using G, we prove our final correspondence between H
and G:

Lemma 2. Assume that P∃ is winning in H and let δ be a positional winning strategy.

Then the elementary map G(δ) is a witness that G, q0 |≡E ϕ.

Similarly, assume that P∀ is winning in H and let δ be a positional winning strategy.

Then the elementary map G(δ) is a witness that G, q0 |≡E ¬ϕ.

Proof. We prove the first point, the second one following similar arguments.
Assume that P∃ is winning in H, and pick a memoryless winning strategy δ. Toward
a contradiction, assume further that G(δ) is not a witness of G, q0 |≡E ϕ. Then
there exists w0 : V∀ → (HistG → Act) s.t. G, q0 6|=G(δ)(w0) β. ϕ. We use w0 to build a

strategy δ for Player P∀ in H. Given a history

π =
∏

0≤j<a

∏
0≤i≤l

(qj , dj ,mj,i) ·
∏

0≤i≤b
(qa, da,ma,i)

in H, we define ρ =
∏

0≤j≤a qj and set δ(π) = G(δ)(w)(xb)(η) where

– w : Pref(ρ) ∪ {ρ} × (V∀ ∩ [x1;xb])→ Act is such that w(ρ′, xi) is the action to be
played for going from π≤|ρ′|·(l+1)+i−1 to π≤|ρ′|·(l+1)+i in H;

– η =
∏

0≤j<a
∏

0≤i≤l(qj , dj ,mj,i)).

Write ν = (qj)j∈N for the outcome of θ(w0) under strategy assignment β in G.
Then, by construction of δ, the outcome of δ and δ in H will visit the (qj , dj)j∈N-
copies of the quantification game, where dj is the state reached by reading (qj′)j′≤j
in the deterministic automaton D. Now, since G, q0 6|=G(δ)(w0) β. ϕ, we get that ν

does not satisfy ϕ and therefore the outcome of δ and δ in H does not satisfy the
parity condition. This is in contradiction with δ being the winning strategy of P∃,
and proves that G(δ) must be a witness that G, q0 |≡E ϕ. �

Proposition 2, together with the determinacy of parity games [16,35] immedi-
ately imply that at least one of ϕ and ¬ϕ must hold in G for |≡E . This concludes
our proof. �

The following two results, already mentioned in [30], immediately follow: the
first result uses the fact that G, q0 |≡E ϕ implies G, q0 |≡C ϕ; the second one uses
the two-player game built in the proof.

Corollary 1. The relations |≡E and |≡C coincide over SL[1G].

Corollary 2. Model checking SL[1G] is 2 -EXPTIME-complete (for both semantics).

Remark 1. As an immediate corollary of (the proof of) Prop. 1, we have that the
relations |≡C and |≡E differ on SL[CG][(as well as on SL[DG][). This contradicts
the claim in [32] that |≡E and |≡C would coincide on SL[CG] (and SL[DG]). Indeed,

16 P. Gardy, P. Bouyer, N. Markey

∀x1∀x1 ∃x2 ∀x3 ∀x1∀x1 ∃x2 ∀x3∀x3

Fig. 5 Elementary (left) vs timeline (right) dependences for a formula ∀x1. ∃x2. ∀x3. ξ

in [32], the satisfaction relation for SL[DG] and SL[CG] is encoded into a two-player
game in pretty much the same way as we did in the proof of Proposition 2 for SL[1G].
While this indeed rules out dependences outside the current history, it also gives
information to Player P∃ about the values (over prefixes of the current history) of
strategies that are universally-quantified later in the quantification block. This proof
technique works with SL[1G][because the single goal can be encoded as a parity
objective, for which memoryless strategies exist, so that the extra information is
not crucial. In the next section, we investigate the role of this extra information
for larger fragments of SL[BG][.

4 Timeline dependences

Following the discussion above, we introduce a new type of dependences between
strategies (which we call timeline dependences). They allow strategies to also observe
(and depend on) all other universally-quantified strategies on the strict prefix of the
current history. For instance, for a block of quantifiers ∀x1. ∃x2. ∀x3, the value of x2
after history ρ may depend on the value of x1 on ρ and its prefixes (as for elementary
maps), but also on the value of x3 on the (strict) prefixes of ρ. Such dependences
are depicted on Fig. 5. We believe that such dependences are relevant in many
situations, especially for reactive synthesis, since in this framework strategies really
base their decisions on what they could observe along the current history.

Formally, a map θ is a timeline map if it satisfies the following condition:

∀w1, w2 ∈ StratV
∀
. ∀xi ∈ V \ V∀. ∀ρ ∈ Hist.(

∀xj ∈ V∀ ∩ {xk | k < i}. ∀ρ′ ∈ Pref(ρ) ∪ {ρ}. w1(xj)(ρ) = w2(xj)(ρ)

∧ ∀xj ∈ V∀. ∀ρ′ ∈ Pref(ρ). w1(xj)(ρ) = w2(xj)(ρ)

)
⇒(

θ(w1)(xi)(ρ) = θ(w2)(xi)(ρ)
)
. (T)

Using those maps, we introduce the timeline semantics of SL[BG][:

G, q |≡T ϕ iff ∃θ satisfying (T). ∀w ∈ StratV
∀
. G, q |=θ(w) ξ

(
βj . ϕj

)
j≤n

Such a map, if any, is called a T-witness of ϕ for G and q. As in the previous section,
it is easily seen that Property (E) implies Property (T), so that an E-witness is
also a T-witness, and G, q |≡E ϕ⇒ G, q |≡T ϕ for any formula ϕ ∈ SL[BG][.

Example 2. Consider again the game of Fig. 1 in Section 2. We have seen that
G, q0 |≡C ϕ in Example 1, and that G, q0 6|≡E ϕ in the proof of Prop. 1. With

Dependences in Strategy Logic 17

q0

q1

q2

p1

p2

ϕ = ∃y. ∀xA. ∃xB .
∧{

assign(7→ y; 7→ xA). F p1
assign(7→ y; 7→ xB). F p2

Fig. 6 |≡E and |≡T differ on SL[CG][

timeline dependences, we have G, q0 |≡T ϕ. Indeed, now θ(w)(z)(q0 · q2) may de-
pend on w(xA)(q0) and w(xB)(q0): we could then have e.g. θ(w)(z)(q0 · q2) = p1
when w(xA)(q0) = q2, and θ(w)(z)(q0 · q2) = p2 when w(xA)(q0) = q1. It is easily
checked that this map is a T -witness of ϕ for q0.

Comparison of |≡E and |≡T . As explained at the end of Section 3, the proof of
Prop. 2 actually shows the following result:

Proposition 3. For any game G with initial state q0, and any formula ϕ ∈ SL[1G][,

it holds G, q0 |≡E ϕ⇔ G, q0 |≡T ϕ.

We now prove that this does not extend to SL[CG][and SL[DG][:

Proposition 4. The relations |≡E and |≡T differ on SL[CG][, as well as on SL[DG][.

Proof. The result for SL[DG][is witnessed by Example 2. For SL[CG][, we consider
the game structure and formula of Fig. 6. We first notice that G, q0 6|≡E ϕ: indeed,
in order to satisfy the first goal under any choice of xA, the strategy for y has to
point to p1 from both q1 and q2. But then no choice of xB will make the second
goal true.

On the other hand, considering the timeline semantics, strategy y after q0 · q1
and q0 · q2 may depend on the choice of xA in q0. When w(xA)(q0) = q1, we let
θ(w)(y)(q0 · q1) = p1 and θ(w)(y)(q0 · q2) = p2 and θ(w)(xB)(q0) = q2, which makes
both goals hold true. Conversely, if w(xA)(q0) = q2, then we let θ(w)(y)(q0 ·q2) = p1
and θ(w)(y)(q0 · q1) = p2 and θ(w)(xB)(q0) = q1, which also defines a timeline map
witnessing G, q0 6|≡E ϕ. �

The syntactic vs. semantic negations. While both semantics differ, we now prove
that the situation w.r.t. the syntactic vs. semantic negations is similar. First,
following Prop. 3 and 2, the two negations coincide on SL[1G][under the timeline
semantics. Moreover:

Proposition 5. For any formula ϕ in SL[BG][, for any game G and any state q0,

we have G, q0 |≡T ϕ⇒ G, q0 6|≡T ¬ϕ.

Remember that the same result for |≡E was proven easily from the implication
G, q0 |≡E ϕ ⇒ G, q0 |≡C ϕ, and because the two negations coincide for |≡C . The
proof for |≡T is more involved.

Proof. For a contradiction, assume that there exist two maps θ and θ witnessing
G, q0 |≡T ϕ and G, q0 |≡T ¬ϕ resp. Then

∀w : V∀ → (Hist→ Act). G, q0 |=θ(w) ξ(βj . ϕj)j≤n (2)

∀w : V∃ → (Hist→ Act). G, q0 |=θ(w)
¬ξ(βj . ϕj)j≤n (3)

18 P. Gardy, P. Bouyer, N. Markey

From θ and θ, we build a strategy valuation χ on V such that θ(χ|V∀) =

θ(χ|V∃) = χ. By Equations (2) and (3), we get that G, q0 |=χ ξ(βj . ϕj)j≤n and
G, q0 |=χ ¬ξ(βj . ϕj)j≤n. It follows that there must exist a goal βj . ϕj for which
G, q0 |=χ βj . ϕj and G, q0 |=χ ¬βj . ϕj ; then the outcome corresponding to βj would
satisfy both ϕj and ¬ϕj , which for LTL formulas is impossible.

We define χ(x)(ρ) inductively on histories and on the list of quantified variables.
When ρ is the empty history q0, we consider two cases:

– if x1 ∈ V∀, then θ(w)(x1)(q0) does not depend on w at all, since θ is a timeline-
map. Hence we let χ(x1)(q0) = θ(w)(x1)(q0), for any w.

– similarly, if x1 ∈ V∃, we let χ(x1)(q0) = θ(w)(x1)(q0), which again does not
depend on w.

Similarly, when χ(x)(q0) has been defined for all x ∈ {x1, ..., xi−1}, we again consider
two cases:

– if xi ∈ V∀, we define w(xj)(q0) = χ(xj)(q0) for all xj ∈ V∃ ∩ {x1, ..., xi−1}, and
let χ(xi)(q0) = θ(w)(xi)(q0), which again does not depend on the value of w
besides those defined above;

– symmetrically, if xi ∈ V∃, we define w(xj)(q0) = χ(xj)(q0) for all xj ∈ V∀ ∩
{x1, ..., xi−1}, and let χ(xi)(q0) = θ(w)(xi)(q0).

Notice that this indeed enforces that θ(χ|V∀)(xi)(q0) = χ(xi)(q0) when xi ∈ V∃,
and θ(χ|V∃)(xi)(q0) = χ(xi)(q0) when xi ∈ V∀.

The induction step is proven similarly: consider a history ρ and a variable xi,
assuming that χ has been defined for all variables on all prefixes of ρ, and for
variables in {x1, ..., xi−1} on ρ itself. Then:

– if xi ∈ V∀, we define w(xj)(ρ
′) = χ(xj)(ρ

′) for all xj ∈ V and all ρ′ ∈ Pref(ρ),

and w(xj)(ρ) = χ(xj)(ρ) for all xj ∈ V∃ ∩ {x1, ..., xi−1}. We then let χ(xi)(ρ) =
θ(w)(xi)(q0), which does not depend on the value of w besides those defined
above;

– the construction for the case when xi ∈ V∃ is similar.

As in the initial step, it is easy to check that this construction enforces θ(χ|V∀) =

θ(χ|V∃) = χ, as required. �

Proposition 6. There exists a formula ϕ ∈ SL[BG][, a (turn-based) game G and a

state q0 such that G, q0 6|≡T ϕ and G, q0 6|≡T ¬ϕ.

Proof. For this proof, we reuse the game and formula of Fig 3. Since the quantifier
part is ∀x. ∃y, the timeline- and elementary semantics coincide for this formula.
Since G, q0 |≡E ϕ, also G, q0 |≡T ϕ.

The negation of ϕ is

¬ϕ = ∃x. ∀y.
∨

¬assign(7→ y). F q1

assign(7→ x). F p1 ∧ ¬assign(7→ y). F p1

¬assign(7→ x). F p1 ∧ assign(7→ y). F p1.

Assume that there exists a timeline map θ witnessing G, q0 |≡T ¬ϕ. Consider the val-
uations w1(y)(q0) = w2(y)(q0) = q2, and w1(y)(q0 · q2) = p1 and w2(y)(q0 · q2) = p2.
Notice that the first disjunct is not satisfied under those valuations. We consider
two (symmetric) possiblities:

Dependences in Strategy Logic 19

– we may have both θ(w1)(x)(q0) and θ(w2)(x)(q0) to q1: then θ(w1)(x)(q0 · q1)
and θ(w2)(x)(q0 · q1) must return the same move, since w1(y)(q0) = w2(y)(q0).
If they play to p1, then none of the disjunct would be fulfilled under strategy
valuation w1; if they play to p2, then all three disjunct are false under w2.

– the argument is symmetric if θ(w1)(x)(q0) = θ(w2)(x)(q0) = q2.

Hence G, q0 6|≡T ¬ϕ �

5 The fragment SL[EG][

In this section, we focus on the timeline semantics |≡T . We exhibit a fragment1

SL[EG][of SL[BG][, containing SL[CG][and SL[DG][, for which the syntactic and
semantic negations coincide:

Theorem 1. For any game G with initial state q0, and any formula ϕ ∈ SL[EG][,

it holds G, q0 |≡T ϕ⇔ G, q0 6|≡T ¬ϕ.

We prove this result in the sequel of this section. We first introduce semi-stable

sets, which are the basis of the definition of SL[EG][; we then prove useful properties
of those sets, and finally proceed to the proof of Theorem 1.

5.1 Semi-stable sets.

For n ∈ N, we let {0, 1}n be the set of mappings from [1, n] to {0, 1}. We write 0n

(or 0 if the size n is clear) for the function that maps all integers in [1, n] to 0, and
1n (or 1) for the function that maps [1, n] to 1. For f, g ∈ {0, 1}n, we define:

f : i 7→ 1− f(i) f f g : i 7→ min{f(i), g(i)} f g g : i 7→ max{f(i), g(i)}.

The set {0, 1}n can be seen as the lattice of subsets of [1;n], with the above three
operations corresponding to complement, intersection and union, respectively.

We then introduce the notion of semi-stable sets, on which the definition
of SL[EG][relies: a set Fn ⊆ {0, 1}n is semi-stable if for any f and g in Fn, it holds
that

∀s ∈ {0, 1}n. (f f s)g (g f s) ∈ Fn or (g f s)g (f f s) ∈ Fn.

Example 3. Obviously, the set {0, 1}n is semi-stable, as well as the empty set. It is
easily seen that any singleton set also is semi-stable. For n = 2, the set {(0, 1), (1, 0)}
is easily seen not to be semi-stable: taking f = (0, 1) and g = (1, 0) with s = (1, 0),
we get (ffs)g(gfs) = (0, 0) and (gfs)g(ffs) = (1, 1). Similarly, {(0, 0), (1, 1)} is
not semi-stable. Any other subset of {0, 1}2 is semi-stable.

We can now define SL[EG][as follows:

SL[EG][3 ϕ ::= ∀x.ϕ | ∃x.ϕ | ξ ξ ::= Fn((ωi)1≤i≤n)

ω ::= assign(σ). ψ ψ ::= ¬ψ | ψ ∨ ψ | Xψ | ψUψ | p

1 We name our fragment SL[EG][as it comes as a natural continuation after fragments

SL[AG][[33], SL[BG][[30], and SL[CG][and SL[DG][[32].

20 P. Gardy, P. Bouyer, N. Markey

where Fn ranges over semi-stable subsets of {0, 1}n, for all n ∈ N. The semantics
of the operator Fn is defined as

G, q |=χ F
n((ωi)i≤n) ⇔ ∃f ∈ Fn. ∀1 ≤ i ≤ n. (f(i) = 1 iff G, q |=χ ωi).

Equivalently:

G, q |=χ F
n((ωi)i≤n) ⇔ G, q |=χ

∨
f∈Fn

[∧
f(i)=1

ωi ∧
∧

f(i)=0

¬ωi
]
,

so that SL[EG][is indeed a fragment of SL[BG][. Notice that SL[CG][corresponds
to the case where Fn = {1n}, which is semi-stable, so that SL[EG][encompasses
SL[CG][. As we prove later, {0, 1}n \ {0n} also is semi-stable, which entails that
SL[EG][also subsumes SL[DG][.

Example 4. Consider the following formula, expressing the existence of a Nash
equilibrium for two players with respective LTL objectives ψ1 and ψ2:

∃x1.∃x2.∀y1.∀y2.
∧{

(assign(A1 7→ y1;A2 7→ x2).ψ1)⇒ (assign(A1 7→ x1;A2 7→ x2).ψ1)
(assign(A1 7→ x1;A2 7→ y2).ψ2)⇒ (assign(A1 7→ x1;A2 7→ x2).ψ2)

This formula has four goals, and it corresponds to the set

F 4 = {(a, b, c, d) ∈ {0, 1}4 | a ≤ b and c ≤ d}

Taking f = (1, 1, 0, 0) and g = (0, 0, 1, 1), with s = (1, 0, 1, 0) we have (ffs)g(gfs) =
(1, 0, 0, 1) and (g f s) g (f f s) = (0, 1, 1, 0), none of which is in F 4. Hence our
formula is not (syntactically) in SL[EG][(notice however that the existence of a
Nash equilibrium can also be written as the disjunction (over all possible payoffs
for the agents) of formulas in SL[CG][).

The definition of SL[EG] may look artificial. The main reason why we work with
SL[EG] is that it is maximal for the first claim of Theorem 1 (see Prop. 9). But as
the next result shows, it is actually a large fragment encompassing SL[AG] (hence
also SL[CG] and SL[DG]):

Proposition 7. SL[EG][contains SL[AG][. The inclusion is strict (syntactically).

Proof. Remember that boolean combinations in SL[AG][follow the grammar ξ ::=
ξ ∨ ω | ξ ∧ ω | ω. In terms of subsets of {0, 1}n, it corresponds to considering sets
defined in one of the following two forms:

Fnξ = {f ∈ {0, 1}n | f(n) = 1} ∪ {g ∈ {0, 1}n | g|[1;n−1] ∈ F
n−1
ξ′ }

Fnξ = {f ∈ {0, 1}n | f(n) = 1 and f|[1;n−1] ∈ F
n−1
ξ′ }

depending whether ξ(pj)j = ξ′(pj)j ∨ pn or ξ(pj)j = ξ′(pj)j ∧ pn. Assuming (by in-
duction) that Fn−1

ξ′ is semi-stable, then we can prove that Fnξ also is. We detail
the proof for the second case, the first case being similar.

Consider the case where Fnξ = {f ∈ {0, 1}n | f(n) = 1 and f|[1;n−1] ∈ Fn−1
ξ′ }.

Pick any two elements f and g in Fnξ , and s ∈ {0, 1}n. Since f(n) = g(n) = 1,
we have [(f f s)g (g f s)](n) = [(f f s)g (g f s)](n) = 1. Moreover, the restriction
of [(f f s)g (g f s)] and of [(f f s)g (g f s)] to their first n− 1 bits is computed

Dependences in Strategy Logic 21

from the restriction of f , g and s to their first n− 1 bits. Since Fn−1
ξ′ is semi-stable,

one of [(f f s) g (g f s)][1;n−1] and [(f f s) g (g f s)][1;n−1] belongs to Fn−1
ξ′ , so

that one of [(f f s)g (g f s)] and [(f f s)g (g f s)] is in Fnξ .

That the inclusion is strict is proven by considering the semi-stable set H3 =
{(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)}. Assume that it corresponds to a formula in SL[AG][:
then the boolean combination ξ(x1, x2, x3) of that formula must be in one of the
following forms:

ξ′(x1, x2) ∧ x3 ξ′(x1, x2) ∨ x3 ξ′(x1, x2) ∧ ¬x3 ξ′(x1, x2) ∨ ¬x3.

It remains to prove that none of these cases corresponds to H3: the first case does
not allow (1, 1, 0); the second case allows (0, 0, 1); the third case does not allow
(1, 0, 1); the last case allows (0, 0, 0). �

5.2 Properties of semi-stable sets

Before proving our main theorem, we show that semi-stable sets enjoy several
nice structural properties. Our first lemma entails that SL[EG][is closed under
(syntactic) negation.

Lemma 3. Fn is semi-stable if, and only if, its complement is.

Proof. Assume Fn is not semi-stable, and pick f and g in Fn and s ∈ {0, 1}n such
that none of α = (f f s)g (g f s) and γ = (g f s)g (f f s) are in Fn. It cannot be
the case that g = f , as this would imply α = f ∈ Fn. Hence α 6= γ. We claim that α
and γ are our witnesses for showing that the complement of Fn is not semi-stable:
both of them belong to the complement of Fn, and (αf s)g (γ f s) can be seen to
equal f , hence it is not in the complement of Fn. Similarly for (γf s)g (αf s) = g.

�

Lemma 4. If Fn ⊆ {0, 1}n is semi-stable, then for any s ∈ {0, 1}n and any non-

empty subset Hn of Fn, it holds that

∃f ∈ Hn. ∀g ∈ Hn. (f f s)g (g f s) ∈ Fn.

Proof. For a contradiction, assume that there exist s ∈ {0, 1}n and Hn ⊆ Fn such
that, for any f ∈ Hn, there is an element g ∈ Hn for which (f f s)g (g f s) /∈ Fn.
Then there must exist a minimal integer 2 ≤ λ ≤ |Hn| and λ elements {fi | 1 ≤ i ≤
λ} of Hn such that

∀1 ≤ i ≤ λ− 1 (fi f s)g (fi+1 f s) 6∈ Fn and (fλ f s)g (f1 f s) 6∈ Fn.

By Lemma 3, the complement of Fn is semi-stable. Hence, considering (fλ−1 f
s)g (fλ f s) and (fλ f s)g (f1 f s), one of the following two vectors is not in Fn:(

[(fλ−1 f s)g (fλ f s)]f s
)
g
(
[(fλ f s)g (f1 f s)]f s

)(
[(fλ f s)g (f1 f s)]f s

)
g
(
[(fλ−1 f s)g (fλ f s)]f s

)

22 P. Gardy, P. Bouyer, N. Markey

The second expression equals fλ, which is in Fn. Hence we get that (fλ−1fs)g(f1fs)
is not in Fn, contradicting minimality of λ. �

For two elements f and g of {0, 1}n, we write f ≤ g whenever f(i) = 1 implies
g(i) = 1 for all i ∈ [1, n] (this corresponds to set inclusion when seeing {0, 1}n as
the lattice of subsets of [1;n]). Given Bn ⊆ {0, 1}n, we write ↑Bn = {g ∈ {0, 1}n |
∃f ∈ Bn, f ≤ g}. A set Fn ⊆ {0, 1}n is upward-closed if Fn = ↑Fn. Notice that
being upward-closed and being semi-stable are uncomparable (for instance, the
set ↑{(0, 0, 1, 1); (1, 1, 0, 0)} is not semi-stable). We now explain how to transform a
semi-stable set into an upward-closed one by flipping some of its bits. This will
simplify the presentation of the proof of our main theorem.

Fix a vector b ∈ {0, 1}n. We define the operation flipb : {0, 1}n → {0, 1}n that
maps any vector f to (f f b)g (f f b). In other terms, flipb flips the i-th bit of its
argument if bi = 0, and keeps this bit unchanged if bi = 1. In SL[EG][, flipping bits
amounts to negating the corresponding goals. The first part of the following lemma
thus indicates that our definition for SL[EG][is sound.

Lemma 5. For any b ∈ {0, 1}n, if Fn ⊆ {0, 1}n is semi-stable, then so is flipb(F
n).

Moreover, for any semi-stable set Fn, there exists b ∈ {0, 1}n such that flipb(F
n) is

upward-closed.

Example 5. Take F 2 = {(0, 0), (1, 0), (1, 1)}. This set is semi-stable, but it is not
upward-closed. Letting b = (1, 0), we have flipb(F

2) = {(0, 1), (1, 1), (1, 0)}, which is
upward-closed (and still semi-stable).

Proof. We begin with the first statement. Assume that Fn is semi-stable, and take
f ′ = flipb(f) and g′ = flipb(g) in flipb(F

n), and s ∈ {0, 1}n. By distributivity, we get

(f ′ f s)g (g′ f s) =
(
((f f b)g (f f b))f s

)
g
(
((g f b)g (g f b))f s

)
= (((f f s)g (g f s))f b)g

(
((f f s)g (g f s))f b

)
Write α = (f f s) g (g f s) and β = (f f s) g (g f s). One can easily check that
β = α. We then have

(f ′ f s)g (g′ f s) = (αf b)g
(
αf b

)
= flipb(α). (4)

This computation being valid for any f and g, we also have

(g′ f s)g (f ′ f s) = (γ f b)g
(
γ f b

)
= flipb(γ) (5)

with γ = (gf s)g (f f s). By hypothesis, at least one of α and γ belongs to Fn, so
that also at least one of (f ′f s)g (g′f s) and (g′f s)g (f ′f s) belongs to flipb(F

n).

The second statement of Lemma 5 trivially holds for Fn = ∅; thus in the
following, we assume Fn to be non-empty. For 1 ≤ i ≤ n, let si ∈ {0, 1}n be the
vector such that si(j) = 1 if, and only if, j = i. Applying Lemma 4, we get that for
any i, there exists some fi ∈ Fn such that for any f ∈ Fn, it holds

(fi f si)g (f f si) ∈ Fn. (6)

We fix such a family (fi)i≤n then define g ∈ {0, 1}n as g =
b

1≤i≤n(fi f si), i.e.
g(i) = fi(i) for all 1 ≤ i ≤ n. Starting from any element of Fn and applying

Dependences in Strategy Logic 23

Equation (6) iteratively for each i, we get that g ∈ Fn. Since gfsi = fifsi, we also
have

∀f ∈ Fn (g f si)g (f f si) ∈ Fn

By Equation (5), since flipg(g) = 1, we get

∀f ∈ Fn (1f si)g (flipg(f)f si) ∈ flipg(F
n). (7)

Now, assume that flipg(Fn) is not upward closed: then there exist elements f ∈ Fn
and h /∈ Fn such that flipg(f)(i) = 1 ⇒ flipg(h)(i) = 1 for all i. Starting from f

and iteratively applying Equation (7) for those i for which flipg(h)(i) = 1 and
flipg(f)(i) = 0, we get that flipg(h) ∈ flipg(F

n) and h ∈ Fn. Hence flipg(F
n) must

be upward closed. �

5.3 Defining quasi-orders from semi-stable sets.

For Fn ⊆ {0, 1}n, we write Fn for the complement of Fn. Fix such a set Fn, and
pick s ∈ {0, 1}n. For any h ∈ {0, 1}n, we define

F
n(h, s) = {h′ ∈ {0, 1}n | (hf s)g (h′ f s) ∈ Fn}

Fn(h, s) = {h′ ∈ {0, 1}n | (hf s)g (h′ f s) ∈ Fn}

Trivially Fn(h, s)∩Fn(h, s) = ∅ and Fn(h, s)∪Fn(h, s) = {0, 1}n. If we assume Fn

to be semi-stable, then the family (Fn(h, s))h∈{0,1}n enjoys the following property:

Lemma 6. Fix a semi-stable set Fn and s ∈ {0, 1}n. For any h1, h2 ∈ {0, 1}n, either

Fn(h1, s) ⊆ Fn(h2, s) or Fn(h2, s) ⊆ Fn(h1, s).

Proof. Assume otherwise, there is h′1 ∈ Fn(h1, s)\Fn(h2, s) and h′2 ∈ Fn(h2, s)\Fn(h1, s).
We then have:

(h1 f s)g (h′1 f s) ∈ Fn (h2 f s)g (h′1 f s) 6∈ Fn

(h2 f s)g (h′2 f s) ∈ Fn (h1 f s)g (h2 f s) 6∈ Fn

Now consider (h1f s)g (h′1f s), (h2f s)g (h′2f s) and s. As Fn is semi-stable,
one of the two following vector is in Fn :(

(h1 f s)g (h′1 f s)f s
)
g
(
(h2 f s)g (h′2 f s)f s

)(
(h2 f s)g (h′2 f s)f s

)
g
(
(h1 f s)g (h′1 f s)f s

)
The first vector is equal to (h1 f s)g (h′2 f s) and the second to (h2 f s)g (h′1 f s)
and both are supposed to be in Fn, we get a contradiction. �

Given a semi-stable set Fn and s ∈ {0, 1}n, we can use the inclusion relation of
Lemma 6 to define a relation �F

n

s (written �s when Fn is clear) over the elements
of {0, 1}n. It is defined as follows: h1 �s h2 if, and only if, Fn(h1, s) ⊆ Fn(h2, s).

This relation is a quasi-order: its reflexiveness and transitivity both follow
from the reflexiveness and transitivity of the inclusion relation ⊆. By Lemma 6,
this quasi-order is total. Intuitively, �s orders the elements of {0, 1}n based on
how “easy” it is to complete their restriction to s so that the completion belongs
to Fn. In particular, only the indices on which s take value 1 are used to check
whether h1 �s h2: given h1, h2 ∈ {0, 1}n such that (h1 f s) = (h2 f s), we have
F(h1, s) = F(h2, s), and h1 ≡s h2.

24 P. Gardy, P. Bouyer, N. Markey

Example 6. Consider the set F 3 = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} rep-
resented on Fig. 7, which can be shown to be semi-stable. Fix s = (1, 1, 0). Then
F3((0, 1, ?), s) = {0, 1}2×{1}: the only way to complete (0, 1, ?) to an element in F 3

is by replacing ? with 1. Similarly, F3((1, 1, ?), s) = F3((1, 0, ?), s) = {0, 1}3, and
F3((0, 0, ?), s) = ∅. It follows that (0, 0, ?) �s (0, 1, ?) �s (1, 0, ?) ≡s (1, 1, ?).

For s′ = (0, 0, 1), we can proceed similarly and get that (?, ?, 0) �s′ (?, ?, 1).

(0, 0, 0)

(0, 1, 0) (0, 0, 1)(1, 0, 0)

(1, 1, 0) (1, 0, 1) (0, 1, 1)

(1, 1, 1)
F 3

Fig. 7 A semi-stable set over {0, 1}n.

We now prove a technical result over such orders, which will be useful for the
proof of Lemma 11.

Lemma 7. Given a semi-stable set Fn, s1, s2 ∈ {0, 1}n such that s1 f s2 = 0 and

f, g ∈ {0, 1}n such that f �s1 g and f �s2 g, it holds f �s1gs2 g.

Example 7. Consider again the semi-stable set F 3 of Example 6. Observe that for
s1 = (1, 0, 0), it holds (0, ?, ?) �s1 (1, ?, ?), because for any x, y ∈ {0, 1}, if (0, x, y) ∈
F 3, then also (1, x, y) ∈ F 3; similarly, for s2 = (0, 1, 0), we have (?, 0, ?) �s2 (?, 1, ?).
Lemma 7 entails that (0, 0, ?) �s (1, 1, ?), with s = (1, 1, 0).

Proof. Because f �s1 g and f �s2 g, we have

∀i ∈ {1, 2} ∀h ∈ {0, 1}n (f f si)g (hf si) ∈ Fn ⇒ (g f si)g (hf si) ∈ Fn

(8)

Consider h′ ∈ {0, 1}n such that α = (f f (s1gs2))g (h′f (s1 g s2)) is in Fn. Define
the element h = αfs2, then (ffs2)g(hfs2) = (ff(s1gs2))g(h′f(s1 g s2)) ∈ Fn.
Using (8) with s2 and h, we get β = (g f s2) g (h f s2). As s1 f s2 = 0, we can
write β = (f f s1)g (g f s2)g (h′ f (s1 g s2)) ∈ Fn.

Now consider h = β f s1, we have (f f s1)g (hf s1) = β ∈ Fn. Using (8) with
s1 and h, we get (g f (s1 g s2))g (h′ f (s1 g s2)) ∈ Fn. Therefore Fn(f, s1 g s2) ⊆
Fn(g, s1 g s2) and f �s1gs2 g. �

The following lemma is straightforward:

Lemma 8. Assuming Fn is upward-closed, for any f , g and s in {0, 1}n, if f ≤ g

(i.e. for all i, f(i) = 1⇒ g(i) = 1), then f �s g. In particular, 0 is a minimal element

for �s, for any s.

Proof. Since f ≤ g, then also (ffs)g (hfs) ≤ (gfs)g (hfs), for any h ∈ {0, 1}n.
Since Fn is upward-closed, if (f f s)g (hf s) is in Fn, then so is (gf s)g (hf s).

�

Dependences in Strategy Logic 25

5.4 Sketch of proof of Theorem 1

The proof of Theorem 1 is long and technical. Before giving the full details, we begin
with some intuition how semi-stable sets, and the quasi-orders defined above, are
used to prove the result. We first notice that the approach we used in Prop. 2 does
not extend in general to formulas with several goals. Consider for instance formula
(Qixi)i≤l(β1. ϕ1 ⇔ β2. ϕ2): if at some points the two goals give rise to two different
outcomes, thus to two different subgames, the winning objectives in one subgame
depends on what is achieved in the other subgame.

SL[EG][has been designed to simplify such dependences between different sub-
games: when two (or more) outcomes are available at a given position, each subgame
can be assigned an independent winning objective. This objective can be obtained
from the quasi-orders �s associated with the SL[EG][formula being checked. Con-
sider again Example 6: associating the set F 3 with three goals ω1, ω2 and ω3 (and
adequate strategy quantifiers), we get a formula in SL[EG][. Assume that the moves
selected by the players give rise to the same transition for ω1 and ω2, and to a
different transition for ω3; this gives rise to two subgames. In the subgame reached
when following the transition of ω1 and ω2 (hence with s = (1, 1, 0)), the optimal
way of playing is given by (0, 0, ?) �s (0, 1, ?) �s (1, 0, ?) ≡s (1, 1, ?), indepen-
dently of what may happen in the subgame reached by following the transition
given by ω3; for instance, it is better to fulfill only ω1 than to fulfill only ω2 (i.e.
(0, 1, ?) �s (1, 0, ?)), which can be observed on Fig. 7 by the fact that fulfilling ω1 is
enough to make the whole formula hold true. In the subgame corresponding to ω3,
the optimal way of playing is given by (?, ?, 0) �s′ (?, ?, 1): it is always better to
fulfill ω3, whatever happens on the other subgame.

Our proof follows the schema depicted on Fig. 8. Building on the idea depicted
on Fig. 4, we would like to construct a turn-based parity game encoding the SL[EG][

model-checking instance at hand. Strategy quantifiers are encoded with tree-shaped
quantification games as in Fig. 4, but now, the leaves of quantification games may
give rise to different outcomes, depending on the goal being considered: Fig. 8
depicts the case of a leaf from which the first two goals would go in one direction
(to q1 here) while the third goal follows a different direction (to q2). Notice that from
the other leaves, the goals may have been grouped differently (and in particular,
they may have all given rise to the same transition).

Now, consider the outcome generated by the first two goals: it goes to a subgame
starting in state q1, and only the first two goals have to be tracked. From our
observations above, we can compute an order defining the best way of satisfying
the remaining two goals; this does not depend on what happens along the other
outcome, generated by the third goal. We can thus consider this subgame alone,
and apply the same construction with the remaining goals (using parity automata
to keep track of the satisfaction of the LTL formulas in the goals). Since there are
finitely many goals, we eventually end up in a situation where there is a single goal,
or where the goals always give rise to the same outcomes; then the computation
remains in the same subgame, and the situation corresponds to the case of Fig. 4.

We implement these ideas as follows: first, in order to keep track of the truth
values of the LTL formulas ψi of each goal, we define a family of parity automata,
one for each subset of goals of the formula under scrutiny. A subgame, as considered
above, is characterized by a state q of the original concurrent game, a state dp of
each of the parity automata, and a vector s ∈ {0, 1}n defining which goals are still

26 P. Gardy, P. Bouyer, N. Markey

active in that subgame. For each subgame, we can compute, by induction on s,
the optimal set of goals that can be fulfilled from that configuration. The optimal
strategies of both players in each subgame can be used to define (partial) optimal
timeline dependence maps. We can then combine these partial maps together to
get optimal dependence maps θ and θ; using similar arguments as for the proof
of Prop. 5, we get a valuation χ such that θ(χ|V∀) = χ = θ(χ|V∃), from which
we deduce that exactly one of ϕ and ¬ϕ holds.

5.5 Proof of Theorem 1

We can now prove our main theorem, which we first restate:

Theorem 1. For any game G with initial state q0, and any formula ϕ ∈ SL[EG][,

it holds G, q0 |≡T ϕ⇔ G, q0 6|≡T ¬ϕ.

Proof. Following Lemma 5, we assume for the rest of the proof that the set Fn of
the SL[EG][formula ϕ is upward-closed (even if it means negating some of the LTL

objectives). We also assume it is non-empty, since the result is trivial otherwise.
The proof of Theorem 1 is in three steps:

– we build a family of parity automata expressing the objectives that may have
to be fulfilled along outcomes. A configuration of a subgame is then described
by a state q of the game, a vector d of states of those parity automata, and a
set s of goals that are still active in the current subgame;

– we characterize the two ways of fulfilling a set of goals: either by fulfilling
all goals along the same outcome, or by partitioning them among different
branches;

q0

q1

q2

?

|≡T ∀x. ∃y. ∀z. F 3

(
assign(A 7→ x,B 7→ y). ψ1,
assign(A 7→ x,B 7→ z). ψ2,
assign(A 7→ y,B 7→ z). ψ3

)

q0

ε

0 1

00 01 10 11

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

q1

ε

0 1

00 01 10 11

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

(0,0,?)�s(0,1,?)�s(1,0,?)≡s(1,1,?)

q2

ε

0 1

00 01 10 11

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

(?,?,0)�s(?,?,1)

ψ3

ψ1, ψ2

Fig. 8 In a formula based on the semi-stable sets of figure 7, upon separation of the goals, the
game splits into independent subgames.

Dependences in Strategy Logic 27

– we encode these two possibilities into 2-player parity games, and inductively
compute optimal sets of goals (represented as vectors bq,d,s ∈ {0, 1}n) that can
be achieved from any given configuration. By determinacy of parity games,
we derive timeline maps witnessing the fact that bq,d,s can be achieved, and

the fact that it is optimal. If bq0,d0,1 ∈ F
n, we get a witness map for G, q0 |≡T ϕ;

otherwise, we get one for G, q0 |≡T ¬ϕ.

5.5.1 Automata for conjunctions of goals

We use deterministic parity word automata to keep track of the goals to be satisfied.
Since we initially have no clue about which goal(s) will have to be fulfilled along
an outcome, we use a (large) set of automata, all running in parallel.

For s ∈ {0, 1}n and h ∈ {0, 1}n, we let Ds,h be a deterministic parity automaton

accepting exactly the words over 2AP along which the following formula Φs,h holds:

Φs,h =
∨

k∈{0,1}n
h �s k

∧
j s.t.

(kfs)(j)=1

ϕj .

where a conjunction over an empty set (i.e., if (k f s)(j) = 0 for all j) is true.
Notice that in Φs,h, we should also have imposed ¬ϕj for those indices j for which
(k f s)(j) = 0. However, using Lemma 8, if h �s k and k ≤ k′, then also h �s k′, so
that any conjunction containing more ϕj ’s would also appear in Φs,h.

Notice that when s = 0, we have h �s k for any h and k, so that Φ0,h is true
for any h ∈ {0, 1}n). From now on, we only consider vectors s ∈ {0, 1}n such that
|s| =

∑
1≤i≤n si ≥ 1.

As an example, take s ∈ {0, 1}n with |s| = 1, writing j for the index where
s(j) = 1; for any h ∈ {0, 1}n, if there is k �s h with k(j) = 0 (which in particular
is the case when h(j) = 0), then the automaton Ds,h is universal; otherwise

Ds,h accepts the set of words over 2AP along which ϕj holds.

We write D = {Ds,h | s ∈ {0, 1}n, h ∈ {0, 1}n} for the set of automata defined
above. A vector of states of D is a function associating with each automaton D ∈ D
one of its states. We write VS for the set of all vectors of states of D. For any
vector d ∈ VS and any state q of G, we let succ(d, q) to be the vector of states
associating with each D ∈ D the successor of state d(D) after reading lab(q);
we extend succ to finite paths (qi)0≤i≤n in G inductively, letting succ(d, (qi)0≤i≤n) =
succ(succ(d, (qi)0≤i≤n−1), qn).

An infinite path (qi)i∈N in G is accepted by an automaton D of D whenever
the word (lab(qi))i∈N is accepted by D. We write L(D) for the set of paths of G
accepted by D. Finally, for d ∈ VS, we write L(Dds,h) for the set of words that are
accepted by Ds,h starting from the state d(Ds,h) of Ds,h.

Proposition 8. The following holds for any s ∈ {0, 1}n:

1. Φs,0 ≡ > (i.e., Ds,0 is universal);

2. for any h1, h2 ∈ {0, 1}n, if h1 �s h2, we have Φs,h2
⇒ Φs,h1

(i.e., L(Ds,h2
) ⊆

L(Ds,h1
));

3. for any h ∈ Fn, Φ1,h ≡
∨
k∈Fn

∧
j s.t. k(j)=1 ϕj .

28 P. Gardy, P. Bouyer, N. Markey

Proof. Φs,0 contains the empty conjunction (k = 0) as a disjunct. Hence it is
equivalent to true. When h1 �s h2, formula Φs,h1

contains more disjuncts than Φs,h2
,

hence the second result. Finally, Fn(f,1) = {0, 1}n if f ∈ Fn, and is empty otherwise.
Hence if h ∈ Fn, we have h �1 k if, and only if, k ∈ Fn, which entails the result.

�

5.5.2 Two ways of achieving goals

After a given history, a set of goals may be achieved either along a single outcome, in
case the assignment of strategies to players gives rise to the same outcomes, or they
may be split among different outcomes. We express those two ways of satisfying
goals, by means of two operators parameterized by the current configuration.

The first operator covers the case where the goals currently enabled by s

(those goals βi. ϕi for which s(i) = 1) are all fulfilled along the same outcome. For
any d ∈ VS and any two s and h in {0, 1}n, the operator Γ stick

d,s,h is defined as follows:
given a context χ with V ⊆ dom(χ) and a state q of G,

G, q |=χ Γ
stick
d,s,h ⇔ ∃ρ ∈ PlayG(q) s.t.

{
– ∀j ≤ n.

(
s(j) = 1⇒ out(q, χ ◦ βj) = ρ

)
– ρ ∈ L(Dds,h)

Intuitively, all the goals enabled by s must give rise to the same outcome, which is
accepted by Dds,h. In the formula above, χ ◦ βj corresponds to the strategy profile
to be used for goal βj · ϕj .

We now consider the case where the active goals are partitioned among different
outcomes.

Definition 2. A partition of an element s ∈ {0, 1}n is a sequence (sκ)1≤κ≤λ, with
λ ≥ 2, of elements of {0, 1}n with s1 g . . .g sλ = s and where for any two κ 6= κ′,
sκ f sκ′ = 0.

An extended partition of s is a sequence τ = (sκ, qκ, dκ)1≤κ≤λ of elements of
{0, 1}n ×Q× VS where (sκ)1≤κ≤λ is a partition of s, qκ are states of G, and dκ are
vectors of states of the automata in D.

We write Part(s) for the set of all extended partitions of s. Notice that we only
consider non-trivial partitions; in particular, if |s| ≤ 1, then Part(s) = ∅. For any
d ∈ VS, any s in {0, 1}n and any set of partitions Υs of s, the operator Γ sep

d,s,Υs
states

that the goals currently enabled by s all follow a common history ρ for a finite
number of steps, and then partition themselves according to some partition in Υs.
The operator Γ sep

d,s,Υs
is defined as follows:

G, q |=χ Γ
sep
d,s,Υs

⇔ ∃τ ∈ Υs.
∃ρ ∈ HistG(q).

– ∀j ≤ n.

(
s(j) = 1⇒ ρ ∈ Pref(out(q, χ ◦ βj))

)
– ∀κ ≤ |τ |. ∀j ≤ n. letting mj(A) = χ(βj(A))(ρ).(

sκ(j) = 1⇒ qκ = ∆(last(ρ),mj)
)

– ∀κ ≤ |τ |. succ(d, ρ · qκ) = dκ.

Notice that h does not appear explicitly in this definition, but Γ sep
d,s,Υs

will depend

on h through the choice of Υs. The operators Γ stick and Γ sep are illustrated on
Fig. 9.

Dependences in Strategy Logic 29

q |=χ Γ stick
d,s,h

∈ L(Dds,h)

same outcome for all
goals enabled by s

q |=χ Γ sep
d,s,Υs

common history ρ for all
goals enabled by s

q1, d1
s1

q2, d2
s2

q3, d3
s3

∈ Υs

Fig. 9 Illustration of Γ stick
d,s,h and Γ sep

d,s,Υs

5.5.3 Fulfilling optimal sets of goals

We now inductively (on |s|) define new operators Γd,s,h combining the above two

operators Γ stick and Γ sep, and selecting optimal ways of partitioning the goals
among the outcomes.

Base case: |s| = 1. When only one goal is enabled, we only have to consider a
single outcome, so that we let Γd,s,h = Γ stick

d,s,h, for any d ∈ VS and h ∈ {0, 1}n.
By Prop. 8, for any context χ such that Agt ⊆ dom(χ), it holds G, q |=χ Γd,s,0,

hence also G, q |≡T (Qixi)1≤i≤l. Γd,s,0. Hence there must exist a maximal value b

in the lattice {0, 1}n such that G, q |≡T (Qixi)1≤i≤l. Γd,s,b. We write bq,d,s for one
such value (notice that it need not be unique). By maximality, for any h such that
bq,d,s ≺s h, we have G, q 6|≡T (Qixi)1≤i≤l. Γd,s,h.

Induction step. We assume that for any d ∈ VS, any h ∈ {0, 1}n and any s ∈ {0, 1}n
with |s| ≤ k, we have defined an operator Γd,s,h, and that for any q ∈ Q, we have

fixed an element bq,d,s ∈ {0, 1}n for which G, q |≡T (Qixi)1≤i≤l. Γd,s,b and such that

for any h such that bq,d,s ≺s h, it holds G, q 6|≡T (Qixi)1≤i≤l. Γd,s,h.
Pick s ∈ {0, 1}n with |s| = k + 1, together with an extended partition τ =

(sκ, qκ, dκ)1≤κ≤λ. Then we must have |sκ| < k+ 1 for all 1 ≤ κ ≤ λ, so that Γdκ,sκ,h
and bqκ,dκ,sκ have been defined at previous steps. We let

cs,τ =
j

1≤κ≤λ
(sκ f bqκ,dκ,sκ).

We then define

Γd,s,h = Γ stick
d,s,h ∨ Γ

sep
d,s,Υs,h

with Υs,h = {τ ∈ Part(s) | h �s cs,τ}.

As previously, we claim that G, q |=χ Γd,s,0 for any χ such that Agt ⊆ dom(χ).
Indeed, for a given χ, if all the outcomes of the goals enabled by s follow the same
infinite path, then this path is accepted by Ds,0 and G, q |=χ Γ

stick
d,s,0; otherwise, after

some common history ρ, the outcomes are partitioned following some extended
partition τ0, which obviously satisfies 0 �s cs,τ0 since 0 is a minimal element of �s.
Hence in that case G, q |=χ Γ

sep
d,s,Υs,0

.

30 P. Gardy, P. Bouyer, N. Markey

In particular, it follows that G, q |≡T (Qixi)1≤i≤l. Γd,s,0, and we can fix a

maximal element bq,d,s for which G, q |≡T (Qixi)1≤i≤l. Γd,s,bq,d,s and G, q 6|≡T
(Qixi)1≤i≤l. Γd,s,h for any h �s bq,d,s.

This concludes the inductive definition of Γd,s,bq,d,s . We now prove that it
satisfies the following lemma:

Lemma 9. For any q ∈ Q, any d ∈ VS and any s ∈ {0, 1}n, it holds

G, q |≡T (Qixi)1≤i≤l. Γd,s,bq,d,s (9)

G, q |≡T (Qixi)1≤i≤l. ¬Γd,s,h for any h �s bq,d,s. (10)

Proof. The first result is a direct consequence of the construction: the values
for bq,d,s have been selected so that G, q |≡T (Qixi)1≤i≤l. Γd,s,bq,d,s .

To prove the second part, we again turn the satisfaction of Γd,s,h, for h �s bq,d,s,
into a parity game, as for the proof of Prop. 2. We only sketch the proof here, as it
involves the same ingredients.

The parity game is obtained from G by replacing each state by a quantification
game. We also introduce two sink states, qeven and qodd, which are winning for
Player P∃ and for Player P∀ respectively. When arriving at a leaf (q, d,m) of the
(q, d)-copy of the quantification game, there may be one of the following three
transitions available:

– if there is a state q′ such that for all j with s(j) = 1, it holds q′ = ∆(q,mβj)
(in other terms, the moves selected in the current quantification game generate
the same transition for all the goals enabled by s), then there is a single
transition to (q′, d′, ε), where d′ = succ(d, q′).

– otherwise, if there is an extended partition τ = (sκ, qκ, dκ)1≤κ≤λ of s such
that cs,τ �s h and, for all 1 ≤ κ ≤ λ, for all j such that sκ(j) = 1, we have
∆(q,mβj) = qκ and succ(d, qκ) = dκ, then there is a transition from (q, d,m)
to qeven.

– otherwise, there is a transition from (q, d,m) to qodd.

The priorities defining the parity condition are inherited from those in Ds,h.

Since G, q 6|≡T (Qixi)1≤i≤l. Γd,s,h, Player P∃ does not have a winning strategy
in this game, and by determinacy Player P∀ has one. From the winning strategy of
Player P∀, we obtain a timeline map ϑq,d,s,h for (Qixi)1≤i≤l witnessing the fact

that G, q |≡T (Qixi)1≤i≤l. ¬Γd,s,h. �

Remark 2. While the definition of Γd,s,bq,d,s (and in particular of bq,d,s) is not
effective, the parity games defined in the proof above can be used to compute
each bq,d,s and Γd,s,bq,d,s . Indeed, such parity games can be used to decide whether

G, q |≡T (Qixi)1≤i≤l. Γd,s,h for all h, and selecting a maximal value for which the

result holds. Then bq0,d0,1 ∈ F
n implies G, q0 |≡T (Qixi)1≤i≤lF

n(βj . ϕj)1≤j≤n.
Each parity game has size doubly-exponential, with exponentially-many prior-

ities; hence they can be solved in 2 -EXPTIME. The number of games to solve is
also doubly-exponential, so that the whole algorithm runs in 2 -EXPTIME.

Applying Lemma 9, we fix a timeline map ϑq,d,s for (Qixi)1≤i≤l witnessing (9),
and for each h �s bq,d,s, a timeline map ϑq,d,s,h for (Qixi)1≤i≤l witnessing (10).

Dependences in Strategy Logic 31

We now focus on the operator obtained at the end of the induction, when s = 1.
Following Prop. 8, L(D1,f) does not depend on the exact value of f , as soon as it
is in Fn. We then let

ΓFn = Γ stick
d0,1,f ∨ Γ

sep
d0,1,ΥFn

where f is any element of Fn (remember Fn is assumed to be non-empty), d0 is
the vector of initial states of the automata in D, and ΥFn = {Part(1) | c1,τ ∈ Fn}.
We write ϑ1 and ϑ1 for the maps ϑq0,d0,1 and ϑq0,d0,1,h for some h ∈ Fn, as given
by Lemma 9. From the discussion above, ϑq0,d0,1,h does not depend on the choice
of h in Fn, and we simply write it ϑq0,d0,1.

Then:

Lemma 10. If G, q0 |≡T (Qixi)1≤i≤l. ΓFn , then ϑ1 witnesses the fact that G, q0 |≡T

(Qixi)1≤i≤l. ΓFn . Conversely, if G, q0 6|≡T (Qixi)1≤i≤l. ΓFn , then ϑ1 witness the fact

that G, q0 |≡T (Qixi)1≤i≤l. ¬ΓFn .

Proof. The first part directly follows from the previous lemma. For the second
part, G, q0 6|≡T (Qixi)1≤i≤l. ΓFn means that bq0,d0,1 /∈ Fn. Hence for any f ∈ Fn,

we have f �s bq0,d0,1, so that ϑq0,d01 is a witness that G, q |≡T (Qixi)1≤i≤l. ¬ΓFn .
�

5.5.4 Compiling optimal maps

From Lemma 9, we have timeline maps for each q, d and s. We now compile them
into two map θ and θ. The construction is inductive, along histories.

Pick a history ρ starting from q0 and strategies for universally-quantified
variables w : V∀ → (Hist → Act). Assuming θ has been defined along all strict
prefixes of ρ, a goal βj . ϕj is said active after ρ w.r.t. θ(w) if the following condition
holds:

∀i < |ρ|. ρ(i+ 1) = ∆(ρ(i), (θ(w)(βj(A))(ρ≤i))A∈Agt).

In other terms, βj . ϕj is active after ρ w.r.t. θ(w) if ρ is the outcome of strategies
prescribed by θ(w) under assignment βj . We let sρ,θ(w) be the element of {0, 1}n
such that sρ,θ(w)(j) = 1 if, and only if, βj . ϕj is active after ρ w.r.t. θ(w).

We now define θ(w)(xi)(ρ) for all xi ∈ V:

– if xi ∈ V∀, we let θ(w)(xi)(ρ) = w(xi)(ρ);
– if xi ∈ V∃, we consider two cases:

– if sρ,θ(w) = 1, then all goals are still active, and θ follows the map ϑ1:
θ(w)(xi)(ρ) = ϑ1(w)(xi)(ρ).

– otherwise, we let ρ1 be the maximal prefix of ρ for which sρ1,θ(w) 6= sρ,θ(w).
We may then write ρ = ρ1 · ρ2, and let q1 = last(ρ1) and d1 = succ(d0, ρ1).
We then let θ(w)(xi)(ρ) = ϑq1,d1,sρ,θ(w)

(w−→ρ1)(xi)(ρ2).

The dual map θ is defined in the same way, using maps ϑ in place of ϑ.
The following result will conclude our proof of Theorem 1.

Lemma 11. There exists a context χ with domain V such that θ(χ|V∀) = χ and

θ(χ|V∃) = χ. It satisfies

G, q0 |=χ ΓFn ⇒ ∀w ∈ (HistG → Act)V
∀
. G, q0 |=θ(w) F

n(βj . ϕj)1≤j≤n

G, q0 |=χ ¬ΓFn ⇒ ∀w ∈ (HistG → Act)V
∃
. G, q0 |=θ(w)

Fn(βj . ϕj)1≤j≤n

32 P. Gardy, P. Bouyer, N. Markey

Proof. We use the same technique as in the proof of Prop. 5: from θ and θ, we build
a strategy context χ on V such that θ(χ|V∀) = χ and θ(χ|V∃) = χ.

We introduce some more notations. For w : V∀ → (HistG → Act), we let

– πwj be the outcome out(q0, (θ(w)((βj(A))A∈Agt)) for all 1 ≤ j ≤ n;
– fw be the element of {0, 1}n such that fw(j) = 1 if, and only if, πwj |= ϕj ;
– Rw ⊆ {0, 1}n × HistG be the relation such that (s, ρ) ∈ Rw if, and only if,
s = sρ,θ(w) and ρ is minimal (meaning for any strict prefix ρ′ of ρ, it holds
(s, ρ′) /∈ Rw).

Lemma 12. For any w : V∀ → (HistG → Act) and any ρ ∈ Hist, letting dρ =
succ(d0, ρ), it holds

∀s ∈ {0, 1}n. (s, ρ) ∈ Rw ⇒ blast(ρ),dρ,s �s f
w.

Proof. Fix some w ∈ (HistG → Act)V
∀
. The proof proceeds by induction on |s|.

Base case: |s| = 1. Assume (s, ρ) ∈ Rw. As |s| = 1, there is a unique goal,
say βj0 . ϕj0 , active along ρ w.r.t. θ(w). By definition of θ, πj0 = ρ · η where η is the
outcome of ϑlast(ρ),dρ,s(w−→ρ)((βj(A))A∈Agt) from last(ρ).

Because |s| = 1, we have Γdρ,s,blast(ρ),dρ,s = Γ stick
dρ,s,blast(ρ),dρ,s

. The map ϑlast(ρ),dρ,s

is a witness that G, last(ρ) |≡T (Qixi)1≤i≤lΓdρ,s,blast(ρ),dρ,s ; therefore it also witnesses

that G, last(ρ) |≡T (Qixi)1≤i≤lΓ
stick
dρ,s,blast(ρ),dρ,s

. By definition of the Γ stick operators,

this implies that for any w, the outcome of ϑlast(ρ),dρ,s(w−→ρ) from last(ρ) is accepted

by the automaton D
dρ
s,blast(ρ),dρ,s

; in particular, η is accepted by D
dρ
s,blast(ρ),dρ,s

.

The automaton D
dρ
s,blast(ρ),dρ,s

accepts paths which give better results (w.r.t. �s)
for the objectives (βj . ϕj)j|s(j)=1 than blast(ρ),dρ,s. In other terms, we have blast(ρ),dρ,s �s
fw.

Induction step. We assume that the Proposition 12 holds for any elements s ∈
{0, 1}n of size |s| < α. We now consider for the induction step an element s ∈ {0, 1}n
such that |s| = α and (s, ρ) ∈ Rw.

– if the enabled goals all follow the same outcome, i.e., if there exists an infinite
path η such that πj = ρ ·η for all j having s(j) = 1, then with arguments similar
to those of the base case, we get blast(ρ),dρ,s �s f

w.
– otherwise, the goals enabled by s split following an extended partition τ =

(sκ, qκ, dκ)κ≤λ. We let η be the history from the last state of ρ to the point
where the goals split.
The map ϑlast(ρ),dρ,s witnesses that G, last(ρ) |≡T Γd,s,blast(ρ),dρ,s ; therefore η may
only reach a partition τ such that

blast(ρ),dρ,s �s cs,τ (11)

This partition τ is such that for any 1 ≤ κ ≤ λ, it holds (sκ, ρ · η · qκ) ∈ Rw;
using the induction hypothesis, we get

sκ f bqκ,dκ,sκ �sκ f
w (12)

Dependences in Strategy Logic 33

Then, using Lemma 7 repeatedly on the (sκ)1≤κ≤λ, and Equation (12), we
obtain

s1 f bq1,d1,s1 �s1 f
w ⇒ (s1 f bq1,d1,s1)g (s2 f bq2,d2,s2) �s1gs2 f

w

⇒ . . .

⇒ (s1 f bq1,d1,s1)g . . .g (sλ f bqλ,dλ,sλ) �s1g...gsλ f
w

⇒ cs,τ �s fw.

Combined with (11), we get blast(ρ),dρ,s �s cs,τ �s f
w. �

Lemma 13. G, q0 |=χ ΓFn if, and only if, bq0,d0,1 ∈ F
n.

Proof. Assume that bq0,d0,1 ∈ Fn. Then G, q0 6|≡T (Qixi)1≤i≤l. ΓFn . Applying
Lemma 10, the map ϑ1 (and therefore θ, which act as ϑ1 before goals branch
along different paths) witnesses G, q0 6|≡T (Qixi)1≤i≤l. ΓFn . This implies that
G, q0 6|=χ ΓFn , which contradicts the hypothesis.

Conversely, if bq0,d0,1 ∈ F
n, then G, q0 |≡T (Qixi)1≤i≤l. ΓFn , which is witnessed

by map ϑ1. Thus G, q0 |=χ ΓFn . �

We are now ready to prove the first part of Lemma 11: consider a function
w : V∀ → (HistG → Act). By Lemma 12 applied to w, s = 1, and ρ = q0, we
get that bq0,d0,1 �1 f

w. Now, by Lemma 13, bq0,d0,1 ∈ F
n, therefore the element

fw, being greater than bq0,d0,1 for �1, must also be in Fn, which means that
G, q0 |=θ(w) F

n(βj . ϕj)1≤j≤n.

The second implication of the lemma is proven using similar arguments.

Lemma 11 allows us to conclude that at least one of ϕ and ¬ϕ must hold on G
for |≡T . Lemma 5 implies that at most one can hold. Combining both we get that
exactly one holds. �

From this proof, we get:

Corollary 3. Model checking SL[EG] for |≡T is 2 -EXPTIME-complete.

Remark 3. Notice that we do not get the twin of Corollary 1 here, and actually |≡T
and |≡C differ over SL[EG][. Indeed, the proof of Prop. 4 provides a counterexample:

– as shown in the proof of Prop. 4, the game G and formula ϕ ∈ SL[CG][of Fig. 6
are such that G, q0 |≡T ϕ;

– considering the classical semantics, because of the conjunction of goals, any
strategy for y for which the rest of the formula is fulfilled must play differently
in states q1 and q2. On the other hand, in order to fulfill the first conjunct
for any strategy xA, then the strategy y must play to p1 from both q1 and q2.
Hence no such strategy exist.

5.6 Maximality of SL[EG][

Finally, we prove that SL[EG][is, in a sense, maximal for the first property of
Theorem 1:

34 P. Gardy, P. Bouyer, N. Markey

Proposition 9. For any non-semi-stable boolean set Fn ⊆ {0, 1}n, there exists a

SL[BG][formula ϕ built on Fn, a game G and a state q0 such that G, q0 6|≡T ¬ϕ and

G, q0 6|≡T ϕ.

Proof. We consider again the game G depicted on Fig. 6, with two agents and .
Let Fn be a non-semi-stable set over {0, 1}n. Then there must exist f1, f2 ∈ Fn,
and s ∈ {0, 1}n, such that (f1 f s)g (f2 f s) /∈ Fn and (f2f s)g (f1f s) /∈ Fn. We
then let

ϕ = ∀y1. ∀y2. ∀x1. ∃x2. Fn(β1. ϕ1, . . . , βn. ϕn)

where

βi =

{
assign(7→ y1; 7→ x1) if s(i) = 1

assign(7→ y2; 7→ x2) if s(i) = 0

and

ϕi =

F p1 ∨ F p2 if f1(i) = f2(i) = 1
F p1 if f1(i) = 1 and f2(i) = 0
F p2 if f1(i) = 0 and f2(i) = 1
false if f1(i) = f2(i) = 0

Formulas ϕi have been built to satisfy the following property:

Lemma 14. Let ρ be a maximal run of G from q0. Let k ∈ {1, 2} be such that ρ visits

a state labelled with pk. Then for any 1 ≤ i ≤ n, we have ρ |= ϕi if, and only if,

fk(i) = 1.

The following two lemmas conclude the proof:

Lemma 15. G, q0 6|≡T ϕ.

Proof. Towards a contradiction, assume that G, q0 |≡T ϕ. Let θ be a timeline map
witnessing this fact. We let σ1 (resp. σ2) be the strategy that maps history q0 to
q1 (resp. q2). We let τ1 be such that τ1(q0 · q1) = p1. This defines a valuation w,
respectively mapping y1, y2 and x1 to σ1, σ2 and τ1. Then the strategy τ2 = θ(w)(x2)
is such that

G, q0 |=θ(w) F
n(β1. ϕ1, . . . , βn. ϕn).

Now, consider the valuation w′ obtained from w by changing the strategy for x1
to τ ′1, where τ ′1(q0 · q1) = p2. Then θ(w′)(x2) = θ(w)(x2) = τ2, since θ is a timeline
map. Since θ witnesses the satisfaction of ϕ, we also have

G, q0 |=θ(w′) F
n(β1. ϕ1, . . . , βn. ϕn).

Let v and v′ be the vectors in {0, 1}n representing the values of the goals
(β1. ϕ1, . . . , βn. ϕn) under θ(w) and θ(w′), respectively. Then v and v′ are in Fn.
However:

– if τ2(q0 · q2) = p1, then under θ(w′), for any 1 ≤ i ≤ n:
– if si = 1, strategies σ1 and τ ′1 are applied, so that the game ends in p2; then
v′i = 1 if, and only if, f2(i) = 1;

– if si = 0, strategies σ2 and τ2 are used, and the game goes to p1; then v′i = 1
if, and only if, f1(i) = 1.

In the end, we have v′ = (f1 f s)g (f2 f s), which is not in Fn.
– if τ2(q0 · q2) = p2, then under θ(w), for any 1 ≤ i ≤ n:

Dependences in Strategy Logic 35

– if si = 1, strategies σ1 and τ1 are applied, so that the game ends in p1; then
vi = 1 if, and only if, f1(i) = 1;

– if si = 0, strategies σ2 and τ2 are used, and the game goes to p2; then vi = 1
if, and only if, f2(i) = 1.

In the end, we have v = (f1 f s)g (f2 f s), which also is not in Fn.

Both cases lead to a contradiction, so that our hypothesis that G, q0 |≡T ϕ can only
be wrong. �

Lemma 16. G, q0 6|≡T ¬ϕ.

Proof. We use similar arguments as above: we assume G, q0 |≡T ¬ϕ, and fix a
witnessing timeline map θ for ¬ϕ.

We consider four valuations w11, w12, w21 and w22 for x2, such that wjk(x2)(ρ) =

wj
′k′(x2)(q0) (the exact value is not important) and wjk(x2)(q0 · q1) = pi and

wjk(x2)(q0 · q2) = pj . We let σ1 = θ(wjk)(y1), σ2 = θ(wjk)(y2) and τ1 = θ(wjk)(x1).
Notice that those strategies do not depend on i and j, since θ is a timeline map
for ¬ϕ. We write vjki for the vector representing the truth value of goal βi. ϕi under

valuation θ(wjk).
Assume that σ2(q0) = q1, and that τ1(q0 · σ1(q0)) = p1. Then under w11 (i.e.,

when τ2(q0 · q1) = p1), for any 1 ≤ i ≤ n, the outcome of strategy assignment βi
from q0 goes to p1. Hence v11 = f1, which is in Fn, contradicting the fact that θ
witnesses G, q0 |≡T ¬ϕ. Similar arguments apply if τ1(q0 · σ1(q0)) = p2, and when
σ2(q0) = q2. Thus our assumption that G, q0 |≡T ¬ϕ cannot be correct. �

6 Conclusions and future works

|≡C
(SL[BG])

|≡T
(SL[EG])

|≡E
(SL[1G])

SL[1G]

SL[1G]

SL[1G]

Fig. 10 Relations between classical, el-
ementary and timeline semantics.

In this paper, we have studied various se-
mantics of SL, depending on how the suc-
cessive strategy quantifiers in an SL formula
may depend on each other. Following [30],
we defined a natural translation of the el-
ementary semantics of SL[1G] into a two-
player turn-based parity game, and intro-
duced a new timeline semantics for SL[BG]

that better corresponds to this translation.
For this new semantics, we defined a frag-
ment SL[EG] for which the timeline seman-
tics can be model-checked in 2 -EXPTIME.
Figure 10 represents the relations between
those semantics (with implications in grey only valid for SL[1G]), as well as the
maximal fragments of SL[BG] for which the semantical and syntactical negations
coincide.

While our work clarifies the setting of strategy dependences in SL, those various
semantics of SL remains to be fully understood, in particular as to which situations
are better suited for which semantics. Of course, studying the decidability and
complexity of model checking for the different semantics and fragments of SL[BG] is
a natural continuation of this work. Studying quantitative or epistemic extensions

36 P. Gardy, P. Bouyer, N. Markey

of SL[EG] under the timeline semantics is also a natural direction to follow. Finally,
since our approach relies on translations to two-player parity games, our model-
checking algorithm would be a good candidate for being implemented e.g. in the
tool MCMAS.

References

1. Thomas Ågotnes, Valentin Goranko, and Wojciech Jamroga. Alternating-time temporal
logics with irrevocable strategies. In Dov Samet, editor, Proceedings of the 11th Conference
on Theoretical Aspects of Rationality and Knowledge (TARK’07), pages 15–24, June 2007.

2. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49(5):672–713, September 2002. doi:10.1145/585265.585270.

3. Benjamin Aminof, Vadim Malvone, Aniello Murano, and Sasha Rubin. Graded modalities
in strategy logic. Information and Computation, 261(4):634–649, August 2018. doi:
10.1016/j.ic.2018.02.021.

4. Raphaël Berthon, Bastien Maubert, Aniello Murano, Sasha Rubin, and Moshe Y. Vardi.
Strategy logic with imperfect information. In Proceedings of the 32th Annual Symposium
on Logic in Computer Science (LICS’17), pages 1–12. IEEE Comp. Soc. Press, June 2017.
doi:10.1109/LICS.2017.8005136.

5. Patricia Bouyer, Patrick Gardy, and Nicolas Markey. Weighted strategy logic with boolean
goals over one-counter games. In Prahladh Harsha and G. Ramalingam, editors, Proceedings
of the 35th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’15), volume 45 of Leibniz International Proceedings in Informatics, pages
69–83. Leibniz-Zentrum für Informatik, December 2015. doi:10.4230/LIPIcs.FSTTCS.2015.
69.

6. Patricia Bouyer, Patrick Gardy, and Nicolas Markey. On the semantics of strategy logic.
Information Processing Letters, 116(2):75–79, February 2016. doi:10.1016/j.ipl.2015.
10.004.

7. Romain Brenguier, Jean-François Raskin, and Ocan Sankur. Assume-admissible synthesis.
Acta Informatica, 54(1):41–83, February 2017. doi:10.1007/s00236-016-0273-2.

8. Thomas Brihaye, Arnaud Da Costa, François Laroussinie, and Nicolas Markey. ATL
with strategy contexts and bounded memory. In Sergei N. Artemov and Anil Nerode,
editors, Proceedings of the International Symposium Logical Foundations of Computer
Science (LFCS’09), volume 5407 of Lecture Notes in Computer Science, pages 92–106.
Springer-Verlag, January 2009. doi:10.1007/978-3-540-92687-0_7.

9. Petr Čermák, Alessio Lomuscio, Fabio Mogavero, and Aniello Murano. MCMAS-SLK:
A model checker for the verification of strategy logic specifications. In Armin Biere and
Roderick Bloem, editors, Proceedings of the 26th International Conference on Computer
Aided Verification (CAV’14), volume 8559 of Lecture Notes in Computer Science, pages
525–532. Springer-Verlag, July 2014. doi:10.1007/978-3-319-08867-9_34.

10. Petr Čermák, Alessio Lomuscio, and Aniello Murano. Verifying and synthesising multi-agent
systems against one-goal strategy logic specifications. In Blai Bonet and Sven Koenig,
editors, Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI’15),
pages 2038–2044. AAAI Press, January 2015.

11. Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic. In Lúıs
Caires and Vasco T. Vasconcelos, editors, Proceedings of the 18th International Conference
on Concurrency Theory (CONCUR’07), volume 4703 of Lecture Notes in Computer Science,
pages 59–73. Springer-Verlag, September 2007. doi:10.1007/978-3-540-74407-8_5.

12. Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Dexter C. Kozen, editor, Proceedings of the 3rd
Workshop on Logics of Programs (LOP’81), volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer-Verlag, 1982. doi:10.1007/BFb0025774.

13. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT Press,
2000.

14. Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. The
complexity of rational synthesis. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, Proceedings of the 43rd International Colloquium

http://dx.doi.org/10.1145/585265.585270
http://dx.doi.org/10.1016/j.ic.2018.02.021
http://dx.doi.org/10.1016/j.ic.2018.02.021
http://dx.doi.org/10.1109/LICS.2017.8005136
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.69
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.69
http://dx.doi.org/10.1016/j.ipl.2015.10.004
http://dx.doi.org/10.1016/j.ipl.2015.10.004
http://dx.doi.org/10.1007/s00236-016-0273-2
http://dx.doi.org/10.1007/978-3-540-92687-0_7
http://dx.doi.org/10.1007/978-3-319-08867-9_34
http://dx.doi.org/10.1007/978-3-540-74407-8_5
http://dx.doi.org/10.1007/BFb0025774

Dependences in Strategy Logic 37

on Automata, Languages and Programming (ICALP’16) – Part II, volume 55 of Leib-
niz International Proceedings in Informatics, pages 121:1–121:15. Leibniz-Zentrum für
Informatik, July 2016. doi:10.4230/LIPIcs.ICALP.2016.121.

15. Cătălin Dima and Ferucio Laurenţiu Ţiplea. Model-checking ATL under imperfect infor-
mation and perfect recall semantics is undecidable. Research Report 1102.4225, arXiv,
February 2011.

16. E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy.
In Proceedings of the 32nd Annual Symposium on Foundations of Computer Science
(FOCS’91), pages 368–377. IEEE Comp. Soc. Press, October 1991. doi:10.1109/SFCS.
1991.185392.

17. Nathanaël Fijalkow, Bastien Maubert, Aniello Murano, and Sasha Rubin. Quantifying
bounds in strategy logic. In Dan R. Ghica and Achim Jung, editors, Proceedings of the
27th EACSL Annual Conference on Computer Science Logic (CSL’18), volume 119 of
Leibniz International Proceedings in Informatics, pages 23:1–23:23. Leibniz-Zentrum für
Informatik, September 2018. doi:10.4230/LIPIcs.CSL.2018.23.

18. Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational synthesis. In Javier Esparza
and Rupak Majumdar, editors, Proceedings of the 16th International Conference on
Tools and Algorithms for Construction and Analysis of Systems (TACAS’10), volume
6015 of Lecture Notes in Computer Science, pages 190–204. Springer-Verlag, March 2010.
doi:10.1007/978-3-642-12002-2_16.

19. Patrick Gardy, Patricia Bouyer, and Nicolas Markey. Dependences in strategy logic. In
Proceedings of the 35th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’18), volume 96 of Leibniz International Proceedings in Informatics, pages 34:1–
34:15, Caen, France, February 2018. Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
STACS.2018.34.

20. Valentin Goranko and Govert van Drimmelen. Complete axiomatization and decidability
of alternating-time temporal logic. Theoretical Computer Science, 353(1-3):93–117, March
2006.

21. Dimitar P. Guelev and Cătălin Dima. Epistemic ATL with perfect recall, past and strategy
contexts. In Michael Fisher, Leendert W. N. van der Torre, Mehdi Dastani, and Guido Gover-
natori, editors, Proceedings of the 13th International Workshop on Computational Logic in
Multi-Agent Systems (CLIMA’12), volume 7486 of Lecture Notes in Artificial Intelligence,
pages 77–93. Springer-Verlag, August 2012. doi:10.1007/978-3-642-32897-8_7.

22. Julian Gutierrez, Paul Harrenstein, Giuseppe Perelli, and Michael Wooldridge. Nash
equilibrium and bisimulation invariance. In Roland Meyer and Uwe Nestmann, editors,
Proceedings of the 28th International Conference on Concurrency Theory (CONCUR’17),
volume 85 of Leibniz International Proceedings in Informatics, pages 17:1–17:16. Leibniz-
Zentrum für Informatik, September 2017. doi:10.4230/LIPIcs.CONCUR.2017.17.

23. Leon Henkin. Some remarks on infinitely long formulas. In Infinitistic Methods – Proceedings
of the Symposium on Foundations of Mathematics, pages 167–183. Pergamon Press, 1961.

24. Jaakko Hintikka and Gabriel Sandu. Informational independence as a semantical phe-
nomenon. In Jens Erik Fenstad, Ivan T. Frolov, and Risto Hilppinen, editors, Proceedings of
the 8th International Congress of Logic, Methodology and Philosophy of Science, volume 70
of Studies in Logic and the Foundations of Mathematics, pages 571–589. North-Holland,
January 1989. doi:10.1016/S0049-237X(08)70066-1.

25. Xiaowei Huang and Ron van der Meyden. An epistemic strategy logic. ACM Transactions
on Computational Logic, 19(4):26:1–26:45, December 2018. doi:10.1145/3233769.

26. Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational environ-
ments. Annals of Mathematics and Artificial Intelligence, 78(1):3–20, September 2016.
doi:10.1007/s10472-016-9508-8.

27. François Laroussinie and Nicolas Markey. Augmenting ATL with strategy contexts. Infor-
mation and Computation, 245:98–123, December 2015. doi:10.1016/j.ic.2014.12.020.

28. François Laroussinie, Nicolas Markey, and Ghassan Oreiby. On the expressiveness and
complexity of ATL. Logical Methods in Computer Science, 4(2), May 2008. doi:10.2168/
LMCS-4(2:7)2008.

29. Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. What makes
ATL∗ decidable? A decidable fragment of strategy logic. In Maciej Koutny and Irek
Ulidowski, editors, Proceedings of the 23rd International Conference on Concurrency
Theory (CONCUR’12), volume 7454 of Lecture Notes in Computer Science, pages 193–208.
Springer-Verlag, September 2012.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.121
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.23
http://dx.doi.org/10.1007/978-3-642-12002-2_16
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.34
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.34
http://dx.doi.org/10.1007/978-3-642-32897-8_7
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.17
http://dx.doi.org/10.1016/S0049-237X(08)70066-1
http://dx.doi.org/10.1145/3233769
http://dx.doi.org/10.1007/s10472-016-9508-8
http://dx.doi.org/10.1016/j.ic.2014.12.020
http://dx.doi.org/10.2168/LMCS-4(2:7)2008
http://dx.doi.org/10.2168/LMCS-4(2:7)2008

38 P. Gardy, P. Bouyer, N. Markey

30. Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. Reasoning about
strategies: On the model-checking problem. ACM Transactions on Computational Logic,
15(4):34:1–34:47, August 2014. doi:10.1145/2631917.

31. Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. Reasoning about
strategies: On the satisfiability problem. Logical Methods in Computer Science, 13(1),
March 2017. doi:10.23638/LMCS-13(1:9)2017.

32. Fabio Mogavero, Aniello Murano, and Luigi Sauro. On the boundary of behavioral strategies.
In Proceedings of the 28th Annual Symposium on Logic in Computer Science (LICS’13),
pages 263–272. IEEE Comp. Soc. Press, June 2013.

33. Fabio Mogavero, Aniello Murano, and Luigi Sauro. A behavioral hierarchy of strategy logic.
In Nils Bulling, Leendert W. N. van der Torre, Serena Villata, Wojciech Jamroga, and
Wamberto Weber Vasconcelos, editors, Proceedings of the 15th International Workshop
on Computational Logic in Multi-Agent Systems (CLIMA’14), volume 8624 of Lecture
Notes in Artificial Intelligence, pages 148–165. Springer-Verlag, August 2014. doi:10.
1007/978-3-319-09764-0_10.

34. Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. Reasoning about strategies. In
Kamal Lodaya and Meena Mahajan, editors, Proceedings of the 30th Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS’10),
volume 8 of Leibniz International Proceedings in Informatics, pages 133–144. Leibniz-
Zentrum für Informatik, December 2010. doi:10.4230/LIPIcs.FSTTCS.2010.133.

35. Andrzej Mostowski. Games with forbidden positions. Research Report 78, University of
Danzig, 1991.

36. Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science (FOCS’77), pages 46–57. IEEE Comp. Soc. Press,
October-November 1977. doi:10.1109/SFCS.1977.32.

37. Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems
in CESAR. In Mariangiola Dezani-Ciancaglini and Ugo Montanari, editors, Proceedings
of the 5th International Symposium on Programming (SOP’82), volume 137 of Lecture
Notes in Computer Science, pages 337–351. Springer-Verlag, April 1982. doi:10.1007/
3-540-11494-7_22.

38. Jouko Väänänen. Dependence Logic: A New Approach to Independence-Friendly Logic,
volume 70 of London Mathematical Society Student Texts. Cambridge University Press,
2007. doi:10.1017/CBO9780511611193.

39. Farn Wang, Chung-Hao Huang, and Fang Yu. A temporal logic for the interaction of
strategies. In Joost-Pieter Katoen and Barbara König, editors, Proceedings of the 22nd
International Conference on Concurrency Theory (CONCUR’11), volume 6901 of Lecture
Notes in Computer Science, pages 466–481. Springer-Verlag, September 2011.

http://dx.doi.org/10.1145/2631917
http://dx.doi.org/10.23638/LMCS-13(1:9)2017
http://dx.doi.org/10.1007/978-3-319-09764-0_10
http://dx.doi.org/10.1007/978-3-319-09764-0_10
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.133
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1017/CBO9780511611193

	Introduction
	Definitions
	Strategy dependences
	Timeline dependences
	The fragment SL[EG]b
	Conclusions and future works

