Patrick Gardy

Patricia Bouyer

Nicolas Markey

Nicolas Markey Lsv

Dependences in Strategy Logic

come

Introduction

Temporal logics. Since Pnueli's seminal paper [START_REF] Pnueli | The temporal logic of programs[END_REF] in 1977, temporal logics have been widely used in theoretical computer science, especially by the formal-verification community. Temporal logics provide powerful languages for expressing properties of reactive systems, and enjoy efficient algorithms for satisfiability and model checking [START_REF] Clarke | Model checking[END_REF]. Since the early 2000s, new temporal logics have appeared to address open and multi-agent systems. While classical temporal logics (e.g. CTL [START_REF] Clarke | Design and synthesis of synchronization skeletons using branching-time temporal logic[END_REF][START_REF] Queille | Specification and verification of concurrent systems in CESAR[END_REF] and LTL [START_REF] Pnueli | The temporal logic of programs[END_REF]) could only deal with one or all the behaviours of the whole system, ATL [START_REF] Alur | Alternating-time temporal logic[END_REF] expresses properties of (executions generated by) behaviours of individual components of the system. This can be used to specify that a controller can enforce safety of a whole system, whatever the other components do. This is usually seen as a game where the controller plays against the other components, with the aim of maintaining safety of the global system; ATL can then express the existence of a winning strategy in such a game. ATL has been extensively studied since its introduction, both about its expressiveness and about its verification algorithms [START_REF] Alur | Alternating-time temporal logic[END_REF][START_REF] Goranko | Complete axiomatization and decidability of alternating-time temporal logic[END_REF][START_REF] Laroussinie | On the expressiveness and complexity of ATL[END_REF].

Adding strategic interactions in temporal logics.

Strategies in ATL are handled in a very limited way, and there are no real strategic interactions in that logic (which, in return, enjoys a polynomial-time model-checking algorithm). Indeed, ATL expresses properties such as "Player A has a strategy to enforce ϕ" (denoted A ϕ), where ϕ is a property to be fulfilled along any execution resulting from the selected strategy; in other terms, this existential quantification over strategies of A always implicitly contains a universal quantification over all the strategies of all the other players. This only allows to express zero-sum objectives.

Over the last 10 years, various extensions have been defined and studied in order to allow for more strategy interactions [START_REF] Ågotnes | Alternating-time temporal logics with irrevocable strategies[END_REF][START_REF] Chatterjee | Strategy logic[END_REF][START_REF] Brihaye | ATL with strategy contexts and bounded memory[END_REF][START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF][START_REF] Wang | A temporal logic for the interaction of strategies[END_REF]. Strategy Logic (SL for short) [START_REF] Chatterjee | Strategy logic[END_REF][START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF] is such a powerful approach, in which strategies are first-class objects; formulas can quantify (universally and existentially) over strategies, store those strategies in variables, assign them to players, and express properties of the resulting plays. As a simple example, the existence of a winning strategy for Player A (with objective ϕ A) against any strategy of Player B would be written as ∃σ A . ∀σ B . assign(A → σ A ; B → σ B). ϕ A . This precisely corresponds to formula A ϕ A of ATL (if the game only has two players).

SL can express much more: for example, it can express the existence of a strategy for Player A which allows Player B to satisfy one of two goals ϕ B or ϕ B : we would write This expresses collaborative properties which are out of reach of ATL: formula A (B ϕ B ∧ B ϕ B) in ATL is equivalent to (B ϕ B ∧ B ϕ B , since B ϕ B is understood as the existence of a winning strategy against any strategy of the other player(s).

As a last example, SL can express classical concepts in game theory, such as Nash equilibria with Boolean objectives. This provides an easy way of showing decidability of rational synthesis [START_REF] Fisman | Rational synthesis[END_REF][START_REF] Kupferman | Synthesis with rational environments[END_REF][START_REF] Condurache | The complexity of rational synthesis[END_REF] or assume-admissible synthesis [START_REF] Brenguier | Assume-admissible synthesis[END_REF]): for instance, the existence of an admissible strategy for objective ϕ of Player A (i.e., a strategy that is strictly dominated by no other strategies [START_REF] Brenguier | Assume-admissible synthesis[END_REF]) is expressed as

∃σ A . ∀σ A . ∨ ∃σ B . assign(A → σ A , B → σ B).ϕ ∧ assign(A → σ A , B → σ B).¬ϕ ∀σ B . assign(A → σ A , B → σ B).ϕ ∨ assign(A → σ A , B → σ B).¬ϕ
. Such a formula shows that complex strategy interactions may be useful for expressing classical properties of multi-player games.

This series of examples illustrates how SL is both expressive and convenient, at the expense of a very high complexity: SL model checking has non-elementary complexity (and satisfiability is undecidable, unless the problem is restricted to turn-based game structures) [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF][START_REF] Laroussinie | Augmenting ATL with strategy contexts[END_REF].

The high expressiveness of this logic, together with the decidability of its model-checking problem, has led to numerous studies around SL, either considering fragments of the logic with more efficient algorithms, or more expressive variants of the logic (e.g. with quantitative aspects), or variations on the notion of strategies (e.g. with limited observation of the game).

On the one hand, limitations have been imposed to strategic interactions in order to get more efficient algorithms [START_REF] Mogavero | What makes ATL * decidable? A decidable fragment of strategy logic[END_REF][START_REF] Mogavero | On the boundary of behavioral strategies[END_REF]. A goal is an LTL condition imposed to a strategy profile (built from quantified strategies). The fragment SL[1G] then contains formulas in prenex form with a single goal (and nested combinations thereof); this fragment is very close to ATL [START_REF] Alur | Alternating-time temporal logic[END_REF] in terms of expressiveness, and its model-checking problem is 2 -EXPTIME-complete. A BDD-based implementation of the model-checking algorithm for SL[1G], using a translation to parity games, is implemented in the tool MCMAS [START_REF] Čermák | Verifying and synthesising multi-agent systems against one-goal strategy logic specifications[END_REF]. Several other fragments have been considered, e.g. allowing conjunctions (SL [CG]), disjunctions (SL [DG]), or general boolean combinations of goals (SL [BG]); model checking still is in 2 -EXPTIME for the first two fragments [START_REF] Mogavero | On the boundary of behavioral strategies[END_REF], but it is non-elementary for SL[BG] [START_REF] Bouyer | Weighted strategy logic with boolean goals over one-counter games[END_REF].

On the other hand, various extensions have also been considered, in order to see how far the logic can be extended while preserving decidable model checking. In Graded SL, (existential) strategy quantifiers are decorated with quantitative constraints on the cardinality of the set of strategies satisfying a formula; this can be used e.g. to express uniqueness on Nash equilibria. Model checking is decidable (with non-elementary complexity) for Graded SL [START_REF] Aminof | Graded modalities in strategy logic[END_REF]. On a different note, Prompt SL extends SL with a parameterized modality F ≤n ϕ, which bounds the number of steps within which ϕ has to hold. Similarly, Bounded-Outcome SL adds a bound on the number of outcomes that must satisfy a given path formula. Again, model checking is decidable for those extensions [START_REF] Fijalkow | Quantifying bounds in strategy logic[END_REF].

Finally, SL has also been studied with different notions of strategies. When limiting strategy quantification to memoryless strategies, model checking is PSPACEcomplete (as there are exponentially many strategies), but satisfiability is undecidable even for turn-based game structures [START_REF] Laroussinie | Augmenting ATL with strategy contexts[END_REF]. Different types of strategies, based on sequences of actions, states or atomic propositions, are also considered in [START_REF] Gutierrez | Nash equilibrium and bisimulation invariance[END_REF], with a focus on bisimulation invariance. When considering partial-observation strategies, model checking is undecidable (as is already the case for ATL [START_REF] Dima | Model-checking ATL under imperfect information and perfect recall semantics is undecidable[END_REF]); a decidable fragment of SL is identified in [START_REF] Berthon | Strategy logic with imperfect information[END_REF], with a hierarchical restriction on nested strategy quantifiers. This study of imperfect-information games has been extended with epistemic variants of SL, which allows to reason about the knowledge of agents. Model checking is undecidable in the general case, but several papers identify specific settings where model checking is decidable [START_REF] Dimitar | Epistemic ATL with perfect recall, past and strategy contexts[END_REF][START_REF] Čermák | MCMAS-SLK: A model checker for the verification of strategy logic specifications[END_REF][START_REF] Huang | An epistemic strategy logic[END_REF].

Understanding SL.

It has been noticed in recent works that the nice expressiveness of SL comes with unexpected phenomena. One such phenomenon is induced by the separation of strategy quantification and strategy assignment: when selecting a strategy to be played later, are the intermediary events part of the memory of that strategy? While both options may make sense depending on the applications, only one of them makes model checking decidable [START_REF] Bouyer | On the semantics of strategy logic[END_REF].

A second phenomenon-which is the main focus of the present paper-concerns strategy dependences [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF]: in a formula such as ∀σ A . ∃σ B . ϕ, the existentially-quantified strategy σ B may depend on the whole strategy σ A ; in other terms, the action returned by strategy σ B after some finite history ρ may depend on what strategy σ A would play on any other history ρ . Again, in some contexts, it may be desirable that the value of strategy σ B after history ρ can be computed based solely on what has been observed along ρ (see Fig. 2 for an illustration). This approach was initiated in [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF][START_REF] Mogavero | A behavioral hierarchy of strategy logic[END_REF], conjecturing that large fragments of SL (subsuming ATL *) would have 2 -EXPTIME model-checking algorithms with such limited dependences.

Our contributions.

We follow this line of work by performing a more thorough exploration of strategy dependences in (a fragment of) SL. We mainly follow the framework of [START_REF] Mogavero | A behavioral hierarchy of strategy logic[END_REF], based on a kind of Skolemization of the formula: for instance, a formula of the form (∀x i ∃y i) i . ϕ is satisfied if there exists a dependence map θ defining each existentially-quantified strategy y j based on the universally-quantified strategies (x i) i . In order to recover the classical semantics of SL, it is only required that the strategy θ((x i) i)(y j) (i.e. the strategy assigned to the existentially-quantified variable y j by θ((x i) i)) only depends on (x i) i<j .

Based on this definition, other constraints can be imposed on dependence maps, in order to refine the dependences of existentially-quantified strategies on universally-quantified ones. Elementary dependences [START_REF] Mogavero | A behavioral hierarchy of strategy logic[END_REF] only allows existentiallyquantified strategy y j to depend on the values of (x i) i<j along the current history. This gives rise to two different semantics in general, but on several fragments of SL (namely SL[1G], SL [CG] and SL[DG]), the classic and elementary semantics would coincide [START_REF] Mogavero | What makes ATL * decidable? A decidable fragment of strategy logic[END_REF][START_REF] Mogavero | On the boundary of behavioral strategies[END_REF].

The coincidence actually only holds for SL[1G]. As we explain in this paper, elementary dependences as defined and used in [START_REF] Mogavero | What makes ATL * decidable? A decidable fragment of strategy logic[END_REF][START_REF] Mogavero | On the boundary of behavioral strategies[END_REF] do not exactly capture the intuition that strategies should depend on the "behavior [of universal strategies] on the history of interest only" [START_REF] Mogavero | On the boundary of behavioral strategies[END_REF]: indeed, they only allow dependences on universallyquantified strategies that appear earlier in the formula, while we claim that the behaviour of all universally-quantified strategies should be considered. We address this discrepancy by introducing another kind of dependences, which we call timeline dependences, and which extend elementary dependences by allowing existentiallyquantified strategies to additionally depend on all universally-quantified strategies along strict prefixes of the current history (as illustrated on Fig. 5).

We study and compare those three dependences (classic, elementary and timeline), showing that they correspond to three distinct semantics. Because the semantics based on dependence maps is defined in terms of the existence of a witness map, we show that the syntactic negation of a formula may not correspond to its semantic negation: there are cases where both a formula ϕ and its syntactic negation ¬ϕ fail to hold (i.e., none of them has a witness map). This phenomenon is already present, but had not been formally identified, in [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF][START_REF] Mogavero | A behavioral hierarchy of strategy logic[END_REF]. The main contribution of the present paper is the definition of a large (and, in a sense, maximal) fragment of SL for which syntactic and semantic negations coincide under the timeline semantics. As an (important) side result, we show that model checking this fragment under the timeline semantics is 2 -EXPTIME-complete.

Related works.

To the best of our knowledge, strategy dependences have only been considered in a series of recent works by Mogavero et al. [START_REF] Mogavero | What makes ATL * decidable? A decidable fragment of strategy logic[END_REF][START_REF] Mogavero | On the boundary of behavioral strategies[END_REF][START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF][START_REF] Mogavero | A behavioral hierarchy of strategy logic[END_REF], both as a way of making the semantics of SL more realistic in certain situations, and as a way of lowering the algorithmic complexity of verification of certain fragments of SL.

The question of the dependence of quantifiers in first-order logic is an old topic: in [START_REF] Henkin | Some remarks on infinitely long formulas[END_REF], branching quantifiers are introduced to define how quantified variables may depend on each other. Similarly, Dependence Logic [START_REF] Väänänen | Dependence Logic: A New Approach to Independence-Friendly Logic[END_REF] and Independence-Friendly Logic [START_REF] Hintikka | Informational independence as a semantical phenomenon[END_REF] also add such restrictions on dependences of quantified variables on top of first-order logic. While the settings are quite different to ours, the underlying ideas are similar, and in particular share an interpretation in terms of games of imperfect information.

Definitions

Concurrent game structures

Let AP be a set of atomic propositions, V be a set of variables, and Agt be a set of agents. A concurrent game structure is a tuple G = (Act, Q, ∆, lab) where Act is a finite set of actions, Q is a finite set of states, ∆ : Q × Act Agt → Q is the transition function, and lab : Q → 2 AP is a labelling function. An element of Act Agt will be called a move vector. For any q ∈ Q, we let succ(q) be the set {q ∈ Q | ∃m ∈ Act Agt . q = ∆(q, m)}. For the sake of simplicity, we assume in the sequel that succ(q) = ∅ for any q ∈ Q. A game G is said turn-based whenever for every state q ∈ Q, there is a player own(q) ∈ Agt (named the owner of q) such that for any two move vectors m 1 and m 2 with m 1 (own(q)) = m 2 (own(q)), it holds ∆(q, m 1) = ∆(q, m 2). Figure 1 displays an example of a (turn-based) game.

Fix a state q ∈ Q. A play in G from q is an infinite sequence π = (q i) i∈N of states in Q such that q 0 = q and q i ∈ succ(q i-1) for all i > 0. We write Play G (q) for the set of plays in G from q. In this and all similar notations, we might omit to mention G when it is clear from the context, and q when we consider the union over all q ∈ Q. A (strict) prefix of a play π is a finite sequence ρ = (q i) 0≤i≤L , for some L ∈ N. We write Pref(π) for the set of strict prefixes of play π. Such finite prefixes are called histories, and we let Hist G (q) = Pref(Play G (q)). We extend the notion of strict prefixes and the notation Pref to histories in the natural way, requiring in particular that ρ / ∈ Pref(ρ). A (finite) extension of a history ρ is any history ρ such that ρ ∈ Pref(ρ). Let ρ = (q i) i≤L be a history. We define first(ρ) = q 0 and last(ρ) = q L . Let ρ = (q j) j≤L be a history from last(ρ). The concatenation of ρ and ρ is then defined as the path ρ • ρ = (q k) k≤L+L such that q k = q k when k ≤ L and q k = q k-L when L ≥ k (notice that we required q 0 = q L).

A strategy from q is a mapping δ : Hist G (q) → Act. We write Strat G (q) for the set of strategies in G from q. Given a strategy δ ∈ Strat(q) and a history ρ from q, the translation δ-→ ρ of δ by ρ is the strategy δ-→ ρ from last(ρ) defined by δ-→ ρ (ρ) = δ(ρ • ρ) for any ρ ∈ Hist(last(ρ)). A context (sometimes also called valuation) from q is a partial function χ : V ∪ Agt Strat(q). As usual, for any partial function f , we write dom(f) for the domain of f . Let q ∈ Q and χ be a context from q. If Agt ⊆ dom(χ), then χ induces a unique play from q, called its outcome, and defined as out(q, χ) = (q i) i∈N such that q 0 = q and for every i ∈ N, we have q i+1 = ∆(q i , m i) with m i (A) = χ(A)((q j) j≤i) for every A ∈ Agt.

Strategy Logic with boolean goals

Strategy Logic (SL for short) was introduced in [START_REF] Chatterjee | Strategy logic[END_REF], and further extended and studied in [START_REF] Mogavero | Reasoning about strategies[END_REF][START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF], as a rich logical formalism for expressing properties of games. SL manipulates strategies as first-order elements, assigns them to players, and expresses LTL properties on the outcomes of the resulting strategic interactions. This results in a very expressive temporal logic, for which satisfiability is undecidable [START_REF] Mogavero | Reasoning about strategies[END_REF][START_REF] Mogavero | Reasoning about strategies: On the satisfiability problem[END_REF] and model checking is TOWER-complete [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF][START_REF] Bouyer | Weighted strategy logic with boolean goals over one-counter games[END_REF]. In this paper, we focus on a restricted fragment of SL, called SL[BG] (where BG stands for boolean goals [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF], and the symbol indicates that we do not allow nesting of (closed) subformulas; we discuss this latter restriction below).

Syntax.

Formulas in SL [BG] are built along the following grammar

SL[BG] ϕ ::= ∃x. ϕ | ∀x. ϕ | ξ ξ ::= ¬ξ | ξ ∧ ξ | ξ ∨ ξ | ω ω ::= assign(σ). ψ ψ ::= ¬ψ | ψ ∨ ψ | ψ ∧ ψ | X ψ | ψ U ψ | p
where x ranges over V, σ ranges over the set V Agt of full assignments, and p ranges over AP. A goal is a formula of the form ω in the grammar above; it expresses an LTL property ψ on the outcome of the mapping σ. Formulas in SL [BG] are thus made of an initial block of first-order quantifiers (selecting strategies for variables in V), followed by a boolean combination of such goals.

Free variables.

With any subformula ζ of some formula ϕ ∈ SL[BG] , we associate its set of free agents and variables, which we write free(ζ). It contains the agents and variables that have to be associated with a strategy in order to unequivocally evaluate ζ (as will be seen from the definition of the semantics of SL[BG] below). The set free(ζ) is defined inductively:

free(p) = ∅ for all p ∈ AP free(X ψ) = Agt ∪ free(ψ) free(¬α) = free(α) free(ψ 1 U ψ 2) = Agt ∪ free(ψ 1) ∪ free(ψ 2) free(α 1 ∨ α 2) = free(α 1) ∪ free(α 2) free(∃x. ϕ) = free(ϕ) \ {x} free(α 1 ∧ α 2) = free(α 1) ∪ free(α 2) free(∀x. ϕ) = free(ϕ) \ {x} free(assign(σ). ϕ) = (free(ϕ) ∪ σ(Agt ∩ free(ϕ))) \ Agt
Subformula ζ is said to be closed whenever free(ζ) = ∅. We can now comment on our choice of considering the flat fragment of SL[BG]: the full fragment, as defined in [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF], allows for nesting closed SL [BG] formulas in place of atomic propositions.

The meaning of such nesting in our setting is ambiguous, because our semantics (in Sections 3 to 5) are defined in terms of the existence of a witness, which does not easily propagate in formulas. In particular, as we explain later in the paper, the semantics of the negation of a formula (there is a witness for ¬ϕ) does not coincide with the negation of the semantics (there is no witness for ϕ); thus substituting a subformula and substituting its negation may return different results.

Semantics.

Fix a state q ∈ Q, and a context χ : V ∪Agt Strat(q). We inductively define the semantics of a subformula α of a formula of SL[BG] at q under context χ, requiring free(α) ⊆ dom(χ). We omit the easy cases of boolean combinations and atomic propositions.

q 0 q 1 q 2 p 1 p 2 ϕ = ∀y.∃z.∀x A .∀x B . assign(→ x A ; → y; → z). F p 1 assign(→ x B ; → y; → z). F p 2
Fig. 1 A game and a SL[BG] formula.

Given a mapping σ : Agt → V, the semantics of strategy assignments is defined as follows:

G, q |=χ assign(σ). ψ ⇔ G, q |= χ[A∈Agt →χ(σ(A))] ψ.
Notice that, writing χ = χ[A ∈ Agt → χ(σ(A))], we have free(ψ) ⊆ dom(χ) if free(α) ⊆ dom(χ), so that our inductive definition is sound.

We now consider path formulas ψ = X ψ 1 and ψ = ψ 1 U ψ 2 . Since Agt ⊆ free(ψ) ⊆ dom(χ), the context χ induces a unique outcome out(q, χ) = (q i) i∈N from q. For n ∈ N, we write outn(q, χ) = (q i) i≤n , and define χ-→ n as the context obtained by shifting all the strategies in the image of χ by outn(q, χ). Under the same conditions, we also define q-→ n = last(outn(q, χ)). We then set

G, q |=χ X ψ 1 ⇔ G, q-→ 1 |=χ-→ 1 ψ 1 G, q |=χ ψ 1 U ψ 2 ⇔ ∃k ∈ N. G, q-→ k |=χ-→ k ψ 2 and ∀0 ≤ j < k. G, q-→ j |=χ-→ j ψ 1 .
In the sequel, we use classical shorthands, such as for p ∨ ¬p (for any p ∈ AP), F ψ for U ψ (eventually ψ), and G ψ for ¬F ¬ψ (always ψ). It remains to define the semantics of the strategy quantifiers. This is actually what this paper is all about. We provide here the original semantics, and discuss alternatives in the following sections:

G, q |=χ ∃x.ϕ ⇔ ∃δ ∈ Strat(q). G, q |= χ[x →δ] ϕ.
Example 1. We consider the (turn-based) game G is depicted on Fig. 1. We name the players after the shape of the state they control. The SL[BG] formula ϕ to the right of Fig. 1 has four quantified variables and two goals. We show that this formula evaluates to true at q 0 : fix a strategy δy (to be played by player); because G is turn-based, we identify the actions of the owner of a state with the resulting target state, so that δy(q 0 q 1) will be either p 1 or p 2 . We then define strategy δz (to be played by) as δz(q 0 q 2) = δy(q 0 q 1). Then clearly, for any strategy assigned to player , one of the goals of formula ϕ holds true, so that ϕ itself evaluates to true.

Subclasses of SL[BG].

Because of the high complexity and subtlety of reasoning with SL and SL[BG], several restrictions of SL [BG] have been considered in the literature [START_REF] Mogavero | What makes ATL * decidable? A decidable fragment of strategy logic[END_REF][START_REF] Mogavero | On the boundary of behavioral strategies[END_REF][START_REF] Mogavero | A behavioral hierarchy of strategy logic[END_REF], by adding further restrictions to boolean combinations in the grammar defining the syntax:

-

::= ω ∧ ξ | ω ∨ ξ | ω.
In the sequel, we write a generic SL[BG] formula ϕ as (Q i x i) 1≤i≤l . ξ(β j . ψ j) j≤n where:

-(Q i x i) i≤l is a block of quantifications, with {x i | 1 ≤ i ≤ l} ⊆ V and Q i ∈ {∃, ∀},
for every 1 ≤ i ≤ l; ξ(g 1 , ..., gn) is a boolean combination of its arguments; -for all 1 ≤ j ≤ n, β j . ψ j is a goal: β j is a full assignment and ψ j is an LTL formula.

Strategy dependences

We now follow the framework of [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF][START_REF] Mogavero | A behavioral hierarchy of strategy logic[END_REF] and define the semantics of SL[BG] in terms of dependence maps. This approach provides a fine way of controlling how existentially-quantified strategies depend on other strategies (in a quantifier block).

Using dependence maps, we can limit such dependences.

Dependence maps.

Consider an SL[BG

] formula ϕ = (Q i x i) 1≤i≤l . ξ(β j . ϕ j) j≤n , assuming w.l.o.g. that {x i | 1 ≤ i ≤ l} = V. We let V ∀ = {x i | Q i = ∀} ⊆ V be the set of universally-quantified variables of ϕ. A function θ : Strat V ∀ → Strat V is a ϕ-map (or map when ϕ is clear from the context) if θ(w)(x i)(ρ) = w(x i)(ρ) for any w ∈ Strat V ∀
, any x i ∈ V ∀ , and any history ρ. In other words, θ(w) extends w to V. This general notion allows any existentially-quantified variable to depend on all universally-quantified ones (dependence on existentially-quantified variables is implicit: all existentially-quantified variables are assigned through a single map, hence they all depend on the others); we add further restrictions later on. Using maps, we may then define new semantics for SL[BG] : generally speaking, formula ϕ = (Q i x i) 1≤i≤l . ξ(β j . ϕ j) j≤n holds true if there exists a ϕ-map θ such that, for any w : V ∀ → Strat, the valuation θ(w) makes ξ(β j . ϕ j) j≤n hold true.

Classic maps are dependence maps in which the order of quantification is respected:

∀w 1 , w 2 ∈ Strat V ∀ . ∀x i ∈ V \ V ∀ . ∀x j ∈ V ∀ ∩ {x j | j < i}. w 1 (x j) = w 2 (x j) ⇒ θ(w 1)(x i) = θ(w 2)(x i) . (C)
In words, if w 1 and w 2 coincide on V ∀ ∩ {x j | j < i}, then θ(w 1) and θ(w 2) coincide on x i .

Elementary maps [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF][START_REF] Mogavero | What makes ATL * decidable? A decidable fragment of strategy logic[END_REF] have to satisfy a more restrictive condition: for those maps, the value of an existentially-quantified strategy at any history ρ may only depend on the value of earlier universally-quantified strategies along ρ. This may be written as:

∀w 1 , w 2 ∈ Strat V ∀ . ∀x i ∈ V \ V ∀ . ∀ρ ∈ Hist. ∀x j ∈ V ∀ ∩ {x k | k < i}. ∀ρ ∈ Pref(ρ) ∪ {ρ}. w 1 (x j)(ρ) = w 2 (x j)(ρ) ⇒ θ(w 1)(x i)(ρ) = θ(w 2)(x i)(ρ) . (E)
In this case, for any history ρ, if two valuations w 1 and w 2 of the universallyquantified variables coincide on the variables quantified before x i all along ρ, then θ(w 1)(x i) and θ(w 2)(x i) have to coincide at ρ. The difference between both kinds of dependences is illustrated on Fig. 2: for classic maps, the existentially-quantified strategy x 2 may depend on the whole strategy x 1 , while it may only depend on the value of x 1 along the current history for elementary maps. Notice that a map satisfying (E) also satisfies (C). Indeed, consider a map θ satisfying (E), and pick two strategy valuations w 1 and w 2 and an existential variable x i such that

∀x j ∈ V ∀ ∩ {x j | j < i}. w 1 (x j) = w 2 (x j).
In particular, for those x j , we have w 1 (x j)(ρ) = w 2 (x j)(ρ) for any history ρ (hence also for any of its prefixes). By (E), it follows θ(w 1)(x i)(ρ) = θ(w 2)(x i)(ρ). Since this holds for any history, we have shown θ(w 1)

(x i) = θ(w 2)(x i). ∀x 1 ∀x 1 ∃x 2 ∀x 3 ∀x 1 ∀x 1 ∃x 2 ∀x 3

Pick a formula

ϕ = (Q i x i) 1≤i≤l . ξ β j . ϕ j j≤n in SL[BG] . We define: G, q |≡ C ϕ iff ∃θ satisfying (C). ∀w ∈ Strat V ∀ . G, q |= θ(w) ξ β j . ϕ j j≤n
As explained above, this actually corresponds to the usual semantics of SL [BG] as given in Section 2 [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF]Theorem 4.6]. When G, q |≡ C ϕ, a map θ satisfying the conditions above is called a C-witness of ϕ for G and q. Similarly, we define the elementary semantics [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF] as:

G, q |≡ E ϕ iff ∃θ satisfying (E). ∀w ∈ Strat V ∀ . G, q |= θ(w) ξ β j . ϕ j j≤n
Again, when such a map exists, it is called an E-witness. Notice that since Property (E) implies Property (C), we have G, q |≡ E ϕ ⇒ G, q |≡ C ϕ for any ϕ ∈ SL [BG] . This corresponds to the intuition that it is harder to satisfy a SL[BG] formula when dependences are more restricted. The contrapositive statement then raises questions about the negation of formulas.

The syntactic vs. semantic negations.

If ϕ = (Q i x i) 1≤i≤l ξ(β j . ϕ j) j≤n is an SL[BG] formula, its syntactic negation ¬ϕ is the formula (Q i x i) i≤l (¬ξ)(β j . ϕ j) j≤n , where Q i = ∃ if Q i = ∀ and Q i = ∀ if Q i = ∃. Looking at the definitions of |≡ C
and |≡ E , it could be the case that e.g. G, q |≡ C ϕ and G, q |≡ C ¬ϕ: this only

q 0 q 1 q 2 p 1 p 2 ϕ = ∀x.∃y.
assign(→ y). F q 1 assign(→ x). F p 1 ⇔ assign(→ y). F p 1 Fig. 3 A game G and an SL[BG] formula ϕ such that G, q 0 |≡ E ϕ and G, q 0 |≡ E ¬ϕ.

requires the existence of two adequate maps. However, since |≡ C and |= coincide, and since G, q |= ϕ ⇔ G, q |= ¬ϕ in the classical semantics of SL, we get

G, q |≡ C ϕ ⇔ G, q |≡ C ¬ϕ. Also, since G, q |≡ E ϕ ⇒ G, q |≡ C ϕ, we also get G, q |≡ E ϕ ⇒ G, q |≡ E ¬ϕ.
As we now show, the converse implication holds for SL[1G] , but may fail to hold for SL[BG] .

Proposition 1. There exist a game G with initial state q 0 and a formula ϕ ∈ SL[BG] such that G, q 0 |≡ E ϕ and G, q 0 |≡ E ¬ϕ.

Proof. Consider the formula and the one-player game of Fig. 3. We start by proving that G, q 0 |≡ E ϕ. For a contradiction, assume that a witness map θ satisfying (E) exists, and pick any valuation w for the universal variable x. First, for the first goal in the conjunction to be fulfilled, the strategy assigned to y must play to q 1 from q 0 . We abbreviate this as θ(w)(y)(q 0) = q 1 in the sequel. Now, consider two valuations w 1 and w 2 such that

w 1 (x)(q 0) = w 2 (x)(q 0) = q 2 and w 1 (x)(q 0 • q 1) = w 2 (x)(q 0 • q 1), but such that w 1 (x)(q 0 • q 2) = p 1 and w 2 (x)(q 0 • q 2) = p 2 .
In order to fulfill the second goal under both valuations w 1 and w 2 , we must have θ(w 1)(y)(q 0 • q 1) = p 1 and θ(w 2)(y)(q 0 • q 1) = p 2 . But this violates Property (E): since w 1 (x) and w 2 (x) coincide on q 0 and on q 0 • q 1 , we must have θ(w 1)(y)(q 0 • q 1) = θ(w 2)(y)(q 0 • q 1).

We now prove that G, q 0 |≡ E ¬ϕ. Indeed, following the previous discussion, we easily get that G, q 0 |≡ C ϕ, by letting θ(w)(y)(q 0) = q 1 and θ(w

)(y)(q 0 • q 1) = w(x)(q 0 • q 2) if w(x)(q 0) = q 2 , and θ(w)(y)(q 0 • q 1) = w(x)(q 0 • q 1) if w(x)(q 0) = q 1 .
As explained above, this entails G, q 0 |≡ C ¬ϕ, and G, q 0 |≡ E ¬ϕ.

The proof above uses only one player and two quantifiers, but a complex combination of goals. The game and formula of Fig. 1 provide an alternative proof, with three players and four quantifiers, but a formula in SL [DG] (which also entails the result for SL [CG]).

Indeed, we already proved (see Example 1) that G, q 0 |≡ C ϕ, by making strategy z play in q 2 in the same direction as what strategy y plays in q 1 . Then it cannot be G, q 0 |≡ E ¬ϕ, since this would imply G, q 0 |≡ C ¬ϕ, and both ϕ and ¬ϕ would hold, which is impossible in the classical semantics. Thus G, q 0 |≡ E ¬ϕ. Now, in the elementary semantics, we require the existence of a dependence map θ, defining in particular θ(w)(z)(q 0 • q 2), and such that θ(w)(z)(q 0 • q 2) = θ(w)(z)(q 0 • q 2) whenever w(y)(q 0) = w (y)(q 0). Consider the following two valuations w and w :

w(y)(q 0) = q 1 w(y)(q 0 q 1) = p 1 w(x A)(q 0) = q 2 w(x B)(q 0) = q 1 w (y)(q 0) = q 1 w (y)(q 0 q 1) = p 2 w(x A)(q 0) = q 1 w(x B)(q 0) = q 2 .
Since w(y)(q 0) = w (y)(q 0), we must have

θ(w)(z)(q 0 • q 2) = θ(w)(z)(q 0 • q 2). Then -if θ(w)(z)(q 0 • q 2) = p 2
, then under the strategies prescribed by θ(w), both disjuncts in ϕ are false.

otherwise, θ(w)(z)(q 0 • q 2) = p 1 , and under the strategies prescribed by θ(w), again both disjuncts are false.

It follows that G, q 0 |≡ E ϕ.

We now prove hat this phenomenon does not occur in SL[1G]:

Proposition 2. For any game G with initial state q 0 , and any formula ϕ

∈ SL[1G] , it holds G, q 0 |≡ E ϕ ⇔ G, q 0 |≡ E ¬ϕ.
Notice that this result follows from [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF]Corollary 4.21], which states that |≡ C and |≡ E coincide on SL[1G]. However, since it is central to our approach, we develop a (new) full proof of this result.

Proof. We begin with intuitive explanations before giving full details. We encode the satisfaction relation G, q 0 |≡ E ϕ into a two-player turn-based parity game: the first player of the parity game will be in charge of selecting the existentiallyquantified strategies, and her opponent will select the universally-quantified ones. This will be encoded by replacing each state of G with a tree-shaped module as depicted on Fig. 4. Following the strategy assignment of the SL[1G] formula ϕ, the strategies selected by those players will define a unique play, along which the LTL objective has to be fulfilled; this verification is encoded into a (doubly-exponential) parity automaton.

We prove that G, q 0 |≡ E ϕ if, and only if, the first player wins; conversely, G, q 0 |≡ E ϕ if the second player wins. Both claims crucially rely on the existence of memoryless optimal strategies for two-player parity games. Finally, by determinacy of those games, we get the expected result.

Notice that in this construction, Player P ∃ has full observation, hence her moves may depend on all moves of Player P ∀ along the current history. As a result, in our encoding, existentally-quantified strategies may depend on the value of all universally-quantified strategies along the current history; in the example of Fig 4, this means that the moves selected by Player P ∃ for x 1 may depend on the moves selected by Player P ∀ for x 2 earlier in the game. However, memoryless strategies are sufficient for both players to win parity games; a memoryles strategy for Player P ∃ then precisely corresponds to an elementary dependence map, which proves our result. We now give a full proof following this intuition.

Building a turn-based parity game H from G and ϕ.

For the rest of the proof, we fix a game G and a SL[1G] formula ϕ = (Q i x i) i≤l β. ϕ. Each state of G is replaced with a copy of the tree-shaped quantification game depicted on Fig. 4. A quantification game Qϕ is formally defined as follows:

it involves two players, P ∃ and P ∀ ; -the set of states is Sϕ = {m ∈ Act * | 0 ≤ |m| ≤ l}, thereby defining a tree of depth l + 1 with directions Act. A state m in Sϕ with 0 ≤ |m| < l belongs to Player P ∃ if, and only if,

Q |m|+1 = ∃. -from each m with 0 ≤ |m| < l, for all a ∈ Act, there is a transition to m • a.
The empty word ε ∈ Sϕ is the starting node of the quantification game, and currently has no incoming transitions; states with |m| = l also currently have no outgoing transitions.

A leaf (i.e., a state m with |m| = l) in a quantification game represents a move vector of domain V = {x i | 1 ≤ i ≤ l}: we identify each leaf m with the move vector m, hence writing m(x i) for m(i).

We let D be a deterministic parity automaton over 2 AP associated with ϕ. We write d 0 for the initial state of D. Using quantification games, we can now define the turn-based parity game H:

it involves players P ∃ and P ∀ ; -for each state q of G and each state d of D, H contains a copy of the quantification game Qϕ, which we call the (q, d)-copy. Hence the set of states of H is the product of the state spaces of G, D and Qϕ. -the transitions in H are of two types:

internal transitions in each copy of the quantification game are preserved; -consider a state (q, d, m) where |m| = l; this is a leaf in the quantification game. Let q = ∆(q, m β), where m β : Agt → Act is the move vector over Agt defined by m β (A) = m(i -1) where x i = β(A) (i.e., assigning to each player A ∈ Agt the action m(β(A))); then we add a transition from (q, d, m) to (q , d , ε) where d is the state of D reached from d when reading lab(q). Notice that (q, d, m) then has at most one outgoing transition.

-the priorities are inherited from those in D: state (q, d, m) has the same priority as d.

Correspondence between G and H.

We begin with building a correspondence between the runs and strategies in G and those in H. In a sense, each step of a history in G is split into several steps in H; we thus refine the notion of history in G in order to establish our correspondence.

Definition 1. A lane in G is a tuple (ρ, u, b, t) made of -a history ρ = (q j) 0≤j≤a (for some integer a); -a function u : V × Pref(ρ) → Act; q 0 q 1 q 2 ? |≡ E ∀x.
∀0 ≤ j < a. ∆(q j , (m j (β(A))) A∈Agt) = q j+1 with m j : V → Act x → u(x, ρ ≤j) (1)
We can then build a one-to-one application Gp between histories in H and lanes in G. With a history π in H, written

π = 0≤j<a 0≤i≤l (q j , d j , m j,i) • 0≤i≤b (qa, da, m a,i), having length a • (l + 1) + b + 1 with 0 ≤ b < l, we associate a lane Gp(π) = ((q j) j≤a , u, b, t) with u : V × Pref(ρ) → Act t : {x 1 , ..., x b } → Act x i , (q j) j≤c → m c,i (∀c < a) x i → m a,i
The resulting function Gp is clearly injective (different histories will correspond to different lanes), but also surjective. To prove the latter statement, we build the inverse function Hp: for a lane ((q j) j≤a , u, b, t), we set Hp((q j) j≤a , u, b, t) = π where π is the history in H of length a • (l + 1) + b + 1 defined as

π = 0≤j<a 0≤i≤l q j , d j , u(x i , (q j) j ≤j) • 0≤i≤b qa, da, t(x i , (q j) j≤a) where d j is the state of D reached on input (q k) 0≤k≤j-1 .
Because of the coherence condition (1), Hp((q j) j≤a , u, i, t) is indeed a history in H. From the definitions, one can easily check that Hp(Gp(π)) = π and deduce that Hp is the inverse function of Gp; therefore Lemma 1. The application Gp is a bijection between lanes of G and histories in H, and Hp is its inverse function.

Extending the correspondence.

We can use Gp to describe another correspondence G between strategies for P ∃ in H and maps in G. Remember that a map in G is a function

θ : (Hist G → Act) V ∀ → (Hist G → Act) V . Remember also that if Q j = ∀, then θ(w)(x i)(ρ) = w(x i)(ρ)
, so that we only have to define the map for existentially-quantified variables.

Formally, the application G takes as input a strategy δ for player P ∃ in H, and returns a map in G. It will enjoy the following properties:

for any finite outcome π of δ in H ending at the root of a quantification game, there exists a function w such that Gp(π) = (ρ, u, 0, t ∅) where ρ is the outcome of G(δ)(w) in G under the assignment defined by β; -conversely, for any path ρ in G that is an outcome of G(δ)(w) for some w and under the assignment defined by β, then letting u(x, ρ) = G(δ)(w)(x)(ρ), we have that (ρ, u, 0, t ∅) is a lane in G and Hp(ρ, u, 0, t ∅) is an outcome of δ in H ending in the root of a quantification game.

We fix δ, and for all w, ρ and x i , we define G(δ)(w)(x i)(ρ) by a double induction, first on the length of the history ρ in G, and second on the sequence of variables x i . We prove the properties above alongside the definition.

-Initial step: we begin with the case where ρ is the single state q 0 . We proceed by induction on existentially-quantified variables, merging the initialization step with the induction step as they are similar. Consider an existentially-quantified variable x i in V. Given w :

V ∀ × Pref(ρ) ∪ {ρ} → Act, we define a function t i,w : [x 1 ; x i-1] → Act such that t i,w (x) = w(x, q 0) for x ∈ V ∀ ∩ [x 1 ; x i-1],
and

t i,w (x) = G(δ)(w)(x)(q 0) for x ∈ V ∃ ∩ [x 1 ; x i-1]
, assuming that they have been defined in the previous induction steps on variables. We can then create the lane lane i,w = (ε, u ∅ , i -1, t) and define

G(δ)(w)(x i)(q 0) = δ(Hp(lane i,w))
Pick an outcome π of δ in H of length l + 2, and write m for its l + 1-st state: it defines a valuation for the variables in V, hence defining a move vector m β under the assignment β in Act. By construction of H, this outcome ends in the state (q 1 , d 1 , ε) where q 1 = ∆(q 0 , m β) and d 1 is the successor of the initial state d 0 of D when reading lab(q 1). We now prove that q 0 • q 1 is the outcome of G(δ)(w) for some w. For this, we let w(x i) = m i for all x i ∈ V ∀ . By construction, G(δ)(w)(x j)(q 0) precisely corresponds to m(j), for all x j ∈ V ∃ . In the end, under assignment β, G(δ)(w) precisely returns the move vector m β , hence proving our result.

The proof of the converse statement follows similar arguments: consider an outcome ρ = q 0 • q 1 of G(δ)(w) for some w. The lane (ρ, u, 0, t ∅) defined with u(x, q 0) = G(δ)(w)(x)(q 0) then corresponds through Hp to a play ending in (q 1 , d 1 , ε), and visiting the leaf m defined as m i = u(x i , q 0). By construction, this is an outcome of δ in H. -induction step: we consider a history ρ in G, assuming we have already defined G(δ)(w)(x i)(ρ) for all prefix ρ of ρ, and for all w and all variable x i . We now define G(δ)(w)(x i)(ρ), by induction on the list of variables. Again, the initialization step is merged with the induction step as they rely on the same arguments.

Consider an existentially-quantified variable x i , and w : V ∀ × Pref(ρ) ∪ {ρ} → Act. We define a function t i,w : [x 1 ; x i-1] → Act where t i,w associate with

x ∈ V ∀ ∩ [x 1 ; x i-1] the action w(x)(π), and with x ∈ V ∃ ∩ [x 1 ; x i-1] the action G(δ)(w)(x)(ρ).
We also define uw : V × Pref(ρ) → Act as uw(x, ρ) = G(δ)(w)(x)(ρ), for all prefixes ρ of ρ. We can then create the lane lane i,w = (π, uw, i -1, t i,w) and finally define

G(δ)(w)(x i)(ρ) = δ(Hp(lane i,w)).
Using the same arguments as in the initial step, we prove our correspondence between the outcomes of δ in H and the outcomes of G(δ) in G.

Notice that in the construction above, G(δ)(w)(x i)(ρ) may depend on the value of w(x j , ρ) for j > i and ρ ∈ Pref(ρ): indeed, in the inductive definition, we define G(δ)(w)(x j)(ρ) before defining G(δ)(w)(x i)(ρ). Hence in general G(δ) is not an elementary map. However, in case δ is memoryless, we notice that G(δ)(w)(x i)(ρ) only depends on value of δ in the last state of the lane lane i,w , hence in particular not on uw. This removes the above dependence, and makes G(δ) elementary.

Finally, notice that we can define a dual correspondence G relating strategies of Player P ∀ and elementary maps in G where existential and universal variables are swapped.

Concluding the proof.

Using G, we prove our final correspondence between H and G: Lemma 2. Assume that P ∃ is winning in H and let δ be a positional winning strategy.

Then the elementary map G(δ) is a witness that G, q 0 |≡ E ϕ.

Similarly, assume that P ∀ is winning in H and let δ be a positional winning strategy.

Then the elementary map G(δ) is a witness that G, q 0 |≡ E ¬ϕ.

Proof. We prove the first point, the second one following similar arguments. Assume that P ∃ is winning in H, and pick a memoryless winning strategy δ. Toward a contradiction, assume further that G(δ) is not a witness of G, q 0 |≡ E ϕ. Then there exists w 0 : V ∀ → (Hist G → Act) s.t. G, q 0 |= G(δ)(w0) β. ϕ. We use w 0 to build a strategy δ for Player P ∀ in H. Given a history

π = 0≤j<a 0≤i≤l (q j , d j , m j,i) • 0≤i≤b (qa, da, m a,i) in H, we define ρ = 0≤j≤a q j and set δ(π) = G(δ)(w)(x b)(η) where -w : Pref(ρ) ∪ {ρ} × (V ∀ ∩ [x 1 ; x b]) → Act is such that w(ρ , x i) is the action to be played for going from π ≤|ρ |•(l+1)+i-1 to π ≤|ρ |•(l+1)+i in H; -η = 0≤j<a
0≤i≤l (q j , d j , m j,i)). Write ν = (q j) j∈N for the outcome of θ(w 0) under strategy assignment β in G. Then, by construction of δ, the outcome of δ and δ in H will visit the (q j , d j) j∈Ncopies of the quantification game, where d j is the state reached by reading (q j) j ≤j in the deterministic automaton D. Now, since G, q 0 |= G(δ)(w0) β. ϕ, we get that ν does not satisfy ϕ and therefore the outcome of δ and δ in H does not satisfy the parity condition. This is in contradiction with δ being the winning strategy of P ∃ , and proves that G(δ) must be a witness that G, q 0 |≡ E ϕ.

Proposition 2, together with the determinacy of parity games [START_REF] Emerson | Tree automata, mu-calculus and determinacy[END_REF][START_REF] Mostowski | Games with forbidden positions[END_REF] immediately imply that at least one of ϕ and ¬ϕ must hold in G for |≡ E . This concludes our proof.

The following two results, already mentioned in [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF], immediately follow: the first result uses the fact that G, q 0 |≡ E ϕ implies G, q 0 |≡ C ϕ; the second one uses the two-player game built in the proof.

Timeline dependences

Following the discussion above, we introduce a new type of dependences between strategies (which we call timeline dependences). They allow strategies to also observe (and depend on) all other universally-quantified strategies on the strict prefix of the current history. For instance, for a block of quantifiers ∀x 1 . ∃x 2 . ∀x 3 , the value of x 2 after history ρ may depend on the value of x 1 on ρ and its prefixes (as for elementary maps), but also on the value of x 3 on the (strict) prefixes of ρ. Such dependences are depicted on Fig. 5. We believe that such dependences are relevant in many situations, especially for reactive synthesis, since in this framework strategies really base their decisions on what they could observe along the current history. Formally, a map θ is a timeline map if it satisfies the following condition:

∀w 1 , w 2 ∈ Strat V ∀ . ∀x i ∈ V \ V ∀ . ∀ρ ∈ Hist. ∀x j ∈ V ∀ ∩ {x k | k < i}. ∀ρ ∈ Pref(ρ) ∪ {ρ}. w 1 (x j)(ρ) = w 2 (x j)(ρ) ∧ ∀x j ∈ V ∀ . ∀ρ ∈ Pref(ρ). w 1 (x j)(ρ) = w 2 (x j)(ρ) ⇒ θ(w 1)(x i)(ρ) = θ(w 2)(x i)(ρ) . (T)
Using those maps, we introduce the timeline semantics of SL[BG] :

G, q |≡ T ϕ iff ∃θ satisfying (T). ∀w ∈ Strat V ∀ . G, q |= θ(w) ξ β j . ϕ j j≤n
Such a map, if any, is called a T-witness of ϕ for G and q. As in the previous section, it is easily seen that Property (E) implies Property (T), so that an E-witness is also a T-witness, and

G, q |≡ E ϕ ⇒ G, q |≡ T ϕ for any formula ϕ ∈ SL[BG] .
Example 2. Consider again the game of Fig. 1 in Section 2. We have seen that G, q 0 |≡ C ϕ in Example 1, and that G, q 0 |≡ E ϕ in the proof of Prop. 1. With timeline dependences, we have G, q 0 |≡ T ϕ. Indeed, now θ(w)(z)(q 0 • q 2) may depend on w(x A)(q 0) and w(x B)(q 0): we could then have e.g. θ(w)(z)(q 0 • q 2) = p 1 when w(x A)(q 0) = q 2 , and θ(w)(z)(q 0 • q 2) = p 2 when w(x A)(q 0) = q 1 . It is easily checked that this map is a T -witness of ϕ for q 0 .

q 0 q 1 q 2 p 1 p 2 ϕ = ∃y. ∀x A . ∃x B . assign(→ y; → x A). F p 1 assign(→ y; → x B). F p 2
Comparison of |≡ E and |≡ T .

As explained at the end of Section 3, the proof of Prop. 2 actually shows the following result: Proposition 3. For any game G with initial state q 0 , and any formula ϕ

∈ SL[1G] , it holds G, q 0 |≡ E ϕ ⇔ G, q 0 |≡ T ϕ.
We now prove that this does not extend to SL[CG] and SL[DG] : Proof. The result for SL[DG] is witnessed by Example 2. For SL[CG] , we consider the game structure and formula of Fig. 6. We first notice that G, q 0 |≡ E ϕ: indeed, in order to satisfy the first goal under any choice of x A , the strategy for y has to point to p 1 from both q 1 and q 2 . But then no choice of x B will make the second goal true.

On the other hand, considering the timeline semantics, strategy y after q 0 • q 1 and q 0 • q 2 may depend on the choice of x A in q 0 . When w(x A)(q 0) = q 1 , we let θ(w)(y)(q 0 • q 1) = p 1 and θ(w)(y)(q 0 • q 2) = p 2 and θ(w)(x B)(q 0) = q 2 , which makes both goals hold true. Conversely, if w(x A)(q 0) = q 2 , then we let θ(w)(y)(q 0 • q 2) = p 1 and θ(w)(y)(q 0 • q 1) = p 2 and θ(w)(x B)(q 0) = q 1 , which also defines a timeline map witnessing G, q 0 |≡ E ϕ.

The syntactic vs. semantic negations.

While both semantics differ, we now prove that the situation w.r.t. the syntactic vs. semantic negations is similar. First, following Prop. 3 and 2, the two negations coincide on SL[1G] under the timeline semantics. Moreover: Proposition 5. For any formula ϕ in SL[BG] , for any game G and any state q 0 , we have G, q 0 |≡ T ϕ ⇒ G, q 0 |≡ T ¬ϕ.

Remember that the same result for |≡ E was proven easily from the implication G, q 0 |≡ E ϕ ⇒ G, q 0 |≡ C ϕ, and because the two negations coincide for |≡ C . The proof for |≡ T is more involved.

Proof. For a contradiction, assume that there exist two maps θ and θ witnessing G, q 0 |≡ T ϕ and G, q 0 |≡ T ¬ϕ resp. Then

∀w : V ∀ → (Hist → Act). G, q 0 |= θ(w) ξ(β j . ϕ j) j≤n (2) ∀w : V ∃ → (Hist → Act). G, q 0 |= θ(w) ¬ξ(β j . ϕ j) j≤n (3)
From θ and θ, we build a strategy valuation χ on V such that θ(χ |V ∀) = θ(χ |V ∃) = χ. By Equations (2) and (3), we get that G, q 0 |=χ ξ(β j . ϕ j) j≤n and G, q 0 |=χ ¬ξ(β j . ϕ j) j≤n . It follows that there must exist a goal β j . ϕ j for which G, q 0 |=χ β j . ϕ j and G, q 0 |=χ ¬β j . ϕ j ; then the outcome corresponding to β j would satisfy both ϕ j and ¬ϕ j , which for LTL formulas is impossible.

We define χ(x)(ρ) inductively on histories and on the list of quantified variables. When ρ is the empty history q 0 , we consider two cases:

-if x 1 ∈ V ∀ , then θ(w)(x 1)(q 0) does not depend on w at all, since θ is a timelinemap. Hence we let χ(x 1)(q 0) = θ(w)(x 1)(q 0), for any w. -similarly, if x 1 ∈ V ∃ , we let χ(x 1)(q 0) = θ(w)(x 1)(q 0), which again does not depend on w.

Similarly, when χ(x)(q 0) has been defined for all x ∈ {x 1 , ..., x i-1 }, we again consider two cases:

if x i ∈ V ∀ , we define w(x j)(q 0) = χ(x j)(q 0) for all x j ∈ V ∃ ∩ {x 1 , ..., x i-1 }, and let χ(x i)(q 0) = θ(w)(x i)(q 0), which again does not depend on the value of w besides those defined above; -symmetrically, if x i ∈ V ∃ , we define w(x j)(q 0) = χ(x j)(q 0) for all x j ∈ V ∀ ∩ {x 1 , ..., x i-1 }, and let χ(x i)(q 0) = θ(w)(x i)(q 0).

Notice that this indeed enforces that θ(χ

|V ∀)(x i)(q 0) = χ(x i)(q 0) when x i ∈ V ∃ , and θ(χ |V ∃)(x i)(q 0) = χ(x i)(q 0) when x i ∈ V ∀ .
The induction step is proven similarly: consider a history ρ and a variable x i , assuming that χ has been defined for all variables on all prefixes of ρ, and for variables in {x 1 , ..., x i-1 } on ρ itself. Then:

-if x i ∈ V ∀ , we define w(x j)(ρ) = χ(x j)(ρ) for all x j ∈ V and all ρ ∈ Pref(ρ), and w(x j)(ρ) = χ(x j)(ρ) for all x j ∈ V ∃ ∩ {x 1 , ..., x i-1 }. We then let χ(x i)(ρ) = θ(w)(x i)(q 0), which does not depend on the value of w besides those defined above; -the construction for the case when x i ∈ V ∃ is similar.

As in the initial step, it is easy to check that this construction enforces θ(χ |V ∀) = θ(χ |V ∃) = χ, as required. Proposition 6. There exists a formula ϕ ∈ SL[BG] , a (turn-based) game G and a state q 0 such that G, q 0 |≡ T ϕ and G, q 0 |≡ T ¬ϕ.

Proof. For this proof, we reuse the game and formula of Fig 3 . Since the quantifier part is ∀x. ∃y, the timeline-and elementary semantics coincide for this formula. Since G, q 0 |≡ E ϕ, also G, q 0 |≡ T ϕ.

The negation of ϕ is

¬ϕ = ∃x. ∀y.      ¬assign(→ y). F q 1 assign(→ x). F p 1 ∧ ¬assign(→ y). F p 1 ¬assign(→ x). F p 1 ∧ assign(→ y). F p 1 .
Assume that there exists a timeline map θ witnessing G, q 0 |≡ T ¬ϕ. Consider the valuations w 1 (y)(q 0) = w 2 (y)(q 0) = q 2 , and w 1 (y)(q 0 • q 2) = p 1 and w 2 (y)(q 0 • q 2) = p 2 . Notice that the first disjunct is not satisfied under those valuations. We consider two (symmetric) possiblities:

we may have both θ(w 1)(x)(q 0) and θ(w 2)(x)(q 0) to q 1 : then θ(w 1)(x)(q 0 • q 1) and θ(w 2)(x)(q 0 • q 1) must return the same move, since w 1 (y)(q 0) = w 2 (y)(q 0). If they play to p 1 , then none of the disjunct would be fulfilled under strategy valuation w 1 ; if they play to p 2 , then all three disjunct are false under w 2 . -the argument is symmetric if θ(w 1)(x)(q 0) = θ(w 2)(x)(q 0) = q 2 . Hence G, q 0 |≡ T ¬ϕ 5 The fragment SL [EG] In this section, we focus on the timeline semantics |≡ T . We exhibit a fragment1 SL[EG] of SL[BG] , containing SL[CG] and SL[DG] , for which the syntactic and semantic negations coincide: Theorem 1. For any game G with initial state q 0 , and any formula ϕ ∈ SL[EG] , it holds G, q 0 |≡ T ϕ ⇔ G, q 0 |≡ T ¬ϕ.

We prove this result in the sequel of this section. We first introduce semi-stable sets, which are the basis of the definition of SL[EG] ; we then prove useful properties of those sets, and finally proceed to the proof of Theorem 1.

Semi-stable sets.

For n ∈ N, we let {0, 1} n be the set of mappings from [1, n] to {0, 1}. We write 0 n (or 0 if the size n is clear) for the function that maps all integers in [1, n] to 0, and 1 n (or 1) for the function that maps [1, n] to 1. For f, g ∈ {0, 1} n , we define:

f : i → 1 -f (i) f g : i → min{f (i), g(i)} f g : i → max{f (i), g(i)}.
The set {0, 1} n can be seen as the lattice of subsets of [1; n], with the above three operations corresponding to complement, intersection and union, respectively. We then introduce the notion of semi-stable sets, on which the definition of SL[EG] relies: a set F n ⊆ {0, 1} n is semi-stable if for any f and g in F n , it holds that ∀s ∈ {0, 1} n .

(f s) (g s) ∈ F n or (g s) (f s) ∈ F n .

Example 3. Obviously, the set {0, 1} n is semi-stable, as well as the empty set. It is easily seen that any singleton set also is semi-stable. For n = 2, the set {(0, 1), (1, 0)} is easily seen not to be semi-stable: taking f = (0, 1) and g = (1, 0) with s = (1, 0), we get (f s) (g s) = (0, 0) and (g s) (f s) = (1, 1). Similarly, {(0, 0), (1, 1)} is not semi-stable. Any other subset of {0, 1} 2 is semi-stable.

We can now define SL[EG] as follows:

SL[EG] ϕ ::= ∀x.ϕ | ∃x.ϕ | ξ ξ ::= F n ((ω i) 1≤i≤n) ω ::= assign(σ). ψ ψ ::= ¬ψ | ψ ∨ ψ | X ψ | ψ U ψ | p
where F n ranges over semi-stable subsets of {0, 1} n , for all n ∈ N. The semantics of the operator F n is defined as

G, q |=χ F n ((ω i) i≤n) ⇔ ∃f ∈ F n . ∀1 ≤ i ≤ n. (f (i) = 1 iff G, q |=χ ω i).
Equivalently: (assign

G, q |=χ F n ((ω i) i≤n) ⇔ G, q |=χ f ∈F n f (i)=1 ω i ∧ f (i)=0 ¬ω i , so that SL[EG] is
(A 1 → y 1 ; A 2 → x).ψ 1) ⇒ (assign(A 1 → x 1 ; A 2 → x 2).ψ 1) (assign(A 1 → x 1 ; A 2 → y 2).ψ 2) ⇒ (assign(A 1 → x 1 ; A 2 → x 2).ψ 2)
This formula has four goals, and it corresponds to the set

F 4 = {(a, b, c, d) ∈ {0, 1} 4 | a ≤ b and c ≤ d}
Taking f = (1, 1, 0, 0) and g = (0, 0, 1, 1), with s = (1, 0, 1, 0) we have (f s) (g s) = (1, 0, 0, 1) and (g s) (f s) = (0, 1, 1, 0), none of which is in F 4 . Hence our formula is not (syntactically) in SL[EG] (notice however that the existence of a Nash equilibrium can also be written as the disjunction (over all possible payoffs for the agents) of formulas in SL [CG]).

The definition of SL[EG] may look artificial. The main reason why we work with SL[EG] is that it is maximal for the first claim of Theorem 1 (see Prop. 9). But as the next result shows, it is actually a large fragment encompassing SL[AG] (hence also SL[CG] and SL[DG]):

Proposition 7. SL[EG] contains SL[AG] . The inclusion is strict (syntactically).

Proof. Remember that boolean combinations in SL[AG] follow the grammar ξ ::

= ξ ∨ ω | ξ ∧ ω | ω.
In terms of subsets of {0, 1} n , it corresponds to considering sets defined in one of the following two forms:

F n ξ = {f ∈ {0, 1} n | f (n) = 1} ∪ {g ∈ {0, 1} n | g |[1;n-1] ∈ F n-1 ξ } F n ξ = {f ∈ {0, 1} n | f (n) = 1 and f |[1;n-1] ∈ F n-1 ξ } depending whether ξ(p j) j = ξ (p j) j ∨ pn or ξ(p j) j = ξ (p j) j ∧ pn. Assuming (by in- duction) that F n-1 ξ
is semi-stable, then we can prove that F n ξ also is. We detail the proof for the second case, the first case being similar.

Consider the case where

F n ξ = {f ∈ {0, 1} n | f (n) = 1 and f |[1;n-1] ∈ F n-1 ξ }.
Pick any two elements f and g in F n ξ , and

s ∈ {0, 1} n . Since f (n) = g(n) = 1, we have [(f s) (g s)](n) = [(f s) (g s)](n) = 1. Moreover, the restriction of [(f s) (g s)]
and of [(f s) (g s)] to their first n -1 bits is computed from the restriction of f , g and s to their first n -1 bits. Since

F n-1 ξ is semi-stable, one of [(f s) (g s)] [1;n-1] and [(f s) (g s)] [1;n-1] belongs to F n-1 ξ , so that one of [(f s) (g s)] and [(f s) (g s)] is in F n ξ .
That the inclusion is strict is proven by considering the semi-stable set H 3 = {(1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)}. Assume that it corresponds to a formula in SL[AG] : then the boolean combination ξ(x 1 , x 2 , x 3) of that formula must be in one of the following forms:

ξ (x 1 , x 2) ∧ x 3 ξ (x 1 , x 2) ∨ x 3 ξ (x 1 , x 2) ∧ ¬x 3 ξ (x 1 , x 2) ∨ ¬x 3 .
It remains to prove that none of these cases corresponds to H 3 : the first case does not allow (1, 1, 0); the second case allows (0, 0, 1); the third case does not allow (1, 0, 1); the last case allows (0, 0, 0).

Properties of semi-stable sets

Before proving our main theorem, we show that semi-stable sets enjoy several nice structural properties. Our first lemma entails that SL[EG] is closed under (syntactic) negation.

Lemma 3. F n is semi-stable if, and only if, its complement is.

Proof. Assume F n is not semi-stable, and pick f and g in F n and s ∈ {0, 1} n such that none of α = (f s) (g s) and γ = (g s) (f s) are in F n . It cannot be the case that g = f , as this would imply α = f ∈ F n . Hence α = γ. We claim that α and γ are our witnesses for showing that the complement of F n is not semi-stable: both of them belong to the complement of F n , and (α s) (γ s) can be seen to equal f , hence it is not in the complement of F n . Similarly for (γ s) (α s) = g.

Lemma 4. If F n ⊆ {0, 1} n is semi-stable, then for any s ∈ {0, 1} n and any non-

empty subset H n of F n , it holds that ∃f ∈ H n . ∀g ∈ H n . (f s) (g s) ∈ F n .
Proof. For a contradiction, assume that there exist s ∈ {0, 1} n and H n ⊆ F n such that, for any f ∈ H n , there is an element g ∈ H n for which (f s) (g s) / ∈ F n . Then there must exist a minimal integer 2

≤ λ ≤ |H n | and λ elements {f i | 1 ≤ i ≤ λ} of H n such that ∀1 ≤ i ≤ λ -1 (f i s) (f i+1 s) ∈ F n and (f λ s) (f 1 s) ∈ F n .
By Lemma 3, the complement of F n is semi-stable. Hence, considering (f λ-1 s) (f λ s) and (f λ s) (f 1 s), one of the following two vectors is not in

F n : [(f λ-1 s) (f λ s)] s [(f λ s) (f 1 s)] s [(f λ s) (f 1 s)] s [(f λ-1 s) (f λ s)] s
The second expression equals f λ , which is in F n . Hence we get that (f λ-1 s) (f 1 s) is not in F n , contradicting minimality of λ.

For two elements f and g of {0, 1} n , we write f ≤ g whenever f (i) = 1 implies g(i) = 1 for all i ∈ [1, n] (this corresponds to set inclusion when seeing {0, 1} n as the lattice of subsets of [1; n]). Given B n ⊆ {0, 1} n , we write

↑B n = {g ∈ {0, 1} n | ∃f ∈ B n , f ≤ g}. A set F n ⊆ {0, 1} n is upward-closed if F n = ↑F n .
Notice that being upward-closed and being semi-stable are uncomparable (for instance, the set ↑{(0, 0, 1, 1); (1, 1, 0, 0)} is not semi-stable). We now explain how to transform a semi-stable set into an upward-closed one by flipping some of its bits. This will simplify the presentation of the proof of our main theorem.

Fix a vector b ∈ {0, 1} n . We define the operation flip b : {0, 1} n → {0, 1} n that maps any vector f to (f b) (f b). In other terms, flip b flips the i-th bit of its argument if b i = 0, and keeps this bit unchanged if b i = 1. In SL [EG] , flipping bits amounts to negating the corresponding goals. The first part of the following lemma thus indicates that our definition for SL[EG] is sound.

Lemma 5. For any b ∈ {0, 1} n , if F n ⊆ {0, 1} n is semi-stable, then so is flip b (F n). Moreover, for any semi-stable set F n , there exists b ∈ {0, 1} n such that flip b (F n) is upward-closed.
Example 5. Take F 2 = {(0, 0), (1, 0), (1, 1)}. This set is semi-stable, but it is not upward-closed. Letting b = (1, 0), we have flip b (F 2) = {(0, 1), (1, 1), (1, 0)}, which is upward-closed (and still semi-stable).

Proof. We begin with the first statement. Assume that F n is semi-stable, and take f = flip b (f) and g = flip b (g) in flip b (F n), and s ∈ {0, 1} n . By distributivity, we get

(f s) (g s) = ((f b) (f b)) s ((g b) (g b)) s = (((f s) (g s)) b) ((f s) (g s)) b
Write α = (f s) (g s) and β = (f s) (g s). One can easily check that β = α. We then have

(f s) (g s) = (α b) α b = flip b (α). (4
)
This computation being valid for any f and g, we also have

(g s) (f s) = (γ b) γ b = flip b (γ) (5)
with γ = (g s) (f s). By hypothesis, at least one of α and γ belongs to F n , so that also at least one of (f s) (g s) and (g s) (f s) belongs to flip b (F n).

The second statement of Lemma 5 trivially holds for F n = ∅; thus in the following, we assume F n to be non-empty. For 1 ≤ i ≤ n, let s i ∈ {0, 1} n be the vector such that s i (j) = 1 if, and only if, j = i. Applying Lemma 4, we get that for any i, there exists some f i ∈ F n such that for any f ∈ F n , it holds

(f i s i) (f s i) ∈ F n . (6
)
We fix such a family (f i) i≤n then define g ∈ {0, 1} n as g = 1≤i≤n (f i s i), i.e.

g(i) = f i (i) for all 1 ≤ i ≤ n.
Starting from any element of F n and applying Equation (6) iteratively for each i, we get that g ∈ F n . Since g s i = f i s i , we also have

∀f ∈ F n (g s i) (f s i) ∈ F n
By Equation (5), since flip g (g) = 1, we get

∀f ∈ F n (1 s i) (flip g (f) s i) ∈ flip g (F n). (7)
Now, assume that flip g (F n) is not upward closed: then there exist elements f ∈ F n and h / ∈ F n such that flip g (f)(i) = 1 ⇒ flip g (h)(i) = 1 for all i. Starting from f and iteratively applying Equation [START_REF] Brenguier | Assume-admissible synthesis[END_REF] for those i for which flip g (h)(i) = 1 and flip g (f)(i) = 0, we get that flip g (h) ∈ flip g (F n) and h ∈ F n . Hence flip g (F n) must be upward closed.

Defining quasi-orders from semi-stable sets.

For F n ⊆ {0, 1} n , we write F n for the complement of F n . Fix such a set F n , and pick s ∈ {0, 1} n . For any h ∈ {0, 1} n , we define

F n (h, s) = {h ∈ {0, 1} n | (h s) (h s) ∈ F n } F n (h, s) = {h ∈ {0, 1} n | (h s) (h s) ∈ F n } Trivially F n (h, s) ∩ F n (h, s) = ∅ and F n (h, s) ∪ F n (h, s) = {0, 1} n .
If we assume F n to be semi-stable, then the family (F n (h, s)) h∈{0,1} n enjoys the following property: Lemma 6. Fix a semi-stable set F n and s ∈ {0, 1} n . For any

h 1 , h 2 ∈ {0, 1} n , either F n (h 1 , s) ⊆ F n (h 2 , s) or F n (h 2 , s) ⊆ F n (h 1 , s). Proof. Assume otherwise, there is h 1 ∈ F n (h 1 , s)\F n (h 2 , s) and h 2 ∈ F n (h 2 , s)\F n (h 1 , s).
We then have:

(h 1 s) (h 1 s) ∈ F n (h 2 s) (h 1 s) ∈ F n (h 2 s) (h 2 s) ∈ F n (h 1 s) (h 2 s) ∈ F n
Now consider (h 1 s) (h 1 s), (h 2 s) (h 2 s) and s. As F n is semi-stable, one of the two following vector is in

F n : (h 1 s) (h 1 s) s (h 2 s) (h 2 s) s (h 2 s) (h 2 s) s (h 1 s) (h 1 s) s
The first vector is equal to (h 1 s) (h 2 s) and the second to (h 2 s) (h 1 s) and both are supposed to be in F n , we get a contradiction. Given a semi-stable set F n and s ∈ {0, 1} n , we can use the inclusion relation of Lemma 6 to define a relation F n s (written s when F n is clear) over the elements of {0, 1} n . It is defined as follows:

h 1 s h 2 if, and only if, F n (h 1 , s) ⊆ F n (h 2 , s).
This relation is a quasi-order: its reflexiveness and transitivity both follow from the reflexiveness and transitivity of the inclusion relation ⊆. By Lemma 6, this quasi-order is total. Intuitively, s orders the elements of {0, 1} n based on how "easy" it is to complete their restriction to s so that the completion belongs to F n . In particular, only the indices on which s take value 1 are used to check whether h 1 s h 2 : given h 1 , h 2 ∈ {0, 1} n such that (h 1 s) = (h 2 s), we have F(h 1 , s) = F(h 2 , s), and h 1 ≡s h 2 .

Example 6. Consider the set F 3 = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} represented on Fig. 7, which can be shown to be semi-stable. Fix s = (1, 1, 0). Then F 3 ((0, 1,), s) = {0, 1} 2 × {1}: the only way to complete (0, 1,) to an element in F 3 is by replacing with 1. Similarly, F 3 ((1, 1,), s) = F 3 ((1, 0,), s) = {0, 1} 3 , and F 3 ((0, 0,), s) = ∅. It follows that (0, 0,) s (0, 1,) s (1, 0,) ≡s (1, 1,).

For s = (0, 0, 1), we can proceed similarly and get that (, , 0) s (, , 1).

(0, 0, 0)

(0, 1, 0) (0, 0, 1) (1, 0, 0) (1, 1, 0) (1, 0 , 1) (0, 1, 1) (1, 1, 1) F 3
Fig. 7 A semi-stable set over {0, 1} n .

We now prove a technical result over such orders, which will be useful for the proof of Lemma 11.

Lemma 7. Given a semi-stable set F n , s 1 , s 2 ∈ {0, 1} n such that s 1 s 2 = 0 and f, g ∈ {0, 1} n such that f s1 g and f s2 g, it holds f s1 s2 g.

Example 7. Consider again the semi-stable set F 3 of Example 6. Observe that for s 1 = (1, 0, 0), it holds (0, ,) s1 (1, ,), because for any x, y ∈ {0, 1}, if (0, x, y) ∈ F 3 , then also (1, x, y) ∈ F 3 ; similarly, for s 2 = (0, 1, 0), we have (, 0,) s2 (, 1,). Lemma 7 entails that (0, 0,) s (1, 1,), with s = (1, 1, 0).

Proof. Because f s1 g and f s2 g, we have

∀i ∈ {1, 2} ∀h ∈ {0, 1} n (f s i) (h s i) ∈ F n ⇒ (g s i) (h s i) ∈ F n (8)
Consider h ∈ {0, 1} n such that α = (f (s 1 s 2)) (h (s 1 s 2)) is in F n . Define the element h = α s 2 , then (f s 2) (h s 2) = (f (s 1 s 2)) (h (s 1 s 2)) ∈ F n .
Using (8) with s 2 and h, we get β = (g s 2) (h s 2). As

s 1 s 2 = 0, we can write β = (f s 1) (g s 2) (h (s 1 s 2)) ∈ F n . Now consider h = β s 1 , we have (f s 1) (h s 1) = β ∈ F n . Using (8) with s 1 and h, we get (g (s 1 s 2)) (h (s 1 s 2)) ∈ F n . Therefore F n (f, s 1 s 2) ⊆ F n (g, s 1 s 2) and f s1 s2 g.
The following lemma is straightforward:

Lemma 8. Assuming F n is upward-closed, for any f , g and s in {0, 1} n , if f ≤ g (i.
e. for all i, f (i) = 1 ⇒ g(i) = 1), then f s g. In particular, 0 is a minimal element for s, for any s.

Proof. Since f ≤ g, then also (f s) (h s) ≤ (g s) (h s), for any h ∈ {0, 1} n . Since F n is upward-closed, if (f s) (h s) is in F n , then so is (g s) (h s).

Sketch of proof of Theorem 1

The proof of Theorem 1 is long and technical. Before giving the full details, we begin with some intuition how semi-stable sets, and the quasi-orders defined above, are used to prove the result. We first notice that the approach we used in Prop. 2 does not extend in general to formulas with several goals. Consider for instance formula (Q i x i) i≤l (β 1 . ϕ 1 ⇔ β 2 . ϕ 2): if at some points the two goals give rise to two different outcomes, thus to two different subgames, the winning objectives in one subgame depends on what is achieved in the other subgame.

SL [EG] has been designed to simplify such dependences between different subgames: when two (or more) outcomes are available at a given position, each subgame can be assigned an independent winning objective. This objective can be obtained from the quasi-orders s associated with the SL[EG] formula being checked. Consider again Example 6: associating the set F 3 with three goals ω 1 , ω 2 and ω 3 (and adequate strategy quantifiers), we get a formula in SL [EG] . Assume that the moves selected by the players give rise to the same transition for ω 1 and ω 2 , and to a different transition for ω 3 ; this gives rise to two subgames. In the subgame reached when following the transition of ω 1 and ω 2 (hence with s = (1, 1, 0)), the optimal way of playing is given by (0, 0,) s (0, 1,) s (1, 0,) ≡s (1, 1,), independently of what may happen in the subgame reached by following the transition given by ω 3 ; for instance, it is better to fulfill only ω 1 than to fulfill only ω 2 (i.e. (0, 1,) s (1, 0,)), which can be observed on Fig. 7 by the fact that fulfilling ω 1 is enough to make the whole formula hold true. In the subgame corresponding to ω 3 , the optimal way of playing is given by (, , 0) s (, , 1): it is always better to fulfill ω 3 , whatever happens on the other subgame.

Our proof follows the schema depicted on Fig. 8. Building on the idea depicted on Fig. 4, we would like to construct a turn-based parity game encoding the SL[EG] model-checking instance at hand. Strategy quantifiers are encoded with tree-shaped quantification games as in Fig. 4, but now, the leaves of quantification games may give rise to different outcomes, depending on the goal being considered: Fig. 8 depicts the case of a leaf from which the first two goals would go in one direction (to q 1 here) while the third goal follows a different direction (to q 2). Notice that from the other leaves, the goals may have been grouped differently (and in particular, they may have all given rise to the same transition). Now, consider the outcome generated by the first two goals: it goes to a subgame starting in state q 1 , and only the first two goals have to be tracked. From our observations above, we can compute an order defining the best way of satisfying the remaining two goals; this does not depend on what happens along the other outcome, generated by the third goal. We can thus consider this subgame alone, and apply the same construction with the remaining goals (using parity automata to keep track of the satisfaction of the LTL formulas in the goals). Since there are finitely many goals, we eventually end up in a situation where there is a single goal, or where the goals always give rise to the same outcomes; then the computation remains in the same subgame, and the situation corresponds to the case of Fig. 4.

We implement these ideas as follows: first, in order to keep track of the truth values of the LTL formulas ψ i of each goal, we define a family of parity automata, one for each subset of goals of the formula under scrutiny. A subgame, as considered above, is characterized by a state q of the original concurrent game, a state dp of each of the parity automata, and a vector s ∈ {0, 1} n defining which goals are still active in that subgame. For each subgame, we can compute, by induction on s, the optimal set of goals that can be fulfilled from that configuration. The optimal strategies of both players in each subgame can be used to define (partial) optimal timeline dependence maps. We can then combine these partial maps together to get optimal dependence maps θ and θ; using similar arguments as for the proof of Prop. 5, we get a valuation χ such that θ(χ |V ∀) = χ = θ(χ |V ∃), from which we deduce that exactly one of ϕ and ¬ϕ holds.

Proof of Theorem 1

We can now prove our main theorem, which we first restate: Theorem 1. For any game G with initial state q 0 , and any formula ϕ ∈ SL[EG] , it holds G, q 0 |≡ T ϕ ⇔ G, q 0 |≡ T ¬ϕ.

Proof. Following Lemma 5, we assume for the rest of the proof that the set F n of the SL[EG] formula ϕ is upward-closed (even if it means negating some of the LTL objectives). We also assume it is non-empty, since the result is trivial otherwise.

The proof of Theorem 1 is in three steps:

we build a family of parity automata expressing the objectives that may have to be fulfilled along outcomes. A configuration of a subgame is then described by a state q of the game, a vector d of states of those parity automata, and a set s of goals that are still active in the current subgame; -we characterize the two ways of fulfilling a set of goals: either by fulfilling all goals along the same outcome, or by partitioning them among different branches;

q 0 q 1 q 2 ?
|≡ T ∀x. ∃y. ∀z.

ψ 3 ψ 1 , ψ 2
Fig. 8 In a formula based on the semi-stable sets of figure 7, upon separation of the goals, the game splits into independent subgames.

we encode these two possibilities into 2-player parity games, and inductively compute optimal sets of goals (represented as vectors b q,d,s ∈ {0, 1} n) that can be achieved from any given configuration. By determinacy of parity games, we derive timeline maps witnessing the fact that b q,d,s can be achieved, and the fact that it is optimal. If b q0,d0,1 ∈ F n , we get a witness map for G, q 0 |≡ T ϕ; otherwise, we get one for G, q 0 |≡ T ¬ϕ.

Automata for conjunctions of goals

We use deterministic parity word automata to keep track of the goals to be satisfied. Since we initially have no clue about which goal(s) will have to be fulfilled along an outcome, we use a (large) set of automata, all running in parallel.

For s ∈ {0, 1} n and h ∈ {0, 1} n , we let D s,h be a deterministic parity automaton accepting exactly the words over 2 AP along which the following formula Φ s,h holds:

Φ s,h = k∈{0,1} n h s k j s.t. (k s)(j)=1 ϕ j .
where a conjunction over an empty set (i.e., if (k s)(j) = 0 for all j) is true. Notice that in Φ s,h , we should also have imposed ¬ϕ j for those indices j for which (k s)(j) = 0. However, using Lemma 8, if h s k and k ≤ k , then also h s k , so that any conjunction containing more ϕ j 's would also appear in Φ s,h . Notice that when s = 0, we have h s k for any h and k, so that Φ 0,h is true for any h ∈ {0, 1} n). From now on, we only consider vectors s ∈ {0, 1} n such that |s| = 1≤i≤n s i ≥ 1.

As an example, take s ∈ {0, 1} n with |s| = 1, writing j for the index where s(j) = 1; for any h ∈ {0, 1} n , if there is k s h with k(j) = 0 (which in particular is the case when h(j) = 0), then the automaton D s,h is universal; otherwise D s,h accepts the set of words over 2 AP along which ϕ j holds.

We write D = {D s,h | s ∈ {0, 1} n , h ∈ {0, 1} n } for the set of automata defined above. A vector of states of D is a function associating with each automaton D ∈ D one of its states. We write VS for the set of all vectors of states of D. For any vector d ∈ VS and any state q of G, we let succ(d, q) to be the vector of states associating with each D ∈ D the successor of state d(D) after reading lab(q); we extend succ to finite paths (q i) 0≤i≤n in G inductively, letting succ(d, (q i) 0≤i≤n) = succ(succ(d, (q i) 0≤i≤n-1), qn).

An infinite path (q i) i∈N in G is accepted by an automaton D of D whenever the word (lab(q i)) i∈N is accepted by D. We write L(D) for the set of paths of G accepted by D. After a given history, a set of goals may be achieved either along a single outcome, in case the assignment of strategies to players gives rise to the same outcomes, or they may be split among different outcomes. We express those two ways of satisfying goals, by means of two operators parameterized by the current configuration.

The first operator covers the case where the goals currently enabled by s (those goals β i . ϕ i for which s(i) = 1) are all fulfilled along the same outcome. For any d ∈ VS and any two s and h in {0, 1} n , the operator Γ stick d,s,h is defined as follows: given a context χ with V ⊆ dom(χ) and a state q of G,

G, q |=χ Γ stick d,s,h ⇔ ∃ρ ∈ Play G (q) s.t. -∀j ≤ n. s(j) = 1 ⇒ out(q, χ • β j) = ρ -ρ ∈ L(D d s,h)
Intuitively, all the goals enabled by s must give rise to the same outcome, which is accepted by D d s,h . In the formula above, χ • β j corresponds to the strategy profile to be used for goal β j • ϕ j .

We now consider the case where the active goals are partitioned among different outcomes.

Definition 2. A partition of an element s ∈ {0, 1} n is a sequence (sκ) 1≤κ≤λ , with λ ≥ 2, of elements of {0, 1} n with s 1 . . . s λ = s and where for any two κ = κ , sκ s κ = 0.

An extended partition of s is a sequence τ = (sκ, qκ, dκ) 1≤κ≤λ of elements of {0, 1} n × Q × VS where (sκ) 1≤κ≤λ is a partition of s, qκ are states of G, and dκ are vectors of states of the automata in D.

We write Part(s) for the set of all extended partitions of s. Notice that we only consider non-trivial partitions; in particular, if |s| ≤ 1, then Part(s) = ∅. For any d ∈ VS, any s in {0, 1} n and any set of partitions Υs of s, the operator Γ sep d,s,Υs states that the goals currently enabled by s all follow a common history ρ for a finite number of steps, and then partition themselves according to some partition in Υs. The operator Γ sep d,s,Υs is defined as follows:

G, q |=χ Γ sep d,s,Υs ⇔ ∃τ ∈ Υs. ∃ρ ∈ Hist G (q).          -∀j ≤ n. s(j) = 1 ⇒ ρ ∈ Pref(out(q, χ • β j)) -∀κ ≤ |τ |. ∀j ≤ n. letting m j (A) = χ(β j (A))(ρ). sκ(j) = 1 ⇒ qκ = ∆(last(ρ), m j) -∀κ ≤ |τ |. succ(d, ρ • qκ) = dκ.
Notice that h does not appear explicitly in this definition, but Γ sep d,s,Υs will depend on h through the choice of Υs. The operators Γ stick and Γ sep are illustrated on Fig. 9.

q |=χ Γ stick d,
such that Agt ⊆ dom(χ), it holds G, q |=χ Γ d,s,0 , hence also G, q |≡ T (Q i x i) 1≤i≤l . Γ d,s,0 . Hence there must exist a maximal value b in the lattice {0, 1} n such that G, q |≡ T (Q i x i) 1≤i≤l . Γ d,s,b .
We write b q,d,s for one such value (notice that it need not be unique). By maximality, for any h such that b q,d,s ≺s h, we have G, q |≡ T (Q i x i) 1≤i≤l . Γ d,s,h . Induction step. We assume that for any d ∈ VS, any h ∈ {0, 1} n and any s ∈ {0, 1} n with |s| ≤ k, we have defined an operator Γ d,s,h , and that for any q ∈ Q, we have fixed an element b q,d,s ∈ {0, 1} n for which G, q |≡ T (Q i x i) 1≤i≤l . Γ d,s,b and such that for any h such that b q,d,s ≺s h, it holds G, q |≡ T (Q i x i) 1≤i≤l . Γ d,s,h .

Pick s ∈ {0, 1} n with |s| = k + 1, together with an extended partition τ = (sκ, qκ, dκ) 1≤κ≤λ . Then we must have |sκ| < k + 1 for all 1 ≤ κ ≤ λ, so that Γ dκ,sκ,h and b qκ,dκ,sκ have been defined at previous steps. We let cs,τ = 1≤κ≤λ (sκ b qκ,dκ,sκ).

We then define

Γ d,s,h = Γ stick d,s,h ∨ Γ sep d,s,Υ s,h with Υ s,h = {τ ∈ Part(s) | h s cs,τ }.
As previously, we claim that G, q |=χ Γ d,s,0 for any χ such that Agt ⊆ dom(χ). Indeed, for a given χ, if all the outcomes of the goals enabled by s follow the same infinite path, then this path is accepted by D s,0 and G, q |=χ Γ stick d,s,0 ; otherwise, after some common history ρ, the outcomes are partitioned following some extended partition τ 0 , which obviously satisfies 0 s cs,τ 0 since 0 is a minimal element of s. Hence in that case G, q |=χ Γ sep d,s,Υs,0 .

In particular, it follows that G, q |≡ T (Q i x i) 1≤i≤l . Γ d,s,0 , and we can fix a maximal element b q,d,s for which G, q |≡ T (Q i x i) 1≤i≤l . Γ d,s,b q,d,s and G, q |≡ T (Q i x i) 1≤i≤l . Γ d,s,h for any h s b q,d,s . This concludes the inductive definition of Γ d,s,b q,d,s . We now prove that it satisfies the following lemma: Lemma 9. For any q ∈ Q, any d ∈ VS and any s ∈ {0, 1} n , it holds

G, q |≡ T (Q i x i) 1≤i≤l . Γ d,s,b q,d,s (9)
G, q |≡ T (Q i x i) 1≤i≤l . ¬Γ d,s,h for any h s b q,d,s .

Proof. The first result is a direct consequence of the construction: the values for b q,d,s have been selected so that G, q |≡ T (Q i x i) 1≤i≤l . Γ d,s,b q,d,s .

To prove the second part, we again turn the satisfaction of Γ d,s,h , for h s b q,d,s , into a parity game, as for the proof of Prop. 2. We only sketch the proof here, as it involves the same ingredients.

The parity game is obtained from G by replacing each state by a quantification game. We also introduce two sink states, qeven and q odd , which are winning for Player P ∃ and for Player P ∀ respectively. When arriving at a leaf (q, d, m) of the (q, d)-copy of the quantification game, there may be one of the following three transitions available:

-if there is a state q such that for all j with s(j) = 1, it holds q = ∆(q, m βj) (in other terms, the moves selected in the current quantification game generate the same transition for all the goals enabled by s), then there is a single transition to (q , d , ε), where d = succ(d, q). -otherwise, if there is an extended partition τ = (sκ, qκ, dκ) 1≤κ≤λ of s such that cs,τ s h and, for all 1 ≤ κ ≤ λ, for all j such that sκ(j) = 1, we have ∆(q, m βj) = qκ and succ(d, qκ) = dκ, then there is a transition from (q, d, m) to qeven. -otherwise, there is a transition from (q, d, m) to q odd . The priorities defining the parity condition are inherited from those in D s,h .

Since G, q |≡ T (Q i x i) 1≤i≤l . Γ d,s,h , Player P ∃ does not have a winning strategy in this game, and by determinacy Player P ∀ has one. From the winning strategy of Player P ∀ , we obtain a timeline map ϑ q,d,s,h for (Q i x i) 1≤i≤l witnessing the fact that G, q |≡ T (Q i x i) 1≤i≤l . ¬Γ d,s,h .

Remark 2. While the definition of Γ d,s,b q,d,s (and in particular of b q,d,s) is not effective, the parity games defined in the proof above can be used to compute each b q,d,s and Γ d,s,b q,d,s . Indeed, such parity games can be used to decide whether G, q |≡ T (Q i x i) 1≤i≤l . Γ d,s,h for all h, and selecting a maximal value for which the result holds. Then

b q0,d0,1 ∈ F n implies G, q 0 |≡ T (Q i x i) 1≤i≤l F n (β j . ϕ j) 1≤j≤n .
Each parity game has size doubly-exponential, with exponentially-many priorities; hence they can be solved in 2 -EXPTIME. The number of games to solve is also doubly-exponential, so that the whole algorithm runs in 2 -EXPTIME.

Applying Lemma 9, we fix a timeline map ϑ q,d,s for (Q i x i) 1≤i≤l witnessing (9), and for each h s b q,d,s , a timeline map ϑ q,d,s,h for (Q i x i) 1≤i≤l witnessing [START_REF] Čermák | Verifying and synthesising multi-agent systems against one-goal strategy logic specifications[END_REF].

Proof. We use the same technique as in the proof of Prop. 5: from θ and θ, we build a strategy context χ on V such that θ(χ |V ∀) = χ and θ(χ |V ∃) = χ.

We introduce some more notations. For w : V ∀ → (Hist G → Act), we let π w j be the outcome out(q 0 , (θ(w)((β j (A)) A∈Agt)) for all 1 ≤ j ≤ n; f w be the element of {0, 1} n such that f w (j) = 1 if, and only if, π w j |= ϕ j ; -R w ⊆ {0, 1} n × Hist G be the relation such that (s, ρ) ∈ R w if, and only if, s = s ρ,θ(w) and ρ is minimal (meaning for any strict prefix ρ of ρ, it holds (s, ρ) / ∈ R w).

Lemma 12. For any w : V ∀ → (Hist G → Act) and any ρ ∈ Hist, letting dρ = succ(d 0 , ρ), it holds

∀s ∈ {0, 1} n . (s, ρ) ∈ R w ⇒ b last(ρ),dρ,s s f w .
Proof. Fix some w ∈ (Hist G → Act)

G, last(ρ) |≡ T (Q i x i) 1≤i≤l Γ dρ,s,b last(ρ),dρ ,s ; therefore it also witnesses that G, last(ρ) |≡ T (Q i x i) 1≤i≤l Γ stick dρ,s,b last(ρ),dρ ,s
. By definition of the Γ stick operators, this implies that for any w, the outcome of ϑ last(ρ),dρ,s (w-→ ρ) from last(ρ) is accepted by the automaton D for the objectives (β j . ϕ j) j|s(j)=1 than b last(ρ),dρ,s . In other terms, we have b last(ρ),dρ,s s f w .

Induction step. We assume that the Proposition 12 holds for any elements s ∈ {0, 1} n of size |s| < α. We now consider for the induction step an element s ∈ {0, 1} n such that |s| = α and (s, ρ) ∈ R w .

-if the enabled goals all follow the same outcome, i.e., if there exists an infinite path η such that π j = ρ • η for all j having s(j) = 1, then with arguments similar to those of the base case, we get b last(ρ),dρ,s s f w . -otherwise, the goals enabled by s split following an extended partition τ = (sκ, qκ, dκ) κ≤λ . We let η be the history from the last state of ρ to the point where the goals split.

This partition τ is such that for any 1 ≤ κ ≤ λ, it holds (sκ, ρ • η • qκ) ∈ R w ; using the induction hypothesis, we get sκ b qκ,dκ,sκ sκ f w

Then, using Lemma 7 repeatedly on the (sκ) 1≤κ≤λ , and Equation (12), we obtain Combined with [START_REF] Chatterjee | Strategy logic[END_REF], we get b last(ρ),dρ,s s cs,τ s f w .

Lemma 13. G, q 0 |=χ Γ F n if, and only if, b q0,d0,1 ∈ F n .

Proof. Assume that b q0,d0,1 ∈ F n . Then G, q 0 |≡ T (Q i x i) 1≤i≤l . Γ F n . Applying Lemma 10, the map ϑ 1 (and therefore θ, which act as ϑ 1 before goals branch along different paths) witnesses G, q 0 |≡ T (Q i x i) 1≤i≤l . Γ F n . This implies that G, q 0 |=χ Γ F n , which contradicts the hypothesis. Conversely, if b q0,d0,1 ∈ F n , then G, q 0 |≡ T (Q i x i) 1≤i≤l . Γ F n , which is witnessed by map ϑ 1 . Thus G, q 0 |=χ Γ F n .

We are now ready to prove the first part of Lemma 11: consider a function w : V ∀ → (Hist G → Act). By Lemma 12 applied to w, s = 1, and ρ = q 0 , we get that b q0,d0,1 1 f w . Now, by Lemma 13, b q0,d0,1 ∈ F n , therefore the element f w , being greater than b q0,d0,1 for 1 , must also be in F n , which means that G, q 0 |= θ(w) F n (β j . ϕ j) 1≤j≤n .

The second implication of the lemma is proven using similar arguments.

Lemma 11 allows us to conclude that at least one of ϕ and ¬ϕ must hold on G for |≡ T . Lemma 5 implies that at most one can hold. Combining both we get that exactly one holds.

From this proof, we get: as shown in the proof of Prop. 4, the game G and formula ϕ ∈ SL[CG] of Fig. 6 are such that G, q 0 |≡ T ϕ; -considering the classical semantics, because of the conjunction of goals, any strategy for y for which the rest of the formula is fulfilled must play differently in states q 1 and q 2 . On the other hand, in order to fulfill the first conjunct for any strategy x A , then the strategy y must play to p 1 from both q 1 and q 2 . Hence no such strategy exist.

Maximality of SL[EG]

Finally, we prove that SL[EG] is, in a sense, maximal for the first property of Theorem 1:

Proposition 9. For any non-semi-stable boolean set F n ⊆ {0, 1} n , there exists a SL[BG] formula ϕ built on F n , a game G and a state q 0 such that G, q 0 |≡ T ¬ϕ and G, q 0 |≡ T ϕ.

Proof. We consider again the game G depicted on Fig. 6, with two agents and . Let F n be a non-semi-stable set over {0, 1} n . Then there must exist f 1 , f 2 ∈ F n , and s ∈ {0, 1} n , such that (f 1 s) (f 2 s) / ∈ F n and (f 2 s) (f 1 s) / ∈ F n . We then let ϕ = ∀y 1 . ∀y 2 . ∀x 1 . ∃x 2 . F n (β 1 . ϕ 1 , . . . , βn. ϕn)

where

β i = assign(→ y 1 ; → x 1) if s(i) = 1 assign(→ y 2 ; → x 2) if s(i) = 0
and

ϕ i =        F p 1 ∨ F p 2 if f 1 (i) = f 2 (i) = 1 F p 1 if f 1 (i) = 1 and f 2 (i) = 0 F p 2 if f 1 (i) = 0 and f 2 (i) = 1 false if f 1 (i) = f 2 (i) = 0
Formulas ϕ i have been built to satisfy the following property:

Lemma 14. Let ρ be a maximal run of G from q 0 . Let k ∈ {1, 2} be such that ρ visits a state labelled with p k . Then for any 1 ≤ i ≤ n, we have ρ |= ϕ i if, and only if,

f k (i) = 1.
The following two lemmas conclude the proof:

Lemma 15. G, q 0 |≡ T ϕ.

Proof. Towards a contradiction, assume that G, q 0 |≡ T ϕ. Let θ be a timeline map witnessing this fact. We let σ 1 (resp. σ 2) be the strategy that maps history q 0 to q 1 (resp. q 2). We let τ 1 be such that τ 1 (q 0 • q 1) = p 1 . This defines a valuation w, respectively mapping y 1 , y 2 and x 1 to σ 1 , σ 2 and τ 1 . Then the strategy τ 2 = θ(w)(x 2) is such that G, q 0 |= θ(w) F n (β 1 . ϕ 1 , . . . , βn. ϕn).

Now, consider the valuation w obtained from w by changing the strategy for x 1 to τ 1 , where τ 1 (q 0 • q 1) = p 2 . Then θ(w)(x 2) = θ(w)(x 2) = τ 2 , since θ is a timeline map. Since θ witnesses the satisfaction of ϕ, we also have G, q 0 |= θ(w) F n (β 1 . ϕ 1 , . . . , βn. ϕn).

Let v and v be the vectors in {0, 1} n representing the values of the goals (β 1 . ϕ 1 , . . . , βn. ϕn) under θ(w) and θ(w), respectively. Then v and v are in F n . However:

if τ 2 (q 0 • q 2) = p 1 , then under θ(w), for any 1 ≤ i ≤ n:

-if s i = 1, strategies σ 1 and τ 1 are applied, so that the game ends in p 2 ; then v i = 1 if, and only if, f 2 (i) = 1; -if s i = 0, strategies σ 2 and τ 2 are used, and the game goes to p 1 ; then v i = 1 if, and only if, f 1 (i) = 1. In the end, we have v = (f 1 s) (f 2 s), which is not in F n .

if τ 2 (q 0 • q 2) = p 2 , then under θ(w), for any 1 ≤ i ≤ n:

if s i = 1, strategies σ 1 and τ 1 are applied, so that the game ends in p 1 ; then v i = 1 if, and only if, f 1 (i) = 1; -if s i = 0, strategies σ 2 and τ 2 are used, and the game goes to p 2 ; then v i = 1 if, and only if, f 2 (i) = 1. In the end, we have v = (f 1 s) (f 2 s), which also is not in F n .

Both cases lead to a contradiction, so that our hypothesis that G, q 0 |≡ T ϕ can only be wrong.

Lemma 16. G, q 0 |≡ T ¬ϕ.

Proof. We use similar arguments as above: we assume G, q 0 |≡ T ¬ϕ, and fix a witnessing timeline map θ for ¬ϕ.

We consider four valuations w 11 , w 12 , w 21 and w 22 for x 2 , such that w jk (x 2)(ρ) = w j k (x 2)(q 0) (the exact value is not important) and w jk (x 2)(q 0 • q 1) = p i and w jk (x 2)(q 0 • q 2) = p j . We let σ 1 = θ(w jk)(y 1), σ 2 = θ(w jk)(y 2) and τ 1 = θ(w jk)(x 1). Notice that those strategies do not depend on i and j, since θ is a timeline map for ¬ϕ. We write v jk i for the vector representing the truth value of goal β i . ϕ i under valuation θ(w jk).

Assume that σ 2 (q 0) = q 1 , and that τ 1 (q 0 • σ 1 (q 0)) = p 1 . Then under w 11 (i.e., when τ 2 (q 0 • q 1) = p1), for any 1 ≤ i ≤ n, the outcome of strategy assignment β i from q 0 goes to p 1 . Hence v 11 = f 1 , which is in F n , contradicting the fact that θ witnesses G, q 0 |≡ T ¬ϕ. Similar arguments apply if τ 1 (q 0 • σ 1 (q 0)) = p 2 , and when σ 2 (q 0) = q 2 . Thus our assumption that G, q 0 |≡ T ¬ϕ cannot be correct. In this paper, we have studied various semantics of SL, depending on how the successive strategy quantifiers in an SL formula may depend on each other. Following [START_REF] Mogavero | Reasoning about strategies: On the model-checking problem[END_REF], we defined a natural translation of the elementary semantics of SL[1G] into a twoplayer turn-based parity game, and introduced a new timeline semantics for SL [BG] that better corresponds to this translation. For this new semantics, we defined a fragment SL [EG] for which the timeline semantics can be model-checked in 2 -EXPTIME. Figure 10 represents the relations between those semantics (with implications in grey only valid for SL[1G]), as well as the maximal fragments of SL [BG] for which the semantical and syntactical negations coincide.

While our work clarifies the setting of strategy dependences in SL, those various semantics of SL remains to be fully understood, in particular as to which situations are better suited for which semantics. Of course, studying the decidability and complexity of model checking for the different semantics and fragments of SL[BG] is a natural continuation of this work. Studying quantitative or epistemic extensions of SL [EG] under the timeline semantics is also a natural direction to follow. Finally, since our approach relies on translations to two-player parity games, our modelchecking algorithm would be a good candidate for being implemented e.g. in the tool MCMAS.

 ∃σ A . [(∃σ B . assign(A → σ A ; B → σ B). ϕ B) ∧ (∃σ B . assign(A → σ A ; B → σ B). ϕ B).

Fig. 2

 2 Fig. 2 Classical (left) vs elementary (right) dependences for a formula ∀x 1 . ∃x 2 . ∀x 3 . ξ

Fig. 4

 4 Fig.4Expressing G, q 0 |≡ E ϕ as a two-player turn-based parity game

Fig. 6

 6 Fig. 6 |≡ E and |≡ T differ on SL[CG]

Proposition 4 .

 4 The relations |≡ E and |≡ T differ on SL[CG] , as well as on SL[DG] .

F 3 assign

 3 (A → x, B → y). ψ 1 , assign(A → x, B → z). ψ 2 , assign(A → y, B → z). ψ 3

 dρ s,b last(ρ),dρ ,s ; in particular, η is accepted by D dρ s,b last(ρ),dρ,s . The automaton D dρ s,b last(ρ),dρ ,s accepts paths which give better results (w.r.t. s)

s 1 b

 1 q1,d1,s1 s1 f w ⇒ (s 1 b q1,d1,s1) (s 2 b q2,d2,s2) s1 s2 f w ⇒ . . . ⇒ (s 1 b q1,d1,s1) . . . (s λ b q λ ,d λ ,s λ) s1 ... s λ f w ⇒ cs,τ s f w .

Corollary 3 .Remark 3 .

 33 Model checking SL[EG]for |≡ T is 2 -EXPTIME-complete. Notice that we do not get the twin of Corollary 1 here, and actually |≡ T and |≡ C differ over SL[EG] . Indeed, the proof of Prop. 4 provides a counterexample:

Fig. 10

 10 Fig. 10 Relations between classical, elementary and timeline semantics.

 SL[1G] restricts SL[BG] to a unique goal. SL[1G] is then defined from the grammar of SL[BG] by setting ξ ::= ω in the grammar; -the larger fragment SL[CG] allows for conjunctions of goals. SL[CG] corresponds to formulas defined with ξ ::= ξ ∧ ξ | ω; -similarly, SL[DG] only allows disjunctions of goals, i.e. ξ ::= ξ ∨ ξ | ω; -finally, SL[AG] mixes conjunctions and disjunctions in a restricted way. Goals in SL[AG] can be combined using the following grammar: ξ

 Corollary 1. The relations |≡ E and |≡ C coincide over SL[1G]. Corollary 2. Model checking SL[1G] is 2 -EXPTIME-complete (for both semantics). Remark 1. As an immediate corollary of (the proof of) Prop. 1, we have that the relations |≡ C and |≡ E differ on SL[CG] (as well as on SL[DG]). This contradicts the claim in[START_REF] Mogavero | On the boundary of behavioral strategies[END_REF] that |≡ E and |≡ C would coincide on SL[CG] (and SL[DG]). Indeed, Elementary (left) vs timeline (right) dependences for a formula ∀x 1 . ∃x 2 . ∀x 3 . ξ in[START_REF] Mogavero | On the boundary of behavioral strategies[END_REF], the satisfaction relation for SL[DG] and SL[CG] is encoded into a two-player game in pretty much the same way as we did in the proof of Proposition 2 for SL[1G]. While this indeed rules out dependences outside the current history, it also gives information to Player P ∃ about the values (over prefixes of the current history) of strategies that are universally-quantified later in the quantification block. This proof technique works with SL[1G] because the single goal can be encoded as a parity objective, for which memoryless strategies exist, so that the extra information is not crucial. In the next section, we investigate the role of this extra information for larger fragments of SL[BG] .

	∀x 1 ∀x 1	∃x 2	∀x 3	∀x 1 ∀x 1	∃x 2	∀x 3 ∀x 3
	Fig. 5					

 indeed a fragment of SL[BG] . Notice that SL[CG] corresponds to the case where F n = {1 n }, which is semi-stable, so that SL[EG] encompasses SL[CG] . As we prove later, {0, 1} n \ {0 n } also is semi-stable, which entails that SL[EG] also subsumes SL[DG] . Consider the following formula, expressing the existence of a Nash equilibrium for two players with respective LTL objectives ψ 1 and ψ 2 :

	Example 4.

∃x 1 .∃x 2 .∀y 1 .∀y 2 .

 Finally, for d ∈ VS, we write L(D d s,h) for the set of words that are accepted by D s,h starting from the state d(D s,h) of D s,h . The following holds for any s ∈ {0, 1} n :1. Φ s,0 ≡ (i.e., D s,0 is universal); 2. for any h 1 , h 2 ∈ {0, 1} n , if h 1 s h 2 , we have Φ s,h2 ⇒ Φ s,h1 (i.e., L(D s,h2) ⊆ L(D s,h1)); 3. for any h ∈ F n , Φ 1,h ≡ k∈F n j s.t. k(j)=1 ϕ j .Proof. Φ s,0 contains the empty conjunction (k = 0) as a disjunct. Hence it is equivalent to true. When h 1 s h 2 , formula Φ s,h1 contains more disjuncts than Φ s,h2 , hence the second result. Finally,F n (f, 1) = {0, 1} n if f ∈ F n ,and is empty otherwise. Hence if h ∈ F n , we have h 1 k if, and only if, k ∈ F n , which entails the result.

	Proposition 8. 5.5.2 Two ways of achieving goals

 We now inductively (on |s|) define new operators Γ d,s,h combining the above two operators Γ stick and Γ sep , and selecting optimal ways of partitioning the goals among the outcomes. case: |s| = 1. When only one goal is enabled, we only have to consider a single outcome, so that we let Γ d,s,h = Γ stick d,s,h , for any d ∈ VS and h ∈ {0, 1} n . By Prop. 8, for any context χ

	s,h		q |=χ Γ sep d,s,Υs	
				common history ρ for all
	same outcome for all			goals enabled by s
	goals enabled by s				
	∈ L(D d s,h)	s 1 q 1 , d 1	s 2 q 2 , d 2	s 3 q 3 , d 3	∈ Υs
	Fig. 9 Illustration of Γ stick d,s,h and Γ sep d,s,Υs				
	5.5.3 Fulfilling optimal sets of goals				
	Base				

 V ∀ . The proof proceeds by induction on |s|.Base case: |s| = 1. Assume (s, ρ) ∈ R w . As |s| = 1, there is a unique goal, say β j0 . ϕ j0 , active along ρ w.r.t. θ(w). By definition of θ, π j0 = ρ • η where η is the outcome of ϑ last(ρ),dρ,s (w-→ ρ)((β j (A)) A∈Agt) from last(ρ).Because |s| = 1, we have Γ dρ,s,b last(ρ),dρ ,s = Γ stick dρ,s,b last(ρ),dρ,s . The map ϑ last(ρ),dρ,s is a witness that

 The map ϑ last(ρ),dρ,s witnesses that G, last(ρ) |≡ T Γ d,s,b last(ρ),dρ ,s ; therefore η may only reach a partition τ such that

b last(ρ),dρ,s s cs,τ

We name our fragment SL[EG] as it comes as a natural continuation after fragments SL[AG] [33], SL[BG] [30], and SL[CG] and SL[DG] [32].

This work was supported by ERC project EQualIS (StG-308087).

We now focus on the operator obtained at the end of the induction, when s = 1. Following Prop. 8, L(D 1,f) does not depend on the exact value of f , as soon as it is in F n . We then let

where f is any element of F n (remember F n is assumed to be non-empty), d 0 is the vector of initial states of the automata in D, and

We write ϑ 1 and ϑ 1 for the maps ϑ q0,d0,1 and ϑ q0,d0,1,h for some h ∈ F n , as given by Lemma 9. From the discussion above, ϑ q0,d0,1,h does not depend on the choice of h in F n , and we simply write it ϑ q0,d0,1 . Then:

Proof. The first part directly follows from the previous lemma. For the second part, G,

Compiling optimal maps

From Lemma 9, we have timeline maps for each q, d and s. We now compile them into two map θ and θ. The construction is inductive, along histories.

Pick a history ρ starting from q 0 and strategies for universally-quantified variables w : V ∀ → (Hist → Act). Assuming θ has been defined along all strict prefixes of ρ, a goal β j . ϕ j is said active after ρ w.r.t. θ(w) if the following condition holds:

In other terms, β j . ϕ j is active after ρ w.r.t. θ(w) if ρ is the outcome of strategies prescribed by θ(w) under assignment β j . We let s ρ,θ(w) be the element of {0, 1} n such that s ρ,θ(w) (j) = 1 if, and only if, β j . ϕ j is active after ρ w.r.t. θ(w).

We now define θ(w)(x i)(ρ) for all x i ∈ V:

we consider two cases:

if s ρ,θ(w) = 1, then all goals are still active, and θ follows the map ϑ 1 :

-otherwise, we let ρ 1 be the maximal prefix of ρ for which s ρ1,θ(w) = s ρ,θ(w) .

We may then write ρ = ρ 1 • ρ 2 , and let q 1 = last(ρ 1) and d 1 = succ(d 0 , ρ 1).

We then let θ(w)(

The dual map θ is defined in the same way, using maps ϑ in place of ϑ.

The following result will conclude our proof of Theorem 1.

Lemma 11. There exists a context χ with domain V such that θ(χ |V ∀) = χ and θ(χ |V ∃) = χ. It satisfies

G, q 0 |=χ ¬Γ F n ⇒ ∀w ∈ (Hist G → Act) V ∃ . G, q 0 |= θ(w) F n (β j . ϕ j) 1≤j≤n