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Abstract14

For decades, two-player (antagonistic) games on graphs have been a framework of choice for many15

important problems in theoretical computer science. A notorious one is controller synthesis, which16

can be rephrased through the game-theoretic metaphor as the quest for a winning strategy of the17

system in a game against its antagonistic environment. Depending on the specification, optimal18

strategies might be simple or quite complex, for example having to use (possibly infinite) memory.19

Hence, research strives to understand which settings allow for simple strategies.20

In 2005, Gimbert and Zielonka [27] provided a complete characterization of preference relations21

(a formal framework to model specifications and game objectives) that admit memoryless optimal22

strategies for both players. In the last fifteen years however, practical applications have driven the23

community toward games with complex or multiple objectives, where memory — finite or infinite —24

is almost always required. Despite much effort, the exact frontiers of the class of preference relations25

that admit finite-memory optimal strategies still elude us.26

In this work, we establish a complete characterization of preference relations that admit optimal27

strategies using arena-independent finite memory, generalizing the work of Gimbert and Zielonka to28

the finite-memory case. We also prove an equivalent to their celebrated corollary of great practical29

interest: if both players have optimal (arena-independent-)finite-memory strategies in all one-player30

games, then it is also the case in all two-player games. Finally, we pinpoint the boundaries of our31

results with regard to the literature: our work completely covers the case of arena-independent32

memory (e.g., multiple parity objectives, lower- and upper-bounded energy objectives), and paves33

the way to the arena-dependent case (e.g., multiple lower-bounded energy objectives).34
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1 Introduction45

Controller synthesis through the game-theoretic metaphor. Two-player games on (finite)46

graphs are studied extensively, in particular for their application to controller synthesis for47

reactive systems (see, e.g., [29, 37, 7, 2]). The seminal model is antagonistic (i.e., zero-sum if48

one chooses a quantitative view): player 1 (P1) is seen as the system to control, player 2 (P2)49

as its antagonistic environment, and the game models their interaction. Each vertex of the50

game graph (called arena) models a state of the system and belongs to one of the players.51

Players take turns moving a pebble from state to state according to the edges, each player52

choosing the destination whenever the pebble is on one of his states. These choices are made53

according to the strategy of the player, which, in general, might use memory (bounded or54

not) of the past moves to prescribe the next action.55

The resulting infinite sequence of states, called play, represents the execution of the56

system. The objective of P1 is to enforce a given specification, often encoded as a winning57

condition (i.e., a set of winning plays) or as a payoff function to maximize (i.e., a quantitative58

performance to optimize). This paradigm focuses on the worst-case performance of the59

system, hence P2’s goal is to prevent P1 from achieving his objective.60

The goal of synthesis is thus to decide if P1 has a winning strategy, i.e., one ensuring61

a given winning condition or guaranteeing a given payoff threshold, against all possible62

strategies of P2, and to build such a strategy efficiently if it exists.63

Winning strategies are formal blueprints for controllers to implement in applications.64

Therefore, their complexity is of tremendous importance: the simpler the strategy, the easier65

and cheaper it will be to build the controller and maintain it. This explains why a lot of66

research effort is constantly put in identifying the exact complexity (in terms of memory and/or67

randomness) of strategies needed to play optimally (i.e., to the best of the player’s ability)68

for each specific class of games and objectives (e.g., [27, 17, 14, 42, 22, 10, 1, 4, 41, 5, 11]).69

Alongside the practical interest lies the theoretical puzzle: understanding the underlying70

mechanisms and implicit properties of games that lead to “simple” strategies being sufficient.71

Given the numerous connections between games and various branches of mathematics and72

computer science, this fundamental question has interest in its own right.73

Preference relations. There are two prominent ways to formalize a game objective in the74

literature. The first one, dubbed quantitative and inspired by games in economics, is to use75

payoff functions mapping plays to numerical values, and to see P1 as a maximizer player.76

This is for example the case of mean-payoff games [19]. The second one, called qualitative, is77

to define a set of winning plays — called winning condition — induced by some property, as78

in, e.g., parity games [20, 43]. The two formalisms are strongly linked: the classical decision79

problem for quantitative games is to fix a payoff threshold and ask if P1 has a strategy to80

guarantee it, transforming the problem into a qualitative one (where the winning plays are81

all those with a payoff at least equal to the threshold). To define payoff functions or winning82

conditions, one often uses weights, priorities, colors, etc, on states or edges of the arena.83

In this work, we walk in the footsteps of Gimbert and Zielonka [27]: we associate a color84

to each edge of our arenas, and we adopt the abstract formalism of preference relations over85

infinite sequences of colors (induced by plays). This general formalism permits to encode86

virtually all classical game objectives, both qualitative and quantitative, and lets us reason87

in a well-founded framework under minimal assumptions.88
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Memoryless optimal strategies. Remarkably, several canonical classes of games that have89

been around for decades and proved their usefulness over and over — e.g., mean-payoff [19],90

parity [20, 43], or energy games [12] — share a desirable property: they all admit memoryless91

optimal strategies for both players. That is, for every strategy σi of Pi, there is a strategy92

σML
i which is at least as good (i.e., wins whenever σi wins or ensures at least the same payoff)93

and that uses no memory at all. Such a memoryless strategy always picks the same edge94

when in the same state, regardless of what happened before in the game.95

Memoryless strategies are the simplest kind of strategies one can use. Therefore, it96

is quite interesting that they suffice for objectives as rich as the ones we just discussed.97

Following this observation, a lot of effort has been put in understanding which games98

admit memoryless optimal strategies, and in identifying the exact frontiers of memoryless99

determinacy. Let us mention, non-exhaustively, works by Gimbert and Zielonka [26, 27]100

(culminating in a complete characterization), Aminof and Rubin [1] (through the prism of101

first-cycle games), and Kopczyński [33] (half-positional determinacy). All these advances102

were built by identifying the common underlying mechanisms in ad hoc proofs for specific103

classes of games, and generalizing them to wide classes (e.g., the first-cycle games of [1] are104

inspired by the seminal paper of Ehrenfeucht and Mycielski on mean-payoff games [19]).105

Gimbert and Zielonka’s approach. Arguably, the most important result in this direction is106

the complete characterization of preference relations admitting memoryless optimal strategies,107

established in [27], fifteen years ago. By complete characterization, we mean sufficient and108

necessary conditions on the preference relations.109

It can be stated as follows: a preference relation admits memoryless optimal strategies110

for both players on all arenas if and only if the relation (used by P1) and its inverse (used111

by P2) are monotone and selective. These concepts will be defined formally in Section 3,112

but let us give an intuition here. Roughly, a preference relation is monotone if it is stable113

under prefix addition: given two sequences of colors such that one is strictly preferred to the114

other, it is impossible to reverse this order of preference by adding the same prefix to both115

sequences. Selectivity is similarly defined with regard to cycle mixing: if a preference relation116

is selective, then, starting from two sequences of colors, it is impossible to create a third one117

by mixing the first two in such a way that the third one is strictly preferred to the first two.118

These elegant notions coincide with the natural intuition that memoryless strategies suffice if119

there is no interest in behaving differently in a state depending on what happened before.120

In addition to this complete characterization, Gimbert and Zielonka proved another great121

result, of high interest in practice [27, Corollary 7]: as a by-product of their approach, they122

obtain that if memoryless strategies suffice in all one-player games of P1 and all one-player123

games of P2, they also suffice in all two-player games. Such a lifting corollary provides a124

neat and easy way to prove that a preference relation admits memoryless optimal strategies125

without proving monotony and selectivity at all: proving it in the two one-player subcases,126

which is generally much easier as it boils down to graph reasoning, and then lifting the result127

to the general two-player case through the corollary.128

The rise of memory. The need to model complex specifications has shifted research toward129

games where multiple (quantitative and qualitative) objectives co-exist and interact, requiring130

the analysis of interplay and trade-offs between several objectives. Hence, a lot of effort131

is put in studying games where objectives are actually conjunctions of objectives, or even132

richer Boolean combinations. See for example [16] for combinations of parity, [13, 17, 32] for133

combinations of energy and parity, [42] for combinations of mean-payoff, [5, 4] for combinations134
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18:4 Games Where You Can Play Optimally with Arena-Independent Finite Memory

of energy and average-energy, [11] for combinations of energy and mean-payoff, [14] for135

combinations of total-payoff, or [14, 10, 8] for combinations of window objectives.136

s2 s11

1

−1

−1

Figure 1 P1 (circle) needs infinite memory to win.

When considering such rich objectives, memoryless strategies usually do not suffice, and137

one has to use an amount of memory that can quickly become an obstacle to implementation138

(e.g., exponential memory) or that can prevent it completely (infinite memory). Establishing139

precise memory bounds for such general combinations of objectives is tricky and sometimes140

counterintuitive. For example, while energy games and mean-payoff games are inter-reducible141

in the single-objective setting, exponential-memory strategies are both sufficient and necessary142

for conjunctions of energy objectives [17, 32] while infinite-memory strategies are required143

for conjunctions of mean-payoff ones [42].144

A natural question arises: which preference relations do admit finite-memory optimal145

strategies? Surprisingly, whether an equivalent to Gimbert and Zielonka’s characterization146

could be obtained for finite memory or not has remained an open question up to now. It is147

worth noticing that such an equivalent could be of tremendous help in practice, especially if148

a lifting corollary also holds: see for example [5, 4, 11], where proving that finite-memory149

strategies suffice in one-player games was fairly easy, in contrast to the high complexity of150

the two-player case — a lifting corollary could grant the two-player case for free!151

Having said that, one has to hope that the following corollary can be established: “if152

finite-memory strategies suffice in all one-player games of P1 and all one-player games of P2,153

they also suffice in all two-player games.” Unfortunately, this hope is but a delusion.154

Lifting corollary: a counterexample. Consider games where the colors are integers, and155

the objective of P1 is to create a play such that (a) the running sum of weights grows up to156

infinity (e.g., consider its lim inf to define it properly), or (b) this running sum of weights157

takes value zero infinitely often. As this defines a qualitative objective, the corresponding158

preference relation induces only two equivalence classes: winning and losing plays. The159

inverse relation, used by P2, is trivial to obtain. It is fairly easy to prove that P1 always160

has finite-memory optimal strategies in his one-player games (i.e., games where P2 has no161

choice), and so does P2 in his one-player games.162

Now, consider the very simple two-player game depicted in Figure 1. Player P1 (circle)163

has an infinite-memory strategy to win: keeping track of the running sum of weights (which164

is unbounded, hence the need for infinite memory) and looping in s1 up to the point where165

this sum hits zero, then going to s2. This strategy ensures victory because either P2 always166

goes back to s1, in which case (b) is satisfied; or P2 eventually loops forever on s2, in which167

case (a) is satisfied. It remains to argue that P1 has no finite-memory winning strategy in168

this game. This can be done using a standard argument: whatever the amount of memory169

used by P1, P2 may loop in s2 long enough as to exceed the bound up to which P1 can track170

the sum accurately; thus dooming P1 to fail to reset the sum to zero in s1 infinitely often.171

This modest example proves that Gimbert and Zielonka’s approach cannot work in full172

generality in the finite-memory case, and for good reasons. Informally, in this case, the173

corollary breaks down because of (the absence of some sort of) monotony. In the case of174
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memoryless strategies, as in [27], P1 is already doomed in one-player games in the absence of175

monotony: two prefixes to distinguish — in order to play optimally — can be hardcoded as176

different paths leading to the same state in a game arena, as if they were chosen by P2 in a177

two-player game. In the case of finite-memory strategies, however, the situation is different.178

In one-player games, the number of such paths that can be hardcoded in an arena is always179

bounded, hence finite memory might suffice to react, i.e., to keep track of which prefix is the180

current one and how to behave accordingly. However, in two-player games, P2 might create181

an infinite number of prefixes to distinguish (using a cycle), thus requiring P1 to use infinite182

memory to be able to do so. This is exactly what happens in the example above: in any183

one-player game, the largest sum that P1 has to track is bounded, whereas P2 can make this184

sum as large as he wants in two-player games.185

Our approach. We generalize Gimbert and Zielonka’s results — characterization and lifting186

corollary — to the case of arena-independent finite memory. That is, we encompass all187

situations where the memory needed by the two players is solely dependent on the preference188

relation (e.g., colors, dimensions of weight vectors), and not on the game arena (i.e., number189

of edges/states). Let us take some examples.190

All memoryless-determined relations — studied in [27] — use arena-independent memory:191

the memory required, none, is the same for all arenas.192

Combinations of parity objectives use arena-independent memory [16]: the memory only193

depends on the number of objectives and the number of priorities — both parameters of194

the preference relation, not on the size of the arena.195

Lower- and upper-bounded energy objectives also use arena-independent memory (see,196

e.g., [3, 5, 4]): the memory only depends on the bounds and the weights — parameters197

of the preference relation, not on the size of the arena.198

On the contrary, combinations of lower-bounded energy objectives (with no upper bound)199

require arena-dependent memory [17, 32]: it depends on the size of the arena in addition200

to the weights used in it. Such a setting falls outside the scope of our results.201

This informal concept of arena-independent memory is transparent in our work: in all202

our results, we use memory skeletons — essentially Mealy machines without a next-action203

function (Section 2) — that suffice for all arenas, and that are at the basis of the strategies204

we build. A quick look at our main concepts (Section 3) and results (Section 4) suffices to205

grasp the formalism behind this intuition.206

This restriction to arena-independent memory is natural given the counterexample to a207

general approach presented above. It is also important to note that it is not as restrictive as208

it may seem, as hinted by the examples above: we are not restricted to constant memory209

but to memory only depending on the parameters of the preference relation (or equivalently,210

objective), and not of the arena. This framework thus already encompasses many objectives211

from the literature — e.g., [19, 20, 43, 12, 5, 21, 16, 10, 14, 3, 5, 4], as well as possible212

extensions. More details in Appendix A.213

The arena-independent case, which we solve here, is an exact equivalent to Gimbert and214

Zielonka’s results in the finite-memory case: the memoryless case is de facto arena-independent.215

Therefore, this paper strictly generalizes [27] by allowing to study any arena-independent216

memory skeleton instead of the unique trivial one corresponding to memoryless strategies.217

Outline of our contributions. Informally, our characterization can be stated as follows:218

given a preference relation and a memory skeleton M, both players have optimal finite-219

memory strategies based on skeletonM in all games if and only if the relation and its inverse220
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18:6 Games Where You Can Play Optimally with Arena-Independent Finite Memory

areM-monotone andM-selective.221

These last two concepts are keys to our approach. Intuitively, they correspond to Gimbert222

and Zielonka’s monotony and selectivity, modulo a memory skeleton. Recall that monotony223

and selectivity are related to stability of the preference relation with regard to prefix addition224

and cycle mixing, respectively. Our more general concepts ofM-monotony andM-selectivity225

serve the same purpose, but they only compare sequences of colors that are deemed equivalent226

by the memory skeleton. For the sake of illustration, take selectivity: it implies that one has227

no interest in mixing different cycles of the game arena. For its generalization, the memory228

skeleton is taken into account: M-selectivity implies that one has no interest in mixing cycles229

of the game arena that are read as cycles on the same memory state in the skeleton M.230

Let us give a quick breakdown of our paper. Due to space constraints, we only provide231

an intuitive overview of our results and technical approach in this conference version: formal232

details and proofs, along with additional results, can be found in the full article [6].233

In Section 2, we introduce some basic notions, including the memory skeletons, and we234

establish several technical results. We also discuss optimal strategies and Nash equilibria.235

In Section 3, we introduceM-monotony andM-selectivity, cornerstones of our work. We236

also present two essential tools: prefix-covers and cyclic-covers of arenas. Section 4 states237

formally our characterization (Theorem 9), as well as the corresponding lifting corollary238

(Corollary 10), from one-player to two-player games. We show an example of application239

in Section 5. Finally, we give an overview of the technical highlights of our approach in240

Section 6 — its details are broken down in several intermediate results in our full paper [6].241

In a nutshell, the proof of the characterization (Theorem 9) is split in two. We first242

establish that (the sufficiency of) finite memory based on M implies M-monotony and243

M-selectivity of the preference relation. The crux is to build game arenas based on automata244

recognizing the languages involved in the two concepts, and to use the existence of finite-245

memory optimal strategies in these arenas to prove thatM-monotony andM-selectivity hold.246

To prove the converse implication, we proceed in two steps, first establishing the existence of247

memoryless optimal strategies in “covered” arenas, and then building on it to obtain the248

existence of finite-memory optimal strategies in general arenas. The main technical tools we249

use are Nash equilibria and the aforementioned notions of prefix-covers and cyclic-covers.250

Alongside the technical details, we analyze our characterization in Appendix A: we251

highlight some limitations and interesting features, compare our techniques with Gimbert and252

Zielonka’s, discuss our place in the research landscape, and sketch directions for future work.253

Let us just stress already that our result — relating a memory skeletonM and preference254

relations for which this skeleton suffices — cannot be obtained by simply considering product255

arenas and invoking Gimbert and Zielonka’s result on memoryless determinacy [27]. While,256

of course, memoryless strategies on product arenas correspond to memoryfull strategies on257

original arenas (as we will formally establish in Lemma 1), invoking [27] requires to be able258

to quantify on all arenas, not only product arenas. Filling this gap is exactly the goal of this259

paper, and it is made possible through the new concepts we sketched above.260

2 Preliminaries261

We only give here the notions and results necessary to understand this overview. Necessary262

notions and results — some of them interesting in their own right — to understand the263

technical details of the approach are found in the full paper [6].264
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Automata and languages of colors. Let C be an arbitrary set of colors. We assume knowl-265

edge of non-deterministic finite-state automata (NFA), which recognize regular languages.266

For any finite subset B ⊆ C, we denote by Reg(B) the set of all regular languages over B.267

Let R(C) =
⋃
B⊆C, |B|<∞ Reg(B), that is, all the regular languages built over C.268

Let K ⊆ C∗ be a language of finite words. We write Prefs(K) for the set of all prefixes of269

words in K. We define the set of infinite words [K] = {w = c1 . . . ∈ Cω | ∀n ≥ 1, c1 . . . cn ∈270

Prefs(K)}, which contains all infinite words for which every finite prefix is a prefix of a word271

in K. Intuitively, if K is regular, [K] is the language of infinite words that correspond to272

infinite paths that can always branch and reach a final state, on an automaton for K. Given273

a finite word w ∈ C∗ and a language K ⊆ C∗, we write wK for their concatenation, i.e., the274

language wK = {w′ = ww′′ | w′′ ∈ K} ⊆ C∗.275

Arenas. We consider two players: player 1 (P1) and player 2 (P2). An arena is a tuple276

A = (S1, S2, E) such that S = S1 ]S2 (disjoint union) is a finite set of states partitioned into277

states of P1 (S1) and P2 (S2), and E ⊆ S ×C ×S is a finite set of edges. Let col : E → C be278

the projection of edges to colors and ĉol its natural extension to sequences of edges. For an279

edge e ∈ E, we use in(e) and out(e) to denote its starting state and arrival state respectively,280

i.e., e = (in(e), col(e), out(e)). We assume all arenas to be non-blocking, i.e., for all s ∈ S,281

there exists e ∈ E such that in(e) = s. For i ∈ {1, 2}, we call an arena A = (S1, S2, E) a Pi’s282

one-player arena if for all s ∈ S3−i, |{e ∈ E | in(e) = s}| = 1 — that is, P3−i has no choice.283

Let Hists(A, s) denote the histories in A from s ∈ S, i.e., finite sequences of edges284

ρ = e1 . . . en ∈ E+ such that in(e1) = s and for all i, 1 ≤ i < n, out(ei) = in(ei+1). Let285

Plays(A, s) denote the plays in A from s ∈ S, i.e., infinite sequences π = e1e2 . . . ∈ Eω such286

that in(e1) = s and for all i ≥ 1, out(ei) = in(ei+1). We write Hists(A, S′) and Plays(A, S′)287

for unions over S′ ⊆ S, and write Hists(A) and Plays(A) for the unions over all states of A.288

Let ρ = e1 . . . en ∈ Hists(A) (resp. π = e1e2 . . . ∈ Plays(A)): we extend the operator in289

to histories (resp. plays) by identifying in(ρ) (resp. in(π)) to in(e1). We proceed similarly290

for out and histories: out(ρ) = out(en). For the sake of convenience, we consider that any291

set Hists(A, s) contains the empty history λs such that in(λs) = out(λs) = s. We write292

Histsi(A, s) and Histsi(A) for the subsets of histories ρ such that out(ρ) ∈ Si, i ∈ {1, 2}, i.e.,293

histories whose last state belongs to Pi. For any set H ⊆ Hists(A), we write ĉol(H) for its294

projection to colors, i.e., ĉol(H) = {ĉol(ρ) | ρ ∈ H}. We do the same for sets of plays.295

Memory skeletons. A memory skeleton is a tupleM = (M,minit, αupd) where M is a finite296

set of states, minit ∈M is a fixed initial state and αupd : M × C →M is an update function.297

We write α̂upd for the natural extension of αupd to sequences in C∗. Memory skeletons are298

deterministic and might have an infinite number of transitions, in contrast to NFA. We define299

the trivial memory skeleton asMtriv = (M = {minit},minit, αupd : {minit} × C → {minit}): it300

permits to formalize memoryless strategies [27] in our framework.301

LetM = (M,minit, αupd) be a skeleton. For m,m′ ∈M , we define the language Lm,m′ =302

{w ∈ C∗ | α̂upd(m,w) = m′} that contains all words that can be read from m to m′ inM.303

LetM1 = (M1,m1
init, α

1
upd) andM2 = (M2,m2

init, α
2
upd). Their product M1 ⊗M2 is the304

memory skeletonM = (M,minit, αupd) where M = M1 ×M2, minit = (m1
init,m

2
init), and, for305

all m1 ∈ M1, m2 ∈ M2, c ∈ C, αupd((m1,m2), c) = (α1
upd(m1, c), α2

upd(m2, c)). That is, the306

memories are updated in parallel when a color is read.307

Product arenas. Let A = (S1, S2, E) be an arena andM = (M,minit, αupd) be a skeleton.308

Their product A nM is the arena (S′1, S′2, E′) where S′1 = S1 ×M , S′2 = S2 ×M , and309
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18:8 Games Where You Can Play Optimally with Arena-Independent Finite Memory

E′ ⊆ S′ × C × S′, with S′ = S′1 ] S′2, is such that ((s1,m1), c, (s2,m2)) ∈ E′ if and only if310

(s1, c, s2) ∈ E and αupd(m1, c) = m2. That is, the memory is updated according to the colors311

of the edges in E. ThoughM might contain an infinite number of transitions, A nM is312

always finite, as E is finite. Since we assume A is non-blocking, it is also the case of AnM.313

Strategies. A strategy σi for Pi, i ∈ {1, 2}, on arena A = (S1, S2, E), is a function314

σi : Histsi(A)→ E such that for all ρ ∈ Histsi(A), in(σi(ρ)) = out(ρ). Let Σi(A) be the set315

of all strategies of Pi on A. A finite-memory strategy σi can be encoded as a Mealy machine,316

i.e., a skeleton M = (M,minit, αupd) with transitions over a finite subset of colors B ⊆ C,317

enriched with a next-action function αnxt : M × Si → E such that for all m ∈ M , s ∈ Si,318

in(αnxt(m, s)) = s. Given a Mealy machine Γσi
= (M, αnxt), strategy σi is defined as follows:319

∀ s ∈ Si, σi(λs) = αnxt(minit, s),320

∀ ρ · e ∈ Histsi(A), e ∈ E, σi(ρ · e) = αnxt

(
α̂upd

(
minit, ĉol (ρ · e)

)
, out(e)

)
.321

Let ΣFM
i (A) be the finite-memory strategies of Pi on A. We say that a strategy σi ∈ ΣFM

i (A)322

is based on memory skeleton M if it can be encoded as a Mealy machine Γσi
= (M, αnxt), as323

above. We implicitly assume that strategies of ΣFM
i (A) are built by restricting the transitions324

of their skeletonM to the actual subset of colors appearing in A. A strategy σi is memoryless325

if it is a function σi : Si → E, or equivalently, if it is based onMtriv.326

We write Plays(A, s, σi) for the plays consistent with a strategy σi of Pi from a state s, i.e.,327

plays π = e1e2 . . . ∈ Plays(A, s) such that for all ρ = e1 . . . en, out(ρ) ∈ Si =⇒ σi(ρ) = en+1.328

We write Plays(A, s, σ1, σ2) for the singleton set containing the unique play consistent with a329

couple of strategies for the two players. We use similar notations for histories.330

Preference relations. Let v be a total preorder on Cω, called preference relation. We331

consider antagonistic games, where the objective of P1 is to create the best possible play332

with regard to v whereas the objective of P2 is the opposite. That is, P2 uses the inverse333

relation v−1. This corresponds to zero-sum games when using a quantitative framework.334

Given w,w′ ∈ Cω, we write w @ w′ if we have ¬(w′ v w) since the preorder is total. We335

extend v to subsets: for W,W ′ ⊆ Cω, W vW ′ ⇐⇒ ∀w ∈W, ∃w′ ∈W ′, w v w′. We also336

write W @W ′ ⇐⇒ ∃w′ ∈W ′, ∀w ∈W, w @ w′. Note that W @W ′ ⇐⇒ ¬(W ′ vW ).337

To compare a word w ∈ Cω with a language K ⊆ Cω, we simply identify it to {w}.338

Games. A (deterministic turn-based two-player) game is a tuple G = (A,v) where A is339

an arena and v is a preference relation. All classical objectives from the literature (both340

qualitative and quantitative) can be expressed in the general framework of preference relations341

(see Example 3 in [6]). For i ∈ {1, 2}, a Pi’s one-player game is a game G = (A,v) such that342

A is a Pi’s one-player arena.343

Optimal strategies. Let G = (A,v) be a game on arena A = (S1, S2, E). Given a Pi-344

strategy σi ∈ Σi(A) and a state s ∈ S, we define345

UColv(A, s, σi) = {w ∈ Cω | ∃σ3−i ∈ Σ3−i(A), ĉol(Plays(A, s, σ1, σ2)) v w},346

DColv(A, s, σi) = {w ∈ Cω | ∃σ3−i ∈ Σ3−i(A), w v ĉol(Plays(A, s, σ1, σ2))}.347
348

Note that DColv(A, s, σi) = UColv−1(A, s, σi). Intuitively, UColv and DColv represent the349

upward and downward closures of sequences of colors (consistent with a strategy) with respect350

to the preference relation.351
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Taking the standpoint of P1, we say that σ1 ∈ Σ1(A) is at least as good as σ′1 ∈ Σ1(A)352

from s ∈ S if UColv(A, s, σ1) ⊆ UColv(A, s, σ′1). Intuitively, σ1 is at least as good as σ′1 if353

the “worst-case” plays consistent with σ1 are at least as good as the ones consistent with σ′1.354

The UCol operator is useful to define this notion properly even in the case where there is no355

“worst-case” play (i.e., if the infimum used in the classical quantitative setting is not reached).356

Similar notions have been used before, e.g., in [38]. Symmetrically, for P2, we say that357

σ2 ∈ Σ2(A) is at least as good as σ′2 ∈ Σ2(A) from s ∈ S if DColv(A, s, σ2) ⊆ DColv(A, s, σ′2).358

Now, we say that σi ∈ Σi(A) of Pi is optimal from s ∈ S, aka s-optimal, if it is at least359

as good as every other σ′i ∈ Σi(A) from s. We extend this notation to subsets of states in360

the natural way, and we say that a strategy σi is uniformly-optimal if it is S-optimal.361

Our goal is to characterize the preference relations that admit uniformly-optimal finite-362

memory (UFM) strategies based on a given skeleton M in all arenas. We also discuss the363

simpler case of uniformly-optimal memoryless (UML) strategies, which corresponds to the364

subcase studied by Gimbert and Zielonka [27], using the trivial skeletonMtriv.365

In that respect, the following link is important to observe.366

I Lemma 1. Let G = (A,v) be a game on arena A = (S1, S2, E). LetM = (M,minit, αupd)367

be a memory skeleton and let σi ∈ ΣFM
i (A) be a finite-memory strategy encoded by the Mealy368

machine Γσi
= (M, αnxt). Then, σi is a UFM strategy in G if and only if αnxt corresponds to369

an (S × {minit})-optimal memoryless strategy in G′ = (AnM,v).370

Nash equilibria. We use Nash equilibria [36] as tools to establish the existence of optimal371

strategies in some of our proofs. Let G = (A,v) be a game on arenaA = (S1, S2, E). Formally,372

a Nash equilibrium (NE) from a state s ∈ S is a couple of strategies (σ1, σ2) ∈ Σ1(A)×Σ2(A)373

such that, for all σ′1 ∈ Σ1(A), σ′2 ∈ Σ2(A),374

ĉol(Plays(A, s, σ′1, σ2)) v ĉol(Plays(A, s, σ1, σ2)) v ĉol(Plays(A, s, σ1, σ
′
2)). (1)375

Similarly to optimal strategies, we call an NE uniform if it is an NE from all states s ∈ S.376

The connection between optimal strategies and Nash equilibria in our specific context of377

antagonistic games is interesting to discuss, especially with respect to Gimbert and Zielonka’s378

original work [27]. We defer this discussion to [6] due to space constraints, and only provide379

here a brief account of the results one has to know to understand this overview. First, NE380

are de facto pairs of optimal strategies. Second, it is possible to mix different NE.381

I Lemma 2. Let G = (A,v) be a game on arena A = (S1, S2, E), and let s ∈ S be a state.382

Let (σa1 , σa2 ) and (σb1, σb2) ∈ Σ1(A)× Σ2(A) be two Nash equilibria from s. Then, (σa1 , σb2) is383

also a Nash equilibrium from s.384

I Remark 3. Lemma 2 crucially relies on the assumption (transparent in our definition of385

Nash equilibrium) that we consider antagonistic games, that is, P2 uses the inverse preference386

relation v−1. C387

3 Concepts388

Generalizing monotony and selectivity. As seen in Section 1, Gimbert and Zielonka’s389

characterization [27] relies on monotony and selectivity of the preference relation. The main390

difference between their technical approach and ours is the following. In the memoryless391

setting, all the reasoning can be abstracted away from the underlying arena and done on392

sequences of colors. In the finite-memory one, however, one has to pay attention to how393
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sequences of colors are composed and compared, to maintain consistency with regard to394

the memory and the game arena. This need to intertwine abstract reasoning on arbitrary395

sequences of colors with concrete tracking of memory updates is the key obstacle to overcome.396

Much of our effort was thus spent on trying to define concepts that would preserve the397

elegance of monotony and selectivity while allowing us to lift the theory to the finite-memory398

case. As often the case, the good concepts turned out to be the most natural ones, capturing399

the intuitive idea that one needs monotony and selectivity modulo a memory skeleton.400

I Definition 4 (M-monotony). LetM = (M,minit, αupd) be a memory skeleton. A preference401

relation v isM-monotone if for all m ∈M , for all K1,K2 ∈ R(C),402

(∃w ∈ Lminit,m, [wK1] @ [wK2]) =⇒ (∀w′ ∈ Lminit,m, [w′K1] v [w′K2]) . (2)403

Recall that a skeletonM has a fixed initial state minit. Intuitively,M-monotony extends404

Gimbert and Zielonka’s monotony by comparing prefixes belonging to the same language405

Lminit,m, that is, prefixes that are deemed equivalent by skeletonM. This property roughly406

captures that v is stable with regard to prefix addition, for memory-equivalent prefixes.407

The original monotony notion is equivalent to ourM-monotony withM being the trivial408

skeletonMtriv: that is, the memoryless case is naturally a subcase of our framework.409

I Definition 5 (M-selectivity). LetM = (M,minit, αupd) be a memory skeleton. A preference410

relation v isM-selective if for all w ∈ C∗, m = α̂upd(minit, w), for all K1,K2 ∈ R(C) such411

that K1,K2 ⊆ Lm,m, for all K3 ∈ R(C),412

[w(K1 ∪K2)∗K3] v [wK∗1 ] ∪ [wK∗2 ] ∪ [wK3]. (3)413

Similarly, M-selectivity extends Gimbert and Zielonka’s selectivity by asking one to414

compare sequences of colors belonging to the same language Lm,m, that is, sequences read as415

cycles on the memory skeleton. Note also that the memory state m should be consistent416

with the prefix w read from the initial memory state minit. This property roughly captures417

that v is stable with regard to cycle mixing, for memory-equivalent cycles.418

Again, the original selectivity notion is exactly equivalent toMtriv-selectivity.419

In a nutshell, M-monotony deals with prefixes up to the first cycle (on memory) and420

M-selectivity deals with the cycles thereafter; we will see that memory skeletons can be built421

in a compositional way based on these two orthogonal yet complementary tasks.422

Our notions respect the natural intuition that access to additional memory should always423

be helpful: if a skeletonM is sufficient to classify sequences of colors in a way that guarantees424

M-monotony andM-selectivity, then it should also be the case for “more powerful” skeletons.425

I Lemma 6. Let M and M′ be two memory skeletons. If v is M-monotone (resp. M-426

selective) then, it is also (M⊗M′)-monotone (resp. (M⊗M′)-selective).427

Prefix-covers and cyclic-covers. While the concepts of M-monotony and M-selectivity428

are the primordial ones for stating the characterization, we still need two additional notions429

to prove it. Let us sketch the issue. To prove that monotone and selective preference relations430

yield UML strategies, Gimbert and Zielonka deploy an inductive argument on the number431

of choices in an arena. Intuitively, we want to use a similar approach for UFM strategies,432

but because of the unavoidable coupling between the memory skeleton and the arena (e.g.,433

Lemma 1), the induction argument breaks, as adding one choice in the arena results in adding434

many in the product arena (as many as there are memory states), where the reasoning needs435

to take place. New insight and techniques are thus needed to patch this scheme.436
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To solve this issue, we decouple the two aspects. We first establish that, on arenas that437

inherently share the same good properties as product arenas (i.e., they already “classify”438

prefixes and cycles as the memory would), we can deploy the induction argument and obtain439

UML strategies. Then, we obtain UFM strategies on general arenas as a corollary. The crux440

is identifying such “good” arenas: this is done through the following notions.441

I Definition 7 (Prefix-covers and cyclic-covers). Let M = (M,minit, αupd) be a memory442

skeleton and A = (S1, S2, E) be an arena. Let Scov ⊆ S.443

We say thatM is a prefix-cover of Scov in A if for all s ∈ S, there exists ms ∈M such444

that, for all ρ ∈ Hists(A) such that in(ρ) ∈ Scov, out(ρ) = s and such that for all ρ′ proper445

prefix of ρ, out(ρ′) 6= s, we have α̂upd(minit, ĉol(ρ)) = ms.446

We say thatM is a cyclic-cover of Scov in A if for all ρ ∈ Hists(A) such that in(ρ) ∈ Scov,447

if s = out(ρ) and m = α̂upd(minit, ĉol(ρ)), for all ρ′ ∈ Hists(A) such that in(ρ′) = out(ρ′) = s,448

α̂upd(m, ĉol(ρ′)) = m.449

Intuitively,M is a prefix-cover for a set of states Scov if the histories starting in Scov and450

visiting a given state s ∈ S for the first time are read up to the same memory state in the451

memory skeleton. Similarly,M is a cyclic-cover of A if the cycles of A are read as cycles in452

the memory skeleton, once the memory has been initialized properly.453

As hinted above, the canonical example of a prefix- and cyclic-covered arena is a product454

arena (but many more may be in this case; it is beneficial to be general with these concepts).455

I Lemma 8. Let M = (M,minit, αupd) be a memory skeleton and A = (S1, S2, E) be an456

arena. ThenM is a prefix- and cyclic-cover for Scov = S × {minit} in AnM.457

4 Characterization458

Equivalence. We now have the necessary ingredients to state our equivalence result.459

I Theorem 9 (Equivalence). Let v be a preference relation and letM be a memory skeleton.460

Then, both players have UFM strategies based on memory skeletonM in all games G = (A,v)461

if and only if v and v−1 areM-monotone andM-selective.462

We state this theorem broadly and with a focus on UFM strategies. The actual results463

we have for each direction of the equivalence — see [6, Section 4 and Section 5] — are a464

bit stronger, of wider applicability and/or more interesting, but this statement carries the465

take-home message of our work. It is also meant to mirror the seminal result of Gimbert466

and Zielonka [27, Theorem 2]: their result can be retrieved from Theorem 9 by taking the467

trivial memory skeletonMtriv. As such, our work brings a strict generalization of Gimbert468

and Zielonka’s results [27] to the finite-memory case.469

Lifting corollary. As discussed in Section 1, the work of Gimbert and Zielonka contains470

not one, but two great results. Alongside the aforementioned equivalence result, Gimbert471

and Zielonka provide a corollary of high practical interest [27, Corollary 7]: they essentially472

obtain as a by-product of their approach that if memoryless strategies suffice in all one-player473

games of P1 and all one-player games of P2, they also suffice in all two-player games.474

This provides an elegant way to prove that a preference relation (equivalently, an objective)475

admits memoryless optimal strategies without proving monotony and selectivity at all: proving476

it in the two one-player subcases, which is generally much easier as it boils down to graph477

reasoning, and then lifting the result to the general two-player case through the corollary.478

See examples of one-player vs. two-player complexity in [5, 4, 11].479

Again, we are able to lift this corollary to the arena-independent finite-memory case.480
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I Corollary 10. Let v be a preference relation and M1,M2 be two memory skeletons.481

Assume that482

1. for all one-player arenas A = (S1, S2 = ∅, E), P1 has a UFM strategy σ1 ∈ ΣFM
1 (A) based483

on memory skeletonM1 in G = (A,v);484

2. for all one-player arenas A = (S1 = ∅, S2, E), P2 has a UFM strategy σ2 ∈ ΣFM
2 (A) based485

on memory skeletonM2 in G = (A,v).486

Then, for all two-player arenas A = (S1, S2, E), both P1 and P2 have UFM strategies487

σi ∈ ΣFM
i (A) based on memory skeletonM =M1 ⊗M2 in G = (A,v).488

We highlight the two (possibly different) skeletons of the two players to maintain a489

compositional approach, but if the same skeletonM works in both one-player versions, it490

also suffices in the two-player version.491

5 Example of application492

We present an illustrative application, thereby proving the existence of UFM strategies for493

a specific preference relation: the conjunction of two reachability objectives, a subcase of494

generalized reachability games, studied extensively in [21]. Let C be an arbitrary set of colors,495

and T1, T2 ⊆ C be two target sets of colors that have to be visited. Formally, let W ⊆ Cω be496

the set of words w = c1c2 . . . such that ∃ i, j ∈ N, ci ∈ T1 ∧ cj ∈ T2. This winning condition497

induces a two-level (i.e., win/lose) preference relation v.498

In this example, we will use Theorem 9 directly in order to provide one thorough499

illustration of the definitions ofM-monotony andM-selectivity. However, in practice, using500

Corollary 10 is preferable, as it yields a much shorter proof: by exhibiting the right skeletons501

for P1 and P2, we simply have to show that these skeletons are sufficient to play optimally502

on both players’ one-player arenas, which amounts to graph reasoning.503

mp
init

mp
2

T1

C \ T1

C

mc
init

mc
2mc

3

T2 \ T1T1

T1

C \ (T1 ∪ T2)

C C \ T1

s1

s2

s3

t1

t2

s1, m1

s2, m1

s3, m1

s1, m2

s2, m2

s3, m3

t2

t1

t2

t1

Figure 2 First and second: memory skeletons Mp and Mc for two-target reachability games;
third: arena A; fourth: product arena AnM (only states reachable from S × {minit} are depicted).
We assume that T1 = {t1}, T2 = {t2}. The (S × {minit})-optimal memoryless strategy is in bold.

We start by showing that this preference relation is notMtriv-monotone (that is, is not504

monotone for [27]). Assume c1 ∈ T1 \ T2, c2 ∈ T2 \ T1, and c3 /∈ T1 ∪ T2. Take K1 = c∗1,505

K2 = c∗2. For w = c1, w′ = c2, we have [wK1] @ [wK2], but [w′K2] @ [w′K1]. This means506

that the preference relation is not stable with regard to prefix addition (at least, without507

distinguishing different classes of prefixes). Similarly, it is notMtriv-selective (take w as the508

empty word, K1 = c∗1, K2 = c∗2, K3 = c∗3: to win, K1 and K2 need to be mixed).509

In Figure 2, we exhibit skeletonsMp = (Mp,mp
init, α

p
upd) andMc = (M c,mc

init, α
c
upd) such510

that v isMp-monotone andMc-selective. Note that such skeletons are obviously not unique.511
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Let us prove that v isMp-monotone. Letm ∈Mp, K1,K2 ∈ R(C); we want to show that512

Equation (2) is satisfied. We assume that there exists w ∈ Lmp
init,m

such that [wK1] @ [wK2]:513

this means that all words of [wK1] are losing, and that there exists a winning word in [wK2].514

Let w′ ∈ Lmp
init,m

; we show that we necessarily have that [w′K1] v [w′K2]. Note that if515

[K1] is empty, this always holds; we now assume that [K1] is non-empty. We study the two516

possible values of m separately.517

If m = mp
init, then w and w′ do not reach T1. If w does not reach T2 either, as there518

is a winning word in [wK2], then there must be a winning word in [K2]. This word519

is still winning after prepending w′ to it, so there is a winning word in [w′K2], and520

[w′K1] v [w′K2]. If w reaches T2, then [K1] cannot have a word reaching T1. As w′ does521

not reach T1 either, all words of [w′K1] are losing, so [w′K1] v [w′K2].522

If m = mp
2, then w and w′ reach T1. Clearly, w cannot reach T2 (as [wK1] would be523

winning). This implies that [K2] must contain a word reaching T2; as w′ reaches T1, the524

concatenation of w′ with the word of [K2] reaching T2 means that there is a winning525

word in [w′K2], so [w′K1] v [w′K2].526

Let us now prove that v isMc-selective. Let w ∈ C∗, m = α̂c
upd(mc

init, w), K1,K2 ∈ R(C)527

such that K1,K2 ⊆ Lm,m, and K3 ∈ R(C). We show that Equation (3) is satisfied, i.e., that528

[w(K1 ∪K2)∗K3] v [wK∗1 ] ∪ [wK∗2 ] ∪ [wK3]. If all words of [w(K1 ∪K2)∗K3] are losing, this529

equation trivially holds; we thus assume that this set contains a winning word. We therefore530

have to show that there is a winning word in [wK∗1 ], [wK∗2 ], or [wK3]. We study the three531

possible values of m separately.532

If m = mc
init, then w does not reach T1 nor T2, and the same holds for all words of K1533

and K2, as K1,K2 ⊆ Lmc
init,m

c
init
. Therefore, if a word of [w(K1 ∪K2)∗K3] is winning, this534

must be because a word of [wK3] is winning.535

If m = mc
2, then w reaches T2 but not T1, and K1,K2 do not reach T1. Thus, a word of536

[K3] must reach T1; in particular, a word of [wK3] must reach both T1 and T2.537

If m = mc
3, we distinguish two cases. If w reaches T2 and T1, then [wK∗1 ]∪ [wK∗2 ]∪ [wK3]538

trivially contains only winning words. If w reaches T1 but not T2, then there must be a539

word reaching T2 in [(K1 ∪K2)∗K3]. Hence, at least one set among [K∗1 ], [K∗2 ], and [K3]540

must contain a word reaching T2, so [wK∗1 ], [wK∗2 ], or [wK3] contains a winning word.541

Similar arguments can be laid out to show that the preference relation v−1 of P2 is542

Mp-monotone andMtriv-selective (whereMtriv is the trivial memory skeleton defined earlier).543

LetM = Mp ⊗Mc ⊗Mtriv be the product of all the considered skeletons. AlthoughM544

formally has six states, its only reachable part is isometric to skeletonMc, with m1 ↔ mc
init545

as initial state, m2 ↔ mc
2, and m3 ↔ mc

3: we thus do not depict it to save space.546

By Lemma 6, we have that both v and v−1 areM-monotone andM-selective. Using547

Theorem 9, we obtain that both players have UFM strategies based on skeleton M in all548

games G = (A,v). Note that memory skeletonM is minimal (no memory skeleton with two549

states or less suffices for P1 to play optimally in all arenas [21]).550

We provide an example of a one-player arena A = (S1, S2 = ∅, E) in Figure 2, and551

show that there is a UFM strategy for the preference relation v based on skeleton M.552

To do so, we invoke Lemma 1: we show equivalently that the product A nM admits an553

(S ×{minit})-optimal memoryless strategy for v. Notice that no memoryless strategy suffices554

to play optimally in G = (A,v), as when starting in s2, P1 should first visit s1 before going555

to s3. Also, the (S × {minit})-optimal memoryless strategy for the product arena is only556

optimal if the initial state is in S × {minit}; it is for instance not optimal from state (s2,m2).557
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6 Technical sketch558

Due to space constraints, we only sketch our proof schemes here: full proofs are in [6].559

From finite memory based on M to M-monotony and M-selectivity. For the left-to-560

right implication of Theorem 9, it suffices to consider the weaker assumption involving only561

one-player: we establish that if UFM strategies based onM exist in all one-player games of562

P1 (resp. P2), then his preference relation v (resp. v−1) isM-monotone andM-selective. To563

maintain a compositional approach, we considerM-monotony andM-selectivity separately.564

Details are in [6, Section 4].565

Let us sketch the proof for M-monotony and P1. We need to establish Equation (2).566

We instantiate the four languages involved in it: {w}, {w′}, K1 and K2. We take NFA567

recognizing them and build an NFA N that joins them in such a way that, when N is568

considered as a one-player game arena, its plays correspond exactly to the languages of569

infinite words considered in Equation (2). This arena is composed of two chains emulating570

the two prefixes w and w′ and leading to a state t where P1 has to pick a side corresponding571

to the two languages [K1] and [K2]. Now, proving the M-monotony of v boils down to572

invoking an optimal strategy σ in the corresponding game, the crux being that σ always573

picks the same edge in t (i.e., the same side between subarenas corresponding to [K1] and574

[K2]) as both prefixes w and w′ are deemed equivalent by the memory skeletonM.575

The proof forM-selectivity is similar. The main difference is that the “joining” state t576

can be visited repeatedly in this case — possibly infinitely often. This is because Equation (3)577

is about cycles and their languages. Our proof takes that into account.578

From M-monotony and M-selectivity to finite memory based on M. The right-to-left579

implication of Theorem 9 is more complex to establish. In this case, we want the result for580

two-player games, provided both preference relations areM-monotone andM-selective. The581

general scheme we use is an induction on the number of choices in arenas. The main issue582

is dealing with the memory: one additional choice in an arena results in many ones in the583

corresponding product arena. To circumvent this obstacle, we proceed in two steps. Details584

are in [6, Section 5].585

We first establish the existence of UML strategies in (prefix- and cyclic-)covered arenas.586

Let us focus on the induction step we use to prove this result, as an example of the techniques587

involved. For an arena A = (S1, S2, E), we write nA = |E| − |S| for its number of choices.588

To simplify, let us say we have a skeletonM such that v isM-monotone andM-selective,589

and that we assume that memoryless — for the two players — NE exist from all covered590

states in arenas with less than n choices. Then we establish that we can also build an NE in591

arenas with n choices, in which P1 uses a memoryless strategy — but maybe not P2! To592

prove this, we proceed as follows.593

Let A be an arena with nA = n choices. We identify a state t in which P1 has at least two594

outgoing edges. By splitting the edges in t in two sets, we obtain two corresponding subarenas595

Aa and Ab such that nAa , nAb
< n, along with the corresponding subgames. The induction596

hypothesis gives us two memoryless NE (from covered states) in these subgames: (σa1 , σa2 )597

and (σb1, σb2). The arguments can then be unfolded as follows. First, usingM-monotony and598

M being a prefix-cover, we identify one subarena (say Aa) which is clearly at least as good599

as the other for P1. Second, we build a strategy profile (σ#
1 , σ

#
2 ), that we claim to be an NE600

in G = (A,v), in the following way: P1 uses strategy σa1 (the one from the best subarena)601

and P2 reacts to P1’s actions by playing the corresponding best-response strategy. I.e., if602
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P1 plays in Aa, P2 plays according to σa2 , and otherwise he plays according to σb2. Third, it603

remains to prove the two inequalities of Equation (1). The rightmost one is easy, as well as604

the leftmost one in the subcase where the unique play π ∈ Plays(A, s, σ#
1 , σ

#
2 ) does not visit605

state t: they can both be proved thanks to the induction hypothesis and easy construction606

arguments. The crux of the proof is thus in the last step: proving that the leftmost inequality607

holds when the play visits t. This can be achieved thanks toM-selectivity andM being a608

cyclic-cover, properties of the union operator in languages of prefixes, inherent properties of609

the preference relation, Aa being the best subarena thanksM-monotony, and the induction610

hypothesis, in that order.611

The actual induction step and its proof are more subtle — for example, we use different612

skeletons for monotony and selectivity and obtain the result in a compositional way; but613

the main intuition is carried here. The same result can be established symmetrically for P2,614

but again the resulting NE is only memoryless for P2. Yet, assuming both v and v−1 are615

M-monotone andM-selective, we have two half-memoryless NE that we can mix to obtain a616

truly memoryless NE via Lemma 2; thus proving the existence of UML strategies in covered617

arenas. Observe this interesting by-product of our approach: we can actually detect arenas618

where memory is not needed at all thanks to our concepts of prefix- and cyclic-covers.619

The final result — the existence of UFM strategies based onM in all arenas — can then620

be obtained as a corollary, based on the link between memoryless strategies in product arenas621

and memoryfull ones in original arenas (Lemma 1). Another nice by-product of our approach,622

witnessed in Corollary 10, is that the product of individual memories from one-player games623

is sufficient to play optimally in two-player games, for both players. This is in stark contrast624

to the counter-example discussed in Section 1 and it illustrates that our characterization625

matches well-behaved preference relations.626

Equivalence and lifting corollary. The equivalence (Theorem 9) is easily obtained by putting627

together its two directions. Note that we also establish a similar equivalence in the one-player628

case as a by-product.629

I Theorem 11 (One-player equivalence). Let v be a preference relation and let M be a630

memory skeleton. Then, P1 has UFM strategies based on memory skeleton M in all his631

one-player games G = (A,v) if and only if v isM-monotone andM-selective.632

Although this looks like a weak version of Theorem 9 at first sight, this is actually a633

distinct result as both sides of the equivalence are weaker: on the left side, it only handles634

the memory requirements for P1’s one-player games; on the right side, it does not assume635

anything about the inverse preference relation v−1.636

The lifting corollary, Corollary 10, is also a consequence of our approach. As we have637

seen, the existence of UFM strategies based on a skeletonM in one-player games suffices to638

yieldM-monotony andM-selectivity of the corresponding preference relation. Hence if both639

players have UFM strategies in their one-player games, both relations satisfy these properties640

and we can take the other direction of Theorem 9 to ensure that UFM strategies also exist in641

two-player games. As explained above, this approach can actually be used compositionally.642

All proofs, as well as the one-player equivalence, are presented in details in [6].643
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A Discussion807

We close our paper with a discussion of the assets and limits of our approach, its applicability808

with regard to the current research landscape, and the directions we aim to follow in future809

work.810

Technical overview. Naturally, our technical approach is inspired by the one of Gimbert811

and Zielonka for the memoryless case [27], which can actually be rediscovered through our812

results using a trivial memory skeleton. Two of the most important challenges we had to813

overcome were:814

1. establishing natural concepts of monotony and selectivity modulo memory that are exactly815

as powerful as required to maintain a complete characterization (i.e., sufficient and816

necessary conditions) in the finite-memory case;817

2. circumventing the seemingly unavoidable coupling between the memory skeleton and the818

arena in the inductive argument needed to prove the implication fromM-monotony and819

M-selectivity to finite-memory optimal strategies — which we were able to do using our820

notions of prefix-covers and cyclic-covers.821

All along our paper, we highlighted the similarities and discrepancies between our work and822

Gimbert and Zielonka’s [27]. As observed through [6, Remark 16], our results are established823

using fine-grained assumptions and conclusions, in an effort to push the approach to its824

limits. They also preserve compositionality, splitting the reasoning for M-monotony and825

M-selectivity, and for the two players.826

AlongsideM-monotony andM-selectivity, we define two other key concepts to solve the827

technical issues related to the induction on product arenas: prefix-covers and cyclic-covers.828

These notions are crucial tools to prove the right-to-left implication of Theorem 9.829

Some advantages. The aforementioned concepts of prefix-covers and cyclic-covers also have830

benefits from a practical point of view: given a preference relation v and the corresponding831

memory skeletonM, they let us identify game arenas where memoryless strategies suffice832

whereas finite memory (based onM) might be necessary in general. Such arenas are the833

ones covered byM. Hence in practice, this approach permits to obtain UML strategies for834

many arenas where a coarser approach would only provide UFM ones.835

Our approach yields two methods to establish that a preference relation (or equivalently836

a payoff function or a winning condition) admits UFM strategies. The first one, exhibiting837

appropriate memory skeletons and proving M-monotony and M-selectivity, is based on838

Theorem 9 and can be used compositionally through [6, Corollary 25]. The second one follows839

the lifting corollary, Corollary 10: one only has to study the one-player subcases then invoke840

this result to lift the existence of UFM strategies to the two-player case, without checking841

forM-monotony andM-selectivity at all. Hence this second method is often painless in842

practice.843

Two interesting facts can be seen through Corollary 10. First, there is no blow-up in the844

memory required when going from one-player games to two-player games: the overall memory845

simply combines the memory skeletons of the two players. Second, assuming that one has an846

algorithm to solve1 one-player games — say for P1 — for a winning condition satisfying our847

hypotheses, this lifting corollary also induces a naive algorithm for the two-player case for848

free: thanks to the bounds on memory, one may enumerate the strategies of the adversary, P2849

1 I.e., decide who has a winning strategy from a given state.
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— or guess one if one aims for a non-deterministic algorithm — and solve the corresponding850

P1’s game(s) where the strategy of P2 is fixed. Note that while such a simple algorithm851

might not be optimal, it does correspond to the approach giving the best complexity class852

known for the renowned family of games in NP ∩ coNP, such as, e.g., parity or mean-payoff853

games (e.g., [31]). These last two cases could already be dealt with thanks to Gimbert and854

Zielonka’s result since they involve memoryless strategies, but now a similar road can be855

taken for any objective that admits arena-independent finite-memory optimal strategies, such856

as, e.g., generalized parity games.857

Applicability. Let us give a quick tour of some classical (combinations of) objectives —858

expressed through winning conditions, payoffs or preference relations — and assess whether859

our approach permits to establish the existence of UFM strategies in the corresponding860

games.861

Note that when considering multiple (quantitative) objectives, optimal strategies usually862

do not exist, and one has to settle for Pareto-optimal ones (e.g., [18]). However, in many863

cases, the (decision) problem under study is as follows: given a threshold (vector), define864

the winning condition as all the plays achieving at least this threshold, and check for a865

winning strategy. Hence multi-objective quantitative games are often de facto reduced866

to qualitative win-lose games for this so-called threshold problem. Observe that, given a867

multi-objective setting, if UFM strategies exist for all threshold problems, then finite-memory868

strategies suffice to realize the Pareto front (as each point of this front can be considered869

as a threshold). Therefore, our approach also enables reasoning about the existence of870

finite-memory Pareto-optimal strategies in multi-objective games.871

We start our overview with some game settings that fall under the scope of our approach.872

Obviously, all memoryless-determined objectives are among them, since we generalize Gimbert873

and Zielonka’s work [27]: this includes, e.g., mean-payoff [19], parity [20, 43], energy [12]874

or average-energy games [5]. As established in Section 1, our results encompass all cases875

where arena-independent memory suffices. Hence they permit to rediscover the existence of876

UFM strategies for games such as, e.g., generalized reachability [21], generalized parity [16],877

window parity games [10], some variants of window mean-payoff games [14], or lower- and878

upper-bounded (multi-dimension) energy games [3, 5, 4]. Our approach can also be useful to879

extend these known results to more general combinations, either via appropriate memory880

skeletons or through the lifting corollary (see an application in Section 5).881

There are many games that do not fit our approach for good reasons, as they do not admit882

UFM strategies in general: e.g., multi-dimension mean-payoff [42], mean-payoff parity [15],883

or energy mean-payoff games [11]. More interesting are games for which finite-memory884

strategies exist, but the memory is arena-dependent. These notably include games with885

multi-dimension lower-bounded energy objectives and no upper bound [17, 32], or other886

variants of window mean-payoff games [14]. In such games, the players usually have to keep887

track of information such as, e.g., the sum of weights along an acyclic path, which is bounded888

for any given arena, but by a value that grows when the arena grows. Hence the need for889

memory that grows with the arena parameters. Our results cannot be applied directly to890

such cases in order to obtain the existence of finite-memory strategies for all games. An891

adaptation of our approach could potentially be used for subclasses of arenas where the892

parameters are bounded (in order to regain a skeleton working on all arenas of the class).893

Critical analysis. Let us take a step back and assess the place of our work in its larger line894

of research. The natural endgame is characterizing all preference relations admitting finite-895
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memory optimal strategies, including those using arena-dependent memory, and pinpointing896

the frontiers of application of the lifting corollary — that is, under which conditions is897

finite-memory determinacy preserved when going from one-player to two-player games?898

The road is long from Gimbert and Zielonka’s characterization in the memoryless case [27]899

to such a general result, and this work is but a first step. We have already established that900

Gimbert and Zielonka’s approach cannot be fully transposed for finite memory. Our focus on901

arena-independent memory is a way to study the frontiers of this approach while providing an902

extension of practical interest. While it may seem limited at first, note that our framework903

already encompasses arguably rich classes of games such as, e.g., generalized parity games904

and fully-bounded energy games. As argued in Section 1, recall that our result is in no way905

a simple application of [27] to product arenas.906

From a practical point of view, our equivalence result has limitations as it inherently907

uses the memory skeleton M. At this point, our approach neither helps in finding an908

appropriate skeleton, nor in determining the minimal one; two highly interesting questions909

from a practical standpoint. Nonetheless, to advance toward answering these questions and910

to be able to find good skeletons automatically, one first has to understand their theoretical911

characteristics, which we do here as a necessary stepping stone. Focusing on applications, let912

us note that the equivalence result is often not the most suited tool: this is instead where913

the lifting corollary shines. As noted before, reasoning on one-player games (i.e., graphs) is914

generally much easier than in two-player games (e.g., [5, 4, 11]). Hence, a reasonably easy915

way to tackle practical cases is to find skeletons sufficient for P1 and P2 in their respective916

one-player games and to use our constructive result to build a skeleton that suffices for both917

in two-player games.918

Comparison with related work. We already discussed the most important related papers [26,919

27, 33, 1, 35, 41] in Section 1. Let us highlight here some works where similar approaches920

have been considered to establish “meta-theorems” applying to general classes of games, or921

works that inspire interesting directions of research. First and foremost is the determinacy922

theorem by Martin that guarantees determinacy (without considering the complexity of923

strategies) for Borel winning conditions [35].924

Aminof and Rubin provide a simpler (but incomplete) approach to memoryless determinacy925

through the prism of first-cycle games in [1]: a similar take on finite-memory determinacy926

could be appealing — it could provide sufficient conditions easier to test thanM-monotony927

andM-selectivity.928

Let us discuss the work of Kopczyński. First, in [33], he establishes sufficient (and929

relaxed) conditions to ensure the existence of UML strategies for one player, in two-player930

games: it would be interesting to study the corresponding problem in the finite-memory case.931

Indeed, in many games where infinite memory is needed, it is only the case for one of the932

players (e.g., [42, 15, 11]) and conditions à la Kopczyński could thus prove useful. Note that933

this is different from Theorem 11, which gives a sufficient and necessary condition but for934

one-player games only. Second, we recently discovered unpublished content in Kopczyński’s935

PhD thesis [34]. Kopczyński distinguishes chromatic memory (which corresponds to our936

definition of memory skeleton), and the more powerful chaotic memory, where transitions937

can depend on the actual edges of the arenas, rather than simply on their colors. Chaotic938

memory is thus intrinsically arena-dependent. Our notion of an arena being both prefix- and939

cyclic-covered by a memory skeleton M is equivalent to a notion in [34, Definition 8.12],940

which defines that an arena adheres to chromatic memoryM if it is possible to assign a state941

ofM to every state of the arena such that moving along the edges updates these memory942
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states in a consistent way. Our definitions of prefix- and cyclic-cover can be seen as two943

distinct sides of this idea of adherence, which when added up, are actually equivalent to it.944

Following the same motivation as our work — the need to characterize (combinations of)945

objectives admitting finite-memory optimal strategies, Le Roux et al. [41] take another road:946

whereas our work permits to lift results from one-player games to two-player games, they947

provide a lifting from the single-objective case to the multi-objective one. Their techniques, as948

well as the scope of their results, are somewhat orthogonal to ours. Whether both approaches949

can be intertwined to obtain results on more general settings remains an open question.950

Our work focuses on deterministic turn-based two-player games. Sufficient conditions951

have been published for stochastic models but to the best of our knowledge, no complete952

characterization, even for the simplest case of Markov decision processes (e.g., [24]). Two953

unpublished articles contain interesting results on stochastic games [28, 25], including an954

extension of Gimbert and Zielonka’s original work, by the same authors [28]. Whether part955

of our approach can be useful to tackle the finite-memory case in this context, or in richer956

contexts mixing games and stochastic models (e.g., [9]) is a question for future research.957

Some sufficient criteria, orthogonal to our approach, were studied for concurrent games958

in [39].959

Limits and future work. To close this paper, we recall three limits of our approach, and960

the corresponding open problems.961

First, as explained throughout the paper, our results cover all cases where arena-962

independent memory suffices, and are limited to these cases. We have argued that the963

approach cannot be fully lifted to the general case, for good reasons, as the lifting corollary964

breaks in some situations (Section 1). Still, we have hope to generalize our approach to some965

extent to the arena-dependent case, through some function associating memory skeletons966

to arenas, as discussed in Section 1. Obtaining a lifting corollary — under well-chosen967

conditions — in the arena-dependent case would be of tremendous help in practice: see for968

example [5, 4, 11]. Hence this is clearly the next step in our quest.969

Second, our result is a characterization instantiated by a memory skeleton M. While970

the lifting corollary is helpful in applications, it would be fantastic to be able to find an971

appropriate skeleton automatically, and to be able to determine if a given skeleton is minimal972

(with regard to a preference relation). This paper is a first step toward these long-term973

objectives.974

Lastly, as explained in Remark 3 and [6, Remark 24], most of our arguments carry over975

to the case of general Nash equilibria. That is, when considering not necessarily antagonistic976

games where the two players use different, not necessarily inverse, preference relations.977

Whether our approach can be adapted in this case, at the price of an unavoidable blow-up978

of memory, is an open question worth considering. In particular, we want to study the979

links between our results (including the lifting from one-player to two-player games) and980

recent results lifting finite-memory determinacy in two-player games to the existence of981

finite-memory Nash equilibria in multi-player games [40].982
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