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The velocity and the specific entropy of the Chapman-Jouguet (CJ) equilibrium detonation in a
homogeneous explosive are shown to be invariant under the same variation of the initial pressure and
temperature. The CJ state, including its adiabatic exponent and isentrope, can then be calculated
from the CJ velocity or, conversely, the CJ velocity from one CJ variable, without using an equation
of state of detonation products. For gaseous explosives, the comparison to calculations with detailed
chemical equilibrium shows agreement to within O(0.1)%. However, the CJ pressures of four liquid
carbon explosives are found about 20 % greater than the measurements. The CJ-equilibrium model
appears not to be compatible with the velocities and the pressures measured in these explosives. A
simple criterion for assessing the representativeness of this model is thus proposed, which, however,
cannot indicate which of its assumptions would not be satisfied, such as chemical equilibrium or
single-phase fluid. This invariance might illustrate a general feature of hyperbolic systems and their
characteristic surfaces.

I. INTRODUCTION

The Chapman-Jouguet (CJ) detonation [1] is a
classic of the combustion theory, defined as the fully
reactive, plane, and compressive discontinuity wave with
a constant velocity supersonic relative to the initial
state and sonic relative to the final burnt state at
chemical equilibrium. The CJ state and velocity are
thus calculated through the Rankine-Hugoniot (RH)
relations and an equation of state of detonation prod-
ucts. However, detonation processes are unstable and
very sensitive to losses, which the RH relations cannot
describe. The CJ model only provides limiting reference
velocities and reaction-end states independently of any
condition for detonation existence and, as such, is the
staple of detonation theory. It is the purpose of this
study to bring out and investigate two supplemental CJ
properties perhaps useful as a semi-empirical tool to
interpret experiments and improve modelling.

The first one is that the CJ detonation velocity DCJ

and the specific entropy sCJ of a homogeneous explo-
sive substance are invariant under the same variations of
the initial temperature T0 and pressure p0: if one is in-
variant, so is the other; different initial states producing
the same DCJ produce different CJ states on the same
isentrope. The second one is that a CJ state and its
isentrope can then be easily calculated from the value of
DCJ without equilibrium equation of state; conversely,
DCJ can be obtained from one CJ variable. They ap-
ply only to explosives whose fresh and burnt states are
single-phase inviscid fluids, with temperature T and pres-
sure p as independent variables. Figure 1 depicts the CJ
model and the Velocity-Entropy Invariance (DSI) theo-
rem in the Pressure (p) - Volume (v) plane based on usual
properties of detonation modelling (Sect. II).
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FIG. 1. An equilibrium isentrope of detonation products (S)*
can be the common envelope of equilibrium Hugoniot curves
(H)*, (H)’ and (H) and Rayleigh-Michelson lines (R)*, (R)’
and (R) if their poles O*, O’ and O lie on a particular p∗0 (v0)
line through a reference initial state O*(p0∗, v0∗) (the Hugo-

niot curvatures are accentuated). The slopes −(DCJ /v0)2of
these (R) lines increase with increasing initial volume v0, but
the DSI theorem ensures they have the same CJ velocity D∗CJ.
This determines the CJ*, CJ’ and CJ states, the p∗0(v0) ini-
tial states, and the isentrope (S)*, given D∗CJ and the initial
sound speeds and Gruneisen coefficients.

Efforts today focus less on the physical relevance of the
CJ model than on the identification and the modelling of
the processes in the reaction zone of detonation, namely
chemical changes, losses, adiabatic or not, cellular insta-
bilities in homogeneous explosives, the condensation of
carbon or local heat exchanges between grains in het-
erogeneous explosives, nonlocal thermodynamics. Most
of them can prevent reaching the CJ-equilibrium state.
The CJ model is essentially an ideal thermodynamic limit
useful for calibrating the equations of state of detonation
products whether or not the reactive flow reaches chem-
ical equilibrium.
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Is the detonation regime identifiable from experimental
detonation velocities and pressures? Models are generally
rejected if they cannot represent the observations. How-
ever, the differences may be due to inaccurate measure-
ments or nonphysical parameters, the assumptions may
not be physically relevant to the experiments, and an
agreement should not exclude fewer assumptions. Equa-
tions of state of detonation products are calibrated by
fitting the calculated CJ properties to the experimental
values, but no criteria ensure the latter are those of the
CJ-equilibrium detonation. This study proposes they are
not if they do not satisfy the supplemental properties.

To some degree, this work also extends the semi-
empirical Inverse Method of Jones [2], Stanyukovich [3]
and Manson [4]. The Inverse Method gives the CJ hydro-
dynamic variables from experimental values of DCJ and
its derivatives with respect to two independent initial-
state variables, such as p0 and T0 (Subsect. III-D, §2);
this work shows that the only value of DCJ is sufficient.

Section II is a reminder on classical but necessary ele-
ments that also introduces the main notation, Section III
sets out the DSI theorem and the supplemental CJ prop-
erties, Section IV is an analysis of their agreements or
differences with calculations or measurements for gases
and liquids, and Section V is a summary with some spec-
ulative conclusions.

II. REMINDERS AND NOTATION

The CJ postulate is that the sonic and equilibrium
constraints are satisfied at the same position in the flow.
This is in fact more of an ideal mathematical limit than
observable physical reality. The traditional introduction
to this old issue is the Zel’dovich-von Neuman-Döring
(ZND) detonation model, namely a leading shock sup-
ported by a subsonic laminar reaction zone [5]. In a
self-sustained detonation, the interplay between flow dy-
namics and physicochemical processes is such that the
sonic front of the rear expansion maintains a sufficient
distance from the shock so that the chemical processes
achieve enough progress. The main difficulty is that the
ZND model uses the frozen sound speed, while the CJ
model uses the equilibrium sound speed.

A. Where the Chapman-Jouguet model lies

Most explosive devices have finite transverse dimen-
sions, so self-sustained detonations are nonideal, with
diverging reaction zones that encompass a frozen sonic
locus, hence curved leading shocks and lower velocities
than the plane CJ one: the flow behind the sonic locus
cannot sustain the shock. However, any reaction process
cannot reach CJ equilibrium as the steady planar limit
of a frozen-sonic curved ZND detonation [6]. Higgins [7]
presented several examples of equilibrium-frozen issues
and nonideal detonations.

At the sonic locus, the rates of reaction processes, pos-
sibly nonmonotonic, exothermic or endothermic [8, 9],
have to offset those of losses, such as heat transfer, fric-
tion or transverse expansion of the reaction zone so that
the flow derivatives can remain finite there. The dynam-
ics of a self-sustained ZND detonation is thus described
by an Eigen-constraint between the parameters of the re-
action and loss rates [10] and those of the leading-shock,
namely its normal velocity, acceleration and curvature
[11–14]. Achieving the CJ balance at least requires set-
ups large enough so that losses are negligible and the
detonation front is flat, and distances from the ignition
position long enough so that the gradients of the expand-
ing flow of products are small and the chemical equilib-
rium can shift continuously.

Reaction processes differ for gases and liquids. For
gases, up to moderately large equivalence ratios (ER),
the prevailing view is that the translation, rotation and
vibration degrees of freedom re-equilibrate much faster
than chemical kinetics. For liquids, molecular-bond
breaking would make the deexcitation time of vibra-
tions comparable to that of chemical relaxation [15].
Tarver [16] gave an introduction to the Non-Equilibrium
ZND model. Local thermodynamic equilibrium would
be reached before chemical transformation in such gases
but perhaps not in the detonation products of liquids.
For gases with very large ERs, several works, e.g. [17–
20], point out that the condensation of solid carbon de-
creases the detonation velocity with increasing ERs faster
than predicted by calculations that model the detonation
products as a homogeneous gas. Carbon condensation is
inherent to detonation in many condensed explosives [21–
23]. The DSI theorem is limited to detonation products
described as a single-phase fluid at chemical equilibrium.

The main criticism of the ZND model for homoge-
neous explosives is the instability of their reaction zones.
They are not laminar, and detonation fronts have a three-
dimensional cellular structure. In gases, the flow advects
unburnt pockets, and the experimental mean widths of
detonation cells are 10 to 50 times greater than calcu-
lated characteristic thicknesses of steady planar ZND re-
action zones [24, 25], even if defining such widths can
be difficult. In liquids, instabilities have often been ob-
served, but their relation to chemical kinetics and their
similarities to those in gases are still being investigated
[23, 26–29]. The surface areas of the detonation front or
the cross-section of the experimental device at least have
to be large enough compared to those of the instabilities
for the CJ properties can be representative averages.

The supplemental CJ properties in this work do not
aim at indicating which of the CJ assumptions is not
satisfied, namely sonic chemical equilibrium, single-phase
fluid, or laminar flow. On this point, they provide a sim-
ple criterion for determining whether the CJ-equilibrium
model can represent experimental and numerical data be-
cause they do not necessitate specifying the equation of
state.
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B. Thermodynamic and hydrodynamic relations

The two basic independent thermodynamic variables
for single-phase inviscid fluids, inert or at chemical equi-
librium, are temperature T and pressure p. In hydrody-
namics, the specific volume v (T, p) is more convenient
than T because it appears explicitly in the balance equa-
tions. Specific enthalpy h and entropy s are the main
state functions used in this work. Their differentials write

dh (s, p) = Tds+ vdp, (1)

dh (p, v) =
G+ 1

G
vdp+

c2

G

dv

v
, (2)

dh (T, p) = CpdT +

(
1− T

v

∂v

∂T

)
p

)
vdp, (3)

Tds (p, v) =
vdp

G
+
c2

G

dv

v
, (4)

c2 = Gv
∂h

∂v

)
p

= −v2 ∂p

∂v

)
s

, (5)

G =
v

∂h
∂p

)
v
− v

= − v
T

∂T

∂v

)
s

, (6)

where G is the Gruneisen coefficient, Cp is the heat ca-
pacity at constant pressure, and c is the sound speed. In
gases, the adiabatic exponent γ conveniently defines c by

c2 = γpv, γ = −v
p

∂p

∂v

)
s

. (7)

In the p-v plane, isentropes (ds = 0) have negative slopes
since γ > 0. The fundamental derivative of hydrodynam-
ics Γ [30–33] defines their convexity. Most fluids have
uniformly convex isentropes, their slopes monotonically
decrease with increasing volume (Γ > 0),

Γ =
1

2

v3

c2
∂2p

∂v2

)
s

=
−v
2

∂2p

∂v2

)
s

/
∂p

∂v

)
s

= 1− v
c

∂c

∂v

)
s

. (8)

The fresh (initial, subscript 0) and the equilibrium
(final, no subscript) states of a reactive medium have
different chemical compositions, and thus different state
functions and coefficients. Typically, γ < γ0 and, if
products are brought from a (T, p) equilibrium state to
the (T0, p0) initial state, v (T0, p0) > v0 = v0 (T0, p0) and
h (T0, p0) < h0 = h0 (T0, p0). The difference of enthalpies
Q0 = h0 (T0, p0) − h (T0, p0) is the heat of reaction at
constant pressure.

Conservation of mass, momentum and energy surface
fluxes through hydrodynamic discontinuities is expressed
by the Rankine-Hugoniot relations, which, along the nor-
mal to the discontinuity, write

ρ0D = ρ (D − u) , (9)

p0 + ρ0D
2 = p+ ρ (D − u)

2
, (10)

h0 +
1

2
D2 = h+

1

2
(D − u)

2
, (11)

where ρ = 1/v is the specific mass, and u and D are
the material speed and the discontinuity velocity in a
laboratory-fixed frame, with initial state at rest (u0 =
0). These relations combined with an h (p, v) equation of
state are not a closed system since there are 4 equations
for the 5 variables v, p, h, u and D, given an initial state
(p0, v0) and h0 (p0, v0), hence a one-variable solution, for
example,

p, v, h, u, T, s, c, γ,Γ, G, ... ≡ η (D; v0, p0) . (12)

Its representation in the p-v plane (Fig. 2) is an intersect
of a Rayleigh-Michelson (R) line pR (v,D; v0, p0) and the
Hugoniot (H) curve pH (v; v0, p0),

pR : p = p0 +

(
D

v0

)2

(v0 − v) , (13)

pH : h (p, v) = h0 (p0, v0) +
1

2
(p− p0) (v0 + v) . (14)

FIG. 2. Unreacted (H)0 and equilibrium (H) Hugoniot curves,
and Rayleigh-Michelson lines (R)U and (R)C for discontinuity
velocities greater than or equal to DCJ. The physical inter-
sects are points N, U and CJ (M 6 1. The CJ isentrope (S)C

is positioned between the (R)C line and the (H) curve.

A Hugoniot for a detonation (Q0 > 0, v (T0, p0) > v0)
lies above that for a shock (Q0 = 0, v (T0, p0) = v0): most
fluids have uniformly convex Hugoniots with 1 compres-
sive intersect (N, v/v0 < 1) if Q0 = 0 regardless of D,
and 2 (U and L) if Q0 > 0 and D is large enough. The ob-
servability of states on nonuniformly convex Hugoniots is
an open debate on whether theoretical instability criteria
are met in Nature, based on linear and nonlinear stability
analyses of discontinuities [34–38]. At least physical ad-
missibility (the discontinuity increases entropy, s > s0) or
equivalently mathematical determinacy (uniqueness and
continuous dependency of (12) on the boundaries) have
to be satisfied [39–41]. Denoting by M0 and M the dis-
continuity Mach numbers relative to the initial and the
final states, this is expressed by the subsonic-supersonic
evolution condition

u+ c > D > c0 ⇔
D

c0
= M0 > 1 > M =

D − u
c

. (15)
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C. Chapman-Jouguet states and velocities,
and a remark

The tangency of a Rayleigh-Michelson line pR (v;D),
an equilibrium Hugoniot pH (v) and an isentrope pS (v)
defines CJ points and is equivalent to the sonic condition

MCJ =

(
D − u
c

)
CJ

= 1 or DCJ = (u+ c)CJ , (16)

as shown by

∂pR

∂v

)
D,p0,v0

= −
(
D

v0

)2

< 0, (17)

∂pS

∂v

)
s

= −
(
D

v0

)2

×M−2 < 0, (18)

∂pH

∂v

)
p0,v0

= −
(
D

v0

)2

×
(

1 + 2
M−2 − 1

F

)
, (19)

F (G, v; v0) = 2−G
(v0

v
− 1
)
. (20)

There are 2 CJ points on uniformly convex Hugoniots
(Fig. 3). The upper, compressive, one (CJc) is the CJ
detonation, with velocity supersonic relative to the initial
state (vCJ/v0 < 1, pCJ/p0 > 1, DCJc/c0 > 1). The
lower, expansive, one (CJx) is the CJ deflagration, with
velocity subsonic relative to the initial state (vCJ/v0 > 1,
pCJ/p0 < 1, DCJx/c0 < 1).

FIG. 3. Detonation (upper) and deflagration (lower) Hugo-
niot arcs. The physical branch is above the compressive CJ
point CJc.

The admissibility of the CJ detonation (App. B)
requires ΓCJ > 0, so F > 0 about and at a CJ point,
the physical branch of an equilibrium Hugoniot arc
is convex and above the CJ point as M decreases
from 1 and s increases with decreasing v, and pS (v)
is positioned between pH (v) and pR (v) if G > 0. The
other properties useful here are 0 6 ∂sH/∂D)p0,v0 < ∞
regardless of M , and, since FCJ 6= 0, ∂sH/∂v)

CJ
p0,v0

= 0

and ∂D/∂v)
CJ
p0,v0

= 0, as shown by

v0T

D2

∂sR

∂v

)
D,p0,v0

=
v

v0

M−2 − 1

G
, (21)

v0T

D2

∂sH

∂v

)
p0,v0

= −
(

1− v

v0

)
M−2 − 1

F
, (22)

T

D

∂sH

∂D

)
p0,v0

=

(
1− v

v0

)2

> 0, (23)

v0

D

∂D

∂v

)
p0,v0

= −
(

1− v

v0

)−1
M−2 − 1

F
. (24)

The CJ condition (16) closes system (2), (9)-(11): the
one-variable solution (12) and (16) give the CJ velocities
DCJ and variables ηCJ = (p, v, h, u, T, s, c, γ,Γ, G, ...)CJ
as functions of the initial state,

DCJ = DCJ (v0, p0) , ηCJ = ηCJ (v0, p0) . (25)

The CJ detonation properties are calculated through
thermochemical codes implementing physical equilib-
rium equations of state and thermodynamic properties
at high pressures and temperatures. Simple h (p, v)
equations of state give explicit formulas (App. A).

The hydrodynamic variables (p, v, u, c, h) at CJ points
have a well-known two-variable representation as func-
tions of DCJ and γCJ

(p, v, u, c, h)CJ = yCJ (DCJ, γCJ; v0, p0) , (26)

obtained by combining (7), the mass balance (9), the (R)
relation (13) and the CJ condition (16),

vCJ

v0
=

cCJ

DCJ
=

γCJ

γCJ + 1

(
1 +

p0v0

D2
CJ

)
, (27)

v0pCJ

D2
CJ

=
1 + p0v0

D2
CJ

γCJ + 1
,

uCJ

DCJ
=

1− γCJ
p0v0
D2

CJ

γCJ + 1
. (28)

The Hugoniot relation (14) then gives hCJ.

The zero-variable representation (25) is obtained from
a complete set that includes the energy balance and an
explicit equation of state, hence the two-variable repre-
sentation (26) since it does not use these two relations.
The DSI theorem (Sect. III) supplements (26) with the
energy balance, hence the primary consequence that the
yCJ’s above and γCJ are explicit one-variable functions
of DCJ (Subsect. III-D),

yCJ = yCJ (DCJ; v0, p0) , γCJ = γCJ (DCJ; v0, p0) . (29)

Conversely, DCJ is a function of one CJ variable, for ex-
ample, DCJ (γCJ; v0, p0). The NASA computer program
CEA [42] for calculating chemical equilibria in ideal gases
is used in subsection IV-A for investigating the theorem
and generating CJ properties for comparison to the the-
oretical ones (29).
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III. THE INVARIANCE THEOREM

Considering different initial states of the same homo-
geneous explosive, equivalent statements are:

1. the CJ detonation velocity DCJ and specific en-
tropy sCJ are invariant under the same initial-state
variation;

2. CJ detonations with the same DCJ have the same
sCJ, and conversely;

3. different initial states that produce the same DCJ

determine different CJ states on the same isentrope;

4. an isentrope is the common envelope of Hugoniot
curves and Rayleigh-Michelson lines of CJ detona-
tions with the same velocity.

The CJ detonation state is a solution to the compatibil-
ity constraint on these initial variations. The subsections
below detail the initial-variation problem, the Rankine-
Hugoniot differentials, the theorem demonstration and
its geometrical interpretation (Fig. 1), and the supple-
mental CJ properties.

A. The initial-variation problem

The simplest flow behind a plane discontinuity of
velocity D on a constant initial state (v0, p0) is that
supported by a piston of constant speed up. The flow
is constant-state regardless of up behind a shock with
the same initial and final composition, but only if up is
greater than the CJ speed uCJ in (28) behind a detona-
tion with final burnt state at chemical equilibrium. Its
speed relative to the discontinuity is subsonic (D−u < c).
This defines the constant-velocity overdriven detonation.
The final-state variables η = (p, v, h, T, s, c, γ,Γ, G, ...),
with u = up, are one-variable functions (Subsect. II-B),
such as D (u; v0, p0) and η (u; v0, p0), or η (D; v0, p0)
(12), for example, (A7).

If up is smaller than uCJ, the flow is expanding and
supersonic relative to the detonation front (D − u > c)
but sonic just at the front. The CJ-equilibrium condi-
tion is indeed a consequence of the Taylor-Zel’dovich-
Döring (TZD) simple-wave solution η (x/t) to the ho-
mentropic flow (uniform s) behind this constant-velocity
plane front: u+ c = x/t⇒ (u+ c)CJ = xCJ (t) /t ≡ DCJ,
with t the time and x the position in the flow [10, 43, 44].
In contrast to the overdriven detonation, no perturba-
tion in the flow can reach the front: x < xCJ ⇒ x/t =
u + c < xCJ/t = (u+ c)CJ = DCJ. This defines the CJ
self-sustained detonation (Subsect. II-C, App. B). The
CJ velocity and state are then the functions DCJ (v0, p0)
and ηCJ (v0, p0) (25) of the only initial state, for example,
(27), (28) and (A3) .

If up is exactly set to uCJ, the flow is both constant-
state and sonic regardless of x and t: u+c = (u+ c)CJ =
xCJ (t) /t = DCJ. The velocity D is still equal to
DCJ (v0, p0), which, therefore, is also the smallest value
reachable in a series of experiments, each carried out with
constant values of up greater than, but closer and closer
to uCJ (v0, p0) from one experiment to the other. This is
also the limiting TZD flow for infinite run distances of a
CJ detonation from ignition at a fixed wall (up = 0): the
slopes of the η (x/t) profiles tend to zero with increasing
t at fixed position x.

An overdriven detonation can thus have the same ve-
locity D with different initial states (v0, p0) if up is
set to the value greater than uCJ (v0, p0) that ensures
D (up; v0, p0) = const. There is no reason then why one
of the final-state variables should also be invariant. For
the CJ detonation, the same initial states turn out to en-
sure that both DCJ and sCJ are constant. The invariance
of one ensures the other.

Specific entropy s enters the problem only through
the differentials of h (s, p) (1) and s (p, v) (4), so this
initial-variation problem has to be formulated as ds = 0
and dD = 0, which entails differentiating the Rankine-
Hugoniot relations (9)-(11).

B. Rankine-Hugoniot differentials

Using the dimensionless hydrodynamic variable

z = 1− v

v0
=
v0 (p− p0)

D2
=

u

D
, (30)

the differentials of the Rayleigh-Michelson line (13), the
Hugoniot relation (14) and the h (p, v) equation of state
(2) form the 3× 3 nonhomogeneous linear system for dv,
dp and dh

v0dp

D2
+
dv

v0
= 2z

dD

D
− (2z − 1)

dv0

v0
+
v0dp0

D2
, (31)

2
dh

D2
− (2− z) v0dp

D2
− z dv

v0
= ...

... z
dv0

v0
− (2− z) v0dp0

D2
+ 2

dh0

D2
, (32)

G

1− z
dh

D2
− (G+ 1)

v0dp

D2
−M−2 dv

v0
= 0, (33)

which thus are linear combinations of dD, dv0, dp0 and
dh0 (p0, v0). For example, with the notation F (G, z)
(20),(

M−2 − 1
) v0dp

D2
= z

(
F + 2

(
M−2 − 1

)) dD
D

...

... −
(
1− F (1− z) +

(
M−2 − 1

)
(2z − 1)

) dv0

v0
...

... +

(
1 + (1− F ) (1− z)

z
+M−2 − 1

)
v0dp0

D2
...

... − 2− F
z

dh0

D2
, (34)
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(
M−2 − 1

) dv
v0

= −zF dD
D

...

... + (1− F (1− z)) dv0

v0
− 2− z − F (1− z)

z

v0dp0

D2
...

... +
2− F
z

dh0

D2
. (35)

The differential ds of the specific entropy,

Tds

D2
= ...

... z2 dD

D
+ (1− z) z dv0

v0
− (1− z) v0dp0

D2
+
dh0

D2
, (36)

is obtained by using dh (s, p) (1) instead of dh (p, v) (33)
in (32). The state functions c and G are not involved in
dh (s, p), so neither are M and F in ds (36).

The determinant of system (31)-(33) is M−2 − 1, and
the right-hand sides of (35) and (34) have to be set to
zero for CJ discontinuities (M = 1) so that dv and dp can
be finite, hence the Eigen-constraints for the differentials
dDCJ and dsCJ of the CJ velocity and entropy

dDCJ

DCJ
=

2− FCJ

FCJz2
CJ

dh0

D2
CJ

+
1− FCJ (1− zCJ)

FCJzCJ

dv0

v0
...

...− 2− zCJ − FCJ (1− zCJ)

FCJz2
CJ

v0dp0

D2
CJ

, (37)

TCJdsCJ

D2
CJ

=
2

FCJ

dh0

D2
CJ

+
zCJ

FCJ

dv0

v0
− 2− zCJ

FCJ

v0dp0

D2
CJ

. (38)

They can be directly obtained from (31) and (32) by
using dh (s, p) (1) and ds (p, v) (4), the CJ condition
M = 1 in the form c/v = D/v0 (9) and then eliminating
the combination v0dpCJ/D

2
CJ + dvCJ/v0 [4, 45]. The

intermediate differentials (35) and (36) are necessary to
demonstrate the DSI theorem. The CJ differentials (37)
and (38) show that FCJ 6= 0 (20) is also the continuity
condition that small initial variations produce small
variations of DCJ and sCJ (Subsect. II-B, App. B). In
the acoustic limit (D → c0, v/v0 → 1, z → 0, F → 2),
(36) and (38) coherently reduce to dh0 (s0, p0).

Replacing dh0 by dh0 (p0, v0) (2) written as

dh0

D2
=
G0 + 1

G0

v0dp0

D2
+
M−2

0

G0

dv0

v0
, (39)

introducing

ε = M−2 − 1, (40)

A = z +
2M−2

0

G0
, B = z +

2

G0
, (41)

a = z (1− z) +
M−2

0

G0
, b = z +

1

G0
, (42)

and denoting by

vs = v (s; v0, p0) and vD = v (D; v0, p0) (43)

the specific volume expressed in the sets of independent
variables (s, v0, p0) and (D, v0, p0), the differentials of dv
(35) and ds (36) condense to

εz
dvs
v0

= A
dv0

v0
+B

v0dp0

D2
− F Tds

D2
, (44)

εz
dvD
v0

= (A− aF )
dv0

v0
+ (B − bF )

v0dp0

D2
− z2F

dD

D
,

(45)

Tds

D2
= z2 dD

D
+ a

dv0

v0
+ b

v0dp0

D2
, (46)

and dsCJ and dDCJ to

z2
CJFCJ

dDCJ

DCJ
= (ACJ − aCJFCJ)

dv0

v0
...

...+ (BCJ − bCJFCJ)
v0dp0

D2
, (47)

FCJ
TCJdsCJ

D2
CJ

= ACJ
dv0

v0
+BCJ

v0dp0

D2
CJ

. (48)

C. Demonstration and interpretation

The premise is that the variations of the initial state
lead to finite variations of the final state. In particular,
the slopes of admissible constant-s and constant-D
arcs are finite since the physical values of DCJ and its
variations are (Subsect. III-D).

The differentials of v (s; v0, p0) and v (D; v0, p0) write

dvs =
∂vs
∂v0

)
p0,s

dv0 +
∂vs
∂p0

)
v0,s

dp0 +
∂vs
∂s

)
p0,v0

ds, (49)

dvD =
∂vD
∂v0

)
p0,D

dv0 +
∂vD
∂p0

)
v0,D

dp0 +
∂vD
∂D

)
p0,v0

dD,

(50)

where, from (44) and (45),

εz
∂vs
∂v0

)
p0,s

= A, εz
∂vD
∂v0

)
p0,D

= A− aF, (51)

εz
∂vs
∂p0

)
v0,s

= B, εz
∂vD
∂p0

)
v0,D

= B − bF, (52)

and

εz
D2

v0T

∂vs
∂s

)
p0,v0

= εz−1D

v0

∂vD
∂D

)
p0,v0

= −F. (53)

It is convenient to distribute the initial states p0 and
v0 on arbitrary polar curves p∗0 (v0) through a reference
point v0∗, p0∗ = p∗0 (v0∗) (O∗, Fig. 1). Their slopes
dp∗0/dv0 determine the changes of the initial and the final
properties. Initial states varying on a curve p∗0 (v0) gen-
erate a (p-v) arc of final states between a point U on a
Hugoniot H with pole O(v0, p0 = p∗0 (v0)) and a point U’
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on another Hugoniot H’ with pole O’(v0 + dv0, p0 + dp∗0).
Final states varying at constant initial state lie on the
same Hugoniot as (22)-(24) or (53) express. The total
derivatives of vD = v (D; v0, p0) along an isentrope (s =
const.) and of vs = v (s; v0, p0) along an iso-velocity arc
(D = const.) thus write

dvD
dv0

∣∣∣∣
s

=
∂vD
∂v0

)
s

+
∂vD
∂D

)
p0,v0

dD

dv0

∣∣∣∣
s

, (54)

dvs
dv0

∣∣∣∣
D

=
∂vs
∂v0

)
D

+
∂vs
∂s

)
p0,v0

ds

dv0

∣∣∣∣
D

, (55)

where

∂vD
∂v0

)
s

=
∂vD
∂v0

)
p0,D

+
∂vD
∂p0

)
v0,D

dp∗0
dv0

∣∣∣∣
s

= ...

...
∂vs
∂v0

)
D

=
∂vs
∂v0

)
p0,s

+
∂vs
∂p0

)
v0,s

dp∗0
dv0

∣∣∣∣
D

. (56)

The derivatives d./dv0|s are the variations for which a
piston achieves a constant s (Subsect. III-A); d./dv0|D
are those for constant D. The derivatives dp∗0/dv0 in
(56) for constant s or D are not unique.

The derivatives of D and s in (54) and (55) are ob-
tained from (53), and differential (46) links their sum to
the difference of the derivatives of p∗0,

v0

D

dD

dv0

∣∣∣∣
s

= ε

(
∂vD
∂v0

)
s

− dvD
dv0

∣∣∣∣
s

)
/zF, (57)

v0T

D2

ds

dv0

∣∣∣∣
D

= ε

(
∂vs
∂v0

)
D

− dvs
dv0

∣∣∣∣
D

)
z/F, (58)

z2 v0

D

dD

dv0

∣∣∣∣
s

+
v0T

D2

ds

dv0

∣∣∣∣
D

= ...

... b

(
dp∗0
dv0

∣∣∣∣
D

− dp∗0
dv0

∣∣∣∣
s

)(v0

D

)2

. (59)

The boundedness of the derivatives of v with respect to
the initial-state variations thus implies that, in the sonic
limit ε = 0 (M = 1, z 6= 0, Subsect. III-A),

dD

dv0

∣∣∣∣(M=1)

s

= 0,
ds

dv0

∣∣∣∣(M=1)

D

= 0, (60)

that is, from (59), the DSI theorem

(ds)
(M=1) ≡ dsCJ = 0⇔ (dD)

(M=1) ≡ dDCJ = 0, (61)

expressing the invariance of sCJ and DCJ for the same
initial variation dp∗0. The determinant of the system (47)-
(48) must be zero so that dp0 6= 0 and dv0 6= 0 if dDCJ =
0 and dsCJ = 0, so

−
(v0

D

)2 dp∗0
dv0

∣∣∣∣
DSI

=
ACJ

BCJ
=

(ACJ − aCJFCJ)

(BCJ − bCJFCJ)
=
aCJ

bCJ
, (62)

hence, with (41) and (42), the constraint on the CJ state

G0z
2
CJ + 2zCJ −

(
1−M−2

0CJ

)
= 0. (63)

An interpretation in the p-v plane (Fig. 1) considers
the Hugoniot curves pH (v; p0, v0) (14) as a one-parameter
family y∗H (p, v; v0) = 0 with parameter v0 if their poles
(p0, v0) are distributed on p∗0 (v0),

y∗H (p, v; v0) = ...

... − h (p, v) + h0 (p∗0, v0) +
1

2
(p− p∗0) (v0 + v) . (64)

This family has an envelope if p∗0 (v0) satisfies the condi-
tion obtained by setting to zero the partial derivative of
y∗H (p, v; v0) with respect to v0

∂y∗H
∂v0

)
p,v

= 0⇔ −
(v0

D

)2 dp∗0
dv0

=
z +

2M−2
0

G0

z + 2
G0

=
A

B
. (65)

The CJ-entropy differential (48) shows that this envelope
is an isentrope if it is made up of sonic points.

Similarly, the Rayleigh-Michelson lines (R)
pR (v,D; p0, v0) (14) form a two-parameter family
y∗R (p, v;D, v0) = 0, with parameters v0 and D, if their
poles (p0, v0) are distributed on p∗0 (v0),

y∗R (p, v;D, v0) = −p+ p∗0 +

(
D

v0

)2

(v0 − v) , (66)

which reduces to a one-parameter (v0) sub-family if D is
varied with v0 and p0. Setting to zero the partial deriva-
tive of y∗R (p, v;D (v0,p∗0 (v0)) , v0) with respect to v0 thus
gives the condition for the R lines to have an envelope

∂y∗H
∂v0

)
p,v

= 0⇔ −
(v0

D

)2 dp∗0
dv0

= 1− 2z + 2z
v0

D

dD

dv0
. (67)

which is an isentrope if it is made up of sonic points. This
can be observed from

G

1− z
TdsR

D2
=
v0dp0

D2
+ (1− 2z)

dv0

v0
...

... + 2z
dD

D
+
(
M−2 − 1

) dv
v0
, (68)

obtained by combining the differentials of the R relation
(31) and the s (p, v) equation of state (4). If D = DCJ,
(68) and the DSI condition that dDCJ = 0 along an isen-
trope lead to

−
(

v0

DCJ

)2
dp∗0
dv0

= 1− 2zCJ. (69)

Identifying the envelope conditions (65) and (69) re-
turns the constraint (63) on the CJ state. The identities
(56)-(58) show that an isentrope and a constant-velocity
arc have a second-order contact at CJ points (z 6= 0).

An isentrope is thus the common envelope (Fig.
1) of families of equilibrium Hugoniots and Rayleigh-
Michelson lines with initial states such that CJ det-
onations have the same velocity. The relation with
Davis’implementation of the Inverse Method for con-
densed explosives [46] is discussed in subsection III-D,
§2 and 3.
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D. Supplemental Chapman-Jouguet properties

D.1. CJ state and isentrope. The CJ detonation state
is the compressive solution (zCJ > 0) of equation (63)
ensuring nonzero variations dp0 and dv0 for the joint in-
variance of DCJ and sCJ. Using (27), (28) and (30), this
one-variable (DCJ) representation (29) writes

vCJ (DCJ; v0, p0) = v0

1 +G0 −
√

1 +G0

(
1−M−2

0CJ

)
G0

,

(70)

pCJ (DCJ; v0, p0) = p0 +
D2

CJ

v0

√
1 +G0

(
1−M−2

0CJ

)
− 1

G0
,

(71)

γCJ (DCJ; v0, p0) = ...

...
1 +G0 −

√
1 +G0

(
1−M−2

0CJ

)
G0

p0v0
c20
M−2

0CJ − 1 +
√

1 +G0

(
1−M−2

0CJ

) . (72)

Conversely, DCJ is a function of one CJ variable,
for example, the dimensionless pressure jump πCJ =
v0 (pCJ − p0) /c20 from (63) or (71)) or the adiabatic ex-
ponent γCJ from (72). Hence,

(
DCJ

c0

)2

= πCJ

(
1 +

1

2πCJ

)1 +

√√√√1 +
G0(

1 + 1
2πCJ

)2

 ,

(73)(
DCJ

c0

)2

=
1

2

(γCJ + 1)
2

γ2
CJ − 1−G0

×

{
1− 2

1 + G0

γCJ+1

γCJ + 1

γCJ

γ̃0
...

... +

√√√√
1− 4

1 +
G0−(1+G0)

γCJ
γ̃0

γCJ+1

γCJ + 1

γCJ

γ̃0

 , (74)

where γ̃0 = c20/p0v0 and should not be confused with γ0,
except for gases (Subsect. II-A). Relation (74) shows a
large sensitivity of DCJ to γCJ, as is more evident in the
gas example below from (77). The identity

G0 =
α0c

2
0

Cp0
, α0 =

1

v0

∂v0

∂T0

)
p0

, (75)

indicates that the necessary initial data are c0, Cp0 , and
v0 measured as a function of T0 at constant p0 so the
coefficient of thermal expansion α0 can be determined.

For ideal gases, c, Cp, α and γ are functions of T =
pv (W/R) only, G = γ−1, v = RT/pW , α = 1/T . Thus,
for initially ideal gases,

γCJ (DCJ, p0, T0) =

√
γ0

1− γ0−1
γ0

M−2
0CJ

, (76)

D2
CJ (γCJ, p0, T0) =

1− γ−1
0

1− γ0
γ2
CJ

× c20 , (77)

D2
CJ (pCJ, p0, T0)

v0pCJ
=

(
1−

(
1− γ0

2

) p0

pCJ

)
× ...

...

1 +

√√√√√√1 +
(γ0 − 1)

(
1− p0

pCJ

)2

(
1−

(
1− γ0

2

)
p0
pCJ

)2

 . (78)

The strong-shock limits (M−2
0CJ � 1 or p0/pCJ � 1) of

γCJ and D2
CJ are

√
γ0 and

(
1 +
√
γ0

)
v0pCJ, respectively

(their acoustic limits are γ0 and c20). The typical
values γ0 = 1.3, c0 = 330 m/s and DCJ = 2000 m/s
give γCJ = 1.144,

√
γ0 = 1.140 and relative error

100 ×
(
γCJ/

√
γ0 − 1

)
= 0.316 %. Relations (76)-(78)

apply only to initially ideal gases, but products can be
nonideal if p0 is large enough.

The polar curve p∗0 (v0) that generates the invariance
of DCJ and sCJ is solution to the ordinary differential
equation formed by substituting (70) for v in (65) or
(69). The initial condition is the reference initial state
(p0∗, v0∗) with known CJ velocity D∗CJ. Substitution for
p0 in vCJ (70) and pR (13) gives

v∗CJ (v0) = vCJ (v0, p
∗
0 (v0) , D∗CJ) , (79)

p∗CJ (v0) = p∗0 (v0) +
D∗2CJ

v0

(
1− v∗CJ (v0)

v0

)
. (80)

The isentrope p∗S (v) is generated by eliminating v0

between v∗CJ (v0) and p∗CJ (v0), that is, by varying v0 and
representing p∗CJ (v0) as a function of v∗CJ (v0). Thus, v0

can parametrize an isentrope of detonation products.
This, however, necessitates determining Cp0 , c0 and v0

in a sufficiently large (p0, T0) domain.

The DSI theorem holds if the isentropes have finite
slopes so the derivatives dz/dv0|s and dz/dv0|D can be
finite and nonzero at sonic points (Subsect. III-C). This
condition is obtained by differentiating c (s, v) (5) and
the mass balance (9-a) written as v = v0M (c/D),

dv

v
=
dv0

v0
+
dc

c
+
dM

M
− dD

D
, (81)

dc =
∂c

∂s

)
v

ds+
∂c

∂v

)
s

dv, (82)

hence, restricting variations to an isentrope,

Γ
v0

v

dv

dv0

∣∣∣∣
s

= 1− v0

D

dD

dv0

∣∣∣∣
s

+
v0

M

dM

dv0

∣∣∣∣
s

, (83)

with Γ the fundamental derivative of hydrodynamics (8).
The CJ condition M = const. = 1, the DSI property
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dD/dv0|(M=1)
s = 0 (60), (7), (1) and (9), then give

dv

dv0

∣∣∣∣(M=1)

s

= −
(

v0

DCJ

)2
dp

dv0

∣∣∣∣(M=1)

s

= Γ−1
CJ

vCJ

v0
, (84)

v0

D2
CJ

dh

dv0

∣∣∣∣(M=1)

s

= −Γ−1
CJ

(
vCJ

v0

)2

, (85)

v0

DCJ

du

dv0

∣∣∣∣(M=1)

s

=
(
1− Γ−1

CJ

) vCJ

v0
. (86)

The derivatives of v, p and h at constant s (or D from
(61)) are thus finite and nonzero at a CJ point except
if ΓCJ = 0 and ΓCJ → ∞ respectively (the derivative
of u is zero for ΓCJ = 1). In contrast, their derivatives

∂./∂D)
(M=1)
v0,p0

at constant initial state – along the same

Hugoniot – are infinite, that is, ∂D/∂.)
(M=1)
v0,p0

= 0 (24),

(45). In the perfect-gas example (App. A), taking the
partial derivative of v (D; v0, p0) (A7) with respect to
D moves the square-root term to the denominator, so
limD→DCJ

∂v/∂D)p0,v0 = −∞, whereas its derivative

with respect to v0 at constant D, with p0 = p∗0 (v0),
shows that limD→DCJ

dv/dv0|D is finite if dD/dv0|s = 0.

An expression for ΓCJ = d ln v/dv0|(M=1)
s (84) that

combines the partial derivatives of γ0 and G0 can be
obtained by differentiating the DSI constraint (63) with
respect to v0 at constant DCJ.

The ratio dDCJ/dsCJ is obtained by eliminating
dp0/dv0 between (47) and (48). The nonhomogeneous
term is zero from (63), hence

DCJdDCJ

TCJdsCJ
= z−2

CJ

(
1− FCJ

1 +G0zCJ

2 +G0zCJ

)
. (87)

The partial derivatives of DCJ (v0, p0) and DCJ (T0, p0)
are not independent since there are initial-state varia-
tions for which DCJ is constant. This follows from the
triple product rule,

∂DCJ

∂y0

)
p0

= − ∂p0

∂y0

)
DCJ

∂DCJ

∂p0

)
y0

, (88)

where y0 denotes either v0 or T0. Hence, with
∂p0/∂v0)DCJ

given by (65) or (69),

v0

DCJ

∂DCJ

∂v0

)
p0

=
DCJ

v0

∂DCJ

∂p0

)
v0

× (1− 2zCJ) , (89)

DCJ

v0

∂DCJ

∂p0

)
T0

=
T0

DCJ

∂DCJ

∂T0

)
p0

× ...

...
1− (1 + α0T0G0) (1− 2zCJ)M2

0CJ

(1− 2zCJ)α0T0
. (90)

The latter is obtained from the former and the identities

T0

DCJ

∂DCJ

∂T0

)
p0

= α0T0
v0

DCJ

∂DCJ

∂v0

)
p0

, (91)

DCJ

v0

∂DCJ

∂p0

)
T0

=
v0

DCJ

∂DCJ

∂p0

)
v0

...

... −M2
0 (1 + α0T0G0)

v0

DCJ

∂DCJ

∂v0

)
p0

. (92)

The variations of DCJ with respect to T0 at constant p0

thus determine those with respect to p0 at constant T0,
and conversely. The constraints (88)-(92) also apply to
sCJ since ∂p0/∂y0)DCJ

= ∂p0/∂y0)sCJ
.

D.2. The Inverse Method (IM). This reminder is useful
to discuss below the DSI theorem, and its application to
liquid explosives in subsection IV-B. The IM gives the
CJ state from DCJ and its derivatives with respect to
two independent initial-state variables (Sect. I). Manson
[4] and Wood and Fickett [45] examined several IM
options depending on the pair of variables; the two used
in this work derive from (37).

The first one uses the pair (T0, p0). Measurements of
DCJ (T0, p0) give its partial derivatives, substituting (39)
for dh0 (p0, v0) reduces (37) to the differential (47) of
DCJ (v0, p0), and eliminating FCJ (or GCJ) (20) between
its coefficients then gives the CJ state as the solution
zCJ < 1 of

G0Lz
2
CJ + 2KzCJ −

(
1−M−2

0CJ

)
= 0, (93)

where L and K for DCJ (v0, p0) and DCJ (T0, p0) are

L = 1 +
DCJ

v0

∂DCJ

∂p0

)
v0

− v0

DCJ

∂DCJ

∂v0

)
p0

= 1 +
DCJ

v0

∂DCJ

∂p0

)
T0

...

... +
1−M−2

0CJ + α0T0G0

α0T0M
−2
0CJ

T0

DCJ

∂DCJ

∂T0

)
p0

, (94)

K = 1 +M−2
0CJ

DCJ

v0

∂DCJ

∂p0

)
v0

− v0

DCJ

∂DCJ

∂v0

)
p0

=1 +M−2
0CJ

DCJ

v0

∂DCJ

∂p0

)
T0

+
G0T0

DCJ

∂DCJ

∂T0

)
p0

, (95)

through dv0 (T0, p0) and dh0 (T0, p0) (75). The IM rela-
tion (93) also writes

G0z
2
CJ + 2zCJ −

(
1−M−2

0CJ

)
− L−1

(
1−M−2

0CJ

)
× ...

...

(
(1− 2zCJ)

∂DCJ

∂p0

)
v0

− ∂DCJ

∂v0

)
p0

)
= 0, (96)

which reduces to the DSI relation (63) by demanding
that the partial derivatives of DCJ meet their DSI
compatibility relation (89). It should be emphasized
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that any assumption on the derivatives of DCJ such
that L and K are each equal to 1 also reduces (93) to
(63). Such assumptions are nonphysical because they
select the acoustic-limit solution M0CJ = 1 – DCJ = c0,
zCJ = 0 – of the DSI and IM relations (63) and (93),
which the expressions of L and K above show. Manson
[47] had noted the strong-shock limit

√
γ0 of γCJ for the

ideal gas (76) by neglecting the dimensionless partial
derivatives ∂ lnDCJ/∂ ln p0)T0

and ∂ lnDCJ/∂ lnT0)p0 .
This contradicts the distinguished limit required by the
large values of M2

0CJ in their coefficients in (94): the
determinants of the 2 × 2 linear systems for the partial
derivatives of DCJ (v0, p0) and DCJ (T0, p0), with L − 1
and K − 1 as nonhomogeneous terms, are proportional
to M−2

0CJ − 1, which therefore must be zero regardless of
the magnitudes of these derivatives, even very small.

The second option uses the pair (v0, h0) at constant p0.
Their variations can be obtained from a set of isometric
mixtures [48], that is, with the same atomic composi-
tion, and hence the same equilibrium equation of state,
for any value of a composition parameter, denoted be-
low by w0 after [45]. Typically, w0 is the total volume-
or mass-fraction of all compounds added to the refer-
ence composition. The initial and CJ properties of the
reference explosive are then defined by w0 = 0. Mea-
surements of v0 (T0, w0), h0 (T0, w0) and DCJ (T0, w0) at
constant p0 give their partial derivatives, setting dp0 = 0
in (37) gives the differential of DCJ (v0, h0), and eliminat-
ing FCJ between its coefficients then gives the CJ state
as the solution zCJ < 1 of

Lz2
CJ + 2KzCJ − 1 = 0, (97)

where L and K for DCJ (v0, h0) and DCJ (T0, w0) are

L = DCJ
∂DCJ

∂h0

)
v0,p0

=

ω0T0

DCJ

∂DCJ

∂T0

)
w0,p0

− α0T0

DCJ

∂DCJ

∂w0

)
T0,p0

ω0
Cp0T0

D2
CJ
− α0T0Ω0

, (98)

K = 1− v0

DCJ

∂DCJ

∂v0

)
h0,p0

= 1 +

Ω0DCJ

T0

∂DCJ

∂T0

)
w0,p0

− Cp0T0

D3
CJ

∂DCJ

∂w0

)
T0,p0

ω0
Cp0T0

D2
CJ
− α0T0Ω0

, (99)

through the identities

dv0

v0
= α0T0

dT0

T0
+ ω0dw0, ω0 =

1

v0

∂v0

∂w0

)
T0,p0

, (100)

dh0

D2
=
Cp0T0

D2

dT0

T0
+ Ω0dw0, Ω0 =

1

D2

∂h0

∂w0

)
T0,p0

. (101)

This option is more convenient than the first because it
does not necessitate c0 and generating sufficiently large
variations of p0 may be uneasy.

The main drawback of the IM is its limited accuracy
because the partial derivatives of DCJ are measured
independently of each other and cumulate their exper-
imental uncertainties (Subsect. IV-B). The CJ state
given by the DSI theorem requires only the value of DCJ.

D.3. Remarks. The envelope conditions (Subsect. III-
C) on D and h0 for the Rayleigh-Michelson (R) lines (13)
and Hugoniot (H) curves (14) if v0 and h0 are indepen-
dent at constant p0 write, from (67) and (64),

v0

D

dD

dv0
=

1

2

1− 2 v
v0

1− v
v0

= 1−
(

2
v0 (p− p0)

D2

)−1

, (102)

v0

D2

dh0

dv0
= −1

2

(
1− v

v0

)
= −1

2

v0 (p− p0)

D2
, (103)

respectively. From (68) and (102), a sonic envelope to
the R lines is an isentrope, which combined with (36)
indeed returns the envelope condition (103) for the H
curves. The constraint dsCJ = 0 can be satisfied here,
but not its DSI equivalence dDCJ = 0 because otherwise,
from (102), vCJ/v0 = 1/2, that is, γCJ = 1. The DSI
theorem dsCJ = 0 ⇔ dDCJ = 0 is physically valid only
if p0 is varied, even if p0/p or v0p0/D

2 are negligible,
and for initial and final states described by two-variable
equations of state T (p, v).

Davis [46] implemented the IM for condensed explo-
sives (p0/p ≈ 10−5) with the specific energy e0 and
mass ρ0 = 1/v0 as independent initial-state variables,
and negligible constant p0. He built DCJ (e0, ρ0) from
Kamlet’s method, and calculated the poles e∗0 (ρ0)
of Hugoniots with the same isentropic envelope, this
isentrope and the CJ state. His relations (14) and (31)
are equivalent to (102) and (103), respectively, because
e0 = h0 if p0 is neglected. Nagayama and Kubota [49]
derived an envelope constraint for the R lines from linear
laws DCJ (ρ0) with negligible dependency on e0. Their
relations (13) and (14) are equivalent to (102), that is,
zCJ = 1/2K from (97) and (98).

The differentials of the Rankine-Hugoniot relations
and the equations of state form a 2 × 2 homogeneous
linear system for dp0 and dv0 – with dh0 subject to
(39) – for any invariant pair of final-state variables.
Only the invariance of DCJ and sCJ produces nonzero
and physical dp0 and dv0, that is, a non-trivially null
determinant (63). Thus, no nonzero dp0 and dv0 permit
a focal point in the p - v plane – dpCJ = 0 - dvCJ = 0 –
because then dhCJ = 0 since h = h (p, v), and dDCJ = 0
from (31), which represents the R line through (p0, v0).

Equilibrium compositions in homogeneous media are
functions of T and p, so the differentiations above im-
plicitly take their variations into account with those of a
T (p, v) equation of state (Subsect. III-B). Further, there
is no reason for different initial states to generate the
same frozen final composition.
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IV. APPLICATION TO
GASEOUS OR LIQUID EXPLOSIVES

For gaseous explosives (Subsect. IV-A), the DSI theo-
rem and some supplemental CJ properties were analysed
through chemical equilibrium calculations. Only ideal
detonation products were considered to avoid the uncer-
tainties induced by equations of state calibrated from
experiments that may not have achieved the strict CJ
equilibrium, such as those of condensed explosives (Sect.
I). The calculations were done with the NASA computer
program CEA [42]. For liquid explosives (Subsect. IV-
B), the analysis compares and discusses the theoretical
CJ pressures from (71) and values from experiments and
the Inverse Method (Subsect. III-D, §2).

A. Gaseous explosives with ideal final states

Tables I show numerical values of sCJ and DCJ for the
four stoichiometric mixtures CH4 + 2 O2, C3H8 + 5 O2,
CH4 + 2 Air and H2 + 0.5 Air. Five (T0, p0) pairs with
T0 evenly spaced between 200 and 400 K were used to
represent a largest physical range; the third – T0 = 298.15
K, p0 = 1 bar – was chosen as the reference initial state
(v0∗, p0∗) (subscript ∗, Subsect. III-C). The values of p0

were determined by dichotomy for each T0 so all entropies
have the reference value s∗CJ. The results were analysed
based on the mean velocities D̄CJ, the relative deviations
∆DCJ/D̄CJ and their absolute means mDCJ

in percent,
and the corrected standard deviations σDCJ

,

D̄CJ =
1

I

I=5∑
i=1

DCJi ,

(
∆DCJ

D̄CJ

)
i

= 100× DCJi − D̄CJ

D̄CJ
,

(104)

mDCJ
=

1

I

I=5∑
i=1

∣∣∣∣∆DCJ

D̄CJ

∣∣∣∣
i

, σDCJ
=

√√√√I=5∑
i=1

(
DCJi − D̄CJ

)2
I − 1

.

(105)
All mDCJ ’s and σDCJ ’s are very small. In particular, all
DCJ’s are close to their mean values D̄CJ to O (0.1) % at
most. The agreement is practically exact for C3H8 + 5
O2. An iterative minimization of both ∆DCJ/D̄CJ and
∆sCJ/s̄CJ would probably return values of p0 (T0), D̄CJ

and s̄CJ that even better satisfy the theorem and elim-
inate the slight decreasing trend of DCJ with increasing
T0 at constant s∗CJ observed here. The p0 (T0) values
and the results in table I can be seen as zeroth-order
iterates, so the (v0 (T0) , p0) pairs well approximate the
polar curve p∗0 (v0) through (v0∗, p0∗) (Subsect. III-C).
It is easy, albeit tedious, to check that another reference
than T ∗0 = 298.15 K and p∗0 = 1 bar returns values of
mDCJ

and σDCJ
similarly small.

The small values in tables I were validated through a
sensitivity analysis based on initial states very close to a
reference ∗, and CEA’s numerical accuracy as a criterion.
Table II shows results for the C3H8 + 5 O2 mixture with

TABLE I. Joint invariances of the CJ entropy sCJ and veloc-
ity DCJ of 4 mixtures: mean value D̄CJ, relative deviation
∆DCJ/D̄CJ, mean relative deviation mDCJ , corrected stan-
dard deviation σDCJ .

CH4 + 2 O2 mDCJ = 0.08 %
D̄CJ = 2389.7 m/s σDCJ = 2.47 m/s

T0 p0 sCJ DCJ
∆DCJ
D̄CJ

(K) (bar) (kJ/kg/K) (m/s) (%)
200.00 0.6284 id. 2392.9 0.13
250.00 0.8118 id. 2391.2 0.06
298.15∗ 1.0000∗ 12.6653∗ 2389.6 ∼ 0.00
350.00 1.2165 id. 2388.0 −0.07
400.00 1.4410 id. 2386.7 −0.12

C3H8 + 5 O2 mDCJ = 0.012 %
D̄CJ = 2356.7 m/s σDCJ = 0.41 m/s

T0 p0 sCJ DCJ
∆DCJ
D̄CJ

(K) (bar) (kJ/kg/K) (m/s) (%)
200.00 0.6304 id. 2357.3 0.03
250.00 0.8127 id. 2356.7 ∼ 0.00
298.15∗ 1.0000∗ 11.9293∗ 2356.3 −0.015

350.00 1.2165 id. 2356.3 −0.015

400.00 1.4419 id. 2356.7 ∼ 0.00

CH4 + 2 Air mDCJ = 0.05 %
D̄CJ = 1799.9 m/s σDCJ = 1.23 m/s

T0 p0 sCJ DCJ
∆DCJ
D̄CJ

(K) (bar) (kJ/kg/K) (m/s) (%)
200.00 0.6044 id. 1801.4 0.08
250.00 0.7968 id. 1800.7 0.05
298.15∗ 1.0000∗ 9.4218∗ 1799.9 ∼ 0.00
350.00 1.2401 id. 1799.1 −0.04
400.00 1.4949 id. 1798.3 −0.09

H2 + 0.5 Air mDCJ = 0.1 %
D̄CJ = 1964.7 m/s σDCJ = 2.55 m/s

T0 p0 sCJ DCJ
∆DCJ
D̄CJ

(K) (bar) (kJ/kg/K) (m/s) (%)
200.00 0.6004 id. 1967.9 0.16
250.00 0.7941 id. 1966.4 0.08
298.15∗ 1.0000∗ 10.5927∗ 1964.8 ∼ 0.00
350.00 1.2444 id. 1963.1 −0.08
400.00 1.5042 id. 1961.5 −0.16

three groups of four (T0, p0) pairs. The first pairs (su-
perscript ∗) are the firsts, thirds and fifths in table I-2,
so they generate the same entropy s∗CJ. Their CJ states
were used as the references of their group. The seconds
(italics) have T0’s only 5 % greater than the firsts and
p0’s determined by dichotomy so that sCJ = s∗CJ. The
∆DCJ/D

∗
CJ’s are thus at most equal to the O

(
10−2

)
-

% mDCJ
’s in table I-2, and smaller T0 variations would

be nonsignificant. The thirds and fourths are varia-
tions at constant T0 and constant p0, respectively. In
each group, the initial variations chosen to generate the
same s∗CJ (the seconds) give the smaller variations of TCJ,
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TABLE II. Joint invariances of the CJ entropy sCJ and velocity DCJ: sensitivity to small changes of initial state of the C3H8 +5
O2 mixture.

T0 p0 sCJ
∆sCJ
s∗CJ

DCJ
∆DCJ
D∗

CJ
TCJ

∆TCJ
T∗
CJ

(K) (bar) (kJ/kg/K) (%) (m/s) (%) (K) (%)
200.00∗ 0.6304∗ 11.9293∗ / 2357.3∗ / 3799.46∗ /
210.00 0.6660 11.9293∗ / 2357.1 -0.01 3801.57 0.06
200.00 0.6660 11.9093 −0.17 2359.7 0.10 3810.15 0.28
210.00 0.6304 11.9493 0.17 2354.7 −0.14 3790.91 −0.22
298.15∗ 1.0000∗ 11.9293∗ / 2356.3∗ / 3821.11∗ /
313.06 1.0606 11.9293∗ / 2356.3 0.00 3824.64 0.09
298.15 1.0606 11.9078 −0.18 2358.9 0.11 3832.68 0.30
313.06 1.0000 11.9508 0.18 2353.6 −0.11 3813.09 −0.21
400.00∗ 1.4419∗ 11.9293∗ / 2356.7∗ / 3846.74∗ /
420.00 1.5371 11.9293∗ / 2356.9 0.01 3852.19 0.14
400.00 1.5371 11.9059 −0.20 2359.6 0.12 3859.48 0.33
420.00 1.4419 11.9527 0.20 2354.0 −0.11 3839.46 −0.19

TABLE III. Initial data for calculating the theoretical CJ state from the CJ velocity DCJ for C3H8/O2 mixtures with 3
equivalence ratios ER and 3 initial temperatures T0 and pressures p0 (Table IV, theo).

ER = 0.8 ER = 1 ER = 1.2
W0 = 33.667 (g/mol) W0 = 34.015 (g/mol) W0 = 34.340 (g/mol)

T0 p0 γ0 c0 v0 DCJ γ0 c0 v0 DCJ γ0 c0 v0 DCJ

(K) (bar) (m/s) (m 3/kg) (m/s) (m/s) (m 3/kg) (m/s) (m/s) (m 3/kg) (m/s)

200.
0.2
1
5

id.
1.3390
id.

id.
257.2
id.

2.4696
0.4939
0.0988

2203.9
2269.8
2334.7

id.
1.3286
id.

id.
254.9
id.

2.4444
0.4889
0.0978

2306.7
2377.6
2447.5

id.
1.3194
id.

id.
252.8
id.

2.4212
0.4842
0.0968

2392.0
2466.1
2538.8

298.15
0.2
1
5

id.
1.3061
id.

id.
310.1
id.

3.6816
0.7363
0.1473

2182.5
2249.2
2315.4

id.
1.2924
id.

id.
306.9
id.

3.6439
0.7288
0.1458

2284.6
2356.3
2427.6

id.
1.2807
id.

id.
304.1
000.0

3.6094
0.7219
0.1444

2369.8
2444.7
2518.9

400.
0.2
1
5

id.
1.2716
id.

id.
354.4
id.

4.9393
0.9878
0.1976

2165.5
2233.2
2300.6

id.
1.2563
id.

id.
350.5
id.

4.8887
0.9777
0.1956

2267.6
2340.1
2412.6

id.
1.2434
id.

id.
347.0
id.

4.8425
0.9685
0.1937

2352.9
2428.6
2504.2

which are all greater than CEA’s O
(
10−3

)
-% accuracy

d̃T/T = d̃p/p = 0.005 % ([42], p.35, eqs.7.24, and p.40)
by at least one order of magnitude. The initial variations
chosen not to generate the same entropy s∗CJ (the thirds
and fourths) give variations of DCJ 10 times greater than
mDCJ

and the same O
(
10−1

)
-% magnitudes for those of

sCJ and TCJ. Therefore, the small O
(
10−2

)
-% variations

of DCJ at constant sCJ, and the greater ones of sCJ and
DCJ at constant T0 and p0, are valid and not due to ini-
tial states chosen too close to each other. The variations
of sCJ are slightly smaller than those of TCJ: the combi-
nation of dh (s, p) (1), dh (T ) = CpdT (3), pv = RT/W

and γ = Cp/Cv, subject to d̃T/T = d̃p/p, gives

d̃s

s
=
(
2− γ−1

) Cp
s
× d̃T

T
= O

(
10−1 − 1

)
× d̃T

T
, (106)

since typical γ, s and Cp are O (1), O (10) kJ/K/kg and
O (1-10) kJ/K/kg, respectively. At p0 = 1 bar and T0 =

298.15 K, CEA gives d̃sCJ/sCJ = 0.33 × d̃TCJ/TCJ for

CH4 + 2 Air, and 0.89× d̃TCJ/TCJ for CH4 + 2 O2.
The theoretical (theo) ratios (ρCJ/ρ0, pCJ/p0, γCJ) ≡

rCJ were calculated from (27), (28) and (76) using CEA

values of DCJ and the initial-state variables, and com-
pared to CEA numerical (num) values. Tables III and
IV show initial data and results for C3H8/O2 mixtures
with equivalence ratios ER= 0.8, 1 and 2, T0 = 200,
298.15 and 400 K, and p0 = 0.2, 1 and 5 bar. Numbers
are rounded, hence nonsignificant discrepancies between
the indicated relative differences εr and those calculated

from rounded r
(num)
CJ and r

(theo)
CJ ,

εr = 100×
r

(num)
CJ − r(theo)

CJ

r
(num)
CJ

. (107)

All εr’s are small, ranging from O
(
10−1

)
to O (1) %,

but greater than the O
(
10−2 - 10−1

)
-% mDCJ ’s, likely

because of the sensitivity to the initial thermodynamic
coefficients: the accuracy of Cp0 determines the others.

The uncertainties of sCJ, γCJ, ρCJ and pCJ are obtained
from ds (p, v) (1), (27), (28), pv = RT/W , γ2

CJ ≈ γ0 =
Cp0/Cv0 (76) and Cp0−Cv0 = R/W0. The typical values

M−2
0CJ � 1, γ2

CJ ≈ γ0 ≈ GCJ + 1 ≈ 1.2, sCJ ≈ 104 J/kg,
R ≈ 8 J/kg/mole, WCJ ≈ 2 × 10−2 kg/mole, and New-
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TABLE IV. Comparison of numerical (num) and theoretical (theo) CJ properties (rCJ) of C3H8/O2 mixtures for 3 equivalence
ratios ER and 3 initial temperatures T0 and pressures p0.

T0 p0 rCJ ER = 0.8 ER = 1 ER = 1.2
(K) (bar) num theo εr (%) num theo εr (%) num theo εr (%)

0.2
ρCJ/ρ0

pCJ/p0

γCJ

1.870 1.844 1.38
46.746 46.010 1.58
1.125 1.159 -3.03

1.870 1.849 1.14
51.635 50.966 1.29
1.127 1.154 -2.41

1.870 1.854 0.86
55.950 55.402 0.98
1.130 1.150 -1.81

200. 1
ρCJ/ρ0

pCJ/p0

γCJ

1.864 1.845 1.02
49.354 48.775 1.17
1.134 1.159 -2.23

1.865 1.850 0.77
54.602 54.121 0.88
1.136 1.154 -1.60

1.863 1.855 0.47
59.180 58.861 0.54
1.139 1.150 -0.96

5
ρCJ/ρ0

pCJ/p0

γCJ

1.859 1.846 0.69
51.990 51.580 0.79
1.142 1.159 -1.50

1.859 1.851 0.43
57.612 57.325 0.50
1.144 1.154 -0.86

1.858 1.856 0.11
62.436 62.357 0.13
1.148 1.150 -0.19

0.2
ρCJ/ρ0

pCJ/p0

γCJ

1.861 1.844 0.92
30.939 30.617 1.04
1.123 1.146 -1.98

1.863 1.852 0.58
34.170 33.947 0.65
1.125 1.139 -1.23

1.863 1.858 0.27
37.031 36.919 0.30
1.128 1.134 -0.53

298.15 1
ρCJ/ρ0

pCJ/p0

γCJ

1.856 1.846 0.55
32.696 32.491 0.63
1.132 1.145 -1.18

1.857 1.854 0.20
36.165 36.084 0.23
1.134 1.139 -0.43

1.857 1.860 -0.12
39.206 39.262 -0.14
1.137 1.134 0.32

5
ρCJ/ρ0

pCJ/p0

γCJ

1.852 1.848 0.20
34.486 34.406 0.23
1.140 1.145 -0.43

1.852 1.855 -0.16
38.204 38.273 -0.18
1.143 1.139 0.34

1.852 1.861 -0.50
41.418 41.654 -0.57
1.146 1.133 1.11

0.2
ρCJ/ρ0

pCJ/p0

γCJ

1.852 1.845 0.38
22.843 22.747 0.42
1.122 1.131 -0.79

1.855 1.855 -0.00
25.232 25.233 -0.00
1.124 1.124− -0.04

1.855 1.862 -0.39
27.352 27.471 -0.43
1.126 1.117 0.79

400. 1
ρCJ/ρ0

pCJ/p0

γCJ

1.848 1.848 -0.01
24.162 24.164 -0.01
1.131 1.131 -0.01

1.850 1.857 -0.39
26.726 26.843 -0.44
1.133 1.123 0.85

1.850 1.864 -0.78
28.982 29.238 -0.88
1.136 1.117 1.63

5
ρCJ/ρ0

pCJ/p0

γCJ

1.843 1.850 -0.36
25.512 25.618 -0.41
1.139 1.131 0.77

1.845 1.859 -0.76
28.262 28.505 -0.86
1.142 1.123 1.62

1.845 1.866 -1.17
30.652 31.059 -1.33
1.145 1.117 2.43

ton’s approximation γCJ ≈ 1+, then give the estimates

δsCJ

sCJ
=

2

sCJGCJ

R

W

1−M−2
0CJ

1 +M−2
0CJ/γ0

δDCJ

DCJ
≈ 1

10

δDCJ

DCJ
,

(108)

δγCJ

γCJ
=

1

2

(
1 +

M−2
0CJ/γ0

1− γ0−1
γ0

M−2
0CJ

)
δγ0

γ0
...

... +

γ0−1
γ0

M−2
0CJ

1− γ0−1
γ0

M−2
0CJ

δDCJ

DCJ
≈ 1

2

δγ0

γ0
=
δCp0
Cp0

, (109)

δρCJ

ρCJ
=

−1

γCJ + 1

δγCJ

γCJ
+

2M−2
0CJ/γ0

1 +M−2
0CJ/γ0

δDCJ

DCJ

≈ −1

4

δγ0

γ0
=
−1

2

δCp0
Cp0

, (110)

δpCJ

pCJ
=
−γCJ

γCJ + 1

δγCJ

γCJ
+

2

1 +M−2
0CJ/γ0

δDCJ

DCJ

≈ −1

4

δγ0

γ0
=
−1

2

δCp0
Cp0

. (111)

The first shows that DCJ is 10 times more sensitive
than sCJ, which validates the choice above of analysing
the DSI theorem with initial states generating the same
sCJ rather than the same DCJ. The last three show that
γCJ is twice more sensitive than ρCJ and pCJ, with pCJ

slightly more so than ρCJ (Table IV). The same is true
for other mixtures: εγ = −3.4 % and mDCJ

= 0.08 %
for CH4 + 2 O2 at T0 = 298.15 K and p0 = 1 bar. The
uncertainty of γCJ is twice as small as that of γ0, as (76)
shows, and thus the same as that of Cp0 . The magnitude
of δCp0/Cp0 depends on T0, p0 and the components
and proportions of the mixture; a sensitivity study to
thermochemical databases should be carried out.

These calculations support physically and numerically
the DSI theorem in a large range of initial conditions:
the larger ∆DCJ/D̄CJ’s at constant sCJ are very small,
smaller than at constant p0 or T0, and not numerical
uncertainties. They also support the supplemental CJ
properties: their differences with the numerical values
is very small, and smaller than the physical uncertainty
of thermochemical coefficients. Similar trends were ob-
tained with CH4, C2H2, C2H4, C2H6 and H2.
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B. Liquid explosives

Four liquids were investigated, namely nitromethane
(NM, CH3NO2), isopropyl nitrate (IPN, C3H7NO3),
hot trinitrotoluene (TNT, C7H5N3O6), and niprona
(NPNA3, C3H10N4O11), that is, the stoichiometric mix-
ture made up of 1 volume of 2-nitropropane (NP,
C3H7NO2) and 3 volumes of nitric acid (NA, HNO3).
Table V compares their theoretical CJ detonation pres-
sures and adiabatic exponents – calculated with (71),
(72) (theo) and experimental detonation velocities – to
measured values (exp) and those given by the Inverse
Method (IM, Subsect. III-D, §2). Tables VI and VII
show the sensitivity of the IM results to the uncertain-
ties of the initial data and the velocity derivatives for
NM and IPN. The IM results (Tab. V) were obtained

with the average derivatives of D
(exp)
CJ (second lines and

columns, respectively, Tabs. VI and VII).

All theoretical pressures (Tab. V) are significantly the
greatest – the low theoretical γCJ’s are consistent with
the large pCJ’s – but the theoretical and the IM values can
agree with each other (Tabs. VI and VII). The analysis
of these disparate trends is a speculative disentanglement
of uncertainties and physics.

The initial-state data are ancient, but reliable and still
referred to, e.g. [50] and [51] for IPN. However, they can
vary slowly over time, so the detonation properties too.
No references here ensure that measurements were car-
ried out with the same batches of explosives over short
enough periods. For NM, four data sets – I, II, III,
IV – at T0 = 4 C and p0 = 1 bar were thus used to as-
sess the sensitivity of the calculations to small variations
of the initial state. For NM I, they were taken in Bro-
chet and Fisson [52], and for NM II in Davis, Craig and
Ramsay [53] except for c0 taken in [52]. For NM III,
the initial properties are those in Lysne and Hardesty
[54] except for Cp0 calculated with the fit Cp0(J/kg/K)

= 1720.9 + 0.54724× T0(C) of Jones and Giauque’s mea-
surements [55] between the melting (245 K) and ambient
(298 K) temperatures; the CJ properties are those in
[52]. For NM IV , ρ0 and α0 were calculated with the fit
ρ0(kg/m3) = 1152.0 − 1.1395 × T0(C) − 1.665 × 10−3 ×
T 2

0 (C) in Berman and West [56]. For IPN, the data were
taken in [52], for NPNA3 in Bernard, Brossard, Claude
and Manson [57], and for TNT in [53] and [58] except
for c0 identified to the constant a of the linear asymptote
D = a+bu to Garn’s shock Hugoniot measurements [59].

The derivatives of D
(exp)
CJ necessary to implement the In-

verse Method could be found only for NM and IPN. Ta-

bles VI and VII-right show those ofD
(exp)
CJ (T0, p0) for NM

and IPN, respectively, from [52]. Table VII-left shows

those of D
(exp)
CJ (T0, w0) for NM from [53], obtained from

isometric mixtures of NM and acenina at mass fractions
w0. Acenina was introduced in [53] as the equimolar mix-
ture of methyl cyanide (CH3CN), nitric acid (HNO3)
and water, so its atomic composition is proportional to
that of NM (CH3NO2).

For NM, the theoretical pressures are insensitive to
the uncertainties of the initial state (Tab. V), unlike
the (T0, p0)-IM pressures (Tab. VI), which can agree
with the former: the same pCJ = 17.9 GPa is obtained
with the values ρ0 = 1149 kg/m3 and α0 = 1.023
K−1 between those of NM III and IV , and with the

values of derivatives ∂D
(exp)
CJ /∂T0 = −3.96 m/s/K and

∂D
(exp)
CJ /∂p0 = 0.191 × 10−5 m/s/bar contained in their

confidence intervals. In contrast, the (T0, w0)-IM pres-
sures (Tab. VII-left) are insensitive to the uncertainties
of the initial state (not shown for concision). Therefore,
the differences are more likely due to uncertain measure-
ments conditions or physical assumptions, at least one
of which may not be satisfied. This includes equilibrium
reaction-end states, single-phase fluid, front adiabaticity,
and local thermodynamic equilibrium (Sect. I).

Davis, Craig and Ramsay [53], [29] refuted the CJ-
equilibrium hypothesis for condensed explosives because
their (T0, w0)-IM implementation for NM and TNT
returned smaller pressures than measurements. But
Petrone [60] considered they used overestimated experi-
mental pressures: for NM at 4 C, they retained 14.8 GPa
(Tab. V, NM II) instead of 12− 14 GPa given by most
measurements and both the (T0, p0)- and (T0, w0)-IM
implementations with their average velocity derivatives
(Tabs. VI, excl. NM IV , and VII-left). However, the
(T0, p0)-IM implementation for NM III also gives 14.8
GPa with values of velocity derivatives within their con-

fidence intervals (Tab. VI), that is, ∂D
(exp)
CJ /∂T0 = −4.12

m/s/K and ∂D
(exp)
CJ /∂p0 = 0.2×10−5 m/s/bar. Also im-

portant, the theoretical and the (T0, p0)-IM pressures can
be equal to each other: for NM III, the theoretical pres-

sure 17.4 GPa is obtained with the values ∂D
(exp)
CJ /∂T0 =

−4.12 m/s/K and ∂D
(exp)
CJ /∂p0 = 0.1902×10−5 m/s/bar

within their confidence intervals and satisfying their DSI
compatibility relationship (90). In contrast, the (T0, w0)-
IM pressures are smaller than the theoretical values, and

not very sensitive to the derivatives of D
(exp)
CJ (T0, w0)

(Tab. VII-left). Overall, the available data on veloc-
ity derivatives are too few and imprecise to soundly dis-
cuss the CJ hypothesis from the IM pressures, and the
theoretical CJ pressures are greater than the measured
values and most IM estimates, with differences greater
than the typical experimental uncertainty ±10 kbar, and
small sensitivity to the initial data.

The velocities are measured in finite-diameter cylin-
drical tubes that generate sonic-frozen regimes of curved
detonation (Subsect. II-A). Their linear extrapolations

D
(exp)
CJ to infinite diameters may underestimate the equi-

librium DCJ because of the possible convexity of the ve-
locity dependence at large diameters. There are many
analyses of the diameter effect in detonating condensed
explosives. Their flows are diverging because of their very
large pressures, O (10) GPa, so the detonation leading
shock is always curved at the cylinder edge. In partic-
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TABLE V. Comparison of CJ detonation pressures and adiabatic exponents (exp: experiments, IM: Inverse Method, theo: sup-
plemental CJ properties) at p0 = 1 bar for nitromethane (NM), isopropyl nitrate (IPN), niprona (NPNA3), and trinitrotoluene
(TNT). Symbol ∅: no data.

T0 ρ0 α0 × 103 Cp0 c0 G0 D
(exp)
CJ pCJ (GPa) γCJ

(C) (kg/m3) (1/K) (J/kg/K) (m/s) (m/s) exp IM theo exp IM theo
I 4 1156 1.19 1747 1423 1.38 6330 12.7 12.9 17.5 2.65 2.58 1.65

NM II 4 1159 1.16 1733 1423 1.36 6334 14.8 12.6 17.6 2.14 2.69 1.65
III 4 1151 1.22 1723 1400 1.39 6330 12.7 13.6 17.4 2.63 2.39 1.65
IV 4 1147 1.00 1723 1400 1.14 6330 12.7 15.8 17.9 2.62 1.90 1.57

IPN 40 1017 1.23 1867 1049 0.72 5330 08.7 13.1 12.1 2.32 1.21 1.40
NPNA3 25 1275 1.11 1512 1184 1.03 6670 ∅ 14.1 22.8 ∅ 3.02 1.49
TNT 93 1450 0.70 1573 2140 2.04 6590 18.2 ∅ 21.1 2.46 ∅ 2.00

TABLE VI. Sensitivity of the Inverse-Method pressures pIM
CJ (GPa) and adiabatic exponents γIM

CJ to the uncertainties of deriva-

tives of measured detonation velocities D
(exp)
CJ (T0, p0) and the initial data (Table V) for nitromethane (NM) at T0 = 277 K and

p0 = 1 bar.

∂D
(exp)
CJ /∂p0

)
T0

∂D
(exp)
CJ /∂T0

)
p0

± 0.18 (m/s/K)

±0.01 (m/s/bar) −4.14 −3.96 −3.78

0.19
pIM

CJ

γIM
CJ

I II III IV
16.1 16.5 17.8 /
1.87 1.81 1.59 /

I II III IV
14.4 14.7 15.4 19.0
2.22 2.17 2.00 1.40

I II III IV
13.2 13.4 13.9 16.1
2.50 2.46 2.32 1.85

0.20
pIM

CJ

γIM
CJ

14.0 14.3 15.0 18.5
2.30 2.25 2.08 1.48

12.9 13.2 13.6 15.8
2.58 2.53 2.39 1.90

12.1 12.3 12.6 14.3
2.83 2.79 2.66 2.22

0.21
pIM

CJ

γIM
CJ

12.7 12.9 13.3 15.5
2.65 2.61 2.46 1.96

11.9 12.1 12.4 14.0
2.89 2.85 2.72 2.28

11.3 11.4 11.6 13.0
3.12 3.08 2.96 2.54

TABLE VII. Sensitivity of the Inverse-Method pressures pIM
CJ (GPa) and adiabatic exponents γIM

CJ to the uncertainties of

derivatives of measured detonation velocities. Left: D
(exp)
CJ (T0, w0) for nitromethane (NM II) at T0 = 277 K and p0 = 1 bar,

acenina mass fraction w0 = 0, ∂h0/∂w0)T0,p0
= (−2.021± 0.17) × 106 (J/kg), ∂v0/∂w0)T0,p0

= (1.5± 0.2) × 10−3 (m3/kg).

Right: D
(exp)
CJ (T0, p0) for isopropyl nitrate (IPN) at T0 = 313 K and p0 = 1 bar. Symbol /: no solution to (93).

∂D
2 (exp)
CJ /∂w0

)
T0,p0

∂D
(exp)
CJ /∂T0

)
w0,p0

± 0.18 (m/s/K)

±0.18× 106 (m2/s2) −4.14 −3.96 −3.78

−8.16
pIM

CJ

γIM
CJ

12.4
2.74

12.6
2.70

12.7
2.66

−7.98
pIM

CJ

γIM
CJ

12.5
2.73

12.6
2.69

12.7
2.65

−7.80
pIM

CJ

γIM
CJ

12.5
2.72

12.7
2.67

12.8
2.63

∂D
(exp)
CJ /∂p0

)
T0

∂D
(exp)
CJ /∂T0

)
p0

± 0.10 (m/s/K)

±0.10 (m/s/bar) −4.13 −4.03 −3.93

0.2
pIM

CJ

γIM
CJ

/
/

/
/

/
/

0.3
pIM

CJ

γIM
CJ

15.9
< 1

13.1
1.21

11.8
1.45

0.4
pIM

CJ

γIM
CJ

7.3
2.94

7.2
3.03

7.0
3.12

ular, characteristics originating from the explosive-tube
interface can intersect the frozen sonic surface on its side
opposite to the curved shock, as analyzed by Bdzil [61]
and Chiquete and Short [62]. The planar limit described
by the TZD equilibrium expansion (Subsect. III-A) at
the end of the ZND reaction zone can thus be difficult
to achieve, so the CJ equilibrium too. This is consis-
tent with Sharpe’s numerical simulations of ignition by
an overdriven detonation [6]: in the long-time limit, a
stable reaction zone attains either the CJ equilibrium or
a sonic-frozen state depending on the system geometry
being initially planar or diverging. Yet even if planar,
rapid or large pressure drops at the reaction-zone end or
short run distances certainly freeze chemical equilibrium.

In systems of hyperbolic differential equations, the
derivatives are discontinuous through sonic loci. In a
reactive flow governed by the Euler equations, a sonic-
frozen interface thus separates an expansion and an in-
complete reaction zone. A slope discontinuity, for exam-
ple, on a measured pressure evolution, may not be the
CJ-equilibrium locus separating the ZND and TZD flows
and may be difficult to extract from the signal noise. The
tubes at least should be wide and long enough so that the
reactions can achieve chemical equilibrium. However, the
longer they are, the less detectable the derivative jumps
are: the TZD derivatives tend to zero with increasing
detonation run distance, as do physical ZND derivatives
with decreasing distance to the reaction-zone end.
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The two-step decomposition of the NO2 grouping is
another possibility. In the compact semi-developed form,
NM writes: CH3(NO2), IPN: (CH3)2(H)CO(NO2),
TNT: C6H2(CH3)(NO2)3, NP: C(CH3)2(H)(NO2), and
NA: O(H)(NO2), so NPNA3 comprises 4 NO2 groupings
per volume of NP. In gases, NO2 first decomposes into
NO which then decomposes into N2 (cf. refs. in [25]).
Branch et al [63] observed a two-front laminar flame in
CH4/NO2/O2 and CH2O/NO2/O2 mixtures on a flat
burner. Presles et al [64] evidenced a double cellular
structure of detonation in gaseous NM, the transverse
waves of the smaller cells propagating on the fronts of
the larger ones. The first step gives the lower flame front
and the smaller detonation cells. Whether the same pro-
cess applies to liquids is uncertain, but the divergence of
the detonation zone may slow reaction sufficiently for the
expansion head to enter the reaction zone and position
at the intermediate decomposition step (Sect. II). Non-
ideal detonation regimes resulting from multi-step heat
releases, possibly low-velocity, with pressures below CJ
values are well-known in detonation physics.

The condensation of solid carbon may also be invoked,
e.g. [17–22]. NM, TNT and IPN have negative oxygen
balances, hence a large yield of carbon (≈ 15% in mass
for NM). However, NPNA3 is stoichiometric, and yet all
four liquids have theoretical CJ pressures greater than
measured values. The condensation can select CJ-frozen
states with smaller pressure than the CJ-equilibrium
value (Sect. I), and the condensates can have speeds
slower than the gas flow due to drag effects. This pro-
cess likely begins before the chemical processes achieve
sonic equilibrium. A (T, p) equilibrium equation of state
and a single material speed might thus not be valid as-
sumptions for these carbon explosives.

These possibilities are neither the only ones nor mu-
tually exclusive. They suggest experiments in cylinders
wider and longer than usual and modelling based on
multi-phase balance laws and constitutive relations with
thermal and mechanical nonequilibria.

V. DISCUSSION AND CONCLUSIONS

This work brought out two new features of the CJ-
equilibrium model of detonation. They are valid if the
initial and burnt states are single-phase fluids at local
and chemical equilibrium, with temperature T and pres-
sure p as the independent state variables. The first one
is that the CJ velocity and specific entropy are invari-
ant under the same variation of the initial temperature
and pressure (Subsect. III-C). The second one is mainly
a set of relations for calculating the CJ state, including
its adiabatic exponent and isentrope, from the value of
the CJ velocity, or the CJ velocity from one CJ variable
(Subsect. III-D), that do not involve an equation state of
detonation products. Therefore, they are no substitute
for detailed thermochemical calculations (Sect. I) that
give the CJ state, velocity and composition using explicit

(T, p) equilibrium equations of state, such as BKW and
JCZ3 and their developments or reparametrizations, for
condensed explosives [65, 66]. This justifies the ques-
tion as to what has been gained in comparison to the
usual methodology of measuring a pair of variables, such
as pressure and velocity, to calibrate equations of state
through numerical CJ calculations. If anything, a semi-
empirical criterion is proposed for discussing whether a
given pair can represent the CJ-equilibrium state, and
thus for improving the measurement conditions or the
modelling assumptions.

They compare accurately to calculations with detailed
chemical equilibrium for detonation products described
as ideal gases (Subsect. IV-A). However, they produce
pressures larger than measured values for four liquid car-
bon explosives (Subsect. IV-B). Thus, the detonation ve-
locities and pressures measured in these explosives do not
seem compatible with the CJ equilibrium model, which
supports the former conclusion by Davis, Craig and Ram-
say [53], [29], although for the opposite reason. This sug-
gests investigating further whether the usual experimen-
tal conditions or the chemical processes in these explo-
sives can achieve hydrodynamic chemical equilibrium and
whether their detonation products and reaction zones are
single-phase fluids. To varying degrees, this might apply
to other condensed carbon explosives and rich enough
gaseous mixtures [17–20]. Initial and detonation data for
carbonless liquid explosives would benefit future analy-
ses. A possibility is ammonium nitrate NH4NO3 above
its melting temperature (443 K), but its meta-stability
at elevated temperatures raises a safety issue.

These features derive fairly easily from basic laws of
hydrodynamics, namely the Rankine-Hugoniot relations
contained in the single-phase adiabatic Euler equations.
However, thermal and mechanical nonequilibria at el-
evated pressures and temperatures have long been a
theoretical and numerical challenge. Averaged balance
laws and constitutive relations built from various mix-
ture rules are workarounds to fit in with this single-phase
paradigm. The supplemental CJ properties can be used
as go-betweens for experiments and models, in particular
for discussing this homogenization approach.

The Euler equations combined with equations of state
form a hyperbolic closed system for which a data dis-
tribution on a non-characteristic side of a discontinu-
ity defines a well-posed Cauchy problem without using
entropy. The sonic side of the CJ front is a particular
case of characteristic distribution. This analysis used en-
tropy to obtain the new features without an equation
of state. Thus, the velocity of the surface and the ini-
tial state give this distribution, or the initial state and
one characteristic-state variable give the surface veloc-
ity. This feature might illustrate a general property of
horizons in hyperbolic systems, such as the surface of a
Schwarzschild black hole. The CJ-equilibrium locus is
the horizon of events in the TZD expansion for an ob-
server in the ZND reaction zone.
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Appendix A:
Chapman-Jouguet relations for the perfect gas

The perfect gas is the ideal gas with constant
heat capacities C̄v = (R/W ) / (γ̄ − 1) and C̄p =
(R/W ) γ̄/ (γ̄ − 1), with W the molecular weight and
R = 8.31451 J/mol.K the gas constant. The adiabatic
exponent γ reduces to the constant ratio γ̄ = C̄p/C̄v,
the Gruneisen coefficient G to γ̄ − 1, the fundamental
derivative Γ to (γ̄ + 1) /2, and an isentrope to pvγ̄ =
const. Using T (p, v) = (W/R) pv, dh (3) reduces to
dh (T ) = Cp (T ) dT whose integrals give the difference
(A1) of enthalpies of the products at (T, p) and the fresh
gas at (T0, p0) (neglecting the differences of their W and
γ̄); (14) then gives the Hugoniot (H) curve (A2):

h (p, v)− h0 (p0, v0) =
γ̄ (pv − p0v0)

γ̄ − 1
−Q0, (A1)

pH (v; v0, p0) = p0 ×
1− γ̄−1

γ̄+1

(
v
v0
− 2Q0

p0v0

)
v
v0
− γ̄−1

γ̄+1

. (A2)

A CJ state is given by (27)-(28) with γ̄ substituted for
γCJ. A CJ velocity DCJ is then a solution to the 2nd

degree equation obtained by substituting vCJ (27) and
pCJ (28) for p and v in (A2). The supersonic compres-
sive solution (subscript CJc, Subsect. II-C) is the CJ-
detonation velocity DCJc (v0, p0),

DCJc = D̃CJ

(
1

2
+ M̃−2

0CJ +
1

2

√
1 + 4M̃−2

0CJ

) 1
2

, (A3)

D̃2
CJ = 2

(
γ̄2 − 1

)
Q0, M̃0CJ = D̃CJ/c0, (A4)

with dominant value D̃CJ if M̃−2
0CJ << 1 and acoustic

(nonreactive) limit c0 (Q0 = 0). The subsonic expansive
solution (subscript CJx) is the CJ-deflagration velocity
DCJx, deduced from DCJc by changing the sign before
the square root in (A3), hence

DCJcDCJx = c20 or M0CJcM0CJx = 1, (A5)

which had not been pointed out before and shows that

DCJx has dominant value D̃CJ/M̃
2
0CJ ≡ c0/M̃0CJ. One

CJ state can be expressed with the other,

pCJx

pCJc
=
M−2

0CJc

γ̄

1 + γ̄M−2
0CJc

1 + γ̄−1M−2
0CJc

,
vCJx

vCJc
= M4

0CJc

pCJx

pCJc
. (A6)

There are two overdriven detonation solutions (Q0 > 0,
D > DCJc, Fig. 2). Only the upper (U) is a physical
intersect of a R line (13) and the H curve (A2) (subsonic,
M < 1, Subsect. II-B). It writes

v0 (p− p0)

D2
= 1− v

v0
=

1−M−2
0 −

√
∆D

γ̄ + 1
, (A7)

∆D =

(
1−

(
DCJc

D

)2
)(

1−
(
DCJx

D

)2
)

=
(
1−M−2

0

)2 −(D̃CJ

D

)4

. (A8)

The lower (L) is nonphysical (supersonic, M > 1). It is
obtained by changing the sign before

√
∆D above. Both

reduce to the shock solution (N) by setting Q0 = 0,
so
√

∆D = 1 − M−2
0 . The theoretical CJ deflagration

viewed as an adiabatic discontinuity with same initial
state as the CJ detonation is not admissible (subsonic,
M0CJx < 1): (15) is not satisfied (Subsect. II-B, App.
B). It was useful here for completeness and a simpler writ-
ing of relations (A7)-(A8) which return more obviously
the CJ relations (27)-(28) if ∆D = 0, that is, vCJc and
pCJc if D = DCJc, and vCJx and pCJx if D = DCJx. From

(A5), (DCJx/D)
2

=
(
c20/DDCJc

)2
6 M−4

0CJc � 1 that

negligibly contributes to ∆D compared to (DCJc/D)
2
.

The typical values c0 = 300 m/s and DCJc = 2000 m/s
give DCJx = 45 m/s.

Appendix B: Chapman-Jouguet admissibility

The equilibrium expansion behind a CJ detonation
front is homentropic and self-similar (Subsect. III-A).
The backward-facing Riemann invariant is thus uniform,
that is, du − (v/c) dp = 0, and, since up < uCJ, the ma-
terial speed u (as well as p and v−1) and the frontward-
facing perturbation velocity u+ c = x/t have to decrease
from the CJ front so expansion can spread out. Differen-
tiating u+ c and expressing p and c as functions of s and
v thus give Γ−1d (u+ c) = du = vdp/c = −cdv/v [33],
hence Γ > 0. Similarly, T decreases if G > 0 (6).

Relations (17)-(19), (21)-(24), and (81)-(82) give

∂2pH

∂v2

)
CJ

=
2

FCJ

∂2pS

∂v2

)
CJ

=
4ΓCJ

FCJ

D2
CJ

v3
0

v0

vCJ
, (B1)

−GCJ
∂2sR

∂v2

)
CJ

=
FCJ
v0
vCJ
− 1

∂2sH

∂v2

)
CJ

= 2ΓCJ
D2

CJ

v2
0TCJ

, (B2)

∂MH

∂v

)
CJ

=
ΓCJ

vCJ
. (B3)

The curvatures of a Hugoniot and an isentrope thus
have the same sign if FCJ > 0, that is, if GCJ <
2/ (v0/vCJ − 1), that of the Hugoniot then being the
larger if GCJ > 0, which is the case for most fluids.
Also, FCJ 6= 0 (Subsect. III-B) is the condition for fi-
nite Hugoniot curvature and entropy variations at a CJ
point for physical isentropes (Γ 6= 0, Subsect. III-D). The
derivative (B3) of M with respect to v along a Hugo-
niot at a CJ point shows, since ΓCJ > 0, that M < 1
above, and M > 1 below, a CJ point, hence FCJ > 0,
∂2pH/∂v

2
)

CJ
> 0 and ∂2sH/∂v

2
)

CJ
> 0 from (B1) and

(B2). Therefore, a CJ detonation point is admissible only
on a convex Hugoniot arc. Its physical branch is above
the CJ point since s increases and M decreases with de-
creasing v. Other approaches use concavity of entropy
s (e, v) or convexity of energy e (s, v).
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des phénomènes explosifs, C. R. Acad. Sci. Paris 130,
413 (1900).

[6] G. J. Sharpe, The structure of planar and curved det-
onation waves with reversible reactions, Phys. Fluids
12(11), 3007 (2000).

[7] A. Higgins, Steady one-dimensional detonation, in Shock
Waves Sciences and Technology Reference Library, Vol.6:
Detonation dynamics (Springer-Verlag, Berlin, Heidel-
berg, 2012) pp. 33–105.

[8] C. M. Tarver, On the existence of pathological detonation
waves, in 13th APS Topical Conf. on Shock Compression
of Condensed Matter (2003).

[9] C. M. Tarver, Chemical energy release in several recently
discovered detonation and deflagration flows, Journal of
Energetic Materials 28:sup1., 1 (2010).

[10] Y. B. Zel’dovich and A. S. Kompaneets, Theory of det-
onation (Academic Press, New York (transl. Gostekhiz-
dat, Moscow, 1955), 1960).

[11] W. W. Wood and J. G. Kirkwood, Diameter effect in con-
densed explosives. the relation between velocity and ra-
dius of curvature of the detonation wave, J. Chem. Phys.
2(11), 1920 (1954).

[12] L. He and P. Clavin, On the direct initiation of gaseous
detonations by an energy source, J. Fluid Mech. 277, 227
(1994).

[13] A. R. Kasimov and D. S. Stewart, On the dynamics of
self-sustained one-dimensional detonations: a numerical
study in the shock-attached frame, Phys. Fluids 16(10),
3566 (2004).

[14] M. Short, S. J. Voelkel, and C. Chiquete, Steady deto-
nation propagation in thin channels with strong confine-
ment, J. Fluid Mech. 889, A3 (2020).

[15] A. N. Dremin, Towards detonation theory (Springer, New
York, 1999).

[16] C. M. Tarver, Condensed matter detonation: theory and
practice, in Shock Waves Sciences and Technology Ref-
erence Library, Vol.6: Detonation dynamics (Springer-
Verlag, Berlin, Heidelberg, 2012) pp. 339–372.

[17] G. B. Kistiakovski, H. T. Knight, and M. E. Malin,
Gaseous detonations. IV. The acetylene-oxygen mixtures,
J. Chem. Phys. 20, 884 (1952).

[18] G. B. Kistiakovski and W. G. Zinman, Gaseous deto-
nations. VII. A study of thermodynamic equilibrium in
acetylene-oxygen waves, J. Chem. Phys. 23, 1889 (1955).

[19] G. B. Kistiakovski and P. C. J. Mangelsdorf, Gaseous
detonations. VIII. Two-stage detonations in acetylene-
oxygen mixtures, J. Chem. Phys. 25, 516 (1952).

[20] I. S. Batraev, A. A. Vasil’ev, V. Y. Ul’yanitskii, A. A.
Shtertser, and D. K. Rybin, Investigation of gas deto-
nation in over-rich mixtures of hydrocarbons with oxy-
gen, Combustion, Explosion, and Shock Waves 54, 207
(2018).

[21] J. Berger and J. Viard, Physique des explosifs solides
(p.186-190) (Dunod, Paris, 1962).

[22] S. Bastea, Nanocarbon condensation in detonation, Na-
ture Scientific Reports 7, 42151 (2017).

[23] L. Edwards and M. Short, Modeling of the cellular
structure of detonation in liquid explosives, in abstract
H05.008, APS Division of Fluid Dynamics (2019).

[24] Y. N. Denisov and Y. K. Troshin, Pulsating and spinning
detonation of gaseous detonation in tubes, Dokl. Akad.
Nauk. SSSR 125, 110 (1959).

[25] D. Desbordes and H.-N. Presles, Multi-scaled cellular
detonation, in Shock Waves Sciences and Technology Ref-
erence Library, Vol.6: Detonation dynamics (Springer-
Verlag, Berlin, Heidelberg, 2012) pp. 281–338.

[26] P. A. Urtiew and A. S. Kusubov, Wall traces of deto-
nation in nitromethane-acetone mixtures, in 5th Symp.
(Int.) Detonation (ONR, 1970) pp. 105–114.

[27] P. A. Persson and G. Bjarnholt, A photographic tech-
nique for mapping failure waves and other instability
phenomena in liquid explosives detonation, in 5th Symp.
(Int.) Detonation (ONR, 1970) pp. 115–118.

[28] C. M. Tarver and P. A. Urtiew, Theory and modeling of
liquid explosive detonation, Journal of Energetic Materi-
als 28(4), 299 (2010).

[29] W. Fickett and W. C. Davis, Detonation: theory and
experiment (Dover Publications, Inc., 2000).

[30] P. Duhem, Sur la propagation des ondes de choc au sein
des fluides, Z. Phys. Chem. 69, 160 (1909).

[31] H. A. Bethe, The theory of shock waves for an arbitrary
equation of state, Report 545 (OSRD, 1942).

[32] H. Weyl, Shock waves in arbitrary fluids, Comm. Pure
Appl. Math. 2, 103 (1949).

[33] P. A. Thomson, A fundamental derivative in gasdynam-
ics, Phys. Fluids 14(9), 1843 (1971).

[34] S. P. D’yakov, On the stability of shock waves, Zh. Eksp.
Teor. Fiz. 27, 288 (1954).

[35] V. M. Kontorovich, Concerning the stability of shock
waves, JETP 6(6), 1179 (1957).

[36] J. W. Bates and D. C. Montgomery, The D’yakov-
Kontorovich instability of shock waves in real gases,
Phys. Rev. Letters 84(6), 1180 (2000).

[37] L. Brun, The spontaneous acoustic emission of the shock
front in a perfect fluid: solving a riddle (Ref. report CEA-
R-6337, Tech. Rep. (CEA, 2013).

[38] P. Clavin and G. Searby, Combustion waves and fronts
in flows: flames, shocks, detonations, ablation fronts and
explosion of stars (Cambridge University Press, 2016).

[39] L. Landau, cit. in Landau L. & Lifchitz E., Fluid mechan-
ics, Chapt. IX, §88 (Pergamon, Oxford (1958), 1944).

[40] P. D. Lax, Hyperbolic systems of conservation laws, II,
Comm. Pure and Appl. Math. 10, 537 (1957).

[41] G. R. Fowles, Subsonic-supersonic condition for shocks,
Phys. Fluids 18(7), 776 (1975).

[42] S. Gordon and B. McBride, Computer program for calcu-
lation of complex chemical equilibrium compositions and
applications, I. Analysis (Ref. 1311), Tech. Rep. (NASA,



19

1994).
[43] G. I. Taylor, The dynamics of the combustion products

behind plane and spherical detonation fronts in explo-
sives, Proc. Roy. Soc. A 200, 235 (1950 (1941)).
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