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(Dated: December 31, 2020 - Update of the 1st version, June 20, 2020, arXiv:2006.12533)

The velocity and the specific entropy of the Chapman-Jouguet (CJ) equilibrium detonation in a
homogeneous explosive are shown to be invariant under the same variations of the initial pressure
and temperature. The CJ state, including the adiabatic exponent, and its isentrope, can then
be obtained from the CJ velocity or, conversely, the CJ velocity from one CJ variable, without
equation of state of detonation products. For gaseous explosives, comparison to calculations with
detailed chemical equilibrium shows agreement to withinO(0.1)%. However, the CJ pressures of four
carbonate liquid explosives are found about 20 % greater than measured values: the CJ-equilibrium
model appears not to apply to carbonate condensed explosives. A simple criterion for assessing
the representativeness of this model is thus proposed, which nevertheless cannot indicate which
of its assumptions would not be satisfied, such as chemical equilibrium or single-phase fluid. This
invariance might be an illustration of a general feature of hyperbolic systems and their characteristic
surfaces.

I. INTRODUCTION

The Chapman-Jouguet (CJ) detonation [1] is a clas-
sic of combustion theory defined as the fully-reactive,
planar, and compressive discontinuity wave, with a con-
stant velocity supersonic with respect to the initial state,
and sonic with respect to the final burnt state at chem-
ical equilibrium. The CJ state and velocity thus derive
from the Rankine-Hugoniot relations and the equation of
state of detonation products. Although their representa-
tiveness is now accepted as uncertain because detonation
dynamics is unstable and very sensitive to losses, the CJ
model remains the staple of detonation theory to easily
obtain reference velocities and reaction-end states: they
are a predictable limit independently of any condition for
detonation existence. It is the purpose of this study to
bring out and investigate two supplemental CJ proper-
ties [2] perhaps useful to help interpret experiments and
improve modelling.

The first one is that the CJ detonation velocity DCJ

and the specific entropy sCJ of a homogeneous explosive
substance are invariant under the same variations of the
initial temperature T0 and pressure p0: if one is invariant,
so is the other; different initial states producing the same
DCJ produce different CJ states on the same isentrope.
The second one is that a CJ state and its isentrope can
then be easily calculated from the value of DCJ without
equilibrium equation of state; conversely, DCJ can be ob-
tained from one CJ variable. These results apply only to
explosives whose fresh and burnt states obey thermody-
namic relationships for single-phase inviscid fluids, with
temperature T and pressure p as independent variables.
Figure 1 depicts the CJ model and the Velocity-Entropy
invariance (DSI) theorem in the Pressure (p) - Volume (v)
plane based on usual properties of detonation modelling
(Sect. II).

∗ pierre.vidal@cnrs.pprime.fr, @ensma.fr
† ratiba.zitoun@univ-poitiers.fr, @ensma.fr

FIG. 1. An equilibrium isentrope of detonation products (S)*
can be the common envelope of equilibrium Hugoniot curves
(H)*, (H)’ and (H) and Rayleigh-Michelson lines (R)*, (R)’
and (R) if their poles O*, O’ and O lie on a specific p∗0 (v0) line
through a reference initial state O*(p0∗, v0∗) (the Hugoniot

curvatures are accentuated). The slopes −(DCJ /v0)2of these
(R) lines increase with increasing initial volume v0, but the
DSI theorem ensures they have the same CJ velocity D∗CJ.
This determines the CJ*, CJ’ and CJ states, the p∗0(v0) initial
states, and the isentrope (S)*, given D∗CJ and the initial sound
speeds and Gruneisen coefficients.

Is the detonation regime identifiable from experimental
detonation velocities and pressures? Models are gener-
ally rejected if they cannot represent the observations,
but their assumptions may not be physically relevant
to the experiments, differences may be due to imprecise
measurements or non-physical parameters, and an agree-
ment should not exclude fewer assumptions. Equations
of state of detonation products are calibrated by fitting
the calculated CJ properties to the experimental values,
although no criteria ensure the latter are those of the CJ-
equilibrium detonation. This study proposes they are not
if they do not satisfy the supplemental properties.
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Efforts today focus less on the physical relevance of
the CJ model than on the identification and the mod-
elling of processes in the reaction zones of detonations
such as losses, adiabatic or not, non-local thermodynam-
ics, cellular instabilities in homogeneous explosives, car-
bon condensation or local heat exchanges between grains
in heterogeneous explosives. Most of these processes can
prevent reaching the CJ-equilibrium state. Its usefulness
is essentially to be an ideal thermodynamic limit for cal-
ibrating the equations of state of detonation products,
whether or not the reactive flow reaches chemical equi-
librium.

To some degree, this work also extends the semiem-
pirical Inverse Method of Jones [3], Stanyukovich [4] and
Manson [5]. The Inverse Method gives the CJ hydrody-
namic variables from experimental values of DCJ and its
derivatives with respect to two independent initial-state
variables, such as p0 and T0 (Subsect. III.D, §2); this
work shows that the only value of DCJ is sufficient.

Section II is a reminder on classical but necessary ele-
ments that also introduces the main notation, Section III
sets out the DSI theorem and the CJ supplemental prop-
erties, Section IV is an analysis of their agreements or
differences with calculations or measurements for gases
and liquids, and Section V is a summary with some spec-
ulative conclusions.

II. REMINDERS AND NOTATION

The CJ postulate is that the sonic and equilibrium
constraints are satisfied at the same position in the flow.
This is in fact more of an ideal mathematical limit than
observable physical reality. The traditional introduction
to this old issue is the Zel’dovich-von Neuman-Döring
(ZND) detonation model, that is, a leading shock sus-
tained by a subsonic laminar reaction zone [6]. A self-
sustained detonation is such that the sonic front of the
rear expansion maintains a sufficient distance from the
shock so the progress of the chemical process is large
enough, depending on the interplay between flow dynam-
ics and physicochemical processes. The ZND model uses
the frozen sound speed, the CJ model uses the equilib-
rium sound speed.

A. Where the Chapman-Jouguet model lies

Most explosive devices have finite transverse dimen-
sions, so self-sustained detonations are non-ideal, with
diverging reaction zones that encompass a frozen sonic
locus, hence curved leading shocks and velocities smaller
than the planar CJ one: the flow behind the sonic lo-
cus cannot sustain the shock. However, not any reaction
process can reach CJ equilibrium as the steady planar
limit of a sonic curved detonation [7]. A presentation
of equilibrium-frozen issues and several non-ideal deto-
nations was given by Higgins [8]. At the sonic locus,

the rates of reaction processes, possibly non-monotonic,
exothermic or endothermic [9, 10], have to offset those
of losses, such as heat transfer, friction or transverse ex-
pansion of the reaction zone, so that the flow derivatives
remain finite there. The dynamics of a self-sustained
detonation is thus described by an Eigen-constraint be-
tween the parameters of the reaction and loss rates [11]
and those of the leading-shock, namely its normal veloc-
ity, acceleration and curvature [12–15]. Achieving the CJ
balance at least requires set-ups large enough that losses
are negligible and the detonation front is flat, and dis-
tances from the ignition position long enough that the
gradients of the expanding flow of products are small, so
the chemical equilibrium can shift continuously.

Reaction processes differ for gases and liquids. For
gases, up to moderately large equivalence ratios (ER),
the prevailing view is that the translation, rotation and
vibration degrees of freedom re-equilibrate much faster
than chemical kinetics. For liquids, molecular-bond
breaking would make the deexcitation time of vibrations
comparable to that of chemical relaxation [16]. An intro-
duction to the Non-Equilibrium ZND model was given
by Tarver [17]. Local thermodynamic equilibrium would
be reached before chemical transformation in such gases
but perhaps not in the detonation products of liquids.
For gases with very large ERs, several works, e.g. [18–
21], point out that solid carbon condensation decrease the
detonation velocity with increasing ERs faster than pre-
dicted by calculations that model the detonation prod-
ucts as a homogeneous gas. Carbon condensation is also
likely inherent to detonation in many condensed explo-
sives, as most are over-carbonated [22–24]. The DSI the-
orem is restricted to detonation products described as a
single-phase fluid at chemical equilibrium.

The main criticism of the ZND model for homoge-
neous explosives is the instability of their reaction zones:
they are not laminar, and detonation fronts have a three-
dimensional structure. In gases, the flow advects unburnt
pockets, the front has a cellular structure, and the ex-
perimental mean widths of detonation cells are 10 to 50
times greater than calculated characteristic thicknesses of
planar steady ZND reaction zones [25, 26], even if such
widths can be difficult to define. In liquids, instabilities
have often been observed, but their relation to chemical
kinetics and their similarities to those in gases are still
being investigated [24, 27–30]. The surface areas of the
detonation front or the cross-section of the experimental
device at least have to be large enough compared to the
mean width of the instabilities for the CJ properties can
be representative averages.

The CJ supplemental properties in this work do not
aimat indicating which of the CJ assumptions is not sat-
isfied, namely sonic chemical equilibrium, single-phase
fluid, or laminar flow. However, they provide a simple cri-
terion for determining whether the CJ-equilibrium model
can represent experimental and numerical data because
they do not necessitate specifying the equation of state.
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B. Thermodynamic and hydrodynamic relations

Single-phase inviscid fluids, whether inert or at chem-
ical equilibrium, have two independent state variables,
namely temperature T and pressure p, but specific vol-
ume v (T, p) is more convenient than T for hydrodynam-
ics because it appears explicitly in the balance equations.
Specific enthalpy h and entropy s are the main state func-
tions used in this work; their differentials write

dh (s, p) = Tds+ vdp, (1)

dh (p, v) =
G+ 1

G
vdp+

c2

G

dv

v
, (2)

dh (T, p) = CpdT +

(
1− T

v

∂v

∂T

)
p

)
vdp, (3)

Tds (p, v) =
vdp

G
+
c2

G

dv

v
, (4)

c2 = Gv
∂h

∂v

)
p

= −v2 ∂p

∂v

)
s

, (5)

G =
v

∂h
∂p

)
v
− v

= − v
T

∂T

∂v

)
s

, (6)

where c is the sound speed, G is the Gruneisen coefficient
and Cp is the heat capacity at constant pressure. In
gases, the adiabatic exponent γ defines the convenient
representation of c

c2 = γpv, γ = −v
p

∂p

∂v

)
s

. (7)

In the p-v plane, isentropes (ds = 0) have negative slopes
since γ > 0, and their local convexities are defined by
the sign of the fundamental derivative of hydrodynamics
Γ [31–34] (most fluids have uniformly convex isentropes:
Γ > 0, their slopes monotonically decrease with increas-
ing volume),

Γ =
1

2

v3

c2
∂2p

∂v2

)
s

=
−v
2

∂2p

∂v2

)
s

/
∂p

∂v

)
s

= 1− v

c

∂c

∂v

)
s

.

(8)

The fresh (initial, subscript 0) and the equilibrium (fi-
nal, no subscript) states of a reactive medium have differ-
ent state functions and coefficients because their chem-
ical compositions are different. Typically, γ < γ0 and,
if products are brought from a (T, p) equilibrium state
to the (T0, p0) initial state, v (T0, p0) > v0 = v0 (T0, p0)
and h (T0, p0) < h0 = h0 (T0, p0). The difference of en-
thalpies Q0 = h0 (T0, p0) − h (T0, p0) at (T0, p0) is the
heat of reaction at constant pressure.

Conservation of mass, momentum and energy surface
fluxes through hydrodynamic discontinuities is expressed
by the Rankine-Hugoniot relations, which, along the nor-

mal to the discontinuity, write

ρ0D = ρ (D − u) , (9)

p0 + ρ0D
2 = p+ ρ (D − u)

2
, (10)

h0 +
1

2
D2 = h+

1

2
(D − u)

2
, (11)

where ρ = 1/v is the specific mass, and u and D are
the material speed and the discontinuity velocity in a
laboratory-fixed frame, with initial state at rest (u0 =
0). These relations combined with an h (p, v) equation of
state are not a closed system since there are 4 equations
for the 5 variables v, p, h, u and D, given an initial state
(p0, v0) and h0 (p0, v0), hence a one-variable solution, for
example

p, v, h, u, T, s, c, γ,Γ, G, ... ≡ η (D; v0, p0) . (12)

Its representation in the p-v plane (Fig. 2) is an in-
tersect of a Rayleigh-Michelson (R) line pR (v,D; v0, p0)
and the Hugoniot (H) curve pH (v; v0, p0),

pR : p = p0 +

(
D

v0

)2

(v0 − v) , (13)

pH : h (p, v) = h0 (p0, v0) +
1

2
(p− p0) (v0 + v) . (14)

A Hugoniot for a detonation (Q0 > 0, v (T0, p0) > v0) lies
above that for a shock (Q0 = 0, v (T0, p0) = v0): most
fluids have uniformly-convex Hugoniots with 1 compres-
sive intersect (N, v/v0 < 1) if Q0 = 0 regardless of D,
and 2 (U and L) if Q0 > 0 and D is large enough (Fig.
2). The observability of states on non-uniformly-convex
Hugoniots is an open debate on whether theoretical in-
stability criteria are met in Nature, based on linear and
non-linear stability analyses of discontinuities [35–39]. At
least physical admissibility (the discontinuity increases
entropy, s > s0) or equivalently mathematical determi-
nacy (uniqueness and continuous dependency of (12) on
the flow boundaries) have to be satisfied [40–42]. Denot-
ing by M0 and M the discontinuity Mach numbers rel-
ative to the initial and the final states, this is expressed
by the subsonic-supersonic evolution condition

u+ c > D > c0 ⇔
D

c0
= M0 > 1 > M =

D − u
c

. (15)

C. Chapman-Jouguet states and velocities,
and a remark

The tangency of a Rayleigh-Michelson line pR (v;D),
an equilibrium Hugoniot pH (v) and an isentrope pS (v)
defines CJ points and is equivalent to the sonic condition
(20) below, as shown by
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∂pR

∂v

)
D,p0,v0

= −
(
D

v0

)2

< 0, (16)

∂pS

∂v

)
s

= −
(
D

v0

)2

×M−2 < 0, (17)

∂pH

∂v

)
p0,v0

= −
(
D

v0

)2

×
(

1 + 2
M−2 − 1

F

)
, (18)

F (G, v; v0) = 2−G
(v0

v
− 1
)
, (19)

MCJ =

(
D − u
c

)
CJ

= 1 or DCJ = (u+ c)CJ . (20)

FIG. 2. Unreacted (H)0 and equilibrium (H) Hugoniot curves,
and Rayleigh-Michelson (R) lines, (R)U and (R)C, for discon-
tinuity velocities greater than or equal to DCJ. Physical inter-
sects are points N, U and CJ (M 6 1 6M0), the CJ isentrope
(S)C is positioned between the (R) C line and the (H) curve.

FIG. 3. Detonation (upper) and deflagration (lower) Hugo-
niot arcs; the physical branch is above the compressive CJ
point CJc.

There are at least 2 CJ points, such as on uniformly-
convex Hugoniots (Fig. 3). The upper, compressive, one

(CJc) is the CJ detonation, with minimum velocity su-
personic with respect to the initial state (vCJ/v0 < 1,
pCJ/p0 > 1, DCJc/c0 > 1). The lower, expansive, one
(CJx) is the CJ deflagration, with maximum velocity
subsonic with respect to the initial state (vCJ/v0 > 1,
pCJ/p0 < 1, DCJx/c0 < 1).

The admissibility of the CJ detonation requires ΓCJ >
0 (App. B), which implies that F > 0 about and at a CJ
point, that the physical branch of an equilibrium Hugo-
niot arc is convex and above the CJ point as M decreases
from 1 and s increases with decreasing v, and that pS (v)
is positioned between pH (v) and pR (v) if G > 0. The
other properties useful here are 0 6 ∂sH/∂D)p0,v0 < ∞
regardless of M , and, since FCJ 6= 0, ∂sH/∂v)

CJ
p0,v0

= 0

and ∂D/∂v)
CJ
p0,v0

= 0, as shown by

v0T

D2

∂sR

∂v

)
D,p0,v0

=
v

v0

M−2 − 1

G
, (21)

v0T

D2

∂sH

∂v

)
p0,v0

= −
(

1− v

v0

)
M−2 − 1

F
, (22)

T

D

∂sH

∂D

)
p0,v0

=

(
1− v

v0

)2

> 0, (23)

v0

D

∂D

∂v

)
p0,v0

= −
(

1− v

v0

)−1
M−2 − 1

F
. (24)

The CJ condition (20) closes system (2), (9)-(11): the
one-variable solution (12) and (20) give the CJ velocities
DCJ and variables ηCJ = (p, v, h, u, T, s, c, γ,Γ, G, ...)CJ
as functions of the initial state,

DCJ = DCJ (v0, p0) , ηCJ = ηCJ (v0, p0) . (25)

Explicit solutions can be obtained with simple h (p, v)
equations of state (App. A). In practice, CJ detonation
properties are calculated through thermochemical codes
implementing physical equilibrium equations of state and
thermodynamic properties at high pressures and temper-
atures.

The hydrodynamic variables z = (p, v, u, c) at CJ
points have a well-known two-variable representation as
functions of DCJ and γCJ

zCJ = zCJ (DCJ, γCJ; v0, p0) , (26)

that is, DCJ can be expressed as a function of two CJ
variables, for example DCJ (vCJ, γCJ; v0, p0): the mass
balance (9) and the (R) relation (13) combined with (7)
and the CJ condition (20) thus give

vCJ

v0
=

cCJ

DCJ
=

γCJ

γCJ + 1

(
1 +

p0v0

D2
CJ

)
, (27)

v0pCJ

D2
CJ

=
1 + p0v0

D2
CJ

γCJ + 1
, (28)

uCJ

DCJ
=

1− γCJ
p0v0
D2

CJ

γCJ + 1
; (29)
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the Hugoniot relation (14) then gives hCJ. Thus, it can
be observed that the zero-variable representation (25) is
obtained from a complete set that includes the energy
balance and an explicit equation of state, hence the two-
variable representation (26) since it does not use these
2 relations: γCJ is simply a substitute to cCJ. The DSI
theorem (Sect. III) supplements (26) by including the
energy balance: its primary consequence is that zCJ and
γCJ are explicit one-variable functions of DCJ (Subsect.
III-D),

zCJ = zCJ (DCJ; v0, p0) , γCJ = γCJ (DCJ; v0, p0) . (30)

Conversely, DCJ is a function of one CJ variable, for ex-
ample DCJ (γCJ; v0, p0). The NASA computer program
CEA [43] for calculating chemical equilibria in ideal gases
is used in subsection IV-A for investigating the theorem
and generating CJ properties for comparison to the the-
oretical ones (30).

III. THE INVARIANCE THEOREM

Considering different initial states of the same homo-
geneous explosive, equivalent statements are:

1. the CJ velocity DCJ and specific entropy sCJ are
invariant under the same initial variations;

2. CJ detonations with the same DCJ have the same
sCJ, and conversely;

3. different initial states chosen that DCJ is invariant
determine different CJ states that lie on the same
isentrope;

4. an isentrope is the common envelope of Hugoniot
curves and Rayleigh-Michelson lines of CJ detona-
tions with the same velocity;

5. the variations of DCJ and sCJ are proportional to
each other, so

dDCJ = 0 ⇔ dsCJ = 0 or DCJ = DCJ (sCJ) . (31)

The CJ state is the solution to the system of compat-
ibility constraints on these initial variations. The sub-
sections below detail the initial-variations problem, the
Rankine-Hugoniot differentials, the theorem demonstra-
tion and its geometrical interpretation (Fig. 1), and the
CJ supplemental properties.

A. The initial-variations problem

The simplest flow behind a planar discontinuity prop-
agating on a constant initial state (v0, p0) is ahead of a
piston with a constant speed up. The flow is constant-
state and subsonic, regardless of up behind a shock
with the same initial and final compositions, but only
if up is greater than the CJ material speed uCJ (29)

behind a detonation with final state at chemical equi-
librium. This defines the constant-velocity overdriven
detonation. Its velocity D and final-state variables η =
(p, v, h, T, s, c, γ,Γ, G, ...), with u = up, are then one-
variable functions (Subsect. 3.2), such as D (u; v0, p0)
and η (u; v0, p0), or, equivalently, η (D; v0, p0) (12), for
example (A8) and (A9).

If up is smaller than uCJ, the flow is expanding and su-
personic, but sonic just at the front: the CJ-equilibrium
condition is a consequence of the Taylor-Zel’dovich-
Döring (TZD) simple-wave solution η (x/t) to the homen-
tropic flow (uniform s) behind this constant-velocity pla-
nar front: u+ c = x/t⇒ (u+ c)CJ = xCJ/t ≡ DCJ, with
t the time and x the position in the flow [11, 44, 45]. In
contrast to a subsonic discontinuity (u+ c > D), no per-
turbation in the flow reaches the front: x < xCJ ⇒ x/t =
u + c < xCJ/t = (u+ c)CJ = DCJ. This defines the CJ
self sustained detonation (Subsect. 2.3), (App. B). The
CJ velocity and state are then the functions DCJ (v0, p0)
and ηCJ (v0, p0) (25) of the only initial state, for example
(27)-(29) and (A3) .

If up is exactly set to uCJ, the flow is both constant-
state and CJ sonic: u + c = x/t = (u+ c)CJ = xCJ/t =
DCJ. The velocity D is still equal to DCJ (v0, p0), which,
therefore, is also the smallest value reachable in a series of
experiments, each carried out with constant values of up
greater than, but closer and closer to uCJ (v0, p0) from
one experiment to the other. This is also the limiting
flow after an infinite run distance of a CJ detonation
from ignition at a fixed wall (up = 0): the slopes of the
η (x/t) profiles tend to zero as t tends to infinity at fixed
position x.

An overdriven detonation can thus have the same ve-
locity D with different initial states (v0, p0) if up is set
to the necessary value greater than uCJ (v0, p0) ensur-
ing D (up; v0, p0) = const. There is no reason then why
one of the final-state variables should also be invariant.
For the CJ sonic detonation, the same initial states turn
out to ensure both DCJ and the CJ specific entropy sCJ

are constant: their respective invariances are equivalent
constraints. Specific entropy s enters the problem only
through the differentials of h (s, p) (1) and s (p, v) (4):
this initial-variations problem has to be formulated as
ds = 0 and dD = 0, which entails differentiating the
Rankine-Hugoniot relations (9)-(11).

B. Rankine-Hugoniot differentials

The differentials of the Rayleigh-Michelson line (13),
the Hugoniot relation (14) and the h (p, v) equation of
state (2) form the 3× 3 non-homogeneous linear system
for dv, dp and dh
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v0dp

D2
+
dv

v0
= ...

... 2

(
1− v

v0

)
dD

D
+
v0dp0

D2
−
(

1− 2
v

v0

)
dv0

v0
, (32)

2
dh

D2
−
(

1 +
v

v0

)
v0dp

D2
−
(

1− v

v0

)
dv

v0
= ...

... −
(

1 +
v

v0

)
v0dp0

D2
+

(
1− v

v0

)
dv0

v0
+ 2

dh0

D2
, (33)

dh

D2
− G+ 1

G

v

v0

v0dp

D2
− M−2

G

v

v0

dv

v0
= 0, (34)

which thus write as linear combinations of dD, dv0, dp0

and dh0 (p0, v0), for example,

(
M−2 − 1

) dv
v0

= −
(

1− v

v0

)
F
dD

D
...

... +

(
1− F v

v0

)
dv0

v0
−

1 + (1− F ) v
v0

1− v
v0

v0dp0

D2
...

... +
2− F
1− v

v0

dh0

D2
, (35)

(
M−2 − 1

) v0dp

D2
=

(
1− v

v0

)(
F + 2

(
M−2 − 1

)) dD
D

...

... −
(

1− F v

v0
+
(
M−2 − 1

)(
1− 2

v

v0

))
dv0

v0
...

... +
1 + (1− F ) v

v0
+
(
M−2 − 1

) (
1− v

v0

)
1− v

v0

v0dp0

D2
...

... − 2− F
1− v

v0

dh0

D2
. (36)

The differential ds of the specific entropy,

Tds

D2
=

(
1− v

v0

)2
dD

D
...

... +

(
1− v

v0

)
v

v0

dv0

v0
− v

v0

v0dp0

D2
+
dh0

D2
, (37)

is obtained by substituting dh (s, p) (1) for dh in (33)
and by eliminating v0dp/D

2 + dv/v0 with (32). The co-
efficients in (35) and (36) involve the three state functions
v, F (G, v) (19) and M : dh (p, v) introduces the two state
functions G and c = (v/v0) (D/M), from (9) and (15),
and v, p and h are one-variable functions, from (12). In
contrast, dh (s, p) does not involve c, M and F , so neither
does ds.

The determinant of system (32)-(34) is M−2 − 1, and
the right-hand sides of (35) and (36) have to be set to
zero for CJ discontinuities (M = 1) so dv and dp can be
finite. This defines the CJ velocity and entropy differen-

tials dDCJ and dsCJ, from (37), as the Eigen-constraints

FCJ
dDCJ

DCJ
= ...

...
1− 2 vCJ

v0
+GCJ

(
1− vCJ

v0
+ v0

vCJ

M−2
0CJ

G0

)
1− vCJ

v0

dv0

v0
...

... −
1−GCJ

v0
vCJ

(
1− vCJ

v0
+ 1

G0

)
1− vCJ

v0

v0dp0

D2
CJ

, (38)

FCJ
TCJdsCJ

D2
CJ

= ...

...

(
1− vCJ

v0
+

2M−2
0CJ

G0

)
dv0

v0
...

... +

(
1− vCJ

v0
+

2

G0

)
v0dp0

D2
CJ

, (39)

by substituting dh0 (p0, v0) for dh0. They can be
directly obtained from (32), (33) and dh (s, p), in-
stead of dh (p, v), by using the CJ condition M = 1
as c/v = D/v0 (9) in ds (p, v) (4) and then elimi-
nating the combination

(
v0dpCJ/D

2
CJ

)
+ (dvCJ/v0) =

GCJ (v0/vCJ)
(
TCJdsCJ/D

2
CJ

)
[5, 46]. The derivation

above provides the intermediate differentials (35) and
(36) necessary to demonstrate the DSI theorem. Dif-
ferentials (38) and (39) show that FCJ 6= 0 (19) is also
a continuity condition: small initial variations have to
produce small variations of DCJ and sCJ (Subsect. II-
B, App. B). In the acoustic limit (D → c0, v/v0 → 1,
F → 2), (37) and (39) coherently reduce to dh0 (s0, p0).

The theorem demonstration is easier using a simpler
writing of these differentials that introduces a distribu-
tion of p0 and v0 on an arbitrary polar curve p∗0 (v0)
through a reference point v0∗, p0∗ = p∗0 (v0∗). The ini-
tial enthalpy h0 (p0, v0) reduces to the function h∗0 (v0) =
h0 (p∗0 (v0) , v0) of v0, hence, from (2),

v0

D2

dh∗0
dv0

=
G0 + 1

G0

(v0

D

)2 dp∗0
dv0

+
M−2

0

G0
. (40)

The final-state expressions η (D; v0, p0) (12) reduce to
functions η∗ (D, v0) = η (D; v0, p

∗
0 (v0)) of D and v0,

hence, from (35) and (37),

(
M−2 − 1

) dv∗
v0

= −F
(

1− v

v0

)
dD

D
+ Φ∗v

dv0

v0
, (41)

Tds∗

D2
=

(
1− v

v0

)2
dD

D
+ Φ∗s

dv0

v0
, (42)

where

Φ∗v = 1− 2
v

v0
+G

v0

v
×
{(

1− v

v0

)
v

v0
+
M−2

0

G0
...

... −
(

1−Gv0

v

(
1− v

v0
+

1

G0

))}
×
(v0

D

)2 dp∗0
dv0

, (43)
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Φ∗s =

((
1− v

v0

)
v

v0
+
M−2

0

G0

)
...

... +

(
1− v

v0
+

1

G0

)(v0

D

)2 dp∗0
dv0

, (44)

Similarly to h0 (p0, v0), the CJ velocity DCJ (v0, p0)
and specific entropy sCJ (v0, p0) reduce to the func-
tions D∗CJ (v0) = DCJ (v0, p

∗
0 (v0)) and s∗CJ (v0) =

sCJ (v0, p
∗
0 (v0)) of v0, hence, from (38) and (39),

v0

DCJ

dD∗CJ

dv0
= F−1

CJ

(
1− vCJ

v0

)−1

Φ∗vCJ, (45)

v0TCJ

D2
CJ

ds∗CJ

dv0
= F−1

CJ

(
1− vCJ

v0

)
Φ∗vCJ + Φ∗sCJ. (46)

The slope dp∗0/dv0 is thus the parameter that deter-
mines how the initial and final properties vary with v0

for initial states varying on p∗0 (v0) (Fig. 1). Final states
varying at constant initial state lie on the same Hugo-
niot, initial states varying on p∗0 (v0) generate a (p-v) arc
of final states between a point U on a Hugoniot H with
pole O(v0, p0) and a point U’ on another Hugoniot H’
with pole O’(v0 + dv0, p0 + dp∗0 (v0)). The partial deriva-
tive ∂η∗/∂D)v0 is the variation of η with respect to D
along the same Hugoniot, ∂η∗/∂v0)D is the variation of
η with respect to v0 from one Hugoniot to another for
piston speeds up (Subsect. III-A) chosen for each initial
state on p∗0 (v0) that the final states have the same D,
and ∂D/∂v0)s∗ and ∂η∗/∂v0)s∗ are variations with re-
spect to v0 for up such that the final states are on the
same isentrope arc. The demonstration requires the par-
tial derivative of v∗ with respect to v0 to be finite along
an equilibrium isentrope: physical CJ velocities are finite,
so are isentrope slopes at CJ points (Subsect. III-D).

C. Demonstration and interpretation

Differentials (42) and (41) define two constraints on
partial derivatives of s∗ (D, v0) and v∗ (D, v0)

Φ∗s ≡
v0T

D2

∂s∗

∂v0

)
D

= −
(

1− v

v0

)2
v0

D

∂D

∂v0

)
s∗
, (47)

Φ∗v ≡
(
M−2 − 1

) ∂v∗
∂v0

)
D

= ...

...
(
M−2 − 1

) ∂v∗
∂v0

)
s∗

+ F

(
1− v

v0

)
v0

D

∂D

∂v0

)
s∗
. (48)

From here, the wave is assumed to be a true discontinuity
(v/v0 6= 1), so (47) indicates that, regardless of M ,

Φ∗s ∝
∂s∗

∂v0

)
D

= 0⇔ ∂D

∂v0

)
s∗

= 0, (49)

a consequence of the triple product rule,

∂s∗

∂v0

)
D

= − ∂s∗

∂D

)
v0

∂D

∂v0

)
s∗

(50)

since (42) is the two-variable differential of s∗ (D, v0),

ds∗ =
∂s∗

∂D

)
v0

dD +
∂s∗

∂v0

)
D

dv0, (51)

and ∂s∗/∂D)v0 =
(

1− v
v0

)2 (
D2/T

)
6= 0 (23). Neither

of equality in (49) is true in general (Subsect. III-A) but
both are so for sonic detonation states (M = 1, v/v0 <
1): (48) and (49) give, successively,

Φ∗(M=1)
v ∝ ∂D

∂v0

)(M=1)

s∗
= 0, Φ∗(M=1)

s ∝ ∂s∗

∂v0

)(M=1)

D

= 0

(52)

if ∂v∗/∂v0)
(M=1)
D and ∂v∗/∂v0)

(M=1)
s∗ are finite, hence

the DSI theorem (31) from (45)-(46) or (51),

(ds∗)
(M=1) ≡ ds∗CJ = 0⇔ (dD)

(M=1) ≡ dD∗CJ = 0.
(53)

Equivalently, combining dv∗ (s, v0) and (21), or (47)
and (48), gives

∂v∗

∂v0

)
D

=
∂v∗

∂v0

)
s

+
∂v∗

∂s

)
v0

∂s∗

∂v0

)
D

⇔ (54)

Φ∗s =
M−2 − 1

F

(
1− v

v0

)(
∂v∗

∂v0

)
s

− ∂v∗

∂v0

)
D

)
, (55)

so Φ
∗(M=1)
s = 0 if (∂v∗/∂v0)s − ∂v∗/∂v0)D)

(M=1)
is fi-

nite, then ∂D/∂v0)
(M=1)
s∗ = 0 from (47), and Φ

∗(M=1)
v =

0 from (48). Different initial states that generate the
same CJ velocity thus generate different CJ states with
the same entropy. This can also be obtained from dp (36):
its coefficients have the same absolute value as those of dv
(35) if M = 1. Appendix C proposes a model problem.

An interpretation in the p-v plane (Fig. 1) considers
the Hugoniot curves pH (v; p0, v0) (14) as a one-parameter
family y∗H (p, v; v0) = 0 with parameter v0 if their poles
(p0, v0) are distributed on p∗0 (v0),

y∗H (p, v; v0) = ...

... − h (p, v) + h0 (p∗0, v0) +
1

2
(p− p∗0) (v0 + v) . (56)

This family has an envelope if p∗0 (v0) satisfies the con-
straint obtained by setting to zero the partial derivative
of y∗H (p, v; v0) with respect to v0

∂y∗H
∂v0

)
p,v

= 0⇔ dp∗0
dv0

= −
(
D

v0

)2

×
1− v

v0
+

2M−2
0

G0

1− v
v0

+ 2
G0

,

(57)
and this envelope is an isentrope if it is made up of sonic
points, as the CJ-entropy differential (39) shows.

Similarly, the Rayleigh-Michelson lines (R)
pR (v,D; p0, v0) (14) form a two-parameter family
y∗R (p, v;D, v0) = 0, with parameters v0 and D, if their
poles (p0, v0) are distributed on p∗0 (v0),

y∗R (p, v;D, v0) = −p+ p∗0 +

(
D

v0

)2

(v0 − v) , (58)
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which reduces to a one-parameter (v0) sub-family if D
is a function of v0 and p0 such as DCJ (25). Thus,
with D∗CJ (v0) = DCJ (v0, p

∗
0 (v0)), setting to zero the par-

tial derivative of y∗R (p, v;D∗CJ (v0) , v0) with respect to v0

gives the envelope constraint for the R lines

∂y∗R
∂v0

)
p,v

= 0⇔ dp∗0
dv0

= −
(
D∗CJ

v0

)2

× ...

...

{
2
vCJ

v0
− 1 + 2

(
1− vCJ

v0

)
v0

D∗CJ

dD∗CJ

dv0

}
, (59)

which is an isentrope if it is made up of sonic points. This
can be observed from

G
v0

v

TdsR

D2
=
v0dp0

D2
+

(
2
v

v0
− 1

)
dv0

v0
...

... + 2

(
1− v

v0

)
dD

D
+
(
M−2 − 1

) dv
v0
, (60)

obtained by combining the differentials of the R relation
(32) and the s (p, v) equation of state (4). The DSI the-
orem dD∗CJ = 0 along an isentrope then gives

dp∗0
dv0

= −
(
D∗CJ

v0

)2

×
(

2
v

v0
− 1

)
. (61)

An isentrope is thus the common envelope (Fig.
1) of families of equilibrium Hugoniots and Rayleigh-
Michelson lines with initial states such that CJ detona-
tions have the same velocity. The connection with Davis’
implementation of the Inverse Method for condensed ex-
plosives [47] is discussed in subsection III-D.

D. Chapman-Jouguet supplemental properties

1. CJ state and isentrope. The initial-state variations dp0

and dv0 ensuring the invariances of DCJ and sCJ are the
non-zero solutions to either 2×2 homogeneous systems
{dDCJ = 0 - dsCJ = 0} (38)-(39) or {Φ∗v = 0 - Φ∗s = 0}CJ
(52): their determinants are proportional to each other
because any of their 4 constraints is a linear combination
of the other 3. Setting either to zero, or identifying the
envelope constraints (57) and (61) to each other, gives
the condition

G0x
2
CJ + 2xCJ −

(
1−M−2

0CJ

)
= 0, (62)

xCJ = 1− vCJ

v0
=
v0 (pCJ − p0)

D2
CJ

=
uCJ

DCJ
. (63)

The compressive solution vCJ/v0 < 1, pCJ/p0 > 1 and
(27) or (28) form the one-variable (DCJ) representation

(30) of the CJ detonation state

vCJ (DCJ; v0, p0) = v0

1 +G0 −
√

1 +G0

(
1−M−2

0CJ

)
G0

,

(64)

pCJ (DCJ; v0, p0) = p0 +
D2

CJ

v0

√
1 +G0

(
1−M−2

0CJ

)
− 1

G0
,

(65)

γCJ (DCJ; v0, p0) = ...

...
1 +G0 −

√
1 +G0

(
1−M−2

0CJ

)
G0

p0v0
c20
M−2

0CJ − 1 +
√

1 +G0

(
1−M−2

0CJ

) . (66)

Conversely, DCJ is a function of one CJ variable, for
example, pCJ (65),(
DCJ

c0

)2

= πCJ

(
1 +

1

2πCJ

)1 +

√√√√1 +
G0(

1 + 1
2πCJ

)2

 ,

(67)
where πCJ = v0 (pCJ − p0) /c20, or γCJ (66),(
DCJ

c0

)2

=
1

2

(γCJ + 1)
2

γ2
CJ − 1−G0

×

{
1− 2

1 + G0

γCJ+1

γCJ + 1

γCJ

γ̃0
+ ...

...

√√√√
1− 4

1 +
G0−(1+G0)

γCJ
γ̃0

γCJ+1

γCJ + 1

γCJ

γ̃0

 , (68)

where γ̃0 = c20/p0v0 and must not be confused with γ0,
except for gases (Subsect. II-A). Relation (68) shows a
large sensitivity of DCJ to γCJ, as is more evident in the
gas example (71) below. The identity

G0 =
α0c

2
0

Cp0
, α0 =

1

v0

∂v0

∂T0

)
p0

, (69)

indicates that the necessary initial data are c0, Cp0 , and
v0 measured as a function of T0 at constant p0 so the
coefficient of thermal expansion α0 can be determined.

For ideal gases, c, Cp, α and γ are functions of T =
pv (W/R) only, G = γ−1, v = RT/pW , α = 1/T . Thus,
for initially-ideal gases,

γCJ (DCJ, p0, T0) =

√
γ0

1− γ0−1
γ0

M−2
0CJ

, (70)

D2
CJ (γCJ, p0, T0) =

1− γ−1
0

1− γ0
γ2
CJ

× c20 , (71)

D2
CJ (pCJ, p0, T0)

v0pCJ
=

(
1−

(
1− γ0

2

) p0

pCJ

)
× ...

...

1 +

√√√√√√1 +
(γ0 − 1)

(
1− p0

pCJ

)2

(
1−

(
1− γ0

2

)
p0
pCJ

)2

 . (72)



9

The strong-shock limits (M−2
0CJ � 1 or p0/pCJ � 1)

of γCJ and D2
CJ are

√
γ0 and

(
1 +
√
γ0

)
v0pCJ, respec-

tively (their acoustic limits are γ0 and c20). The typi-
cal values γ0 = 1.3, c0 = 330 m/s and DCJ = 2000
m/s give γCJ = 1.144,

√
γ0 = 1.140 and relative error

100 ×
(
γCJ/

√
γ0 − 1

)
= 0.316 %. Relations (70)-(72)

apply only to initially-ideal gases, but products can be
non-ideal if p0 is large enough.

The (p0, v0) pairs that generate the invariance DCJ or
sCJ are solutions to the ordinary differential equation
formed by substituting (64) for v in (57) or (61). The
initial condition is a reference initial state (p0∗, v0∗) with
known CJ velocity D∗CJ. The particular solution is the
polar curve p∗0 (v0) through (p0∗, v0∗), which, substituted
for p0 in vCJ (DCJ; v0, p0) (64) and pR (v,D; v0, p0) (13)
gives

v∗CJ (v0) = vCJ (v0, p
∗
0 (v0) , D∗CJ) , (73)

p∗CJ (v0) = p∗0 (v0) +
D∗2CJ

v0

(
1− v∗CJ (v0)

v0

)
. (74)

The isentrope p∗S (v) is generated by eliminating v0 be-
tween v∗CJ (v0) and p∗CJ (v0), that is, by varying v0 and
representing p∗CJ (v0) as a function of v∗CJ (v0). Thus,
v0 can parameterize an isentrope of detonation products.
This, however, necessitates Cp0 , c0 and v0 in a sufficiently
large (p0, T0) domain whereas calculating the CJ state
from (64), (65) and (66) necessitates them for one initial
state only.

Physically, the DSI theorem holds because isentropes
have finite slopes, so the derivatives ∂z∗/∂v0)s and
∂z∗/∂v0)D are finite and non-zero at sonic points (Sub-
sect. III-C). Formally, this is obtained by differentiat-
ing c (s, v) (5) and the mass balance (9-a) written as
v = v0M (c/D),

dv

v
=
dv0

v0
+
dc

c
+
dM

M
− dD

D
, (75)

dc =
∂c

∂s

)
v

ds+
∂c

∂v

)
s

dv, (76)

hence, restricting variations to an isentrope,

Γ
v0

v

∂v

∂v0

)
s

= 1− v0

D

∂D

∂v0

)
s

+
v0

M

∂M

∂v0

)
s

, (77)

with Γ the fundamental derivative of hydrodynamics (8).
The sonic condition M = const. = 1 and the DSI con-
sequence ∂D/∂v0)

(M=1)
s∗ = 0 (52-a), combined with (7),

(1) and (9), then give

∂v∗

∂v0

)(M=1)

s∗
= −

(
v0

DCJ

)2
∂p∗

∂v0

)(M=1)

s∗
= Γ−1

CJ

vCJ

v0
, (78)

v0

D2
CJ

∂h∗

∂v0

)(M=1)

s∗
= −Γ−1

CJ

(
vCJ

v0

)2

, (79)

v0

DCJ

∂u∗

∂v0

)(M=1)

s∗
=
(
1− Γ−1

CJ

) vCJ

v0
. (80)

Therefore, the derivatives of v, p and h are finite
and non-zero at a CJ point except if ΓCJ → ∞ and
ΓCJ = 0, respectively (the derivative of u is zero for

ΓCJ = 1), and the constraints ∂v∗/∂v0)
(M=1)
s∗ < ∞

and ∂v∗/∂v0)
(M=1)
D < ∞ are equivalent to each other.

In contrast, with z denoting v, p or h, the derivatives

∂z∗/∂D)
(M=1)
v0

are infinite (or ∂D/∂z∗)
(M=1)
v0

= 0), as
(24) shows. In the perfect-gas example (App. A), taking
the partial derivative of v (D; v0, p0) (A8) with respect
to D moves the square-root term to the denominator,
so limD→DCJ

∂v/∂D)p0,v0 = −∞, whereas its partial

derivative with respect to v0, with p0 = p∗0 (v0), shows
that limD→DCJ

∂v∗/∂v0)D is finite if ∂D/∂v0)s∗ = 0.
The ratio dDCJ/dsCJ is obtained by eliminating

dp0/dv0 between (38) and (39). The non-homogeneous
term is zero from 62), hence

DCJdDCJ

TCJdsCJ
=

(
1− vCJ

v0

)−2
1− FCJ

1 +G0

(
1− vCJ

v0

)
2 +G0

(
1− vCJ

v0

)
 .

(81)
The partial derivatives of DCJ (v0, p0), and those of

DCJ (T0, p0), are not independent since there are initial-
state variations for which DCJ is constant. This is im-
plied by the triple product rule,

∂DCJ

∂z0

)
p0

= − ∂p0

∂z0

)
DCJ

∂DCJ

∂p0

)
z0

, (82)

where z0 denotes either v0 or T0. Hence, with
∂p0/∂v0)DCJ

given by (57) or (61),

v0

DCJ

∂DCJ

∂v0

)
p0

=
DCJ

v0

∂DCJ

∂p0

)
v0

×
(

2
vCJ

v0
− 1

)
, (83)

DCJ

v0

∂DCJ

∂p0

)
T0

=
T0

DCJ

∂DCJ

∂T0

)
p0

× ...

...
1− (1 + α0T0G0)

(
2 vCJ

v0
− 1
)
M2

0CJ(
2vCJ

v0
− 1
)
α0T0

, (84)

the latter being obtained from the former and the iden-
tities

T0

DCJ

∂DCJ

∂T0

)
p0

= α0T0
v0

DCJ

∂DCJ

∂v0

)
p0

, (85)

DCJ

v0

∂DCJ

∂p0

)
T0

=
v0

DCJ

∂DCJ

∂p0

)
v0

− ...

... M2
0 (1 + α0T0G0)

v0

DCJ

∂DCJ

∂v0

)
p0

. (86)

The variations of DCJ with respect to T0 at constant p0

thus determine those with respect to p0 at constant T0,
and conversely. The 5 constraints above also apply to
sCJ since ∂p0/∂z0)DCJ

= ∂p0/∂z0)sCJ
.
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2. The Inverse Method (IM). A reminder on this method
(Sect. I) is helpful to discuss below the DSI theorem,
and its application to liquid explosives in subsection
IV-B. Manson [5] and Wood and Fickett [46] were the
first to discuss several IM implementations depending on
the pair of independent initial-state variables. The two
options in this work are conveniently introduced from

dDCJ

DCJ
=

1− FCJ (1− xCJ)

FCJxCJ

dv0

v0
− ...

...
1 + (1− FCJ) (1− xCJ)

FCJx2
CJ

v0dp0

D2
CJ

+
2− FCJ

FCJx2
CJ

dh0

D2
CJ

(87)

obtained by setting M = 1 in dv (35) or dp (36), and
with xCJ given by (63) and F by (19).

The first one considers the same homogeneous explo-
sive and the pair (T0, p0). Measurements of DCJ (T0, p0)
give the values of its partial derivatives, using dh0 (p0, v0)
(2) reduces (87) to the differential (38) of DCJ (v0, p0)
(Subsect. 3.2), and eliminating FCJ (or GCJ) (19) be-
tween its coefficients then gives the CJ state as the solu-
tion xCJ < 1 of

G0Lx
2
CJ + 2KxCJ −

(
1−M−2

0CJ

)
= 0, (88)

where L and K for DCJ (v0, p0) and DCJ (T0, p0) are

L = 1 +
DCJ

v0

∂DCJ

∂p0

)
v0

− v0

DCJ

∂DCJ

∂v0

)
p0

= 1 +
DCJ

v0

∂DCJ

∂p0

)
T0

+ ...

...
1−M−2

0CJ + α0T0G0

α0T0M
−2
0CJ

T0

DCJ

∂DCJ

∂T0

)
p0

, (89)

K = 1 +M−2
0CJ

DCJ

v0

∂DCJ

∂p0

)
v0

− v0

DCJ

∂DCJ

∂v0

)
p0

= 1 +M−2
0CJ

DCJ

v0

∂DCJ

∂p0

)
T0

+
G0T0

DCJ

∂DCJ

∂T0

)
p0

, (90)

through dv0 (T0, p0) and dh0 (T0, p0) (69). The IM rela-
tion (88) also writes

L
(
G0x

2
CJ + 2xCJ −

(
1−M−2

0CJ

))
−
(
1−M−2

0CJ

)
× ...

...

(
(1− 2xCJ)

∂DCJ

∂p0

)
v0

− ∂DCJ

∂v0

)
p0

)
= 0, (91)

which shows that (88) reduces to the DSI relation (62) by
demanding the partial derivatives of DCJ to meet their
DSI compatibility relation (83). It must be emphasized
that any assumption on the derivatives of DCJ such that
L and K are both equal to 1 also reduces (88) to (62).
Such assumptions are non-physical because they neces-
sarily select the acoustic-limit solution, which is evident
from the expressions of L and K and the DSI compatibil-
ity relation (83) or (84). Indeed, the DSI and the IM re-
lations (62) and (88) have two CJ solutions, the physical

one – M0CJ > 1, DCJ > c0, 0 < xCJ < 1 – and the acous-
tic limit – M0CJ = 1, DCJ = c0, xCJ = 0. For example,
Manson [48] had noted the strong-shock limit

√
γ0 of γCJ

for the ideal gas (70) by neglecting both non-dimensional
derivatives ∂ lnDCJ/∂ ln p0)T0

and ∂ lnDCJ/∂ lnT0)p0 of

DCJ (T0, p0). This contradicts the distinguished limit re-
quired by the large values of M2

0CJ in the coefficients of
∂ lnDCJ/∂ ln p0)T0

and ∂ lnDCJ/∂ lnT0)p0 in (89).

The second option uses the pair (v0, h0) at constant p0.
This can be obtained with a set of isometric mixtures [49],
that is, with all the same atomic composition, and hence
the same equilibrium equation of state, for any value of a
composition parameter, denoted below by w0 after [46].
Typically, w0 is the total volume- or mass-fraction of all
compounds added to the reference composition, so the
initial and CJ properties of the reference explosive are
then defined by w0 = 0. Measurements of h0 (T0, w0),
v0 (T0, w0) and DCJ (T0, w0) at constant p0 give the val-
ues of their partial derivatives, setting dp0 = 0 in (87)
gives the differential of DCJ (v0, h0), and eliminating FCJ

between its coefficients then gives the CJ state as the
solution xCJ < 1 of

Lx2
CJ + 2KxCJ − 1 = 0, (92)

where L and K for DCJ (v0, h0) and DCJ (T0, w0) are

L = DCJ
∂DCJ

∂h0

)
v0,p0

= ...

...

ω0T0

DCJ

∂DCJ

∂T0

)
w0,p0

− α0T0

DCJ

∂DCJ

∂w0

)
T0,p0

ω0
Cp0T0

D2
CJ
− α0T0Ω0

, (93)

K = 1− v0

DCJ

∂DCJ

∂v0

)
h0,p0

= ...

... 1 +

Ω0DCJ

T0

∂DCJ

∂T0

)
w0,p0

− Cp0T0

D3
CJ

∂DCJ

∂w0

)
T0,p0

ω0
Cp0T0

D2
CJ
− α0T0Ω0

, (94)

through the identities

dv0

v0
= α0T0

dT0

T0
+ ω0dw0, ω0 =

1

v0

∂v0

∂w0

)
T0,p0

, (95)

dh0

D2
=
Cp0T0

D2

dT0

T0
+ Ω0dw0, Ω0 =

1

D2

∂h0

∂w0

)
T0,p0

. (96)

This option is more convenient than the first because gen-
erating sufficiently-large variations of p0 may be uneasy
and because it does not necessitate c0.

The main drawback of the IM is its limited accuracy, in
particular because the partial derivatives of DCJ are mea-
sured independently of each other and cumulate their ex-
perimental uncertainties (Subsect. IV-B). The CJ prop-
erties derived from the DSI theorem require only the
value of DCJ.
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3. Remarks. The variables v0 and h0 viewed as indepen-
dent at constant p0 determine envelope conditions (sub-
sect. III-C) on D and h0 for the families of Rayleigh-
Michelson (R) lines (13) and Hugoniot (H) curves (14),
that is,

v0

D

dD

dv0
=

1

2

1− 2 v
v0

1− v
v0

≡ 1−
(

2
v0 (p− p0)

D2

)−1

, (97)

v0

D2

dh0

dv0
=

1

2

(
1− v

v0

)
≡ −1

2

v0 (p− p0)

D2
, (98)

respectively. The constraints (97) and (60) show that a
sonic (M = 1) envelope to R lines is an isentrope, which
combined with (37) indeed returns the envelope condition
(98) for the H curves. The constraint dsCJ = 0 is satisfied
but not the constraint dDCJ = 0 because it would imply
vCJ/v0 = 1/2, that is, γCJ = 1.

The DSI theorem dDCJ = 0 ⇔ dsCJ = 0 is physically
valid only if p0 is varied, even if p0/p or v0p0/D

2 are
negligible, and for initial and final states described with
two-variable equations of state T = T (p, v).

Davis [47] thus implemented the IM for condensed ex-
plosives (p0/p ≈ 10−5) such that specific energy e0 and
mass ρ0 = 1/v0 are independent, and built DCJ (e0, ρ0)
from Kamlet’s method REF. He calculated the particular
poles e∗0 (ρ0) of Hugoniots with the same isentropic enve-
lope, this isentrope and the CJ states. His relations (14)
and (31) are equivalent to (97) and (98), respectively,
since e0 = h0 if p0 is neglected. Similarly, Nagayama
and Kubota [50] derived an envelope constraint for the
R lines. They considered linear laws DCJ (ρ0) with a
negligible dependency on e0. Their relations (13) and
(14) for the CJ state are equivalent to (97), that is, to
xCJ = 1/2K from (92) and (93).

The differentials of the Rankine-Hugoniot relations
and the equations of state form a 2 × 2 homogeneous
linear system for dp0 and dv0 (with dh0 subject to (34))
for any invariant pair of final-state variables. Only the
invariance of DCJ and sCJ produces a non-trivially null
determinant, that is, non-zero dp0 and dv0, and relation
(62) is this annulment condition. For example, in the p
- v plane, no non-zero dp0 and dv0 permit a focal point
dpCJ = 0 - dvCJ = 0. This would imply dhCJ = 0, since
h = h (p, v), and, from (32), dDCJ = 0, which represents
the R line through (p0, v0).

Equilibrium compositions in homogeneous media are
functions of T and p, so their variations are consistently
included in those of a T (p, v) equation of state, as in-
duced by the differentiations above (Subsect. III-B). Fur-
ther, there is no reason for different initial states to gen-
erate the same frozen final composition.

IV. APPLICATION TO
GASEOUS OR LIQUID EXPLOSIVES

As for gaseous explosives (Subsect. IV-A), the DSI
theorem and some CJ supplemental properties were anal-
ysed through chemical equilibrium calculations. Only
ideal detonation products were investigated to avoid the
uncertainties induced by equations of state, such as those
of condensed explosives, calibrated from experiments
that may not have achieved the strict CJ equilibrium
(Sect. I). The calculations were done with the NASA
computer program CEA [43]. As for liquid explosives
(Subsect. IV-B), the analysis is a comparative discussion
of the theoretical CJ pressures from (65) and values from
experiments and the Inverse Method (Subsect. III-D).

A. Gaseous explosives with ideal final states

Tables I show numerical values of sCJ and DCJ for the
four stoichiometric mixtures CH4 + 2 O2, C3H8 + 5 O2,
CH4 + 2 Air and H2 + 0.5 Air. Five (T0, p0) pairs with
T0 evenly spaced between 200 K and 400 K were used to
represent a largest physical range; the third (T0 = 298.15
K, p0 = 1 bar) was chosen as the reference initial state
(v0∗, p0∗) (subscript ∗, Subsect. III-C. The values of p0

were determined by dichotomy for each T0 so all entropies
have the reference value s∗CJ. The results were analysed
based on the mean velocities D̄CJ, absolute and mean
relative deviations ∆DCJ/D̄CJ andmDCJ

, in percent, and
corrected standard deviations σDCJ

D̄CJ =
1

I

I=5∑
i=1

DCJi ,

(
∆DCJ

D̄CJ

)
i

= 100× DCJi − D̄CJ

D̄CJ
,

(99)

mDCJ
=

1

I

I=5∑
i=1

∣∣∣∣∆DCJ

D̄CJ

∣∣∣∣
i

, σDCJ
=

√√√√I=5∑
i=1

(
DCJi − D̄CJ

)2
I − 1

.

(100)
All mDCJ ’s and σDCJ ’s are very small. In particu-

lar, all DCJ’s are close to their mean values D̄CJ to
O (0.1) % at most. The agreement is practically exact for
C3H8 + 5 O2. This suggests that an iterative minimiza-
tion of both ∆DCJ/D̄CJ and ∆sCJ/s̄CJ should return
values of p0 (T0), D̄CJ and s̄CJ that even better satisfy
the theorem and eliminate the slight decreasing trend of
DCJ with increasing T0 at constant s∗CJ observed here.
The p0 (T0) values and the results in table I can be seen
as zeroth-order iterates, so the (v0 (T0) , p0) pairs well
approximate the polar curve p∗0 (v0) through (v0∗, p0∗)
(Subsect. III-C). It is easy, albeit tedious, to check that
another reference than T ∗0 = 298.15 K and p∗0 = 1 bar
returns similarly small mDCJ

’s and σDCJ
’s.

These small values were validated through a sensitivity
analysis based on initial states very close to a reference
∗, and CEA’s numerical accuracy as a criterion. Table
II shows results for the C3H8 + 5 O2 mixture with three
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TABLE I. Joint invariances of CJ entropy sCJ and velocity
DCJ: CJ-velocity mean value D̄CJ, absolute relative devi-
ation ∆DCJ/D̄CJ, mean relative deviation mDCJ , and cor-
rected standard deviation σDCJ of 4 mixtures.

CH4 + 2 O2 mDCJ = 0.08 %
D̄CJ = 2389.7 m/s σDCJ = 2.47 m/s

T0 p0 sCJ DCJ
∆DCJ
D̄CJ

(K) (bar) (kJ/kg/K) (m/s) (%)
200.00 0.6284 id. 2392.9 0.13
250.00 0.8118 id. 2391.2 0.06
298.15∗ 1.0000∗ 12.6653∗ 2389.6 ∼ 0.00
350.00 1.2165 id. 2388.0 −0.07
400.00 1.4410 id. 2386.7 −0.12

C3H8 + 5 O2 mDCJ = 0.012 %
D̄CJ = 2356.7 m/s σDCJ = 0.41 m/s

T0 p0 sCJ DCJ
∆DCJ
D̄CJ

(K) (bar) (kJ/kg/K) (m/s) (%)
200.00 0.6304 id. 2357.3 0.03
250.00 0.8127 id. 2356.7 ∼ 0.00
298.15∗ 1.0000∗ 11.9293∗ 2356.3 −0.015

350.00 1.2165 id. 2356.3 −0.015

400.00 1.4419 id. 2356.7 ∼ 0.00

CH4 + 2 Air mDCJ = 0.05 %
D̄CJ = 1799.9 m/s σDCJ = 1.23 m/s

T0 p0 sCJ DCJ
∆DCJ
D̄CJ

(K) (bar) (kJ/kg/K) (m/s) (%)
200.00 0.6044 id. 1801.4 0.08
250.00 0.7968 id. 1800.7 0.05
298.15∗ 1.0000∗ 9.4218∗ 1799.9 ∼ 0.00
350.00 1.2401 id. 1799.1 −0.04
400.00 1.4949 id. 1798.3 −0.09

H2 + 0.5 Air mDCJ = 0.1 %
D̄CJ = 1964.7 m/s σDCJ = 2.55 m/s

T0 p0 sCJ DCJ
∆DCJ
D̄CJ

(K) (bar) (kJ/kg/K) (m/s) (%)
200.00 0.6004 id. 1967.9 0.16
250.00 0.7941 id. 1966.4 0.08
298.15∗ 1.0000∗ 10.5927∗ 1964.8 ∼ 0.00
350.00 1.2444 id. 1963.1 −0.08
400.00 1.5042 id. 1961.5 −0.16

groups of four (T0, p0) pairs. The first pairs (superscript
∗) are the firsts, thirds and fifths in table I-2, so they gen-
erate the same entropy s∗CJ. Their CJ states were used as
the references of their group. The seconds (italics) have
T0’s only 5 % greater than the firsts and p0’s determined
by dichotomy so that sCJ = s∗CJ. The ∆DCJ/D

∗
CJ’s are

thus at most equal to the O
(
10−2

)
-% mDCJ

’s in table
I-2, and smaller T0 variations would be non-significant.
The thirds and fourths are variations at constant T0 and
constant p0, respectively. In each group, the initial varia-
tions chosen to generate the same s∗CJ (the seconds) give

the smaller variations of TCJ, which all are all greater
than CEA’s O

(
10−3

)
-% accuracy d̃T/T = d̃p/p = 0.005

% ([43], p.35, eqs.7.24, and p.40) by at least one order of
magnitude. The initial variations chosen not to generate
the same entropy s∗CJ (the thirds and fourths) give vari-
ations of DCJ 10 times greater than mDCJ

and the same
O
(
10−1

)
-% magnitudes for those of sCJ and TCJ. There-

fore, the small O
(
10−2

)
-% variations of DCJ at constant

sCJ, and the greater ones of sCJ and DCJ at constant T0

and p0, are valid and not due to initial states chosen too
close to each other. The variations of sCJ are slightly
smaller than those of TCJ: the combination of dh (s, p)
(1), dh (T ) = CpdT (3), pv = RT/W and γ = Cp/Cv,

subject to d̃T/T = d̃p/p, gives

d̃s

s
=
(
2− γ−1

) Cp
s
× d̃T

T
= O

(
10−1 − 1

)
× d̃T

T
, (101)

since typical γ, s and Cp are O (1), O (10) kJ/K/kg and
O (1-10) kJ/K/kg, respectively. At p0 = 1 bar and T0 =

298.15 K, CEA gives d̃sCJ/sCJ = 0.33 × d̃TCJ/TCJ for

CH4+2 Air, and d̃sCJ/sCJ = 0.89×d̃TCJ/TCJ for CH4+2
O2.

The theoretical (theo) ratios (ρCJ/ρ0, pCJ/p0, γCJ) ≡
rCJ were calculated from (27), (28) and (70) using CEA
values of DCJ and the initial-state variables, and com-
pared to CEA numerical (num) values. Tables III and IV
show initial data and results for C3H8/O2 mixtures with
equivalence ratios ER= 0.8, 1 and 2, T0 = 200 K, 298.15
K and 400 K, and p0 = 0.2 bar, 1 bar and 5 bar. Numbers
are rounded, hence non-significant discrepancies between
the indicated relative differences εr and those calculated

from rounded r
(num)
CJ and r

(theo)
CJ ,

εr = 100×
r

(num)
CJ − r(theo)

CJ

r
(num)
CJ

. (102)

All εr’s are small, ranging from O
(
10−1

)
to O (1) %,

but greater than the O
(
10−2 - 10−1

)
-% mDCJ

’s, likely
because of the sensitivity to the initial thermodynamic
coefficients: the accuracy of Cp0 determines the others.

The uncertainties of sCJ, γCJ, ρCJ and pCJ are obtained
from ds (p, v) (1), (27), (28), pv = RT/W , γ2

CJ ≈ γ0 =
Cp0/Cv0 (70) and Cp0−Cv0 = R/W0. The typical values

M−2
0CJ � 1, γ2

CJ ≈ γ0 ≈ GCJ + 1 ≈ 1.2, sCJ ≈ 104 J/kg,
R ≈ 8 J/kg/mole, WCJ ≈ 2 × 10−2 kg/mole, and the
Newtonian limit γCJ ≈ 1+, then give the estimates

δsCJ

sCJ
=

2

sCJGCJ

R

W

1−M−2
0CJ

1 +M−2
0CJ/γ0

δDCJ

DCJ
≈ 1

10

δDCJ

DCJ
,

(103)

δγCJ

γCJ
=

1

2

(
1 +

M−2
0CJ/γ0

1− γ0−1
γ0

M−2
0CJ

)
δγ0

γ0
...

... +

γ0−1
γ0

M−2
0CJ

1− γ0−1
γ0

M−2
0CJ

δDCJ

DCJ
≈ 1

2

δγ0

γ0
=
δCp0
Cp0

, (104)
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TABLE II. Joint invariances of CJ entropy sCJ and velocity DCJ: sensitivity to small changes of initial state of the C3H8 + 5
O2 mixture.

T0 p0 sCJ
∆sCJ
s∗CJ

DCJ
∆DCJ
D∗

CJ
TCJ

∆TCJ
T∗
CJ

(K) (bar) (kJ/kg/K) (%) (m/s) (%) (K) (%)
200.00∗ 0.6304∗ 11.9293∗ / 2357.3∗ / 3799.46∗ /
210.00 0.6660 11.9293∗ / 2357.1 -0.01 3801.57 0.06
200.00 0.6660 11.9093 −0.17 2359.7 0.10 3810.15 0.28
210.00 0.6304 11.9493 0.17 2354.7 −0.14 3790.91 −0.22
298.15∗ 1.0000∗ 11.9293∗ / 2356.3∗ / 3821.11∗ /
313.06 1.0606 11.9293∗ / 2356.3 0.00 3824.64 0.09
298.15 1.0606 11.9078 −0.18 2358.9 0.11 3832.68 0.30
313.06 1.0000 11.9508 0.18 2353.6 −0.11 3813.09 −0.21
400.00∗ 1.4419∗ 11.9293∗ / 2356.7∗ / 3846.74∗ /
420.00 1.5371 11.9293∗ / 2356.9 0.01 3852.19 0.14
400.00 1.5371 11.9059 −0.20 2359.6 0.12 3859.48 0.33
420.00 1.4419 11.9527 0.20 2354.0 −0.11 3839.46 −0.19

TABLE III. Initial data for calculating the theoretical CJ state from the CJ velocity DCJ for C3H8/O2 mixtures with 3
equivalence ratios ER and 3 initial temperatures T0 and pressures p0 (Table IV, theo).

ER = 0.8 ER = 1 ER = 1.2
W0 = 33.667 (g/mol) W0 = 34.015 (g/mol) W0 = 34.340 (g/mol)

T0 p0 γ0 c0 v0 DCJ γ0 c0 v0 DCJ γ0 c0 v0 DCJ

(K) (bar) (m/s) (m 3/kg) (m/s) (m/s) (m 3/kg) (m/s) (m/s) (m 3/kg) (m/s)

200.
0.2
1
5

id.
1.3390
id.

id.
257.2
id.

2.4696
0.4939
0.0988

2203.9
2269.8
2334.7

id.
1.3286
id.

id.
254.9
id.

2.4444
0.4889
0.0978

2306.7
2377.6
2447.5

id.
1.3194
id.

id.
252.8
id.

2.4212
0.4842
0.0968

2392.0
2466.1
2538.8

298.15
0.2
1
5

id.
1.3061
id.

id.
310.1
id.

3.6816
0.7363
0.1473

2182.5
2249.2
2315.4

id.
1.2924
id.

id.
306.9
id.

3.6439
0.7288
0.1458

2284.6
2356.3
2427.6

id.
1.2807
id.

id.
304.1
000.0

3.6094
0.7219
0.1444

2369.8
2444.7
2518.9

400.
0.2
1
5

id.
1.2716
id.

id.
354.4
id.

4.9393
0.9878
0.1976

2165.5
2233.2
2300.6

id.
1.2563
id.

id.
350.5
id.

4.8887
0.9777
0.1956

2267.6
2340.1
2412.6

id.
1.2434
id.

id.
347.0
id.

4.8425
0.9685
0.1937

2352.9
2428.6
2504.2

δρCJ

ρCJ
=

−1

γCJ + 1

δγCJ

γCJ
+

2M−2
0CJ/γ0

1 +M−2
0CJ/γ0

δDCJ

DCJ

≈ −1

4

δγ0

γ0
=
−1

2

δCp0
Cp0

, (105)

δpCJ

pCJ
=
−γCJ

γCJ + 1

δγCJ

γCJ
+

2

1 +M−2
0CJ/γ0

δDCJ

DCJ

≈ −1

4

δγ0

γ0
=
−1

2

δCp0
Cp0

. (106)

The first shows that DCJ is 10 times more sensitive than
sCJ, which validates the choice above of analysing the
DSI theorem with initial states generating the same sCJ

rather than the same DCJ. The next three show that
γCJ is twice more sensitive than ρCJ and pCJ, with pCJ

slightly more so than ρCJ (Table IV). The same is true
for other mixtures: εγ = −3.4 % and mDCJ

= 0.08 %
for CH4 + 2 O2 at T0 = 298.15 K and p0 = 1 bar. The
uncertainty of γCJ is twice as small as that of γ0, as (70)
shows, and thus the same as that of Cp0 . The magni-
tude of δCp0/Cp0 depends on T0, p0 and the components
and proportions of the mixture; a sensitivity study to
thermochemical databases should be carried out.

These calculations support physically and numerically
the DSI theorem in a large range of initial conditions:
the larger ∆DCJ/D̄CJ’s at constant sCJ are very small,
smaller than at constant p0 or T0, and not numerical
uncertainties. They also support the CJ supplemental
properties: their differences with the numerical values is
very small, and smaller than the physical uncertainty of
thermochemical coefficients. The five fuels CH4, C2H2,
C2H4, C2H6 and H2 show similar trends.

B. Liquid explosives

Four liquids were investigated, namely nitromethane
(NM, CH3NO2), isopropyl nitrate (IPN, C3H7NO3),
hot trinitrotoluene (TNT, C7H5N3O6), and the sto-
ichiometric mixture made up of 1 volume of 2-
nitropropane (NP, C3H7NO2) and 3 volumes of nitric
acid (NA, HNO3), referred to below as niprona (NPNA3
C3H10N4O11). Table V compares their theoretical CJ
detonation pressures (65) and adiabatic exponents (66)
(theo), calculated using experimental detonation veloc-
ities, to measured values (exp) and those given by the
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TABLE IV. Comparison of numerical (num) and theoretical (theo) CJ properties (rCJ) for C3H8/O2 mixtures with 3 equivalence
ratios ER and 3 initial temperatures T0 and pressures p0.

T0 p0 rCJ ER = 0.8 ER = 1 ER = 1.2
(K) (bar) num theo εr (%) num theo εr (%) num theo εr (%)

0.2
ρCJ/ρ0

pCJ/p0

γCJ

1.870 1.844 1.38
46.746 46.010 1.58
1.125 1.159 -3.03

1.870 1.849 1.14
51.635 50.966 1.29
1.127 1.154 -2.41

1.870 1.854 0.86
55.950 55.402 0.98
1.130 1.150 -1.81

200. 1
ρCJ/ρ0

pCJ/p0

γCJ

1.864 1.845 1.02
49.354 48.775 1.17
1.134 1.159 -2.23

1.865 1.850 0.77
54.602 54.121 0.88
1.136 1.154 -1.60

1.863 1.855 0.47
59.180 58.861 0.54
1.139 1.150 -0.96

5
ρCJ/ρ0

pCJ/p0

γCJ

1.859 1.846 0.69
51.990 51.580 0.79
1.142 1.159 -1.50

1.859 1.851 0.43
57.612 57.325 0.50
1.144 1.154 -0.86

1.858 1.856 0.11
62.436 62.357 0.13
1.148 1.150 -0.19

0.2
ρCJ/ρ0

pCJ/p0

γCJ

1.861 1.844 0.92
30.939 30.617 1.04
1.123 1.146 -1.98

1.863 1.852 0.58
34.170 33.947 0.65
1.125 1.139 -1.23

1.863 1.858 0.27
37.031 36.919 0.30
1.128 1.134 -0.53

298.15 1
ρCJ/ρ0

pCJ/p0

γCJ

1.856 1.846 0.55
32.696 32.491 0.63
1.132 1.145 -1.18

1.857 1.854 0.20
36.165 36.084 0.23
1.134 1.139 -0.43

1.857 1.860 -0.12
39.206 39.262 -0.14
1.137 1.134 0.32

5
ρCJ/ρ0

pCJ/p0

γCJ

1.852 1.848 0.20
34.486 34.406 0.23
1.140 1.145 -0.43

1.852 1.855 -0.16
38.204 38.273 -0.18
1.143 1.139 0.34

1.852 1.861 -0.50
41.418 41.654 -0.57
1.146 1.133 1.11

0.2
ρCJ/ρ0

pCJ/p0

γCJ

1.852 1.845 0.38
22.843 22.747 0.42
1.122 1.131 -0.79

1.855 1.855 -0.00
25.232 25.233 -0.00
1.124 1.124− -0.04

1.855 1.862 -0.39
27.352 27.471 -0.43
1.126 1.117 0.79

400. 1
ρCJ/ρ0

pCJ/p0

γCJ

1.848 1.848 -0.01
24.162 24.164 -0.01
1.131 1.131 -0.01

1.850 1.857 -0.39
26.726 26.843 -0.44
1.133 1.123 0.85

1.850 1.864 -0.78
28.982 29.238 -0.88
1.136 1.117 1.63

5
ρCJ/ρ0

pCJ/p0

γCJ

1.843 1.850 -0.36
25.512 25.618 -0.41
1.139 1.131 0.77

1.845 1.859 -0.76
28.262 28.505 -0.86
1.142 1.123 1.62

1.845 1.866 -1.17
30.652 31.059 -1.33
1.145 1.117 2.43

Inverse Method (IM, Subsect. III-D). Tables VI and VII
show the sensitivity of the IM results to the uncertainties
of the initial data and the velocity derivatives for NM and
IPN. The IM results in table V were obtained with the
average derivatives of D

(exp)
CJ (second lines and columns,

respectively, tabs. VI and VII). All theoretical pressures
in table V are significantly greater than the experimental
and the IM pressures. The low theoretical γCJ are con-
sistent with the large pCJ. However, tables VI and VII
indicate that the theoretical and the IM values can agree
with each other. The analysis below of these disparate
trends is a speculative disentanglement of uncertainties
and physics.

The initial-state data are ancient, but reliable and still
referred to, e.g. [51] and [52] for IPN. However, they can
vary slowly over time, so their detonation properties too.
No references here ensure that measurements were car-
ried out with the same batches of explosives over short
enough periods. For NM, four data sets – I, II, III,
IV – at T0 = 4 C and p0 = 1 bar were thus used to
assess the sensitivity of the calculations to small initial-
state variations. For NM I, they were taken in Bro-
chet and Fisson [53], and for NM II in Davis, Craig and
Ramsay [54] except for c0 taken in [53]. For NM III,
the initial properties are those in Lysne and Hardesty
[55] except for Cp0 calculated with the fit Cp0(J/kg/K)

= 1720.9 + 0.54724× T0(C) of Jones and Giauque’s mea-
surements [56] between the melting (245 K) and ambient
(298 K) temperatures; the CJ properties are those in
[53]. For NM IV , ρ0 and α0 were calculated with the fit
ρ0(kg/m3) = 1152.0 − 1.1395 × T0(C) − 1.665 × 10−3 ×
T 2

0 (C) in Berman and West [57]. For IPN, the data were
taken in [53], for NPNA3 in Bernard, Brossard, Claude
and Manson [58], and for TNT in [54] and [59] except
for c0 identified to the constant a of the linear asymp-
tote D = a+ bu to Garn’s shock Hugoniot measurements

[60]. The derivatives of D
(exp)
CJ necessary to implement

the Inverse Method could be found only for NM and IPN.

Tables VI and VII-right show those of D
(exp)
CJ (T0, p0) for

NM and IPN from [53]. Table VII-left shows those of

D
(exp)
CJ (T0, w0) for NM from [54], obtained from isomet-

ric mixtures of NM and acenina at mass fractions w0.
Acenina is defined in [54] as the equimolar mixture of
methyl cyanide (CH3CN), nitric acid (HNO3) and wa-
ter, so its atomic composition is proportional to that of
NM (CH3NO2).

For NM, the theoretical pressures are insensitive to
the uncertainties of the initial state (Tab. V), unlike
the (T0, p0)-IM pressures (Tab. VI), which can agree
with the former: the same pCJ = 17.9 GPa is ob-
tained with the values ρ0 = 1149 kg/m3 and α0 = 1.023
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TABLE V. Comparison of CJ detonation pressures and adiabatic exponents (exp: experiments, IM: Inverse Method (IM),
theo: CJ supplemental properties) at p0 = 1 bar for nitromethane (NM), isopropyl nitrate (IPN), niprona (NPNA3), and
trinitrotoluene (TNT). Symbol ∅: no data.

T0 ρ0 α0 × 103 Cp0 c0 G0 D
(exp)
CJ pCJ (GPa) γCJ

(C) (kg/m3) (1/K) (J/kg/K) (m/s) (m/s) exp IM theo exp IM theo
I 4 1156 1.19 1747 1423 1.38 6330 12.7 12.9 17.5 2.65 2.58 1.65

NM II 4 1159 1.16 1733 1423 1.36 6334 14.8 12.6 17.6 2.14 2.69 1.65
III 4 1151 1.22 1723 1400 1.39 6330 12.7 13.6 17.4 2.63 2.39 1.65
IV 4 1147 1.00 1723 1400 1.14 6330 12.7 15.8 17.9 2.62 1.90 1.57

IPN 40 1017 1.23 1867 1049 0.72 5330 08.7 13.1 12.1 2.32 1.21 1.40
NPNA3 25 1275 1.11 1512 1184 1.03 6670 ∅ 14.1 22.8 ∅ 3.02 1.49
TNT 93 1450 0.70 1573 2140 2.04 6590 18.2 ∅ 21.1 2.46 ∅ 2.00

TABLE VI. Sensitivity of the Inverse-Method pressures pIM
CJ (GPa) and adiabatic exponents γIM

CJ to the uncertainties of deriva-

tives of measured detonation velocities D
(exp)
CJ (T0, p0) and the initial data (Table V) for nitromethane (NM) at T0 = 277 K and

p0 = 1 bar.

∂D
(exp)
CJ /∂p0

)
T0

∂D
(exp)
CJ /∂T0

)
p0

± 0.18 (m/s/K)

±0.01 (m/s/bar) −4.14 −3.96 −3.78

0.19
pIM

CJ

γIM
CJ

I II III IV
16.1 16.5 17.8 /
1.87 1.81 1.59 /

I II III IV
14.4 14.7 15.4 19.0
2.22 2.17 2.00 1.40

I II III IV
13.2 13.4 13.9 16.1
2.50 2.46 2.32 1.85

0.20
pIM

CJ

γIM
CJ

14.0 14.3 15.0 18.5
2.30 2.25 2.08 1.48

12.9 13.2 13.6 15.8
2.58 2.53 2.39 1.90

12.1 12.3 12.6 14.3
2.83 2.79 2.66 2.22

0.21
pIM

CJ

γIM
CJ

12.7 12.9 13.3 15.5
2.65 2.61 2.46 1.96

11.9 12.1 12.4 14.0
2.89 2.85 2.72 2.28

11.3 11.4 11.6 13.0
3.12 3.08 2.96 2.54

TABLE VII. Sensitivity of the Inverse-Method pressures pIM
CJ (GPa) and adiabatic exponents γIM

CJ to the uncertainties of

derivatives of measured detonation velocities. Left: D
(exp)
CJ (T0, w0) for nitromethane (NM II) at T0 = 277 K and p0 = 1 bar,

acenina mass fraction w0 = 0, ∂h0/∂w0)T0,p0
= (−2.021± 0.17) × 106 (J/kg), ∂v0/∂w0)T0,p0

= (1.5± 0.2) × 10−3 (m3/kg).

Right: D
(exp)
CJ (T0, p0) for isopropyl nitrate (IPN) at T0 = 313 K and p0 = 1 bar. Symbol /: no solution to (88).

∂D
2 (exp)
CJ /∂w0

)
T0,p0

∂D
(exp)
CJ /∂T0

)
w0,p0

± 0.18 (m/s/K)

±0.18× 106 (m2/s2) −4.14 −3.96 −3.78

−8.16
pIM

CJ

γIM
CJ

12.4
2.74

12.6
2.70

12.7
2.66

−7.98
pIM

CJ

γIM
CJ

12.5
2.73

12.6
2.69

12.7
2.65

−7.80
pIM

CJ

γIM
CJ

12.5
2.72

12.7
2.67

12.8
2.63

∂D
(exp)
CJ /∂p0

)
T0

∂D
(exp)
CJ /∂T0

)
p0

± 0.10 (m/s/K)

±0.10 (m/s/bar) −4.13 −4.03 −3.93

0.2
pIM

CJ

γIM
CJ

/
/

/
/

/
/

0.3
pIM

CJ

γIM
CJ

15.9
< 1

13.1
1.21

11.8
1.45

0.4
pIM

CJ

γIM
CJ

7.3
2.94

7.2
3.03

7.0
3.12

K−1 between those of NM III and IV , and with the

values of derivatives ∂D
(exp)
CJ /∂T0 = −3.96 m/s/K and

∂D
(exp)
CJ /∂p0 = 0.191 × 10−5 m/s/bar contained in their

confidence intervals. In contrast, the (T0, w0)-IM pres-
sures (Tab. VII-left) are insensitive to the uncertainties
of the initial state (not shown for concision). The differ-
ences are thus more likely due to the the physical assump-
tions of the model or the conditions of the measurements.

Davis, Craig and Ramsay [54],[30] refuted the CJ-
equilibrium hypothesis for condensed explosives because
their (T0, w0)-IM implementation for NM and TNT pre-
dicted smaller pressures than experiments. But Petrone
[61] considered their interpretation of measurements

overestimated the experimental pressures: for NM at 4 C,
they retained 14.8 GPa (Tab. V, NM II) instead of the
values 12−14 GPa produced by most measurements and
both the (T0, p0)- and (T0, w0)-IM implementations with
their average velocity derivatives (Tabs. VI, excl. NM
IV , and VII-left). However, the (T0, p0)-IM implemen-
tation for NM III also produces 14.8 GPa with values
of velocity derivatives contained in their confidence in-

tervals (Tab. VI), that is, ∂D
(exp)
CJ /∂T0 = −4.12 m/s/K

and ∂D
(exp)
CJ /∂p0 = 0.2 × 10−5 m/s/bar. Equally im-

portant, the theoretical and the (T0, p0)-IM pressures
can be equal to each other: for NM III, the theoretical
pressure 17.4 GPa is obtained with the values of deriva-
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tives ∂D
(exp)
CJ /∂T0 = −4.12 m/s/K and ∂D

(exp)
CJ /∂p0 =

0.1902 × 10−5 m/s/bar that both belong to their con-
fidence intervals and satisfy their DSI compatibility re-
lationship (84). In contrast, the (T0, w0)-IM pressures

are not very sensitive to the derivatives of D
(exp)
CJ (T0, w0)

(Tab. VII-left), and are smaller than the theoretical val-
ues. The velocity derivatives are thus too scarce and
imprecise to soundly discuss the CJ hypothesis from the
IM pressures. Overall, the theoretical CJ pressures are
greater than the measured values and most IM estimates,
with differences greater than the typical experimental un-
certainty ±10 kbar and small sensitivity to the initial
data.

The velocities D
(exp)
CJ are linear extrapolations to in-

finite diameters of values measured in finite-diameter
tubes and may not be CJ-equilibrium. The question is
how large diameters should be so DCJ is not underesti-
mated or the propagation regime not sonic-frozen, per-
haps even low-velocity. There are many analyses of the
diameter effect in condensed explosives (Sect. I). Chi-
quete and Short [62] recently showed that characteristics
originating from the explosive-tube interface can inter-
sect the frozen sonic surface on its side opposite to the
curved leading shock. The CJ-equilibrium detonation, or
equivalently the TZD self-similar equilibrium expansion
(Subsect. III-A) at the end of the ZND steady planar re-
action zone, can thus be a hydrodynamic limit difficult to
reach in condensed explosives: the flow is always diverg-
ing at the cylinder edge. This is consistent with Sharpe’s
numerical simulations of ignition by an overdriven deto-
nation with a one-step reversible reaction rate [7]. In the
long-time limit, the stable reaction zone relaxes to CJ-
equilibrium for the planar wave, but to sonic frozen states
for the spherically-diverging wave. The pressure mea-
surements, for example through flyer-impact or Doppler-
velocimetry techniques, cannot be discussed here, except
to remind that a slope discontinuity on an experimental
profile may not be a CJ-equilibrium locus and that ex-
tracting such a discontinuity from the signal noise can
be difficult. The theory of hyperbolic equations, such as
Euler’s balance relations for inviscid fluids, ensures it is
a sonic front, but probably frozen, as for the diameter
effect. Detonation tubes at least should be as wide and
long as possible, but the longer they are, the smaller the
jump of derivatives of the TZD and the ZND flows at
the sonic locus is, so the more difficult its detection is:
the TZD derivatives tend towards zero with increasing
detonation run distance, as do physical ZND derivatives
with decreasing distance to the reaction-zone end.

At least one of the physical assumptions may thus not
be satisfied, which include front adiabaticity, local ther-
modynamic equilibrium, equilibrium reaction-end states,
and single-phase fluid (Sect. I).

One cause can be the two-step decomposition of the
NO2 grouping. In the compact semi-developed form, NM
writes: CH3(NO2), IPN: (CH3)2(H)CO(NO2), TNT:
C6H2(CH3)(NO2)3, NP: C(CH3)2(H)(NO2), and NA:
O(H)(NO2), so NPNA3 comprises 4 NO2 groupings per

volume of NP. In gases, NO2 first decomposes into NO
which then decomposes into N2 (cf. refs. in [26]).
Branch et al [63] observed a two-front laminar flame in
CH4/NO2/O2 and CH2O/NO2/O2 mixtures on a flat
burner. Presles et al [64] evidenced a double cellular
structure of detonation in gaseous NM, the transverse
waves of the smaller cells propagating on the fronts of
the larger cells. The first step gives the lower flame front
and the smaller detonation cells. Whether the same pro-
cess also applies to liquids is uncertain, but a weak flow
divergence of the detonation zone may slowdown reac-
tion sufficiently for the expansion head to enter the re-
action zone and position at the intermediate decomposi-
tion step (Sect. II). Non-ideal self-sustained detonation
regimes resulting from multi-step heat releases, possibly
low-velocity, with pressures below CJ values are a well-
known phenomenon in detonation physics REF.

Another cause can be the condensation of solid carbon,
e.g. [18–23]. NM, TNT and IPN have negative oxygen
balances, hence a large yield of carbon (≈ 15% in mass
for NM). However, NPNA3 is stoichiometric, and yet all
four liquids have theoretical CJ pressures greater than
measured values. The condensation can select CJ-frozen
states with pressures smaller than the CJ-equilibrium
value (Sect. I), and the condensates can have speeds
slower than the gas flow due to drag effects. This phys-
ical process likely begins before the chemical processes
achieve sonic equilibrium. A (T, p) two-variable equilib-
rium equation of state and a single material speed might
thus not be valid assumptions for these carbonate explo-
sives.

These possibilities are not mutually exclusive. They
suggest carrying out experiments in explosive cylinders
wider and longer than usual and modelling based on
multi-phase balance laws and constitutive relations with
explicit thermal and mechanical non-equilibrium.

V. DISCUSSION AND CONCLUSIONS

This work brought out two new features of the CJ-
equilibrium model of detonation. They are valid if the
initial and burnt states are single-phase fluids at local
and chemical equilibrium, with temperature T and pres-
sure p as the independent state variables. The first one
is that the CJ velocity and specific entropy are invariant
under the same variations of the initial temperature and
pressure (Subsect. III-C). The second one is essentially
a set of relations for calculating the CJ state, including
the adiabatic exponent, from the value of the CJ velocity,
or the CJ velocity from one CJ variable (Subsect. III-
D), that does not involve an equation state of detonation
products. Therefore, they are not substitutes for detailed
thermochemical numerical calculations (Sect. I) that give
the CJ state, velocity and composition based on explicit
(T, p) equilibrium equations of state, such as BKW and
JCZ3, and their developments or reparametrizations, for
condensed explosives [65, 66]. This justifies the question
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as to what if anything has been gained in comparison to
the usual methodology of measuring a pair of variables,
such as pressure and velocity, to calibrate equations of
state through numerical CJ calculations. Essentially,
a simple semiempirical criterion is proposed to discuss
whether a given pair can represent the CJ-equilibrium
state, and thus to improve the measurement conditions
or the modelling assumptions.

They compare accurately to calculations with detailed
chemical equilibrium for detonation products described
as ideal gases (Subsect. IV-A). However, they produce
pressures larger than measured values for four carbonate
liquid explosives (Subsect. IV-B). This suggests further
examination of whether the experimental conditions or
the chemical processes in these explosives can achieve hy-
drodynamic chemical equilibrium, and of whether their
detonation products and reaction zones are single-phase
fluids. To varying degrees, this might apply to other
carbonate condensed explosives, as well as to very rich
gaseous mixtures, e.g. [18–21]. The CJ-equilibrium
model appears not to apply to carbonate condensed ex-
plosives, which supports a former conclusion by Davis,
Craig and Ramsay, although for the opposite reason.
Initial and detonation data for a non-carbonate liquid
explosive would thus benefit further investigations. Am-
monium nitrate NH4NO3 above its melting temperature
(443 K) could be used, but its metastability at elevated
temperatures raises a safety issue.

These features derive fairly easily from basic laws of
hydrodynamics, namely the Rankine-Hugoniot relations
contained in the single-phase adiabatic Euler equations.
Their ubiquity today is the outcome of the prompting
40 years ago to develop numerical simulation of detona-
tion dynamics. However, thermal and mechanical non-
equilibria at elevated pressures and temperatures have
long been a theoretical and numerical challenge. Aver-
aged balance laws and constitutive relations built from
various mixture rules are workarounds to fit in with this
single-phase paradigm. The CJ supplemental properties
can be used as go-betweens for experiments and models,
in particular for coherently discussing this homogeniza-
tion approach.

The hyperbolic Euler equations combined with explicit
equations of state form a closed set for which a data dis-
tribution on a non-characteristic side of a discontinuity
surface defines a well-posed Cauchy problem without us-
ing entropy. The sonic side of the CJ front is a par-
ticular case of characteristic distribution. Entropy was
used here as an intermediate to obtain these new fea-
tures without equation of state for the fluid on this char-
acteristic side. The velocity of the surface and the ini-
tial state thus give the characteristic state, or the initial
state and one characteristic-state variable give the veloc-
ity of the surface. This might be inherent to hyperbolic
systems and the wider group of characteristic horizons,
such as the surface of a Schwarzschild black hole. The
CJ-equilibrium locus is the horizon of events in the TZD
expansion for an observer in the ZND reaction zone.

Appendix A: Chapman-Jouguet relations
for the perfect gas

The perfect gas is the ideal gas with constant
heat capacities C̄v = (R/W ) / (γ̄ − 1) and C̄p =
(R/W ) γ̄/ (γ̄ − 1), with W the molecular weight and
R = 8.31451 J/mol.K the gas constant. The adiabatic ex-
ponent γ is the constant ratio γ̄ = C̄p/C̄v, the Gruneisen
coefficient G is γ̄ − 1, the fundamental derivative Γ is
(γ̄ + 1) /2, and an isentrope writes pvγ̄ = const. For the
reactive perfect gas, the relation T (p, v) = (W/R) pv re-
duces (3) to dh (T ) = Cp (T ) dT whose integration gives
the difference of enthalpies (A1) of the products at (T, p)
and the fresh gas at (T0, p0) (neglecting the differences
of their W and γ̄), which substituted for h − h0 in (14)
then gives the Hugoniot (H) curve (A2):

h (p, v)− h0 (p0, v0) =
γ̄ (pv − p0v0)

γ̄ − 1
−Q0, (A1)

pH (v; v0, p0) = p0 ×
1− γ̄−1

γ̄+1

(
v
v0
− 2Q0

p0v0

)
v
v0
− γ̄−1

γ̄+1

. (A2)

A CJ state is given by (27)-(29) with γ̄ substituted for
γCJ. A CJ velocity DCJ is then a solution to the 2nd

degree equation obtained by substituting vCJ (27) and
pCJ (28) for p and v in (A2). The supersonic compres-
sive solution (subscript CJc, Subsect. II-C) is the CJ-
detonation velocity DCJc,

DCJc (v0, p0) = D̃CJ

(
1

2
+ M̃−2

0CJ +
1

2

√
1 + 4M̃−2

0CJ

) 1
2

,

(A3)

D̃2
CJ = 2

(
γ̄2 − 1

)
Q0, M̃0CJ = D̃CJ/c0, (A4)

with dominant value D̃CJ (M̃−2
0CJ << 1) and acoustic

(non-reactive) limit c0 (Q0 = 0). The subsonic expansive
solution (subscript CJx) is the CJ-deflagration velocity
DCJx, deduced from DCJc by changing the sign before
the square root in (A3). They relate through

DCJcDCJx = c20 or M0CJcM0CJx = 1, (A5)

which had not been pointed out before and shows that

DCJx has dominant value D̃CJ/M̃
2
0CJ ≡ c0/M̃0CJ. It can

be used to express one solution with the other,

pCJc − pCJx

pCJc
= ...

...
1−M−4

0CJc

1 +M−2
0CJc/γ̄

= 1−
M−2

0CJc

γ̄
+O

(
M−2

0CJc

γ̄

)2

, (A6)

vCJx − vCJc

vCJx
= ...

...
1−M−4

0CJc

1 + γ̄M−2
0CJc

= 1− γ̄M−2
0CJc +O

(
γ̄M−2

0CJc

)2
. (A7)

There are two overdriven detonation solutions (Q0 > 0,
D > DCJc, Fig. 2). Only the upper (U) is a physical
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intersect of a R line (13) and the H curve (A2) (subsonic,
M < 1, Subsect. II-B). It writes

v

v0
(D, v0, p0) =

γ̄ −
√

∆D +M−2
0

γ̄ + 1
, (A8)

v0p

D2
(D, v0, p0) =

1 +
√

∆D +M−2
0 /γ̄

γ̄ + 1
, (A9)

∆D =

(
1−

(
DCJc

D

)2
)(

1−
(
DCJx

D

)2
)

=
(
1−M−2

0

)2 −(D̃CJ

D

)4

. (A10)

The lower (L) is non-physical (supersonic, M > 1). It is
obtained by changing the sign before

√
∆D above. Both

reduce to the shock solution (N) by setting Q0 = 0, so√
∆D = 1−M−2

0 in (A8)-(A9). The theoretical CJ defla-
gration viewed as an adiabatic discontinuity with same
initial state as the CJ detonation is not admissible (sub-
sonic, M0CJx < 1): (15) is not satisfied (Subsect. II-B,
App. B). It was useful here for completeness and a sim-
pler writing of relations (A8)-(A10) which reduce more
obviously to the CJ relations (27)-(29) if ∆D = 0, that
is, to vCJc and pCJc if D = DCJc, or to vCJx and pCJx if

D = DCJx. From (A5), (DCJx/D)
2

=
(
c20/DDCJc

)2
6

M−4
0CJc � 1 that negligibly contributes to ∆D compared

to (DCJc/D)
2
: the typical values c0 = 300 m/s and

DCJc = 2000 m/s give DCJx = 45 m/s.

Appendix B: Chapman-Jouguet admissibility

The equilibrium expanding flow behind a CJ front
is homentropic and self-similar (Subsect. III-A). The
backward-facing Riemann invariant is thus uniform, that
is, du − (v/c) dp = 0, and, since up < uCJ, the material
speed u (as well as p and v−1) and the frontward-facing
perturbation velocity u + c = x/t have to decrease from
the CJ front so expansion can spread out. Differentiating
u+ c and expressing p and c as functions of s and v thus
give Γ−1d (u+ c) = du = vdp/c = −cdv/v [34], hence
the constraint Γ > 0. Similarly, T decreases if G > 0 (6).

Using (22), the second-order differentials of h(s, p),
p (s, v) and the Hugoniot relation give

FCJ

2

∂2pH

∂v2

)
CJ

=
∂2pS

∂v2

)
CJ

= 2

(
DCJ

v0

)3
ΓCJ

DCJ
, (B1)

v2
0TCJ

D2
CJ

∂2sR

∂v2

)
CJ

= −2
ΓCJ

GCJ
, (B2)

v2
0TCJ

D2
CJ

∂2sH

∂v2

)
CJ

= 2

(
v0

vCJ
− 1

)
ΓCJ

FCJ
, (B3)

which show that FCJ 6= 0 (Subsect. III-B) is also the
condition for finite Hugoniot curvature and entropy vari-
ations at a CJ point for physical isentropes (Γ 6= 0,

Subsect. III-D). The curvatures of a Hugoniot and an
isentrope have the same sign if FCJ > 0, that is, if
GCJ < 2/ (v0/vCJ − 1), that of the Hugoniot being the
larger if 0 < GCJ < FCJ < 2/ (v0/vCJ − 1) < 2, which is
the case for most fluids.

Using (24) and (75), the derivative of M with respect
to v along a Hugoniot at a CJ point is

∂MH

∂v

)
CJ

=
ΓCJ

vCJ
, (B4)

which shows, since ΓCJ > 0, that M < 1 above, and M >
1 below, a CJ point, hence FCJ > 0, ∂2pH/∂v

2
)

CJ
> 0

and ∂2sH/∂v
2
)

CJ
> 0 from (B1) and (B3). Also, com-

paring the slopes of a Rayleigh-Michelson line, a Hugo-
niot and an isentrope (16), (17), (18) about a CJ point
with Γ > 0 indicates that 0 < F < 2 if G > 0, and F > 2
if G < 0. Therefore, a CJ point is physically admissible
only on a convex Hugoniot arc. Also, s increases and
M decreases with decreasing v, so the physical branch of
this arc is above the CJ point. Other derivations use con-
cavity of entropy s (e, v) or convexity of energy e (s, v).

Appendix C: A model problem

Let the differentials of the functions β (w, x) and
σ (w, x) of the two variables w and x satisfy

εdβ = adw + bdx, (C1)

dσ = qdw + rdx, (C2)

where ε, a, b, q, r are finite functions of β, w and x.
These relations define the constraints

ε
∂β

∂x

)
w

= b, (C3)

ε
∂β

∂x

)
σ

= a
∂w

∂x

)
σ

+ b, (C4)

0 = q
∂w

∂x

)
σ

+ r. (C5)

The last, (C5), is the triple product rule, given that (C2)
is a total differential, that is,

dσ =
∂σ

∂w

)
x

dw +
∂σ

∂x

)
w

dx (C6)

⇒ ∂σ

∂x

)
w

= − ∂σ

∂w

)
x

∂w

∂x

)
σ

⇔ r = −q ∂w
∂x

)
σ

. (C7)

Therefore, if either ∂w/∂x)σ or ∂σ/∂x)w ≡ r is zero, so
is the other if ∂σ/∂w)x ≡ q is finite and non-zero.

In the limit ε = 0, (C3) shows that

b(ε=0) = 0 (C8)

if ∂β/∂x)
(ε=0)
w is finite, then (C4) shows that

∂w

∂x

)(ε=0)

σ

= 0 (C9)
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if ∂β/∂x)
(ε=0)
σ is finite and a(ε=0) is finite and 6= 0, then

(C5) shows that

∂σ

∂x

)(ε=0)

w

≡ r(ε=0) = 0⇔ ∂w

∂x

)(ε=0)

σ

= 0 (C10)

if q(ε=0) ≡ ∂σ/∂w)
(ε=0)
x is finite and 6= 0. The constraints

above and (C6) thus imply the equivalence (dσ)
(ε=0)

=

0 ⇔ (dw)
(ε=0)

= 0, but not that (dσ)
(ε=0)

or (dw)
(ε=0)

is zero. The DSI theorem (Subsect. III-C) is the appli-
cation for which ε = 1−M , σ = s, β = v, p or h, w = D,

x = v0, a ∝ Kz 6= 0, q ∝ Ks 6= 0, b ∝ Φ∗z and r ∝ Φ∗s.

If the arguments of b (β,w, x) and r (β,w, x) include
the same grouping µ0 (β,w, x), and if conditions exist

for which (dσ)
(ε=0)

= 0 or (dw)
(ε=0)

= 0, eliminating
µ0 between the constraint b(ε=0) (β,w, x, µ0) = 0 and
r(ε=0) (β,w, x, µ0) = 0 defines a compatibility relation
between β, w and x, that is, β = β(ε=0) (w, x), which

then returns µ
(ε=0)
0 by substituting β(ε=0) for β in either

of these constraints. These are the operations in Subsec-
tion III-D that give vCJ/v0 and dp∗0/dv0, here represented
by µ0.
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actéristiques des détonations dans les mélanges liquides
de nitropropane II avec l’acide nitrique, C. R. Acad. Sci.
Paris 263, 1097 (1966).

[59] W. B. Garn, Detonation pressure of liquid TNT, J.
Chem. Phys. 32(3), 653 (1960).

[60] W. B. Garn, Determination of the unreacted Hugoniot
for liquid TNT, J. Chem. Phys. 30(3), 819 (1959).

[61] F. J. Petrone, Validity of the classical detonation wave
structure for condensed explosives, Phys. Fluids 11(7),
1473 (1968).

[62] M. Chiquete and M. Short, Characteristic path analy-
sis of confinement influence on steady two-dimensional
detonation propagation, J. Fluid Mech. 863, 789 (2019).

[63] M. C. Branch, M. E. Sadequ, A. A. Alfarayedhi, and P. J.
Van Tiggelen, Measurements of the structure of laminar,
premixed flames of CH4/NO2/O2 and CH2O/NO2/O2

mixtures, Combustion and Flame 83, 228 (1991).
[64] H. Presles, D. Desbordes, M. Guirard, and C. Guer-

raud, Gaseous nitromethane and nitromethane–oxygen
mixtures: a new detonation structure, Shock Wave 6,
111–114 (1996).

[65] L. E. Fried and P. C. Souers, BKWC: An empirical BKW
parametrization based on cylinder test data, Propellants,
Explosives, Pyrotechnics 21, 215 (1996).

[66] M. Cowperthwaite and W. H. Zwisler, The JCZ equation
of state for detonation products and their incorporation
into the Tiger code, in 6th Symp. (Int.) on Detonation
(ONR, 1976) pp. 162–172.


	A Velocity-Entropy Invariance theorem for the Chapman-Jouguet detonation
	Abstract
	I Introduction
	II Reminders and notation
	A Where the Chapman-Jouguet model lies
	B Thermodynamic and hydrodynamic relations
	C Chapman-Jouguet states and velocities, and a remark

	III The invariance theorem
	A The initial-variations problem
	B Rankine-Hugoniot differentials
	C Demonstration and interpretation
	D Chapman-Jouguet supplemental properties

	IV Application to gaseous or liquid explosives
	A Gaseous explosives with ideal final states
	B Liquid explosives

	V Discussion and conclusions
	A Chapman-Jouguet relations for the perfect gas
	B Chapman-Jouguet admissibility
	C A model problem
	 References


