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A Velocity-Entropy Invariance theorem for the Chapman-Jouguet detonation
.
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(Dated: 20 June 2020)

The velocity and the specific entropy of the Chapman-Jouguet (CJ) equilibrium detonation in a homogeneous explosive
are shown to be invariant under the same variations of the initial pressure and temperature. The CJ state and isentrope
can then be defined from the CJ velocity or, conversely, the CJ velocity from one CJ variable, without equation of state
for detonation products. For gaseous explosives, comparison to calculations with detailed chemical equilibrium shows
agreement to within O(0.1)%. However, the CJ pressures of four carbonate liquid explosives are found about 20 %
larger than measured values: the CJ-equilibrium model appears not to apply to condensed carbonate explosives, which
supports a former conclusion by Davis, Craig and Ramsay, although for the opposite reason. A simple hydrodynamic
criterion for assessing the representativeness of this CJ model is thus proposed, which nevertheless cannot determine
which of its assumptions may not be satisfied, namely CJ equilibrium, single-phase fluid, and laminar flow. This
invariance might be an illustration of a general feature of hyperbolic systems and their characteristic surfaces.

I. INTRODUCTION

The Chapman-Jouguet (CJ) detonation1 is a classic of com-
bustion theory. It is defined as the fully-reactive, planar and
compressive discontinuity wave, with velocity constant, su-
personic with respect to the initial state, and sonic with respect
to the final burnt state at chemical equilibrium. The CJ state
and velocity are thus obtained from the Rankine-Hugoniot re-
lations and the equation of state of detonation products. Al-
though their representativeness is now accepted as uncertain,
because detonation dynamics is unstable and quite sensitive to
losses, the CJ model remains the staple of detonation theory to
obtain simply reference velocities and reaction-end states: CJ
properties are a limit predictable independently of any condi-
tion for detonation existence. It is the purpose of this study to
bring out and investigate two CJ supplemental properties that
are perhaps useful to help interpret experiments and improve
modelling2.

The first one is that the CJ detonation velocity DCJ
and the specific entropy sCJ of a homogeneous explosive
substance are invariant under the same variations of the
initial temperature T0 and pressure p0: if one is invariant,
so is the other; different initial states producing the same
DCJ produce different CJ states on the same isentrope. The
second one is that a CJ state and its isentrope can then be
calculated simply from the value of DCJ without equilibrium
equation of state; conversely, DCJ can be obtained from one
CJ variable. These results apply only to explosives whose
fresh and burnt states obey thermodynamic relationships for
single-phase inviscid fluids, with temperature T and pressure
p as independent variables. Figure 1 depicts the CJ model
and the Velocity-Entropy invariance (DSI) theorem in the
Pressure (p) - Volume (v) plane based on usual properties of
detonation modelling (Sect. II). To some degree, this extends
the Inverse Method of Jones3, Stanyukovich4 and Manson5.
This method gives the CJ hydrodynamic variables from
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FIG. 1. An equilibrium isentrope (S)* of detonation products can
be the common envelope of equilibrium Hugoniot curves (H)*, (H)’
and (H) and Rayleigh-Michelson lines (R)*, (R)’ and (R) if their
poles O*, O’ and O lie on a specific p∗0 (v0) line through a reference
initial state O*(p0∗,v0∗) (the Hugoniot curvatures are accentuated).
The slopes −(DCJ /v0)

2of these (R) lines increase with increasing
initial volume v0, but the DSI theorem ensures they have the same
CJ velocity D∗CJ. This determines the CJ*, CJ’ and CJ states, the
p∗0(v0) initial states, and the isentrope (S)*, given D∗CJ and the initial
sound speeds and Gruneisen coefficients.

experimental values of DCJ and its derivatives with respect to
two independent initial-state variables, such as p0 and T0; the
present analysis shows that the only value of DCJ is sufficient.
Is the detonation regime identifiable from experimental deto-
nation velocities and pressures? Models are usually rejected if
they cannot represent observations, but experiments may not
represent the model assumptions, differences may indicate
imprecise measurements or non-physical parameters, and
agreement should not exclude fewer assumptions. Equations
of state of detonation products are calibrated by fitting
calculated CJ properties to experimental values, although
there is no criterion to ensure that the latter are those of the
CJ-equilibrium detonation: this study proposes that they are
not if they do not satisfy the supplemental properties.
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Section II is a reminder on classical but necessary ele-
ments that also introduces the main notation, Section III sets
out the DSI theorem and the CJ supplemental properties,
Section IV is an analysis of their agreements or differences
with calculations or measurements for gases and liquids, and
Section V is a summary with some speculative conclusions.

II. REMINDERS AND NOTATION

The CJ postulate is that the sonic and equilibrium con-
straints are achieved at the same position in the flow, which
in fact is more of an ideal mathematical limit than an observ-
able physical reality. The traditional introduction to this old
issue is based on the Zel’dovich-von Neuman-Döring (ZND)
detonation model, that is, a leading shock sustained by a sub-
sonic laminar reaction zone6. The ZND model uses the frozen
sound speed, the CJ model uses the equilibrium sound speed,
discussions bear on which best characterizes the relative ve-
locity of the sonic front necessary to protect the reaction zone
from the rear expansion, depending on the interplay between
flow dynamics and physical processes.

A. Where the Chapman-Jouguet model lies

Most explosive devices have finite transverse dimensions,
so self-sustained detonations are non-ideal, with diverging
reaction zones that encompass a frozen sonic locus, hence
curved leading shocks and velocities lower than the planar CJ
one: the flow behind the sonic locus cannot sustain the shock.
However, not any reaction process can achieve CJ equilib-
rium as the steady planar limit of a sonic curved detonation7.
A presentation of equilibrium-frozen issues and several non-
ideal detonations was given by Higgins8. Heat production by
physicochemical processes, possibly non-monotonic, exother-
mic or endothermic9,10, and losses by heat transfer, friction
or transverse expansion of the reaction zone must offset each
other at the sonic locus in order that the flow derivatives re-
main finite there. The dynamics of a self-sustained detonation
is thus described by an eigenconstraint between the parame-
ters of the leading-shock, that is, its normal velocity, accel-
eration and curvature11–14, and those of the reaction and loss
rates15. Achieving CJ equilibrium at least requires that set-ups
be wide enough so the detonation front is essentially planar
and losses negligible, and that detonation run distances from
ignition be large enough so the flow gradients of the expand-
ing products are small enough to allow for a continuous equi-
librium shift and, therefore, the equilibrium-sonic solution at
reaction end.

Reaction processes differ for gases and liquids. In gases,
the translational, rotational and vibrational degrees of free-
dom are considered to re-equilibrate much faster than chem-
ical kinetics, thus the only process at work. In liquids,
molecular-bond breaking makes the time of vibrational de-
excitation comparable to that of chemical relaxation16. An
introduction to the Non-Equilibrium ZND model was given
by Tarver17. Local thermodynamic equilibrium would be

achieved before chemical transformation in gases but perhaps
not in the detonation products of liquids, and actually of most
condensed explosives, also considering its interplay with the
endothermic aggregation of solid carbon particles, a process
accepted as inherent to detonation in carbonate condensed
explosives18–20. The DSI theorem is restricted to detonation
products described as a single-phase fluid at chemical equilib-
rium.

The main criticism to the ZND frame of analysis for homo-
geneous explosives is the instability of their reaction zones:
they are not laminar, and detonation fronts have a three-
dimensional structure. In gases, the flow advects unburnt
pockets, the front has a cellular structure, and the experimental
mean widths of detonation cells are 10 to 50 times greater than
calculated characteristic thicknesses of planar steady ZND re-
action zones21,22, even if such widths may be difficult to de-
fine. In liquids, instabilities have been often observed, but how
they relate to chemical kinetics and whether they are similar
to those in gases is still being investigated20,23–26. The sur-
face areas of the detonation front or the cross section of the
experimental device at least must be large enough compared
to the mean width of the instabilities for the CJ properties can
be considered as representative averages.

The CJ supplemental properties in this work do not aim at
indicating which of the CJ assumptions may not be satisfied,
namely sonic-equilibrium, single-phase fluid, or laminar flow.
However, they do not draw on any particular equation of state,
so they provide a simple hydrodynamic criterion for determin-
ing whether experimental and numerical data are representa-
tive of the CJ-equilibrium model.

B. Thermodynamic and hydrodynamic relations

Single-phase inviscid fluids, whether inert or at chemi-
cal equilibrium, have two basic independent state variables,
namely temperature T and pressure p, but specific volume
v(T, p) is more convenient than T for hydrodynamics because
it appears explicitly in the balance equations. Specific en-
thalpy h and entropy s are the main state functions used in
this work; their differentials write

dh(s, p) = T ds+ vd p, (1)

dh(p,v) =
G+1

G
vd p+

c2

G
dv
v
, (2)

dh(T, p) =CpdT +

(
1− T

v
∂v
∂T

)
p

)
vd p, (3)

T ds(p,v) =
vd p
G

+
c2

G
dv
v
, (4)

c2 = Gv
∂h
∂v

)
p
=−v2 ∂ p

∂v

)
s
, (5)

G =
v

∂h
∂ p

)
v
− v

=− v
T

∂T
∂v

)
s
, (6)

where c is the sound speed, G is the Gruneisen coefficient
and Cp is the heat capacity at constant pressure. In gases, the
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adiabatic exponent γ defines the convenient representation of
c

c2 = γ pv, γ =− v
p

∂ p
∂v

)
s
. (7)

In the p-v plane, isentropes (ds= 0) have negative slopes since
γ > 0, and their local convexities are defined by the sign of the
fundamental derivative of hydrodynamics Γ27–30 (most fluids
have uniformly convex isentropes: Γ > 0, their slopes mono-
tonically decrease with increasing volume),

Γ =
1
2

v3

c2
∂ 2 p
∂v2

)
s
=
−v
2

∂ 2 p
∂v2

)
s
/

∂ p
∂v

)
s
= 1− v

c
∂c
∂v

)
s
. (8)

The fresh (initial, subscript 0) and the equilibrium (final,
no subscript) states of a reactive medium have different state
functions and coefficients because their chemical composi-
tions are different. Typically, γ < γ0 and, if products are
brought from a (T, p) equilibrium state to the (T0, p0) ini-
tial state, v(T0, p0) > v0 = v0 (T0, p0) and h(T0, p0) < h0 =
h0 (T0, p0). The difference of enthalpies Q0 = h0 (T0, p0)−
h(T0, p0) at (T0, p0) is the heat of reaction at constant pres-
sure.

Conservation of mass, momentum and energy surface
fluxes through hydrodynamic discontinuities is expressed by
the Rankine-Hugoniot relations, which, along the normal to
the discontinuity, write

ρ0D = ρ (D−u) , (9)

p0 +ρ0D2 = p+ρ (D−u)2 , (10)

h0 +
1
2

D2 = h+
1
2
(D−u)2 , (11)

where ρ = 1/v is the specific mass, and u and D are the mate-
rial speed and the discontinuity velocity in a laboratory-fixed
frame, with initial state at rest (u0 = 0). These relations com-
bined with an h(p,v) equation of state are not a closed system
since there are 4 equations for the 5 variables v, p, h, u and
D, given an initial state (p0,v0) and h0 (p0,v0), hence a one-
variable solution, for example

p,v,h,u,T,s,c,γ,Γ,G, ...≡ η (D;v0, p0) . (12)

Its representation in the p-v plane (Fig. 2) is an intersect of
a Rayleigh-Michelson (R) line pR (v,D;v0, p0) and the Hugo-
niot (H) curve pH (v;v0, p0), namely

pR : p = p0 +

(
D
v0

)2

(v0− v) , (13)

pH : h(p,v) = h0 (p0,v0)+
1
2
(p− p0)(v0 + v) . (14)

A Hugoniot for a detonation (Q0 > 0, v(T0, p0) > v0)lies
above that for a shock (Q0 = 0, v(T0, p0) = v0): most fluids
have uniformly-convex Hugoniots with 1 compressive inter-
sect (N, v/v0 < 1) if Q0 = 0 regardless of D, and 2 (U and
L) if Q0 > 0 and D is large enough (Fig. 2). The observabil-
ity of states on non-uniformly-convex Hugoniots is an open

debate on whether theoretical instability criteria are met in
Nature, based on linear and non-linear stability analyses of
discontinuities31–35. At least physical admissibility (the dis-
continuity increases entropy, s > s0) or equivalently mathe-
matical determinacy (uniqueness and continuous dependence
of (12) on the flow boundaries) must be satisfied36–38. De-
noting by M0 and M the discontinuity Mach numbers rela-
tive to the initial and the final states, this is expressed by the
subsonic-supersonic evolution condition

u+ c > D > c0 ⇔
D
c0

= M0 > 1 > M =
D−u

c
. (15)

C. Chapman-Jouguet states and velocities, and a remark

FIG. 2. Unreacted (H)0 and equilibrium (H) Hugoniot curves, and
Rayleigh-Michelson (R) lines, (R)U and (R)C, for discontinuity ve-
locities greater than or equal to DCJ. Physical intersects are points N,
U and CJ (M 6 1 6 M0), the CJ isentrope (S)C is positioned between
the (R) C line and the (H) curve.

FIG. 3. Detonation (upper) and deflagration (lower) Hugoniot arcs;
the physical branch is above the compressive CJ point CJc.

The tangency of a Rayleigh-Michelson line pR (v;D), an
equilibrium Hugoniot pH (v) and an isentrope pS (v) defines
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CJ points and is equivalent to the sonic condition (20) below,
as shown by

∂ pR

∂v

)
D,p0,v0

=−
(

D
v0

)2

< 0, (16)

∂ pS

∂v

)
s
=−

(
D
v0

)2

×M−2 < 0, (17)

∂ pH

∂v

)
p0,v0

=−
(

D
v0

)2

×
(

1+2
M−2−1

F

)
, (18)

F (G,v;v0) = 2−G
(v0

v
−1
)
, (19)

MCJ =

(
D−u

c

)
CJ

= 1 or DCJ = (u+ c)CJ . (20)

There are at least 2 CJ points, such as on uniformly-convex
Hugoniots (Fig. 3). The upper, compressive, one (CJc) is
the CJ detonation, with minimum velocity supersonic with re-
spect to the initial state (vCJ/v0 < 1, pCJ/p0 > 1, DCJc/c0 >
1). The lower, expansive, one (CJx) is the CJ deflagration,
with maximum velocity subsonic with respect to the initial
state (vCJ/v0 > 1, pCJ/p0 < 1, DCJx/c0 < 1).

The admissibility of the CJ detonation requires that ΓCJ > 0
(App. B), which implies that F > 0 about and at a CJ point,
that the physical branch of an equilibrium Hugoniot arc is
convex and above the CJ point as M decreases from 1 and
s increases with decreasing v, and that pS (v) is positioned be-
tween pH (v) and pR (v) if G > 0. The other properties useful
here are 0 6 ∂ sH/∂D)p0,v0

< ∞ regardless of M, and, since

FCJ 6= 0, ∂ sH/∂v)CJ
p0,v0

= 0 and ∂D/∂v)CJ
p0,v0

= 0, as shown by

v0T
D2

∂ sR

∂v

)
D,p0,v0

=
v
v0

M−2−1
G

, (21)

v0T
D2

∂ sH

∂v

)
p0,v0

=−
(

1− v
v0

)
M−2−1

F
, (22)

T
D

∂ sH

∂D

)
p0,v0

=

(
1− v

v0

)2

> 0, (23)

v0

D
∂D
∂v

)
p0,v0

=−
(

1− v
v0

)−1 M−2−1
F

. (24)

The CJ condition (20) closes system (2), (9)-(11): the one-
variable solution (12) and (20) give the CJ velocities DCJ and
variables ηCJ = (p,v,h,u,T,s,c,γ,Γ,G, ...)CJ as functions of
the initial state,

DCJ = DCJ (v0, p0) , ηCJ = ηCJ (v0, p0) . (25)

Explicit solutions can be obtained with simple h(p,v) equa-
tions of state (App. A). In practice, CJ detonation proper-
ties are calculated numerically by means of thermochemical
codes that implement physical equilibrium equations of state
and thermodynamic properties at high pressures and tempera-
tures.

The hydrodynamic variables z = (p,v,u,c) at CJ points
have a well-known two-variables representation as functions

of DCJ and γCJ

zCJ = zCJ (DCJ,γCJ;v0, p0) , (26)

that is, DCJ can be expressed as a function of two CJ variables,
for example DCJ (vCJ,γCJ;v0, p0): the mass balance (9) and the
R relation (13) combined with (7) and the CJ condition (20)
thus give

vCJ

v0
=

cCJ

DCJ
=

γCJ

γCJ +1

(
1+

p0v0

D2
CJ

)
, (27)

v0 pCJ

D2
CJ

=
1+ p0v0

D2
CJ

γCJ +1
, (28)

uCJ

DCJ
=

1− γCJ
p0v0
D2

CJ

γCJ +1
; (29)

the Hugoniot relation (14) then gives hCJ. Thus, it can be ob-
served that the zero-variable representation (25) is obtained
from a complete set that includes the energy balance and an
explicit equation of state, hence the two-variables representa-
tion (26) since it does not use these 2 relations: γCJ is simply
a substitute to cCJ. The DSI theorem (Sect. III) supplements
(26) by including the energy balance: its primary consequence
is that zCJ and γCJ are explicit one-variable functions of DCJ
(Subsect. III-D),

zCJ = zCJ (DCJ;v0, p0) , γCJ = γCJ (DCJ;v0, p0) , (30)

hence, conversely, DCJ is a function of one CJ variable, for ex-
ample DCJ (γCJ;v0, p0). The NASA computer program CEA39

for calculating chemical equilibria in ideal gases is used in
subsection IV-A for investigating the theorem and generating
CJ properties for comparison to the theoretical ones (30).

III. A VELOCITY-ENTROPY INVARIANCE THEOREM

Considering different initial states of the same homoge-
neous explosive, equivalent statements are:

1. the CJ velocity DCJ and specific entropy sCJ are invari-
ant under the same initial variations;

2. CJ detonations with the same DCJ have the same sCJ,
and conversely;

3. different initial states chosen so that DCJ is invariant
determine different CJ states that lie on the same isen-
trope;

4. an isentrope is the common envelope of Hugoniot
curves and Rayleigh-Michelson lines of CJ detonations
that have the same velocity;

5. the variations of DCJ and sCJ are proportional to each
other: DCJ = DCJ (sCJ), so

dDCJ ∝ dsCJ or dDCJ = 0 ⇔ dsCJ = 0. (31)
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The CJ state is then the solution to the system of compatibililty
constraints on these initial variations. The subsections below
detail the initial-variations problem, the Rankine-Hugoniot
differentials, the theorem demonstration and its geometrical
interpretation (Fig. 1), and the CJ supplemental properties.

A. The initial-variations problem

The simplest flow behind a planar discontinuity is ahead of
a piston with a constant speed up. The flow is constant-state
and subsonic, regardless of up behind a shock with same ini-
tial and final composition, but only if up is greater than the CJ
material speed uCJ (29) behind a detonation with final state at
chemical equilibrium. This case defines the constant-velocity,
overdriven detonation. The discontinuity velocity D and all
final-state variables η = (p,v,h,u,T,s,c,γ,Γ,G, ...), where
u = up, are then one-variable functions (Subsect. II-B), such
as D(u;v0, p0) and η (u;v0, p0), or,equivalently, η (D;v0, p0)
(12), for example (A8) and (A9). If up is smaller than uCJ, the
flow is expanding and supersonic, but sonic just at the front:
the CJ-equilibrium condition is a consequence of the Taylor-
Zel’dovich-Döring (TZD) simple-wave solution η (x/t) to the
homentropic flow (uniform s) behind this constant-velocity
planar front: u + c = x/t ⇒ (u+ c)CJ = xCJ/t ≡ DCJ, with
t the time and x the position in the flow15,40,41. In con-
trast to a subsonic discontinuity (u+ c > D), a perturbation
in the flow or from the piston cannot reach the CJ front:
x< xCJ⇒ x/t = u+c< xCJ/t = (u+ c)CJ =DCJ. This defines
the CJ self-sustained detonation (App. B). The CJ velocity
and state are then the functions DCJ (v0, p0) and ηCJ (v0, p0)
(25) of the only initial state, for example (27)-(29) and (A3)
(App. A).

If up is exactly set to uCJ, the flow is both constant-state
and CJ sonic: u+c = x/t = (u+ c)CJ = xCJ/t = DCJ. The ve-
locity D is still equal to DCJ (v0, p0), which can therefore be
interpreted as the smallest value reachable in a series of exper-
iments carried out with constant values of up greater than, but
closer and closer to uCJ (v0, p0) from one experiment to the
other. Equivalently, this is the limiting flow after an infinite
run distance of a CJ self-sustained detonation from ignition at
a fixed wall (up = 0): the slopes of the η (x/t) profiles at fixed
position x tend to zero as t tends to infinity.

Therefore, an overdriven detonation can have the same ve-
locity D with any initial state (v0, p0) if up is set to the proper
value up (v0, p0) > uCJ (v0, p0) that ensures D

(
up;v0, p0

)
=

const.; but there is no reason then why one of the final-state
variables should also be invariant. Consequently, initial states
must be selected specifically so that up can achieve the in-
variances of both D and one final-state variable, which in
this work is specific entropy s. For the sonic CJ detonation,
the same initial states turn out to ensure that both sCJ and
DCJ are constant: the invariances of DCJ and sCJ are equiv-
alent constraints. Specific entropy s enters the problem only
through the differentials of h(s, p) (1) and s(p,v) (4): the
initial-variations problem for constant s and D has to be for-
mulated as ds = 0 and dD = 0, which entails differentiating
the Rankine-Hugoniot relations (9)-(11).

B. Rankine-Hugoniot differentials

The differentials of the Rayleigh-Michelson line (13), the
Hugoniot relation (14) and the h(p,v) equation of state (2)
form the 3×3 non-homogeneous linear system for dv, d p and
dh

v0d p
D2 +

dv
v0

= ...

... 2
(

1− v
v0

)
dD
D

+
v0d p0

D2 −
(

1−2
v
v0

)
dv0

v0
, (32)

2
dh
D2 −

(
1+

v
v0

)
v0d p
D2 −

(
1− v

v0

)
dv
v0

= ...

... −
(

1+
v
v0

)
v0d p0

D2 +

(
1− v

v0

)
dv0

v0
+2

dh0

D2 , (33)

dh
D2 −

G+1
G

v
v0

v0d p
D2 −

M−2

G
v
v0

dv
v0

= 0, (34)

which thus write as linear combinations of dD, dv0, d p0 and
dh0 (p0,v0), for example,

(
M−2−1

) dv
v0

=−
(

1− v
v0

)
F

dD
D

...

... +

(
1−F

v
v0

)
dv0

v0
−

1+(1−F) v
v0

1− v
v0

v0d p0

D2 ...

... +
2−F
1− v

v0

dh0

D2 , (35)

(
M−2−1

) v0d p
D2 =

(
1− v

v0

)(
F +2

(
M−2−1

)) dD
D

...

... −
(

1−F
v
v0

+
(
M−2−1

)(
1−2

v
v0

))
dv0

v0
...

... +
1+(1−F) v

v0
+
(
M−2−1

)(
1− v

v0

)
1− v

v0

v0d p0

D2 ...

... − 2−F
1− v

v0

dh0

D2 . (36)

The differential ds of the specific entropy,

T ds
D2 =

(
1− v

v0

)2 dD
D

...

... +

(
1− v

v0

)
v
v0

dv0

v0
− v

v0

v0d p0

D2 +
dh0

D2 , (37)

is obtained by substituting dh(s, p) (1) for dh in (33) and by
eliminating v0d p/D2 + dv/v0 with (32). The coefficients in
(35) and (36) involve the three state functions v, F (G,v) (19)
and M: dh(p,v) introduces the two state functions G and
c = (v/v0)(D/M), from (9) and (15), and v, p and h are one-
variable functions, from (12). In contrast, dh(s, p) does not
involve c, M and F , so neither does ds.

The determinant of system (32)-(34) is M−2− 1, and the
right-hand sides of (35) and (36) must be set to zero for CJ
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discontinuities (M = 1) so dv and d p can be finite. This de-
fines the CJ velocity and entropy differentials dDCJ and dsCJ,
from (37), as the eigenconstraints

FCJ
dDCJ

DCJ
= ...

...

1−2 vCJ
v0

+GCJ

(
1− vCJ

v0
+ v0

vCJ

M−2
0CJ

G0

)
1− vCJ

v0

dv0

v0
...

... −
1−GCJ

v0
vCJ

(
1− vCJ

v0
+ 1

G0

)
1− vCJ

v0

v0d p0

D2
CJ

, (38)

FCJ
TCJdsCJ

D2
CJ

= ...

...

(
1− vCJ

v0
+

2M−2
0CJ

G0

)
dv0

v0
...

... +

(
1− vCJ

v0
+

2
G0

)
v0d p0

D2
CJ

, (39)

after substituting dh0 (p0,v0) for dh0. They can be directly
obtained from (32), (33) and dh(s, p), instead of dh(p,v), by
using the CJ condition M = 1 as c/v = D/v0 (9) in ds(p,v)
(4) and then eliminating the combination

(
v0d pCJ/D2

CJ
)
+

(dvCJ/v0) = GCJ (v0/vCJ)
(
TCJdsCJ/D2

CJ
)

5,42. The derivation
above provides the intermediate differentials (35) and (36)
necessary to demonstrate the DSI theorem. Differentials (38)
and (39) show that FCJ 6= 0 (19) is also a necessary continu-
ity condition: initial-state perturbations have to produce small
variations of DCJ and sCJ (Subsect. II-B, App. B). In the
acoustic limit (D→ c0, v/v0 → 1, F → 2), (37) and (39) co-
herently reduce to dh0 (s0, p0).

The theorem demonstration is easier from a simpler writing
of these differentials that introduces a distribution of p0 and v0
on an arbitrary polar curve p∗0 (v0) through a reference point
v0∗, p0∗ = p∗0 (v0∗). The initial enthalpy h0 (p0,v0) reduces to
the function h∗0 (v0) = h0 (p∗0 (v0) ,v0) of v0, hence, from (2),

v0

D2
dh∗0
dv0

=
G0 +1

G0

(v0

D

)2 d p∗0
dv0

+
M−2

0
G0

. (40)

The final-state expressions η (D;v0, p0) (12) reduce to func-
tions η∗ (D,v0) = η (D;v0, p∗0 (v0)) of D and v0, hence, from
(35) and (37),(

M−2−1
) dv∗

v0
=−F

(
1− v

v0

)
dD
D

+Φ
∗
v

dv0

v0
, (41)

T ds∗

D2 =

(
1− v

v0

)2 dD
D

+Φ
∗
s

dv0

v0
, (42)

where

Φ
∗
v = 1−2

v
v0

+G
v0

v
×

{(
1− v

v0

)
v
v0

+
M−2

0
G0

...

... −
(

1−G
v0

v

(
1− v

v0
+

1
G0

))}
×
(v0

D

)2 d p∗0
dv0

, (43)

Φ
∗
s =

((
1− v

v0

)
v
v0

+
M−2

0
G0

)
...

... +

(
1− v

v0
+

1
G0

)(v0

D

)2 d p∗0
dv0

, (44)

Similarly to h0 (p0,v0), the CJ velocity DCJ (v0, p0) and spe-
cific entropy sCJ (v0, p0) reduce to the functions D∗CJ (v0) =
DCJ (v0, p∗0 (v0)) and s∗CJ (v0) = sCJ (v0, p∗0 (v0)) of v0, hence,
from (38) and (39),

v0

DCJ

dD∗CJ
dv0

= F−1
CJ

(
1− vCJ

v0

)−1

Φ
∗
vCJ, (45)

v0TCJ

D2
CJ

ds∗CJ
dv0

= F−1
CJ

(
1− vCJ

v0

)
Φ
∗
vCJ +Φ

∗
sCJ. (46)

The slope d p∗0/dv0 is thus the parameter that defines how
the initial, final and CJ properties vary with v0 for initial states
varying on p∗0 (v0) (Fig. 1). Final states varying at constant
initial state lie on the same Hugoniot, initial states varying on
p∗0 (v0) generate a (p-v) arc of final states between a point U
on a Hugoniot H with pole O(v0, p0) and a point U’ on another
Hugoniot H’ with pole O’(v0 +dv0, p0 +d p∗0 (v0)). The par-
tial derivative ∂η∗/∂D)v0

is the variation of η with respect
to D along the same Hugoniot, ∂η∗/∂v0)D is the variation of
η with respect to v0 from one Hugoniot to another for pis-
ton speeds up (Subsect. III-A) chosen for each initial state on
p∗0 (v0) so that the final states have the same D, and ∂D/∂v0)s∗
and ∂η∗/∂v0)s∗ are variations with respect to v0 for up such
that the final states are on the same isentrope arc. The demon-
stration requires that the partial derivative of v∗ with respect to
v0 be finite along an equilibrium isentrope: physical CJ veloc-
ities are finite, so are isentrope slopes at CJ points (Subsect.
III-D).

C. Demonstration and interpretation

Differentials (42) and (41) define two constraints on partial
derivatives of s∗ (D,v0) and v∗ (D,v0)

Φ
∗
s ≡

v0T
D2

∂ s∗

∂v0

)
D
=−

(
1− v

v0

)2 v0

D
∂D
∂v0

)
s∗
, (47)

Φ
∗
v ≡

(
M−2−1

) ∂v∗

∂v0

)
D
= ...

...
(
M−2−1

) ∂v∗

∂v0

)
s∗
+F

(
1− v

v0

)
v0

D
∂D
∂v0

)
s∗
. (48)

The first indicates that, regardless of M,

Φ
∗
s ∝

∂ s∗

∂v0

)
D
= 0⇔ ∂D

∂v0

)
s∗
= 0, (49)

a consequence of the triple product rule, (42) being a two-
variables differential

∂ s∗

∂v0

)
D
=− ∂ s∗

∂D

)
v0

∂D
∂v0

)
s∗

(50)

∵ ds∗ =
∂ s∗

∂D

)
v0

dD+
∂ s∗

∂v0

)
D

dv0, (51)
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and ∂ s∗/∂D)v0
=
(

1− v
v0

)2 (
D2/T

)
6= 0 (23). Neither of

equality in (49) is true in general (Subsect. III-A) but both
are so for sonic final states (M = 1): (48) and (49) give, suc-
cessively,

Φ
∗(M=1)
v ∝

∂D
∂v0

)(M=1)

s∗
= 0, Φ

∗(M=1)
s ∝

∂ s∗

∂v0

)(M=1)

D
= 0 (52)

if ∂v∗/∂v0)
(M=1)
D and ∂v∗/∂v0)

(M=1)
s∗ are finite, hence the

DSI theorem (31) from (45)-(46) or (51),

(ds∗)(M=1) ≡ ds∗CJ = 0⇔ (dD)(M=1) ≡ dD∗CJ = 0. (53)

Equivalently, combining dv∗ (s,v0) and (21), or (47) and
(48), gives

∂v∗

∂v0

)
D
=

∂v∗

∂v0

)
s
+

∂v∗

∂ s

)
v0

∂ s∗

∂v0

)
D
⇔ (54)

Φ
∗
s =

(
M−2−1

)(
1− v

v0

)(
∂v∗

∂v0

)
s
− ∂v∗

∂v0

)
D

)
F−1, (55)

so Φ
∗(M=1)
s = 0 if (∂v∗/∂v0)s− ∂v∗/∂v0)D)

(M=1) is finite,
then ∂D/∂v0)

(M=1)
s∗ = 0 from (49), and Φ

∗(M=1)
v = 0 from

(48). An initial state varied so that a CJ detonation retains the
same velocity thus generates a CJ state that retains the same
entropy. This can also be obtained from d p: the coefficients
in (35) and (36) have same absolute values if M = 1. A model
problem is proposed in Appendix C.

An interpretation in the p-v plane (Fig. 1) considers the
Hugoniot curves pH (v; p0,v0) (14) as a one-parameter family
y∗H (p,v;v0) = 0 with parameter v0 if their poles (p0,v0) are
distributed on p∗0 (v0),

y∗H (p,v;v0) = ...

... −h(p,v)+h0 (p0,v0)+
1
2
(p− p0)(v0 + v) , (56)

p0 = p∗0 (v0) .

This family has an envelope if p∗0 (v0) satisfies the constraint
obtained by setting to zero the partial derivative of y∗H (p,v;v0)
with respect to v0

∂y∗H
∂v0

)
p,v

= 0⇔
d p∗0
dv0

=−
(

D
v0

)2

×
1− v

v0
+

2M−2
0

G0

1− v
v0
+ 2

G0

. (57)

This envelope is an isentrope if it is made up of sonic points,
as the CJ-entropy differential (39) shows.

Similarly, the Rayleigh-Michelson lines (R)
pR (v,D; p0,v0) (14) form a two-parameters family
y∗R (p,v;D,v0) = 0, with parameters v0 and D, if their
poles (p0,v0) are distributed on p∗0 (v0),

y∗R (p,v;D,v0) =−p+ p0 +

(
D
v0

)2

(v0− v) , (58)

p0 = p∗0 (v0) .

which reduces to a one-parameter sub-family, with v0 the only
parameter, if D is a function of v0 and p0 such as DCJ (25).
Thus, with D∗CJ (v0) =DCJ (v0, p∗0 (v0)), setting to zero the par-
tial derivative of y∗R

(
p,v;D∗CJ (v0) ,v0

)
with respect to v0 gives

the envelope constraint for the R lines

∂y∗R
∂v0

)
p,v

= 0⇔
d p∗0
dv0

=−
(

D∗CJ
v0

)2

× ...

...

{
2

vCJ

v0
−1+2

(
1− vCJ

v0

)
v0

D∗CJ

dD∗CJ
dv0

}
, (59)

which is an isentrope if it is made up of sonic points. This can
be observed from

G
v0

v
T dsR

D2 =
v0d p0

D2 +

(
2

v
v0
−1
)

dv0

v0
... (60)

... +2
(

1− v
v0

)
dD
D

+
(
M−2−1

) dv
v0

, (61)

obtained by combining the differentials of the R relation (32)
and the s(p,v) equation of state (4). The DSI theorem dD∗CJ =
0 along an isentrope then gives

d p∗0
dv0

=−
(

D∗CJ
v0

)2

×
(

2
v
v0
−1
)
. (62)

An isentrope is thus the common envelope (Fig. 1) of fam-
ilies of equilibrium Hugoniots and Rayleigh-Michelson lines
with initial states such that CJ detonations have the same ve-
locity. The connection with Davis’ implementation of the In-
verse Method for condensed explosives43 is discussed in sub-
section III-D.

D. Chapman-Jouguet supplemental properties

The initial-state variations d p0 and dv0 that ensure the in-
variances of DCJ and sCJ are the non-zero solutions to either
2×2 homogeneous systems {dDCJ = 0 - dsCJ = 0} (38)-(39)
or {Φ∗v = 0 - Φ∗s = 0}CJ (52): their determinants are propor-
tional to each other because any of their 4 constraints is a lin-
ear combination of the other 3. Setting either to zero, or iden-
tifying the envelope constraints (57) and (62) to each other,
gives the condition

G0x2
CJ +2xCJ−

(
1−M−2

0CJ

)
= 0, (63)

xCJ = 1− vCJ

v0
=

v0 (pCJ− p0)

D2
CJ

=
uCJ

DCJ
. (64)

The compressive solution vCJ/v0 < 1, pCJ/p0 > 1 and (27) or
(28) form the one-variable (DCJ) representation (30) of the CJ
detonation state

vCJ (DCJ;v0, p0) = v0

1+G0−
√

1+G0
(
1−M−2

0CJ

)
G0

, (65)

pCJ (DCJ;v0, p0) = p0 +
D2

CJ
v0

√
1+G0

(
1−M−2

0CJ

)
−1

G0
,

(66)
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γCJ (DCJ;v0, p0) = ...

...
1+G0−

√
1+G0

(
1−M−2

0CJ

)
G0

p0v0
c2

0
M−2

0CJ−1+
√

1+G0
(
1−M−2

0CJ

) . (67)

Conversely, DCJ is a function of one CJ variable, for example,
pCJ (66),

(
DCJ

c0

)2

= πCJ

(
1+

1
2πCJ

)1+

√√√√1+
G0(

1+ 1
2πCJ

)2

 ,

(68)
where πCJ = v0 (pCJ− p0)/c2

0, or γCJ (67),(
DCJ

c0

)2

=
1
2

(γCJ +1)2

γ2
CJ−1−G0

×

{
1−2

1+ G0
γCJ+1

γCJ +1
γCJ

γ̃0
...

... +

√√√√
1−4

1+
G0−(1+G0)

γCJ
γ̃0

γCJ+1

γCJ +1
γCJ

γ̃0

 , (69)

where γ̃0 = c2
0/p0v0 and must not be confused with γ0, except

for gases (Subsect. II-A). Relation (69) shows a large sensi-
tivity of DCJ to γCJ, as is more evident in the gas example (72)
below. The identity

G0 =
α0c2

0
Cp0

, α0 =
1
v0

∂v0

∂T0

)
p0

, (70)

indicates that the necessary initial data are c0, Cp0, and v0
measured as a function of T0 at constant p0 so that the co-
efficient of thermal expansion α0 can be determined.

For ideal gases, c, Cp, α and γ are functions of T =
pv(W/R) only, G = γ−1, v = RT/pW , α = 1/T . Thus, for
initially-ideal gases,

γCJ (DCJ, p0,T0) =

√
γ0

1− γ0−1
γ0

M−2
0CJ

, (71)

D2
CJ (γCJ, p0,T0) =

1− γ
−1
0

1− γ0
γ2

CJ

× c2
0, (72)

D2
CJ (pCJ, p0,T0)

v0 pCJ
= ...

...

(
1−
(

1− γ0

2

) p0

pCJ

)
×

1+

√√√√√√1+
(γ0−1)

(
1− p0

pCJ

)2

(
1−
(
1− γ0

2

) p0
pCJ

)2

 .

(73)

The strong-shock limits (M−2
0CJ� 1 or p0/pCJ� 1) of γCJ and

D2
CJ are

√
γ0 and

(
1+
√

γ0
)

v0 pCJ, respectively (their acoustic
limits are γ0 and c2

0). The typical values γ0 = 1.3, c0 = 330
m/s and DCJ = 2000 m/s give γCJ = 1.144,

√
γ0 = 1.140 and

relative error 100×
(
γCJ/
√

γ0−1
)
= 0.316 %. Relations (71)-

(73) apply to initially-ideal gases, but products may be non-
ideal if p0 is large enough.

The (p0,v0) pairs that achieve invariance of DCJ or sCJ
are solutions to the ordinary differential equation formed by
substituting (65) for v in (57) or (62). The initial condition
is a reference initial state (p0∗,v0∗) with known CJ velocity
D∗CJ. The particular solution is the polar curve p∗0 (v0) through
(p0∗,v0∗), which, substituted for p0 in vCJ (DCJ;v0, p0) (65)
and pR (v,D;v0, p0) (13) gives

v∗CJ (v0) = vCJ (v0, p∗0 (v0) ,D∗CJ) , (74)

p∗CJ (v0) = p∗0 (v0)+
D∗2CJ
v0

(
1−

v∗CJ (v0)

v0

)
. (75)

The isentrope p∗S (v) is generated by eliminating v0 between
v∗CJ (v0) and p∗CJ (v0), that is, by varying v0 and representing
p∗CJ (v0) as a function of v∗CJ (v0). Thus, v0 can parametrize an
isentrope of detonation products. This, however, necessitates
Cp0, c0 and v0 in a sufficiently large (p0,T0) domain whereas
calculating the CJ state from (65), (66) and (67) necessitates
them for one initial state only.

Physically, the DSI theorem holds because isentropes have
finite slopes, so the derivatives ∂ z∗/∂v0)s and ∂ z∗/∂v0)D are
finite and non-zero at sonic points (Subsect. III-C). Formally,
this is obtained by differentiating c(s,v) (5) and the mass bal-
ance (9-a) written as v = v0M (c/D),

dv
v

=
dv0

v0
+

dc
c
+

dM
M
− dD

D
, (76)

dc =
∂c
∂ s

)
v
ds+

∂c
∂v

)
s
dv, (77)

hence, restricting variations to an isentrope,

Γ
v0

v
∂v
∂v0

)
s
= 1− v0

D
∂D
∂v0

)
s
+

v0

M
∂M
∂v0

)
s
, (78)

with Γ the fundamental derivative of hydrodynamics (8). The
sonic condition M = const. = 1 and the DSI consequence
∂D/∂v0)

(M=1)
s∗ = 0 (52-a), combined with (7), (1) and (9),

then give

∂v∗

∂v0

)(M=1)

s∗
=−

(
v0

DCJ

)2
∂ p∗

∂v0

)(M=1)

s∗
= Γ

−1
CJ

vCJ

v0
, (79)

v0

D2
CJ

∂h∗

∂v0

)(M=1)

s∗
=−Γ

−1
CJ

(
vCJ

v0

)2

, (80)

v0

DCJ

∂u∗

∂v0

)(M=1)

s∗
=
(
1−Γ

−1
CJ

) vCJ

v0
. (81)

Therefore, the derivatives of v, p and h are finite and non-
zero at a CJ point except if ΓCJ → ∞ and ΓCJ = 0, re-
spectively (the derivative of u is zero for ΓCJ = 1), and
the constraints ∂v∗/∂v0)

(M=1)
s∗ < ∞ and ∂v∗/∂v0)

(M=1)
D <

∞ are equivalent to each other. In contrast, with z denot-
ing v, p or h, the derivatives ∂ z∗/∂D)(M=1)

v0
are infinite (or

∂D/∂ z∗)(M=1)
v0

= 0), as (24) shows. In the perfect-gas ex-
ample (App. A), taking the partial derivative of v(D;v0, p0)
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(A8) with respect to D moves the square-root term to the de-
nominator, so limD→DCJ ∂v/∂D)p0,v0

= −∞, whereas its par-
tial derivative with respect to v0, with p0 = p∗0 (v0), shows that
limD→DCJ ∂v∗/∂v0)D is finite if ∂D/∂v0)s∗ = 0.

The ratio dDCJ/dsCJ is obtained by eliminating d p0/dv0
between (38) and (39). The non-homogeneous term is zero
from 63), hence

DCJdDCJ

TCJdsCJ
=

(
1− vCJ

v0

)−2
1−FCJ

1+G0

(
1− vCJ

v0

)
2+G0

(
1− vCJ

v0

)
 .

(82)
The partial derivatives of DCJ (v0, p0), and those of

DCJ (T0, p0), are not independent since there are initial-state
variations for which DCJ is constant. This is implied by the
triple product rule,

∂DCJ

∂ z0

)
p0

=− ∂ p0

∂ z0

)
DCJ

∂DCJ

∂ p0

)
z0

, (83)

where z0 denotes either v0 or T0. Hence, with ∂ p0/∂v0)DCJ
given by (57) or (62),

v0

DCJ

∂DCJ

∂v0

)
p0

=
DCJ

v0

∂DCJ

∂ p0

)
v0

×
(

2
vCJ

v0
−1
)
, (84)

DCJ

v0

∂DCJ

∂ p0

)
T0

=
T0

DCJ

∂DCJ

∂T0

)
p0

× ...

...
1− (1+α0T0G0)

(
2 vCJ

v0
−1
)

M2
0CJ(

2 vCJ
v0
−1
)

α0T0

, (85)

the latter being obtained from the former and the identities

T0

DCJ

∂DCJ

∂T0

)
p0

= α0T0
v0

DCJ

∂DCJ

∂v0

)
p0

, (86)

DCJ

v0

∂DCJ

∂ p0

)
T0

=
v0

DCJ

∂DCJ

∂ p0

)
v0

...

... −M2
0 (1+α0T0G0)

v0

DCJ

∂DCJ

∂v0

)
p0

. (87)

The variations of DCJ with respect to T0 at constant p0 thus
determine those with respect to p0 at constant T0, and con-
versely. The 5 constraints above also apply to sCJ since
∂ p0/∂ z0)DCJ

= ∂ p0/∂ z0)sCJ
.

A reminder here on the Inverse Method (IM) (Sect. I, Sub-
sect. III-B) is helpful to discuss below the DSI theorem and its
application to liquid explosives in subsection IV-B. Manson5

and Wood and Fickett42 were the first to discuss several IM
implementations depending on the pair of independent initial-
state variables. For liquids, the two options used in this work
are more conveniently introduced from

dDCJ

DCJ
=

1−FCJ (1− xCJ)

FCJxCJ

dv0

v0
... (88)

... − 1+(1−FCJ)(1− xCJ)

FCJx2
CJ

v0d p0

D2
CJ

+
2−FCJ

FCJx2
CJ

dh0

D2
CJ

(89)

obtained by setting M = 1 in dv (35) or d p (36), and with xCJ
given by (64). The first option considers the same homoge-
neous explosive, and thus either pair (v0, p0) or (T0, p0) sub-
ject to v0 (T0, p0) and h0 (p0,v0) (2) or h0 (T0, p0) (3): the pair
(v0, p0) first reduces (89) to (38), measurement of DCJ (v0, p0)
would next give values of ∂DCJ/∂v0)p0

and ∂DCJ/∂ p0)v0
,

and their identification to their expressions in (38) then gives,
after elimination of FCJ (or GCJ) (19), the CJ state from the
solution xCJ < 1 of

G0Lx2
CJ +2KxCJ−

(
1−M−2

0CJ

)
= 0, (90)

with L and K for DCJ (v0, p0) and DCJ (T0, p0) given by

L = 1+
DCJ

v0

∂DCJ

∂ p0

)
v0

− v0

DCJ

∂DCJ

∂v0

)
p0

= 1+
DCJ

v0

∂DCJ

∂ p0

)
T0

...

... +
1−M−2

0CJ +α0T0G0

α0T0M−2
0CJ

T0

DCJ

∂DCJ

∂T0

)
p0

, (91)

K = 1+M−2
0CJ

DCJ

v0

∂DCJ

∂ p0

)
v0

− v0

DCJ

∂DCJ

∂v0

)
p0

= 1+M−2
0CJ

DCJ

v0

∂DCJ

∂ p0

)
T0

+
G0T0

DCJ

∂DCJ

∂T0

)
p0

. (92)

Substituting (84) for ∂DCJ/∂ p0)v0
, or (85) for ∂DCJ/∂ p0)T0

,
in (90), coherently returns (63), that is, the CJ state depends
on DCJ only, and not on its derivatives for initial-state vari-
ations that satisfy (57) or (62). The second option uses the
pair (v0,h0) at constant p0. This can be achieved by means
of a set of isometric mixtures44, that is, with the same atomic
composition, and thus the same equilibrium equation of state,
for any value of the composition parameter, denoted below by
w0

42. This amounts to determining h0 (T0,w0) and v0 (T0,w0)
and measuring DCJ (T0,w0) at constant p0. Setting d p0 = 0
in (89) first gives the differential of DCJ (v0,h0), measure-
ment of DCJ (v0,h0) at constant p0 would next give values of
∂DCJ/∂v0)h0,p0

and ∂DCJ/∂h0)v0,p0
, and their identification

to their expressions in (89) then gives, after elimination of FCJ,
the CJ state from the solution xCJ < 1 of

Lx2
CJ +2KxCJ−1 = 0, (93)

where, with w0 defined as the mass fraction of all compo-
nents added to a reference explosive (w0 = 0), L and K for
DCJ (v0,h0) and DCJ (T0,w0) are given by

L = DCJ
∂DCJ

∂h0

)
v0,p0

= ...

...

ω0T0
DCJ

∂DCJ
∂T0

)
w0,p0

− α0T0
DCJ

∂DCJ
∂w0

)
T0,p0

ω0
Cp0T0
D2

CJ
−α0T0Ω0

, (94)
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K = 1− v0

DCJ

∂DCJ

∂v0

)
h0,p0

= ...

... 1+

Ω0DCJ
T0

∂DCJ
∂T0

)
w0,p0

− Cp0T0

D3
CJ

∂DCJ
∂w0

)
T0,p0

ω0
Cp0T0
D2

CJ
−α0T0Ω0

, (95)

upon using the identities

dv0

v0
= α0T0

dT0

T0
+ω0dw0, ω0 =

1
v0

∂v0

∂w0

)
T0,p0

, (96)

dh0

D2 =
Cp0T0

D2
dT0

T0
+Ω0dw0, Ω0 =

1
D2

∂h0

∂w0

)
T0,p0

. (97)

The denominator in L and K is the determinant of the (v0,h0)
- (T0,w0) mapping and is not zero, unless fortuitously. The CJ
properties of the reference explosive are obtained by setting
w0 = 0 in (94) and (95). This second option is more con-
venient than the first because sufficiently-large variations of
p0 are uneasy to achieve and because it does not necessitate
c0. However, contrary to the DSI theorem, both options as-
sume independent partial derivatives of DCJ, so the cumula-
tion of their experimental uncertainties may limit the accuracy
of their CJ predictions (Subsect. IV-B). The IM also gives the
CJ Gruneisen coefficient (6) as a function of two derivatives
of DCJ similarly to the CJ state, but the CJ supplemental prop-
erties give this coefficient only if one partial derivative of DCJ
is known.

The DSI method for obtaining an isentrope may appear sim-
ilar to that in Davis’ implementation43 of the IM with the
specific volume v0 and energy e0 as the independent vari-
ables, and p0 neglected. Davis pointed out that particular v0
and e0 can be poles of Hugoniots that have an isentrope as
an envelope, which he then calculated from a given function
DCJ (e0,v0). The constraint ds= 0 can indeed be satisfied with
other independent variables than p0 and v0 since the Hugoniot
relation (14) involves only state variables: using h0 and v0 as
the independent variables at constant p0, the same reasonings
as in subsection III-C to demonstrate and interpret the DSI
theorem shows that an isentrope is an envelope to a family of
Hugoniot for subsets h∗0 (v0) that satisfy

dh∗0
dv0

=−1
2
(p− p0) , (98)

and that, from (59), the envelope condition for a family of
Rayleigh-Michelson lines is

v0

D
dD
dv0

=
1
2

1−2 v
v0

1− v
v0

≡ 1−
(

2
v0 (p− p0)

D2

)−1

. (99)

These 2 relations reduce to Davis’ eqs.(31) and (14), respec-
tively, using (28) and neglecting p0/p. However, evidently
enough, the joint invariance of sCJ and DCJ here implies that
vCJ/v0 is constant and equal to 1/2, that is, γCJ = 1: the DSI
theorem, dDCJ = 0⇔ dsCJ = 0, can be physically satisfied
only if p0 is varied, even if the non-dimensional values p0/p
or v0 p0/D2 are negligibly small.

No pair of CJ variables other than DCJ and sCJ can be non-
trivially invariant, that is, with non-zero d p0 and dv0: the dif-
ferentials of the Rankine-Hugoniot relations and the equations
of state subject to the invariance of a pair of final-state vari-
ables produce a 2×2 homogeneous linear system for d p0 and
dv0 (with dh0 subject to (34)), but only the DCJ-sCJ invariant
pair produces a non-trivially null determinant; relation (63) is
this annulment condition. For example, in the p - v plane, no
non-zero d p0 and dv0 permit a focal point d pCJ = 0 - dvCJ = 0:
since s = s(p,v) and h = h(p,v), this would imply dsCJ = 0
and dhCJ = 0, and, from (32), dDCJ = 0, which represents the
Rayleigh-Michelson line through p0,v0.

The DSI theorem, and the IM, are valid only for initial and
equilibrium states described with two-variables equations of
state. The differentiations in this analysis thus consistently in-
clude equilibrium shifts (Subsect. II-A): there is no reason for
different initial states to generate the same frozen final compo-
sition. Finally, it should be noted that the DSI theorem ensures
but does not imply these properties.

IV. APPLICATION TO GASEOUS OR LIQUID
EXPLOSIVES

Entropy of detonation products cannot be measured. As
for gaseous explosives (Subsect. IV-A), the DSI theorem
and some CJ supplemental properties were thus analysed by
means of chemical equilibrium calculations. Only ideal det-
onation products were investigated so as to avoid the uncer-
tainties induced by equations of state, such as those of con-
densed explosives, calibrated from experiments that may not
have achieved the strict CJ equilibrium (Sect. I). The calcula-
tions were done with the NASA computer program CEA39.
As for liquid explosives (Subsect. IV-B), the analysis is a
comparative discussion of the theoretical CJ pressures from
(66) and values from experiments and the Inverse Method
(Subsect. III-D).

A. Gaseous explosives with ideal final states

Tables I show numerical values of sCJ and DCJ for the four
stoichiometric mixtures CH4 + 2 O2, C3H8 + 5 O2, CH4 + 2
Air and H2+0.5 Air. Five (T0, p0) pairs with T0 evenly spaced
between 200 K and 400 K were used so as to represent a
largest physical range. The third pair (T0 = 298.15 K, p0 = 1
bar) was chosen as the reference initial state (v0∗, p0∗) (sub-
script ∗, Subsect. III-C), and the p0 values were determined
by dichotomy for each T0 so that the CJ entropies have the
reference value s∗CJ. The results were analysed based on the
CJ-velocity mean values D̄CJ, absolute and mean relative devi-
ations ∆DCJ/D̄CJ and mDCJ , in percent, and corrected standard
deviations σDCJ

D̄CJ =
1
I

I=5

∑
i=1

DCJi ,

(
∆DCJ

D̄CJ

)
i
= 100× DCJi− D̄CJ

D̄CJ
, (100)
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mDCJ =
1
I

I=5

∑
i=1

∣∣∣∣∆DCJ

D̄CJ

∣∣∣∣
i
, σDCJ =

√√√√I=5

∑
i=1

(DCJi− D̄CJ)
2

I−1
. (101)

All mDCJ ’s and σDCJ ’s are very small. In particular, the DCJ’s
have the same mean values D̄CJ to O (0.1) % at most, and the
agreement is practically exact for the C3H8 + 5 O2 mixture.
This suggests that an iterative minimization procedure of both
∆DCJ/D̄CJ and ∆sCJ/s̄CJ should return values of p0 (T0), D̄CJ
and s̄CJ that even better satisfy the theorem and eliminate the
slight decreasing trend of DCJ with increasing T0 at constant
s∗CJ observed here: the p0 (T0) values and the results in table I
can be seen as zeroth-order iterates. The (v0 (T0) , p0) pairs de-
fined by the T0’s and p0’s in table I therefore well approximate
the polar curve p∗0 (v0) through (v0∗, p0∗) (Subsect. III-C). It
is easy, albeit tedious, to check that another reference than
T ∗0 = 298.15 K and p∗0 = 1 bar returns similarly small mDCJ ’s
and σDCJ ’s.

These small values were validated by means of a sensitiv-
ity analysis based on initial states very close to a reference ∗,
and CEA’s numerical accuracy as a criterion. Table II shows
results for the C3H8 +5 O2 mixture with three groups of four
(T0, p0) pairs. The first pairs (bold) are the firsts, thirds and
fifths in table I-2, so they generate the same entropy s∗CJ; their
CJ states were used as references of their group (superscript
∗). The seconds (italics) have T0’s only 5 % greater than in
the firsts and p0’s determined by dichotomy so that sCJ = s∗CJ;
the ∆DCJ/D∗CJ’s are thus at most equal to the O

(
10−2

)
%

mDCJ ’s in table I-2, and smaller T0 variations would be non-
significant. The thirds and fourths are variations at constant
T0 and constant p0, respectively. In each group, the initial
variations chosen to generate the same s∗CJ (the seconds) give
the smaller variations of TCJ, which all are greater than CEA’s
O
(
10−3

)
% accuracy d̃T/T = d̃ p/p = 0.005 % (39, p.35,

eqs.7.24, and p.40) by at least one order of magnitude. The
initial variations chosen not to generate the same entropy s∗CJ
(the thirds and fourths) give variations of DCJ 10 times greater
than mDCJ and the same O

(
10−1

)
% magnitude for those of

sCJ and TCJ. Therefore, the small O
(
10−2

)
% variations of

DCJ at constant sCJ, and the larger ones of sCJ and DCJ at
constant T0 and p0, are valid and not biases due to initial
states chosen too close to each other. The variations of sCJ are
slightly smaller than those of TCJ: the combination of dh(s, p)
(1), dh(T ) = CpdT (3), pv = RT/W and γ = Cp/Cv, subject
to d̃T/T = d̃ p/p, gives

d̃s
s

=
(
2− γ

−1)Cp

s
× d̃T

T
= O

(
10−1−1

)
× d̃T

T
, (102)

since typical γ , s and Cp are O (1), O (10) kJ/K/kg and
O (1-10) kJ/K/kg, respectively. At p0 = 1 bar and T0 = 298.15
K, CEA gives d̃sCJ/sCJ = 0.33× d̃TCJ/TCJ for CH4 + 2 Air,
and d̃sCJ/sCJ = 0.89× d̃TCJ/TCJ for CH4 +2 O2.

The theoretical (theo) ratios rCJ = (ρCJ/ρ0, pCJ/p0,γCJ)
were calculated from (27), (28) and (71) using CEA val-
ues of DCJ and the initial-state variables, and compared to
CEA numerical (num) values. Tables III and IV show ini-
tial data and results for C3H8/O2 mixtures with equivalence
ratios ER= 0.8, 1 and 2, T0 = 200 K, 298.15 K and 400 K, and

p0 = 0.2 bar, 1 bar and 5 bar. Numbers are rounded, hence
non-significant discrepancies between the indicated relative
differences εr and those that can be calculated from rounded
r(num)

CJ and r(theo)
CJ ,

εr = 100×
r(num)

CJ − r(theo)
CJ

r(num)
CJ

. (103)

All εr’s are small, ranging from O
(
10−1

)
to O (1) %, but

greater than the O
(
10−2 - 10−1

)
% mDCJ ’s, likely because of

the sensitivity to the initial thermodynamic coefficients: the
accuracy of Cp0 determines the others. The uncertainties of
sCJ, γCJ, ρCJ and pCJ are obtained from ds(p,v) (1), (27), (28),
pv = RT/W , γ2

CJ ≈ γ0 =Cp0/Cv0 (71) and Cp0−Cv0 = R/W0;
the typical values M−2

0CJ� 1, γ2
CJ ≈ γ0 ≈ GCJ +1≈ 1.2, sCJ ≈

104 J/kg, R ≈ 8 J/kg/mole, WCJ ≈ 2× 10−2 kg/mole, and the
Newtonian limit γCJ ≈ 1+, then give the estimates

δ sCJ

sCJ
=

2
sCJGCJ

R
W

1−M−2
0CJ

1+M−2
0CJ/γ0

δDCJ

DCJ
≈ 1

10
δDCJ

DCJ
, (104)

δγCJ

γCJ
=

1
2

(
1+

M−2
0CJ/γ0

1− γ0−1
γ0

M−2
0CJ

)
δγ0

γ0
...

... +

γ0−1
γ0

M−2
0CJ

1− γ0−1
γ0

M−2
0CJ

δDCJ

DCJ
≈ 1

2
δγ0

γ0
=

δCp0

Cp0
, (105)

δρCJ

ρCJ
=
−1

γCJ +1
δγCJ

γCJ
+

2M−2
0CJ/γ0

1+M−2
0CJ/γ0

δDCJ

DCJ

≈ −1
4

δγ0

γ0
=
−1
2

δCp0

Cp0
, (106)

δ pCJ

pCJ
=
−γCJ

γCJ +1
δγCJ

γCJ
+

2
1+M−2

0CJ/γ0

δDCJ

DCJ

≈ −1
4

δγ0

γ0
=
−1
2

δCp0

Cp0
. (107)

The first shows that DCJ is 10 times more sensitive than sCJ,
which validates the choice above of analysing the DSI theo-
rem with initial states generating the same sCJ rather than the
same DCJ. The next three show that γCJ is twice more sen-
sitive than ρCJ and pCJ, with pCJ slightly more so than ρCJ
(Table IV). The same is true for other mixtures: εγ = −3.4
% whereas mDCJ = 0.08 % for CH4 + 2 O2 at T0 = 298.15 K
and p0 = 1 bar. The uncertainty of γCJ is twice as small as
that of γ0, and thus the same as that of Cp0. The magnitude of
δCp0/Cp0 depends on T0, p0 and the mixture components and
proportions; a sensitivity study to thermochemical databases
should be carried out.

These calculations support physically and numerically the
DSI theorem in a large range of initial conditions: the larger
∆DCJ/D̄CJ’s at constant sCJ are very small, smaller than at
constant p0 or T0, and not numerical uncertainties. They also
support the CJ supplemental properties: their differences with
the numerical ones is very small and smaller than the physical
uncertainty of thermochemical coefficients. The same trends
were obtained with the five fuels CH4, C2H2, C2H4, C2H6 and
H2.
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TABLE I. Joint invariances of CJ entropy sCJ and velocity DCJ:
CJ-velocity mean value D̄CJ, absolute relative deviation ∆DCJ/D̄CJ,
mean relative deviation mDCJ , and corrected standard deviation σDCJ

of 4 mixtures.
CH4 +2 O2 mDCJ = 0.08 %
D̄CJ = 2389.7 m/s σDCJ = 2.47 m/s

T0 p0 sCJ DCJ
∆DCJ
D̄CJ

(K) (bar) (kJ/kg/K) (m/s) (%)
200.00 0.6284 id∗ 2392.9 0.13
250.00 0.8118 id∗ 2391.2 0.06
298.15∗ 1.0000∗ 12.6653∗ 2389.6 ∼ 0.00
350.00 1.2165 id∗ 2388.0 −0.07
400.00 1.4410 id∗ 2386.7 −0.12

C3H8 +5 O2 mDCJ = 0.012 %
D̄CJ = 2356.7 m/s σDCJ = 0.41 m/s

T0 p0 sCJ DCJ
∆DCJ
D̄CJ

(K) (bar) (kJ/kg/K) (m/s) (%)
200.00 0.6304 id∗ 2357.3 0.03
250.00 0.8127 id∗ 2356.7 ∼ 0.00
298.15∗ 1.0000∗ 11.9293∗ 2356.3 −0.015
350.00 1.2165 id∗ 2356.3 −0.015
400.00 1.4419 id∗ 2356.7 ∼ 0.00

CH4 +2 Air mDCJ = 0.05 %
D̄CJ = 1799.9 m/s σDCJ = 1.23 m/s

T0 p0 sCJ DCJ
∆DCJ
D̄CJ

(K) (bar) (kJ/kg/K) (m/s) (%)
200.00 0.6044 id∗ 1801.4 0.08
250.00 0.7968 id∗ 1800.7 0.05
298.15∗ 1.0000∗ 9.4218∗ 1799.9 ∼ 0.00
350.00 1.2401 id∗ 1799.1 −0.04
400.00 1.4949 id∗ 1798.3 −0.09

H2 +0.5 Air mDCJ = 0.1 %
D̄CJ = 1964.7 m/s σDCJ = 2.55 m/s

T0 p0 sCJ DCJ
∆DCJ
D̄CJ

(K) (bar) (kJ/kg/K) (m/s) (%)
200.00 0.6004 id∗ 1967.9 0.16
250.00 0.7941 id∗ 1966.4 0.08
298.15∗ 1.0000∗ 10.5927∗ 1964.8 ∼ 0.00
350.00 1.2444 id∗ 1963.1 −0.08
400.00 1.5042 id∗ 1961.5 −0.16

B. Liquid explosives

Four liquids were investigated, namely nitromethane
(NM, CH3NO2), isopropyl nitrate (IPN, C3H7NO3), hot
trinitrotoluene (TNT, C7H5N3O6) and niprona (NPNA3,
C3H10N4O11), a stoichiometric compound made up of 1 vol-
ume of 2-nitropropane (C3H7NO2) and 3 volumes of nitric
acid (HNO3). Table V compares their theoretical CJ deto-
nation pressures (theo), calculated from (66) and experimen-
tal detonation velocities, to values obtained from the Inverse
Method (IM, Subsect. III-D) and experiments (exp). Tables
VI and VII show the sensitivity of the IM results for NM and

TABLE II. Joint invariances of CJ entropy sCJ and velocity DCJ: sen-
sitivity to small changes of initial state of the C3H8 +5 O2 mixture.

T0 p0 sCJ
∆sCJ
s∗CJ

DCJ
∆DCJ
D∗CJ

TCJ
∆TCJ
T ∗CJ

(K) (bar) (kJ/kg/K) (%) (m/s) (%) (K) (%)
200.00∗ 0.6304∗ 11.9293∗ / 2357.3∗ / 3799.46∗ /
210.00 0.6660 11.9293∗ / 2357.1 -0.01 3801.57 0.06
200.00 0.6660 11.9093 −0.17 2359.7 0.10 3810.15 0.28
210.00 0.6304 11.9493 0.17 2354.7 −0.14 3790.91 −0.22
298.15∗ 1.0000∗ 11.9293∗ / 2356.3∗ / 3821.11∗ /
313.06 1.0606 11.9293∗ / 2356.3 0.00 3824.64 0.09
298.15 1.0606 11.9078 −0.18 2358.9 0.11 3832.68 0.30
313.06 1.0000 11.9508 0.18 2353.6 −0.11 3813.09 −0.21
400.00∗ 1.4419∗ 11.9293∗ / 2356.7∗ / 3846.74∗ /
420.00 1.5371 11.9293∗ / 2356.9 0.01 3852.19 0.14
400.00 1.5371 11.9059 −0.20 2359.6 0.12 3859.48 0.33
420.00 1.4419 11.9527 0.20 2354.0 −0.11 3839.46 −0.19

TABLE III. Initial data for calculating the theoretical CJ state from
the CJ velocity DCJ for C3H8/O2 mixtures with 3 equivalence ratios
ER and 3 initial temperatures T0 and pressures p0 (Table IV, theo).

C3H8/O2 T0 (K) p0 (bar) ER = 0.8 ER = 1 ER = 1.2
W0 (g/mol) 33.667 34.015 34.340

200. 1.3390 1.3286 1.3194
γ0 298.15 1.3061 1.2924 1.2807

400. 1.2716 1.2563 1.2434
200. 257.2 254.9 252.8

c0 (m/s) 298.15 310.1 306.9 304.1
400. 354.4 350.5 347.0

200.
0.2
1
5

2.4696
0.4939
0.0988

2.4444
0.4889
0.0978

2.4212
0.4842
0.0968

v0 (m3/kg) 298.15
0.2
1
5

3.6816
0.7363
0.1473

3.6439
0.7288
0.1458

3.6094
0.7219
0.1444

400.
0.2
1
5

4.9393
0.9878
0.1976

4.8887
0.9777
0.1956

4.8425
0.9685
0.1937

200.
0.2
1
5

2203.9
2269.8
2334.7

2306.7
2377.6
2447.5

2392.0
2466.1
2538.8

DCJ (m/s) 298.15
0.2
1
5

2182.5
2249.2
2315.4

2284.6
2356.3
2427.6

2369.8
2444.7
2518.9

400.
0.2
1
5

2165.5
2233.2
2300.6

2267.6
2340.1
2412.6

2352.9
2428.6
2504.2

IPN; those in table V were obtained with the most proba-
ble D(exp)

CJ derivatives (Tabs. VI and VII, second lines and
columns). The results bring out very contrasted trends. Es-
sentially, all theoretical pressures are significantly greater than
the experimental and the IM pressures except IPN’s (Tab. V);
but they may actually agree with the IM pressures because of
the uncertainties of the initial data and the velocity derivatives
(Tabs. VI and VII). The adiabatic exponents γ were calcu-
lated from (67), so their low theoretical values are consistent
with the large ones of the theoretical pressures. The analysis
below is an unsuccessful and speculative disentanglement of
uncertainties and physics.
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TABLE IV. Comparison of numerical (num) and theoretical (theo) CJ properties (rCJ) for C3H8/O2 mixtures with 3 equivalence ratios ER and
3 initial temperatures T0 and pressures p0.

T0 p0 rCJ ER = 0.8 ER = 1 ER = 1.2
(K) (bar) num theo εr (%) num theo εr (%) num theo εr (%)

0.2
ρCJ/ρ0
pCJ/p0
γCJ

1.870 1.844 1.38
46.746 46.010 1.58

1.125 1.159 -3.03

1.870 1.849 1.14
51.635 50.966 1.29

1.127 1.154 -2.41

1.870 1.854 0.86
55.950 55.402 0.98

1.130 1.150 -1.81

200. 1
ρCJ/ρ0
pCJ/p0
γCJ

1.864 1.845 1.02
49.354 48.775 1.17

1.134 1.159 -2.23

1.865 1.850 0.77
54.602 54.121 0.88

1.136 1.154 -1.60

1.863 1.855 0.47
59.180 58.861 0.54

1.139 1.150 -0.96

5
ρCJ/ρ0
pCJ/p0
γCJ

1.859 1.846 0.69
51.990 51.580 0.79

1.142 1.159 -1.50

1.859 1.851 0.43
57.612 57.325 0.50

1.144 1.154 -0.86

1.858 1.856 0.11
62.436 62.357 0.13

1.148 1.150 -0.19

0.2
ρCJ/ρ0
pCJ/p0
γCJ

1.861 1.844 0.92
30.939 30.617 1.04

1.123 1.146 -1.98

1.863 1.852 0.58
34.170 33.947 0.65

1.125 1.139 -1.23

1.863 1.858 0.27
37.031 36.919 0.30

1.128 1.134 -0.53

298.15 1
ρCJ/ρ0
pCJ/p0
γCJ

1.856 1.846 0.55
32.696 32.491 0.63

1.132 1.145 -1.18

1.857 1.854 0.20
36.165 36.084 0.23

1.134 1.139 -0.43

1.857 1.860 -0.12
39.206 39.262 -0.14

1.137 1.134 0.32

5
ρCJ/ρ0
pCJ/p0
γCJ

1.852 1.848 0.20
34.486 34.406 0.23

1.140 1.145 -0.43

1.852 1.855 -0.16
38.204 38.273 -0.18

1.143 1.139 0.34

1.852 1.861 -0.50
41.418 41.654 -0.57

1.146 1.133 1.11

0.2
ρCJ/ρ0
pCJ/p0
γCJ

1.852 1.845 0.38
22.843 22.747 0.42

1.122 1.131 -0.79

1.855 1.855 -0.00
25.232 25.233 -0.00

1.124 1.124− -0.04

1.855 1.862 -0.39
27.352 27.471 -0.43

1.126 1.117 0.79

400. 1
ρCJ/ρ0
pCJ/p0
γCJ

1.848 1.848 -0.01
24.162 24.164 -0.01

1.131 1.131 -0.01

1.850 1.857 -0.39
26.726 26.843 -0.44

1.133 1.123 0.85

1.850 1.864 -0.78
28.982 29.238 -0.88

1.136 1.117 1.63

5
ρCJ/ρ0
pCJ/p0
γCJ

1.843 1.850 -0.36
25.512 25.618 -0.41

1.139 1.131 0.77

1.845 1.859 -0.76
28.262 28.505 -0.86

1.142 1.123 1.62

1.845 1.866 -1.17
30.652 31.059 -1.33

1.145 1.117 2.43

The data are ancient but reliable, and still referred to, e.g.45

and46 for IPN. However, the initial properties of liquids can
vary slowly over time, and so can their detonation properties,
which also depend on chemical and physical purities, such
as diethylenetriamine or micro-bubbles. No reference here
ensures that measurements were carried out with the same
batches of explosives over short enough periods. For NM,
four data sets — I, II, III, IV — at T0 = 4 C and p0 = 1 bar
were thus retained so as to assess the sensitivity of the cal-
culations. For NM I, they are those in Brochet and Fisson47

and, for NM II, those in Davis, Craig and Ramsay48, except
for c0, which is that in47. For NM III, the initial properties
are those in Lysne and Hardesty49, except for Cp0, calculated
with the fit Cp0(J/kg/K) = 1720.9+ 0.54724×T0(C) of Jones
and Giauque’s measurements50 between the melting (245 K)
and ambiant (298 K) temperatures; the CJ properties are those
in47. For NM IV , ρ0 and α0 are calculated with the fit
ρ0(kg/m3) = 1152.0−1.1395×T0(C)−1.665×10−3×T 2

0 (C)
in Berman and West51. For IPN, the data are those in47, for
NPNA3, those in Bernard, Brossard, Claude and Manson52

and, for TNT, those in48 and53, except for c0, identified to
the constant a of the linear asymptote D = a+ bu to Garn’s
shock Hugoniot measurements54. The derivatives of D(exp)

CJ
necessary to implement the IM (Subsect. III-D) could be
found only for NM and IPN. They are those of D(exp)

CJ (T0, p0)

in47 for NM and IPN (Tabs. VI-left and VII), and those of

D(exp)
CJ (T0,w0) in48 for NM (Tab. VI-right) from isometric

mixtures of NM and mass fractions w0 of acenina, a com-
pound made up of equal volumes of methyl cyanide (CH3CN),
nitric acid (HNO3) and water (H2O), so its atomic composi-
tion is proportionally identical to that of NM (CH3NO2).

For NM, the theoretical pressures (66) are insensitive to
the initial uncertainties (Tab.V) but not the (T0, p0)-IM pres-
sures (Tab. VI-left) which can even agree with the former:
the same value pCJ = 17.9 GPa is obtained with ρ0 = 1149
kg/m3 and α0 = 1.023 K−1, comprised between those for
NM III and IV , and with ∂D(exp)

CJ /∂T0 = −3.96 m/s/K and

∂D(exp)
CJ /∂ p0 = 0.191×10−5 m/s/bar, comprised in the uncer-

tainty intervals of these derivatives. In contrast, the (T0,w0)-
IM pressures (Tab. VI-right) are insensitive to initial uncer-
tainties (results not shown for concision). The differences thus
more likely result from the measurements of the detonation
properties or the physical assumptions of this analysis.

The measured detonation properties are only assumed to
be CJ-equilibrium. The velocities D(exp)

CJ are linear extrap-
olations to infinite diameters of values measured in finite-
diameter tubes. The question is how large their diameters
should be so that DCJ is not underestimated or the propagation
regime is not sonic-frozen, perhaps even low-velocity. There
are many analyses of the diameter effect in condensed explo-
sives (Sect. I). The recent one by Chiquete and Short55 indi-
cates that characteristics originating from the explosive-tube
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TABLE V. Comparison of CJ detonation pressures and adiabatic exponents (exp: experiments, IM: Inverse Method (IM), theo: CJ supplemental
properties) at p0 = 1 bar for nitromethane (NM), isopropyl nitrate (IPN), niprona (NPNA3), and trinitrotoluene (TNT). Symbol /0: no data.

T0 ρ0 α0×103 Cp0 c0 G0 D(exp)
CJ

(C) (kg/m3) (1/K) (J/kg/K) (m/s) (m/s)
I 4 1156 1.19 1747 1423 1.38 6330

NM II 4 1159 1.16 1733 1423 1.36 6334
III 4 1151 1.22 1723 1400 1.39 6330
IV 4 1147 1.00 1723 1400 1.14 6330

IPN 40 1017 1.23 1867 1049 0.72 5330
NPNA3 25 1275 1.11 1512 1184 1.03 6670
TNT 93 1450 0.70 1573 2140 2.04 6590

pCJ (GPa) γCJ

exp IM theo
12.7 12.9 17.5
14.8 12.6 17.6
12.7 13.6 17.4
12.7 15.8 17.9
08.7 13.1 12.1

/0 14.1 22.8
18.2 /0 21.1

exp IM theo
2.65 2.58 1.65
2.14 2.69 1.65
2.63 2.39 1.65
2.62 1.90 1.57
2.32 1.21 1.40

/0 3.02 1.49
2.46 /0 2.00

TABLE VI. Sensitivity of the Inverse-Method pressures pIM
CJ (in GPa) and adiabatic exponents γ IM

CJ to the uncertainties of derivatives of

measured detonation velocities and the initial data (Table V) for nitromethane (NM) at T0 = 277 K and p0 = 1 bar. Left: D(exp)
CJ. (T0, p0) for

NM I, II, III, IV . Right: D(exp)
CJ (T0,w0) for NM II with acenina mass fraction w0 = 0, ∂h0/∂w0)T0,p0

= (−2.021±0.17)× 106 (J/kg),
∂v0/∂w0)T0,p0

= (1.5±0.2)×10−3 (m3/kg).

∂D(exp)
CJ /∂ p0

)
T0

∂D(exp)
CJ /∂T0

)
p0 (m/s/K)
±0.18

±0.01 (m/s/bar)

0.19 pIM
CJ

γ IM
CJ

0.20 pIM
CJ

γ IM
CJ

0.21 pIM
CJ

γ IM
CJ

−4.14 −3.96 −3.78
I II III IV

16.1 16.5 17.8 /
1.87 1.81 1.59 /
14.0 14.3 15.0 18.5
2.30 2.25 2.08 1.48
12.7 12.9 13.3 15.5
2.65 2.61 2.46 1.96

I II III IV
14.4 14.7 15.4 19.0
2.22 2.17 2.00 1.40
12.9 13.2 13.6 15.8
2.58 2.53 2.39 1.90
11.9 12.1 12.4 14.0
2.89 2.85 2.72 2.28

I II III IV
13.2 13.4 13.9 16.1
2.50 2.46 2.32 1.85
12.1 12.3 12.6 14.3
2.83 2.79 2.66 2.22
11.3 11.4 11.6 13.0
3.12 3.08 2.96 2.54

∂D2(exp)
CJ /∂w0

)
T0,p0

∂D(exp)
CJ /∂T0

)
w0,p0 (m/s/K)
±0.18

±0.18×106 (m2/s2)

−8.16 pIM
CJ

γ IM
CJ

−7.98 pIM
CJ

γ IM
CJ

−7.80 pIM
CJ

γ IM
CJ

−4.14 −3.96 −3.78
II II II

12.4 12.6 12.7
2.74 2.70 2.66
12.5 12.6 12.7
2.73 2.69 2.65
12.5 12.7 12.8
2.72 2.67 2.63

TABLE VII. Sensitivity of the Inverse-Method pressures pIM
CJ (in

GPa) and adiabatic exponents γ IM
CJ to the uncertainties of derivatives

of measured detonation velocities D(exp)
CJ (T0, p0) for isopropyl nitrate

(IPN) at T0 = 313 K and p0 = 1 bar . Symbol /: no solution to (90).

∂D(exp)
CJ /∂ p0

)
T0

∂D(exp)
CJ /∂T0

)
p0 (m/s/K)
±0.10

±0.10 (m/s/bar)

0.2 pIM
CJ

γ IM
CJ

0.3 pIM
CJ

γ IM
CJ

0.4 pIM
CJ

γ IM
CJ

−4.13 −4.03 −3.93
/
/

/
/

/
/

15.9
<1

13.1
1.21 11.8

7.3
2.94

7.2
3.03

7.0
3.12

interface may intersect the frozen sonic surface on its side op-
posite to the curved leading shock. The CJ-equilibrium det-
onation, or equivalently the TZD self-similar equilibrium ex-
pansion (Subsect. III-A) at the end of the ZND steady pla-
nar reaction zone, thus seems to be a hydrodynamic limit dif-
ficult to reach in a stick of condensed explosive: the flow
is always diverging at the cylinder edge. This is supported
by Sharpe’s numerical simulations7 of ignition by an over-
driven detonation with a one-step reversible reaction rate in
the long-time limit: a stable reaction zone relaxes to the CJ-
equilibrium state for the planar wave, but to sonic frozen states
for the spherically-diverging wave, even at large radii. Pres-

sure measurements, for example by flyer-impact or Doppler-
velocimetry techniques, cannot be adequately discussed here,
but at least it should be reminded that a slope discontinuity
on an experimental profile is not necessarily a CJ-equilibrium
locus and that extracting such a discontinuity from the sig-
nal noise can be difficult. The theory of hyperbolic equa-
tions, such as Euler’s balance equations for inviscid fluids,
ensures that it is a sonic front, but it is more likely frozen, sim-
ilarly to that in the diameter effect. The latter would only be
marginally involved here: the theoretical pressures calculated
from experimental velocities are greater than measurements.
Detonation tubes at least should be as wide and long as possi-
ble, but the longer they are, the smaller the jump of derivatives
of the TZD and the ZND flows at the sonic locus, and so the
more difficult is its detection: the TZD derivatives tend to-
wards zero with increasing detonation run distance (Subsect.
III-A), as do physical ZND derivatives with decreasing dis-
tance to the reaction-zone end.

Davis, Craig and Ramsay26,48 refuted the CJ-equilibrium
hypothesis for condensed explosives because their (T0,w0)-
IM implementation predicted lower pressures than experi-
ments for NM and TNT. Their conclusion was criticized by
Petrone56 who considered that their interpretation of measure-
ments overestimated the experimental pressures: for NM at 4
C (Tab. V), they retained 14.8 GPa instead of the usual val-
ues 12− 14 GPa produced by most measurements and both
the (T0, p0)- and (T0,w0)-IM implementations with their most
probable velocity derivatives (Tab. VI, excl. NM IV ). A point
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is that the (T0,w0)-IM pressures are smaller than the theoreti-
cal values and not very sensitive to the D(exp)

CJ (T0,w0) deriva-
tives (Tab. VI-right) (and to those of v0 (w0) and h0 (w0),
Subsect. III-D, eqs.(96)-(97), results not shown for con-
cision). However, the (T0, p0)-IM implementation for NM
III also produces 14.8 GPa with velocity derivatives com-
prised in their uncertainty intervals (Tab. VI-left), that is,
∂D(exp)

CJ /∂T0 = −4.12 m/s/K and ∂D(exp)
CJ /∂ p0 = 0.2× 10−5

m/s/bar. Similarly, the theoretical and the (T0, p0)-IM pres-
sures can be equal to each other: for NM III, the theoreti-
cal value 17.4 GPa is obtained with the values of derivatives
∂D(exp)

CJ /∂T0 = −4.12 m/s/K and ∂D(exp)
CJ /∂ p0 = 0.1902×

10−5 m/s/bar, which are comprised in their uncertainty inter-
vals and, importantly, satisfy their DSI compatibility relation-
ship (85). An analytical analysis of sensitivity of the IM is
possible but cumbersome and could not be developed here,
and the velocity derivatives are not sufficiently numerous and
accurate for soundly discussing the CJ hypothesis from IM
pressures. Nevertheless, the theoretical CJ pressures are found
not very sensitive to the initial data and greater than measure-
ments and most IM estimates (Tab. V), with differences ex-
ceeding the fair experimental uncertainty ±10 kbar.

Thus, at least one of the physical assumptions should be
investigated. These include front adiabaticity, flow instabil-
ities, single-phase fluid, local thermodynamic equilibrium,
and sonic-frozen reaction end states (Sect. I). For example,
NM, TNT and IPN have negative oxygen balances and thus
large amounts of solid carbon in their detonation products.
However, NPNA3 is stoichiometric and yet these four liq-
uids all have theoretical CJ pressures greater than measure-
ments: solid carbon aggregation is known as inherent to high-
pressure chemical physics18–20. This questions the modelling
of detonation products and reaction zones in carbonate liq-
uids similarly to gases as single-phase fluids, such as in this
work. The carbon agglomerates might have smaller speeds
than the gas flow due to drag effects, and an endothermic ag-
gregation might prevent achievement of the CJ equilibrium,
and rather selects CJ-frozen states with pressures lower than
the CJ-equilibrium value (Sect. I). A single material speed
and a two-variables T (p,v) equilibrium equation of state to
fit measurements and predict CJ properties might not be valid
assumptions for carbonate condensed explosives; multi-phase
balance laws and constitutive relations with thermal and me-
chanical non-equilibria should be more systematically con-
templated.

V. DISCUSSION AND CONCLUSIONS

This work brought out two new features of the CJ-
equilibrium model of detonation. The first one is that the CJ
velocity and specific entropy are invariant under the same vari-
ations of the initial temperature and pressure (Subsect. III-C).
The second one is essentially that no equation of state of det-
onation products is necessary to calculate simply the CJ state
from the CJ velocity value, or the CJ velocity from one CJ
variable (Subsect. III-D). They apply only if the initial and

burnt states are single-phase fluids with temperature and pres-
sure as the two independent state variables (Subsect.2.1). This
is the case of ideal gases, for which detailed thermochemi-
cal calculations indeed validate these features very accurately
(Subsect. IV-A). However, the analysis of their overestimates
of experimental pressures of four carbonate liquid explosives
(Subsect. IV-B) suggests further discussion on the assump-
tions of thermal and mechanical equilibria in their reaction
zones and detonation products, and on whether their reaction
processes can achieve the CJ chemical equilibrium (Sect. I).
Inductively, this might apply to most carbonate condensed ex-
plosives to varying degrees, so initial and detonation data for a
non-carbonate liquid explosive would benefit further investi-
gations. Ammonium nitrate (NH4NO3) above its melting tem-
perature (443 K) could apply but its metastability at elevated
temperatures raises a safety issue.

Although not yet reported, they could have been obtained
many years ago: they derive fairly simply from long-time
known balance laws of basic hydrodynamics, namely the
Rankine-Hugoniot relations contained in the single-phase adi-
abatic Euler equations. Their ubiquity today is the outcome
of the prompting 40 years ago to develop numerical simula-
tion of detonation dynamics. Thermal and mechanical non-
equilibria at elevated pressures and temperatures have long
been a theoretical and numerical challenge; averaged balance
laws and constitutive relations built from various mixture rules
are workarounds to fit in with this single-phase paradigm.
The CJ supplemental properties of this work should be seen
as go-betweens for experiments and models. In particular,
they allow for a coherent discussion of this homogenization
approach, but they are not substitutes for predictive thermo-
chemical calculations. This justifies the question as to what if
anything has been gained in comparison to the usual method-
ology of separate measurements of pressure and velocity for
calibrating constitutive relations by means of numerical sim-
ulations: essentially, there is now a criterion, both experimen-
tal and numerical, to check simply if pressures are compatible
with velocities as representative of the CJ-equilibrium state,
and, if not, a basis for discussing the measurement conditions
and the modelling assumptions.

The hyperbolic Euler equations combined with explicit
equations of state form a closed set for which a data distri-
bution on a non-characteristic side of a surface defines a well-
posed Cauchy problem without using entropy. The sonic side
of the CJ front is a particular case of characteristic distribu-
tion of data, and entropy was here a necessary intermediate
to obtain these new features without equation of state for the
fluid on this characteristic side: the velocity of the surface
and the initial state give the characteristic state, or the initial
state and one characteristic-state variable give the velocity of
the surface. This might be inherent to hyperbolic systems and
the wider group of characteristic horizons, such as surfaces
of Schwarzschild black holes; the CJ-equilibrium detonation
front is the horizon of events in the TZD expansion for an ob-
server in the ZND reaction zone.
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Appendix A: Chapman-Jouguet relations for the perfect gas

The perfect gas is the ideal gas with constant heat capacities
C̄v = (R/W )/(γ̄−1) and C̄p = (R/W ) γ̄/(γ̄−1), with W the
molecular weight and R = 8.31451 J/mol.K the gas constant.
The adiabatic exponent γ is the constant ratio γ̄ = C̄p/C̄v, the
Gruneisen coefficient G is γ̄ − 1, the fundamental derivative
Γ is (γ̄ +1)/2, and an isentrope writes pvγ̄ = const. For the
reactive perfect gas, the relation T (p,v) = (W/R) pv reduces
(3) to dh(T ) = Cp (T )dT whose integration gives the differ-
ence of enthalpies (A1) of the products at (T, p) and the fresh
gas at (T0, p0) (neglecting the differences of their W and γ̄),
which substituted for h− h0 in (14) then gives the Hugoniot
curve (A2):

h(p,v)−h0 (p0,v0) =
γ̄ (pv− p0v0)

γ̄−1
−Q0, (A1)

pH (v;v0, p0) = p0×
1− γ̄−1

γ̄+1

(
v
v0
− 2Q0

p0v0

)
v
v0
− γ̄−1

γ̄+1

. (A2)

A CJ state is given by (27)-(29) with γ̄ substituted for γCJ, and
a CJ velocity DCJ is then a solution to the 2nd degree equa-
tion obtained by substituting vCJ (27)andpCJ (28) for p and v
in (A2).The supersonic compressive solution (subscript CJc,
Subsect. II-C) is the velocity DCJc of the CJ detonation

DCJc (v0, p0) = D̃CJ

(
1
2
+ M̃−2

0CJ +
1
2

√
1+4M̃−2

0CJ

) 1
2
, (A3)

D̃2
CJ = 2

(
γ̄

2−1
)

Q0, M̃0CJ = D̃CJ/c0, (A4)

which has dominant value D̃CJ if M̃−2
0CJ << 1, and tends to

c0 in the non-reactive limit Q0 = 0. The subsonic expansive
solution (subscript CJx) is the velocity DCJx of the CJ defla-
gration that is deduced from DCJc by changing the sign before
the square root in (A3); they relate with each other by

DCJcDCJx = c2
0 or M0CJcM0CJx = 1, (A5)

which had not been pointed out before. It shows that DCJx has
dominant value D̃CJ/M̃2

0CJ ≡ c0/M̃0CJ, and it can be used to
express one solution with the other,

pCJc− pCJx

pCJc
= ...

...
1−M−4

0CJc

1+M−2
0CJc/γ̄

= 1−
M−2

0CJc
γ̄

+O

(
M−2

0CJc
γ̄

)2

, (A6)

vCJx− vCJc

vCJx
= ...

...
1−M−4

0CJc

1+ γ̄M−2
0CJc

= 1− γ̄M−2
0CJc +O

(
γ̄M−2

0CJc

)2
. (A7)

There are two overdriven detonation solutions (Q0 > 0, D>
DCJc, Fig. 2); only the upper (U) is a physical intersect of a
Rayleigh-Michelson line (13) and the equilibrium Hugoniot

(A2), that is, subsonic (M < 1, Subsects. II-C and II-D), and
it writes

v
v0

(D,v0, p0) =
γ̄−
√

∆D +M−2
0

γ̄ +1
, (A8)

v0 p
D2 (D,v0, p0) =

1+
√

∆D +M−2
0 /γ̄

γ̄ +1
, (A9)

∆D =

(
1−
(

DCJc

D

)2
)(

1−
(

DCJx

D

)2
)

=
(
1−M−2

0
)2−

(
D̃CJ

D

)4

. (A10)

The lower (L), obtained by changing the sign before
√

∆D
above, is non-physical because it is supersonic (M > 1). Both
reduce to the shock solution (N) by setting Q0 = 0 in (A8)-
(A9), that is,

√
∆D = 1−M−2

0 . From (A5), (DCJx/D)2 =(
c2

0/DDCJc
)2

6 M−4
0CJc � 1 that negligibly contributes to ∆D

compared with (DCJc/D)2. The typical values c0 = 300 m/s
and DCJc = 2000 m/s give the unrealistically small value
DCJx = 45 m/s. More generally, this theoretical CJ defla-
gration viewed as an adiabatic discontinuity with same initial
state as the CJ detonation is not admissible because it is sub-
sonic: M0CJx < 1, (15) is not satisfied (Subsect. II-B, App. B).
Its usefulness here is only completeness and a simpler writing
of relations (A8)-(A10), which thus reduce more obviously to
the CJ relations (27)-(29) if ∆D = 0, that is, to vCJc and pCJc if
D = DCJc, or to vCJx and pCJx if D = DCJx.

Appendix B: Chapman-Jouguet admissibility

The expanding equilibrium flow behind a self-sustained CJ
front is homentropic and self-similar (Subsect. III-A). The
backward-facing Riemann invariant is thus uniform, that is,
du− (v/c)d p = 0, and, since up < uCJ, the material speed u
(as well as p and v−1) and the frontward-facing perturbation
velocity u+ c = x/t must decrease from the CJ front so that
expansion can spread out. Thus, differentiating u+ c and ex-
pressing p and c as functions of s and v give d (u+ c) =Γdu=
−Γvd p/c = cdv/v30, hence the constraint Γ > 0. Similarly, T
decreases from the CJ front if G > 0 (6).

Using (22), the second-order differentials of h(s, p), p(s,v)
and the Hugoniot relation give

FCJ

2
∂ 2 pH

∂v2

)
CJ
=

∂ 2 pS

∂v2

)
CJ

= 2
(

DCJ

v0

)3
ΓCJ

DCJ
, (B1)

v2
0TCJ

D2
CJ

∂ 2sR

∂v2

)
CJ

=−2
ΓCJ

GCJ
, (B2)

v2
0TCJ

D2
CJ

∂ 2sH

∂v2

)
CJ

= 2
(

v0

vCJ
−1
)

ΓCJ

FCJ
, (B3)

which show that FCJ 6= 0 (Subsect. III-B) is also the condi-
tion for the Hugoniot curvature and the entropy variations to
be finite at a CJ point for physical isentropes (Γ 6= 0, Subsect.
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III-D): 2 isentropes cannot have a same CJ contact point. The
curvatures of a Hugoniot and an isentrope have the same sign
if FCJ > 0, that is, if GCJ < 2/(v0/vCJ−1), that of the Hugo-
niot being the larger if 0 < GCJ < FCJ < 2/(v0/vCJ−1) < 2,
which is the case for most fluids.

Using (24) and (76), the derivative of M with respect to v
along a Hugoniot at a CJ point is

∂MH

∂v

)
CJ

=
ΓCJ

vCJ
, (B4)

which shows, since ΓCJ > 0, that M < 1 above, and M > 1
below, a CJ point, hence FCJ > 0, ∂ 2 pH/∂v2

)
CJ > 0 and

∂ 2sH/∂v2
)

CJ > 0 from (B1) and (B3). Also, comparing the
slopes of a Rayleigh-Michelson line, a Hugoniot and an isen-
trope (16), (17), (18) about a CJ point with Γ > 0 indicates
that 0 < F < 2 if G > 0, and F > 2 if G < 0. Therefore, a
CJ point is physically admissible only on a convex Hugoniot
arc, excluding its meeting point with a concave arc where ΓCJ
should then be zero; and s increases and M decreases with de-
creasing v, so the physical branch of this arc is above the CJ
point. Other derivations involve concavity of entropy s(e,v)
or equivalently convexity of energy e(s,v).

Appendix C: A model problem

Let the differentials of the functions β (w,x) and σ (w,x) of
the two variables w and x satisfy

εdβ = adw+bdx, (C1)
dσ = qdw+ rdx, (C2)

where ε , a, b, q, r are finite functions of β , w and x. These
relations define the constraints

ε
∂β

∂x

)
w
= b, (C3)

ε
∂β

∂x

)
σ

= a
∂w
∂x

)
σ

+b, (C4)

0 = q
∂w
∂x

)
σ

+ r. (C5)

The last, (C5), is the triple product rule, which follows from
(C2) being a total differential,

dσ =
∂σ

∂w

)
x
dw+

∂σ

∂x

)
w

dx (C6)

⇒ ∂σ

∂x

)
w
=− ∂σ

∂w

)
x

∂w
∂x

)
σ

(C7)

⇔ r =−q
∂w
∂x

)
σ

. (C8)

Therefore, if either ∂w/∂x)
σ

or ∂σ/∂x)w ≡ r is zero, so is
the other if ∂σ/∂w)x ≡ q is finite and non-zero.

In the limit ε = 0, denoted by the superscript (ε), (C3)
shows that

b(ε) = 0 (C9)

if ∂β/∂x)(ε)w is finite, then (C4) shows that

∂w
∂x

)(ε)

σ

= 0 (C10)

if ∂β/∂x)(ε)
σ

is finite and a(ε) is finite and 6= 0, then (C5)
shows that

∂σ

∂x

)(ε)

w
≡ r(ε) = 0⇔ ∂w

∂x

)(ε)

σ

= 0 (C11)

if q(ε) ≡ ∂σ/∂w)(ε)x is finite and 6= 0. The constraints above
and (C6) thus imply the equivalence (dσ)(ε) = 0⇔ (dw)(ε) =
0, but not that (dσ)(ε) or (dw)(ε) is zero. The DSI theorem
(Subsect. III-C) is the application for which ε = 1−M, σ = s,
β = v, p or h, w = D, x = v0, a ∝ Kz 6= 0, q ∝ Ks 6= 0, b ∝ Φ∗z
and r ∝ Φ∗s .

If the arguments of b(β ,w,x) and r (β ,w,x) include the
same grouping µ0 (β ,w,x), and if conditions exist for which
(dσ)(ε) = 0 or (dw)(ε) = 0, eliminating µ0 between the con-
straint b(ε) (β ,w,x,µ0) = 0 and r(ε) (β ,w,x,µ0) = 0 defines
a compatibility relation between β , w and x, that is, β =

β (ε) (w,x), which then returns µ
(ε)
0 by substituting β (ε) for β

in either of these constraints. These are the operations in Sub-
section III-D that give vCJ/v0 and d p∗0/dv0, here represented
by µ0.
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