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Abstract: Local scour is the removal of soil around bridge foundations under the erosive action1

of flowing water. This hydraulic risk has raised awareness to the need of developing continuous2

monitoring techniques to estimate scour depth around bridge piers and abutments. One of the3

emerging techniques is based on monitoring the vibration frequency of either bridge piers or a4

driven sensor in the riverbed. The sensor proposed in this study falls into the second category. Some5

unresolved issues are investigated: the effect of the geometry and material of the sensor, the effect of6

the embedded length and the effect of soil type. To this end, extensive laboratory tests are performed7

using rods of different materials, with various geometries and lengths. These tests are conducted8

in both dry sand and a soft clayey soil. Since the sensor will be placed in the riverbed, it is crucial9

to evaluate the effect of immersed conditions on its response. A numerical 3D finite-element model10

was developed and compared against experimental data. This model was then used to compute the11

’wet’ frequencies of the sensor. Finally, based on both the experimental and numerical results, an12

equivalent cantilever model is proposed to correlate the variation of the frequency of the sensor to13

the scour depth.14

Keywords: Bridge scour; Vibration; Soil-structure interaction; Equivalent cantilever; Monitoring.15

1. Introduction16

Scour is considered as the main cause of bridge damages [1] and accounts for nearly half of all17

bridge collapses in the USA [2]. In France, the collapses of the Wilson Bridge in Tours (1978) and the18

St Louis Bridge on Reunion Island (2007) serve as national examples of damages caused by scour [3].19

In order to anticipate this risk, it is important to measure the current scour depth at bridge supports,20

namely the piers and abutments. On one hand, many empirical formulas are proposed in literature21

[4–7]. However, most of them usually lead to an overestimation of its value [5] due to different factors22

including: scale effect since most of the equations are derived from flume test results, the simplifying23

hypothesis assumed for both bed material and flow and the difficulty of accurately measuring field24

data [8]. One the other hand, several monitoring devices already exist and are used in the field such25

as: float-out devices [9], radar [10,11], sonar [12], time domain reflectometry [13,14], magnetic sliding26

collar [15,16], electrical conductivity devices [17] and fiber optic [18,19]. However, those methods have27

several limitations such as: high sensitivity to noise, difficulties in result interpretations and not being28

suitable to high sediment concentration conditions. Therefore, recent studies attempt to suggest more29

accurate and practical monitoring techniques to evaluate scour at bridge foundations. An emergent30

technique based on the dynamic response of the structure is the main method proposed in this paper.31

The principal of this monitoring technique is that scour causes an increase of the exposed length of32

the scoured structure. Consequently, based on the inverse relation between the fundamental frequency33
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and the length of a cantilever beam, a decrease of the frequency can be correlated to an increase of34

scour depth [19,20]. Based on this result, two applications are generally proposed.35

Zarafshan et al. [19] proposed to monitor bridge scour by means of rods embedded in the riverbed.36

Each rod is equipped with a fiber-optic Bragg grating sensor that uses the strain response history in37

the time domain to identify the fundamental frequency. In order to correlate the first frequency of the38

sensor to scour depth, a numerical model was developed based on the Winkler model of the soil. Once39

the rod is placed in the soil, its frequency is used to calculate the stiffness of the springs k used in the40

model. Then the model can be used to measure the first frequency for different scour depths.41

Prendergast et al. [20] proposed a direct approach, the effect of scour on the first frequency of42

the pile itself was studied. The experimental laboratory set-up consisted on a pile placed in a block43

of sand. Scour was simulated with the progressive extraction of a layer of the soil. For every scour44

depth, an impact was applied and the dynamic response of the pile recorded with an accelerometer45

placed on the top. The test showed that the first natural frequency decreases with the increase of the46

depth of the scour hole. The same experimental protocol was applied in situ to a 8.76 m in length pile47

and showed the same results. To establish a relation between the first frequency and the scour depth,48

a spring-beam finite element model was developed and validated. Unlike Zarafshan et al. [19] who49

used the vibration response of the sensor to determine the stiffness of the springs k, Prendergast et al.50

[20] used two geotechnical methods: the first one uses the small strain shear modulus Go determined51

with in-situ test with Multi-channel analysis of surface waves (MASW) or Cone Penetration Test (CPT)52

[21] and the second one uses the American Petroleum Institute design code (API).53

Both studies show that the first frequency of piles or sensors decreases with the increase of scour54

depth. However, the correlation between frequency and scour depth is not direct and requires the55

use of both a numerical model and experimental data to calibrate the spring stiffness. The present56

study focuses on the effect of scour on the dynamic response of sensor-rods partially embedded in soil,57

specifically on the correlation between the variation of the first frequency and the current scour depth.58

Some unsolved issues are also addressed such as: the effect of the sensor geometry and material, the59

effect of soil type and the effect of the embedded length.60

The paper starts in Section 2 with the description of the laboratory tests performed to assess the61

effect of scour on the first frequency of different rods in two type of soils. The repeatability of the62

measurement is evaluated and three important aspects are investigated: the sensitivity to the sensor63

material and geometry, the sensitivity to the embedded length and the effect of the soil. Then, in64

Section 3, a 3D numerical model is developed and validated. This model is then used to assess the65

effect of immersed conditions on the response of the sensor. In Section 4, the main results of this study66

are outlined and a simple method is proposed to correlate scour depth to the first frequency of an67

equivalent cantilever. Finally, in Section 5, conclusions and future use of the findings of this study are68

outlined.69

2. Experimental program70

The experimental study conducted in the laboratory aims to investigate the feasibility of71

monitoring scour with rod-sensors. To this end, extensive tests are performed and the following72

issues are addressed: the effect of scour, the repeatability of the measurement, the effect of the sensor73

geometry and material, the effect of the embedded length and the effect of soil type.74

2.1. Materials and cross-sections of the rod-sensor75

In order to assess the effect of scour on the first frequency of the sensor, extensive laboratory tests76

are performed. Five rods having various geometries, lengths and material properties are tested: two77

circular aluminium rods of 800 mm and 600 mm length named CA-80 and CA-60 respectively, two78

rectangular aluminium rods of 800 mm and 600 mm length named RA-80 and RA-60 respectively and79

a circular PVC rod of 800 mm named CP-80. The geometrical and mechanical properties of each rod80
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are summarized in Table 1. The tests are conducted in two type of soils: dry sand and a soft clayey soil.81

The experimental process in each soil is detailed in section 2.2.82

Table 1. Geometric and mechanical characteristics of the tested rods

Tested rods Outer diameter/ Thickness Young modulus Bulk density Flexural rigidity
Width(mm) (mm) (GPa) (kg/m3) (N.m2)

CA-80, CA-60 12 1 59 2700 31.1
RA-80, RA-60 19 2 59 2700 0.8

CP-80 20 2 3.5 1425 11.0

2.2. Experimental procedures83

2.2.1. Sandy soil84

Figure 1. Laboratory set-up in dry sand, where the tank at the bottom has a volume of 1 m x 1 m x 1 m
and can be filled up to 0.7m by sand.

The experimental set-up is presented in Figure 1. A tank of 1 m x 1 m x 1 m in width, depth and
height respectively is progressively filled with dry sand of Seine until it reaches a height of 0.7 m. Since
the Young modulus of the soil Es is one of the most influencing parameters on the natural frequency of
the soil-rod system [22], its value is measured and is used afterward in the numerical model. For this
purpose, a mini-pressuremeter test [23] is conducted to determine the average value of the Ménard
modulus Em. The Young modulus Es is then calculated using Equation (1) [24]:

Es =
Em

α
, (1)

where α a rheological parameter (α=1/3 for sand). The properties of the dry sand used in this study85

are summarized in Table 2.86

Table 2. Dry sand properties

D50 (mm) ρs (Kg/m3) νs Em (MPa) Es (MPa)
0.7 1700 0.3 0.5 1.5
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The sensor is then placed in the soil volume. A thread connects the top of the rod, through a pulley,87

to a known dead weight. To generate an impulse force of a known amplitude, ensuring similar testing88

conditions, the thread is cut inducing the vibration of the sensor in the X direction. An accelerometer89

having a mass of m = 41 g, is placed on the top of the rod since it has been proved to be the optimal90

location [25]. The accelerometer records the transient dynamic response of the sensor corresponding to91

its first bending mode of vibration.92

The scour process is taken into account by the progressive increase of the exposed length H of93

the sensor. Table 3 summarizes the range of the exposed length H for each rod. This length is limited94

on the one hand by the tank dimensions, and on the other hand by the stability of the rod-sensor.95

The scour depth is increased step by step with increments of 50 mm. For each exposed length H,96

the impulse force is applied and the vibratory response of the rod is recorded. The data samples are97

recorded with a sampling frequency of 512 Hz. The transient response of the system is then post98

processed using SCILAB to measure the first natural frequency from the Fast Fourier Transform (FFT).99

To evaluate the accuracy of the measurement, each test is repeated three times.

Table 3. Range of exposed length H of the rods in dry sand

Tested rods Min H (cm) Max H (cm)
CA-80 35.0 65.0
CA-60 15.0 45.0
RA-80 35.0 70.0
RA-60 15.0 50.0
CP-80 35.0 70.0

100

2.2.2. Clayey soil101

A soft saturated clayey soil mixture is prepared with of 50% sand of Fontainebleau, 50% of102

Armoricaine Kaolinite clay and 25% water [26,27]. A Plexiglas cylinder of 400 mm diameter and 400103

mm height is progressively filled with the mixture. To ensure a uniform density, the soil specimen is104

manually compacted into five layers of equal thickness. The soil mixture is matured during 48 hours.105

The experimental protocol used in sand is adapted to the clayey soil. Due to the high plasticity of the106

soil mixture (Figure 2), an impact is applied to generate the impulse in order to avoid the deformation107

of the soil induced by the previous protocol before the beginning of the testing.108

The aging of clayey soils often improves their mechanical properties [28] which can induce a109

variation of the rods frequencies. To make sure that the changes of the frequency are caused only by110

scour, vibration tests of the rod RA-60 are conducted after three days, ten days and forty-five days.111

Table 4 summarizes the range of the exposed length H for each rod in the clayey soil.112

It should be noted that tests of the circular aluminum rods CA-80 and CA-60 showed no vibratory113

response due to their high flexural rigidity (see Table 1). In fact, if the structure is more rigid than the114

soil, the response of the structure is restricted to rigid body modes [29]. Consequently, no results are115

available for the rods CA-80 and CA-60 in the clayey soil.116

Table 4. Range of exposed length H of the rods in clayey soil

Tested rods Min H (cm) Max H (cm)
RA-80 40.0 60.0
RA-60 20.0 50.0
CP-80 40.0 65.0
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Figure 2. Photographs of (a) laboratory setup in clayey soil; (b) plastic deformation of the soil

3. Numerical model117

A numerical model is created to validate and understand the experimental results.118

Moreover, in practice, the sensor will be placed in the riverbed and immersed in water. Therefore,119

it is crucial to asses the effect of water on the response of the sensor. To this end, a finite element model120

is developed.121

3.1. Theoretical formulation122

The evolution of multiple-degree-of-freedom system is expressed by the following equation:

[M]{ü}+ [C]{u̇}+ [K]{u} = {F} (2)

where [M], [C] and [K] are respectively the mass, the damping and the stiffness matrices; {ü}, {u̇} and123

{u} are respectively the acceleration, the velocity and the displacement and {F} the external vector124

force applied to the system. The dimension of the matrices is N× N, where N is the number of degrees125

of freedom of the system.126

In the absence of damping, the free vibrations of the structure are described with the eigenvalue
problem :

[M]{ü}+ [K]{u} = 0 (3)

The solution of Equation (3) can be written {u} = {U} expiωt, which leads to :

(−[M]ω2 + [K]){U} = (−[M]λ + [K]){U} = 0 (4)

with λ = ω2 = (2π f )2, f the natural frequency and {U} the mode shape. This linear system has N
non trivial solutions (Ui, λi)[i = 1, 2, 3, ..., N] [30] that verify the theoretical condition:

det([K]− λi[M]) = 0 (5)

Since only the first frequency is needed, a subspace iteration method [31] is used to solve the system.127

3.2. Model description128

A 3D finite elements model is developed using the finite element software Code-Aster [32]. The129

proposed model is based on the following hypothesis: 1) the soil medium and the rod-sensor are elastic,130

2) all displacements and strains remains small and 3) the soil and the sensor are perfectly bounded at131

the interface. For the boundary conditions, the lateral faces of the soil are fixed against displacement in132

the normal direction and the base is fixed against displacement in all directions. The weight of the133

accelerometer is not negligible and is modeled as a nodal mass placed at the top of the rod-sensor. In134

this model, the soil and the sensor are meshed with 10 nodes tetrahedron elements. The mesh was135
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refined near the sensor with a progressive transition to a coarser mesh away from the sensor. The136

average number of mesh nodes was fixed to 80000 after conducting a mesh convergence analysis for137

each tested rod. Figure 3a shows the three-dimensional numerical model of the rod-soil system.138

(a) Three-dimensional
numerical model of the
rod-soil system and mesh
details

(b) Scour simulation with the
numerical model

Figure 3. Finite elements scour model

In order to simulate scour process in immersed conditions, the numerical model is partitioned to139

several layers of 50 mm thickness. The initial scour state is presented in Figure 3b. As scour increases,140

the soil layers are progressively replaced by fluid layers, mimicking the natural phenomenon. This141

substitution is achieved by modifying the material properties of the given layer. This approach is142

therefore only valid if water does not change the general behavior of the rod compared to the case143

without water [33].144

The material properties used in the model are those of dry sand and the rods presented in Tables145

1 and 2. No readjustments of the parameters is performed afterwards.146

First, the model is used to compute the dry frequencies of all tested rods (without the fluid). The147

first numerical frequency corresponding to the bending mode of the rods is compared to experimental148

data to validate the model for each exposed length.149

Then, in order to assess the effect of the immersed condition on the sensor response, the wet150

frequencies (with the fluid) of the circular aluminum rods (CA-60 and CA-80) are computed following151

the procedure described previously as shown in Figure ??.152

4. Results and discussion153

4.1. Experimental results154

4.1.1. Effect of soil aging155

The results of the vibration tests of the rod RA-60 at different dates are presented in Figure 4.156

There is no clear tendency of the evolution of the frequency with the aging of the clayey soil157

mixture. Consequently, the variation of the frequency, during the testing period, is not a result158

of the improvement of the mechanical characteristics of the soil.159

4.1.2. Repeatability analysis160

The accuracy of the sensor is evaluated in dry sand for the rods CA-80, RA-80 and CP-80. The161

three measured frequencies for the minimum exposed length H = 35 cm and the maximum exposed162
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Figure 4. Variation of first frequency with exposed length H in the clayey soil after 3, 10 and 45 resting
days

length H= 65 cm are summarized in Table 5. The results indicates that the standard deviation, for the163

three tested rods, at each exposed length is less than 0.50 Hz. This demonstrates the accuracy of the164

sensor measurement.

Table 5. Repeatability analysis in dry sand

Exposed length CA-80 RA-80 CP-80
Measured Freq.(Hz) Average Freq. (Hz) Measured Freq.(Hz) Average Freq. (Hz) Measured Freq.(Hz) Average Freq. (Hz)

9.52 1.55 6.58
h=65 cm 9.98 9.64 ±0.30 1.56 1.55 ± 0.01 6.50 6.51 ±0.07

9.42 1.55 6.45
25.33 4.21 16.94

h=35 cm 26.28 25.71 ± 0.50 4.11 4.14 ± 0.06 16.18 16.58 ±0.38
25.53 4.10 16.61

165

4.1.3. Effect of scour166

Figure 5 displays the experimental results in dry sand. The first frequency of the sensors decreases167

with the increase of the exposed length H. This trend is in full agreement with the results of [19,20].168

As shown in Figure 6, a similar tendency in noticed in the clayey soil.169

Table 6 shows the frequency of the rods in both soils for the exposed lengths H=60 cm and H=40
cm, representing 20 cm scour. To compare the sensitivity of the tested rods to scour, a frequency change
rate p is defined with Equation (6):

p =
f(H=40) − f(H=60)

f(H=40)
(6)

It can be seen that the frequency change rate p increases with the flexural rigidity of the tested rod170

in both sand and clayey soil. The sensitivity of the rods is also affected by the soil. For instance, the171

frequency of the rod CA-80 varies by 46% is sand and 39% in soft clayey soil for the same scour depth.172

Table 6. Sensitivity of the frequencies of the tested rods to scour in sand and clayey soil

Tested rods Flexural rigidity N.m2 Frequencies in sand Frequencies in clayey soil
H=60 cm H=40 cm Change rate p (%) H=60 cm H=40 cm Change rate p (%)

CA-80 31.1 11.31 19.50 42 - - -
CP-80 11.0 7.50 13.90 46 6.6 10.78 39
RA-80 0.8 1.78 3.45 48 1.53 2.8 45
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4.1.4. Effect of the embedded length173

The effect of the embedded length D is investigated. Figures 5 and 6 show that the rods CA-80174

and CA-60 have the same frequency when their exposed length H is equal, even if their embedded175

length D are different. Similar results are observed for the rods RA-80 and RA-60 in both soil types.176

This means that the frequency is more influenced by the exposed length H rather than the embedded177

length D in our experimental conditions.178

4.1.5. The effect of soil type179

In order to highlight the effect of the soil type on the frequency of the sensor, the variation of the180

first frequency with the embedded ratio of the rods RA-80, RA-60 and CP-80 is shown in Figure 7 for181

sand and clayey soil.182
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Figure 7. Variation of first frequency with embedded ratio in sand and clayey soil

The results show that the frequencies in sand are higher than the frequencies in the clayey soil.183

This is mainly due to the higher stiffness of sand compared to the lower stiffness of the clayey soil184

with high plasticity used in this study. For low embedded ratios, the first frequency of the rods in both185

soils is almost similar. But as the embedded ratio increases, the gap between the frequency curves in186

sand and in clayey soil increases. This implies that for high embedded ratio, the frequency of the rod187

is significantly influenced by the stiffness of the soil it is embedded in.188

4.2. Numerical results189

4.2.1. Model validation190

The numerical frequencies of all tested rods are compared to the experimental frequencies in dry191

sand. Figure 8 shows that the numerical and experimental results are in good agreement without any192

readjustment of parameters.193

4.2.2. The effect of water194

The effect of water on the frequency of the sensor is investigated. Following the numerical195

procedure described is Section 3.2, the wet frequencies of the rods are calculated for each exposed196

length H. As shown in Table 7, water decreases the frequency of the sensor. As scour increases, the197

effect of water becomes more significant with changes from 4% for H=25 cm to 9% for H= 55 cm.198



Version July 27, 2020 submitted to Infrastructures 10 of 18

Figure 8. Comparison of experimental and numerical first frequencies of the tested rods (correlation
coefficient of R2 = 0.9905).

Table 7. Comparison between wet and dry frequencies of the CA rods

Exposed length Dry frequency Wet Frequency Percentage change of the frequency
(cm) (Hz) (Hz) between air and water (%)
55 12.8 11.6 9
50 14.6 13.3 9
45 16.8 15.5 8
40 19.7 18.3 7
35 23.4 21.9 6
30 28.3 26.8 5
25 35.2 33.6 4
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4.3. Proposed calibration technique of the sensor199

4.3.1. Equivalent cantilever beam200

The variation of the experimental first frequencies of the tested rods, in sand and clayey soil, is
compared to the response of a cantilever beam with a punctual mass attached at its free end to take
into account the accelerometer. The free length of the cantilever is called Hc, the total mass of the
cantilever M and the mass of the accelerometer m. The theoretical frequencies of the cantilever are
calculated using Equation (7) [34,35] and are plotted with a continuous line in Figures 9, 10 and 11.

fth =
1

2π
×

√
3EI

Hc
3(0.24M + m)

(7)
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Figure 9. Equivalent cantilever of CA rod-sensors in sand: experimental first frequency for road-sensors

CA-80 and CA-60, and first frequency of equivalent cantilever beam fth =
1

2π
×

√
3EI

Hc
3(0.24M + m)

.

201

It appears that all tested rods and in both soil types, the theoretical results of the cantilever are202

horizontally translated against the experimental results with a constant H′. This adjustment length H′203

varies with the sensor and the soil characteristics.204

The physical meaning of H′ is related to the soil-rod interaction which does not correspond to a
perfect cantilever, but may match this assumption from a distance H′ under the soil surface. Therefore,
for each value of the exposed length H, the first natural frequency of the rods in each soil is equal to
the frequency of an equivalent cantilever with a free length Hc = H + H′ (Figure 12). For instance,
to estimate the experimental first frequency of the circular rod in the sand with an exposed length
H = 20cm, Equation (8) is used:

fexp(H = 20) = fthe(Hc = 20 + 8.8 = 28.8) = 45.7 Hz (8)

The inverse relationship between the first frequency and the free length (9) derived from Equation (7)
can be used to determine the scour depth ys, see Equation (9):

H =
3

√
(2π fexp)

2 × 0.24M + m
3EI

− H′ ⇒ ys = H − H0 (9)
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fth =
1

2π
×

√
3EI

Hc
3(0.24M + m)

.

Table 8. Value of the equivalent length of the tested rods in both soils

Tested rod Corrected length in sand Corrected length in clayey soil
(cm) (cm)

CA-80, CA-60 8.8 No results
RA-80, RA-60 4 11

CP-80 4.6 11
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Figure 12. Equivalent cantilever of the dynamic soil structure interaction

The values of this adjustment length for all tested rods and soils are summarized in Table 8.205

4.3.2. Wet frequencies and equivalent cantilever beam206

In practice, the sensor will be placed in the riverbed and immersed in water. Therefore, it is crucial
to verify the validity of the proposed calibration technique when the sensor in completely immersed.
The calculated wet frequencies in Section 4.2.2 are first compared to the cantilever frequencies derived
from Equation (7) but an adjustment length could not be derived. It seems more appropriate to
compare the wet frequencies of the sensor to the wet frequencies of a cantilever derived from Equation
(10):

fwet =
1

2π
×

√
3EI

Hc
3[0.24(M + Ma) + m]

, (10)

where Ma is the added mass of the fluid. Figure 13 shows that the wet frequencies of the sensor are207

indeed translated against the theoretical frequencies of the immersed cantilever. However, the value of208

the adjustment length in immersed conditions is Hwet= 8 cm against Hdry= 8.8 cm in dry condition.

Figure 13. Equivalent cantilever of the circular rod in dry and wet conditions

209
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4.4. Sensitivity study210

The experimental tests show that the adjustment length H′ vary with the geometry of the211

sensor and the soil type. In order to identify the parameters influencing this length, the numerical212

model detailed in Section 3b is used to perform a sensitivity study. The effect of three parameters is213

investigated: the Young modulus of the rod Er, the bulk density of the rod ρr and the Young modulus214

of the soil Es. The results of the numerical simulation which are presented here, have been performed215

using the rod CA-80.216

4.4.1. The effect of the elasticity of the rod-sensor Er217

The frequencies of the rod are calculated for three values of Er: 100 GPa, 59 GPa and 5.9 GPa. The218

results are then compared to the frequencies derived from Equation (7) of an equivalent cantilever219

with a similar Young modulus. The value of the adjustment length H′ can then be estimated. Figure 14220

shows that the adjustment length H′ increases with the increase of the Young modulus of the rod Er.
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Figure 14. Variation of the adjustment length H′ with the Young modulus of the rod Er

221

Once again, the experimental frequencies and the first frequency of the equivalent beam are in222

good agreement.223

4.4.2. The effect of the density of the rod-sensor ρr224

The frequencies of the rod are calculated for three values of ρr: 1300 kg.m−3, 2700 kg.m−3and225

7500 kg.m−3. The results are then compared to the corresponding equivalent cantilever to estimate the226

value of the adjustment length H′. Figure 15 shows that the adjustment length H′ is independent of227

the bulk density of the rod ρr.228

4.4.3. The effect of the elasticity of the soil Es229

The frequencies of the rod are calculated for three values of Es: 1.5 MPa, 15 MPa and 150 MPa.230

The results are then compared to the equivalent cantilever to estimate the value of the adjustment231

length H′. Figure 16 provides the value of H′ for each value of Es.232

As it can be seen, H′ decreases from 8.8 cm to 2.4 cm when the stiffness of the sol varies between233

1.5 MPa and 150 MPa. This result was predictable since the equivalent cantilever is the specific case234

where the soil has an infinite stiffness. In that case, the rod is completely fixed at the ground surface235

and H′ = 0. As the stiffness of the soil decreases, the rod should be embedded deeply to insure a236

similar constraint as the clamped condition.237
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Figure 15. Variation of the adjustment length H′ with the bulk density of the rod ρr
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The results of the sensitivity study have a practical interest. In fact, in the field, the only variable238

input is the sensor, which means its geometry and its material characteristics. It would be wise to try239

reducing the adjustment length H′ of the sensor so that the cantilever model can be used to predict240

the frequencies of the sensor with reasonable accuracy. The results show that this can be achieved by241

varying the geometry and decreasing the Young modulus of the sensor.242

4.5. General discussion about the findings243

Zarafshan et al. [19] proposed the concept of fiber optic instrumented rods as scour-depth sensors.244

In that case, the scour depth is obtained by the deformation of the rod. Here, it has been shown that245

this approach is also valid for rods instrumented by accelerometres. The existence of scour is proven by246

changes in the first frequency of the rod itself, and the depth can be assessed through this innovative247

equivalent cantilever beam approach.248

This brings about a low cost sensor, which may be complementary to direct bridge monitoring as249

proposed by Prendergast et al. [20].250

5. Concluding remarks and perspectives251

Scour is one of the major risks threatening the stability of bridges across rivers and in coastal252

areas. Therefore, it is paramount to evaluate the current scour depth around piers and abutments. The253

reported study proposes a continuous monitoring technique of scour by means of rods embedded254

in the riverbed. Extensive experimental tests were performed in the laboratory using various rods255

and two types of soil: dry sand and a soft clayey soil. Some uncovered issues were investigated: the256

effect of the geometry and material of the sensor, the effect of its embedded length and the effect of257

soil type. The results showed that the sensitivity of the sensors decreases with their flexural rigidity.258

Furthermore, when the flexural rigidity of the sensor is high in respect to the soil stiffness, no vibratory259

response was recorded since the response of the sensor was limited to rigid body motion. Thus, it260

is necessary to select the sensor material and geometry carefully depending on the stiffness of the261

soil it will be placed in. The tests also showed that the effect of soil type is less significant when the262

embedded ration of the rod decreases, in other words, when scour increases. Since the sensor will be263

immersed in water around the pier, the effect of water on the response of the sensor was investigated264

using a finite element model,and by assuming that the water does not change the behavior of the265

rod. The numerical results indicate that the effect of water should not be neglected. Indeed, as scour266

increases, the effect of water becomes more significant.267

Finally, based on the experimental and numerical results, a simplified cantilever model with an268

increased exposed length was proposed to correlate the exposed length of the sensor to the measured269

frequency. This ’correction’ of the free length of the cantilever varies with both soil and sensor270

characteristics. This correction length can be estimated while installing the sensor by calculating the271

frequencies of different exposed lengths. The proposed cantilever model is of practical interest since272

it is easier and quicker to implement to estimate scour depth with acceptable accuracy compared to273

the use of a beam-spring numerical model. Future research will focus on developing equations to274

calculate the ’correction’ of the cantilever model for different sensor materials and soils and on large275

scale implementations of this monitoring technique.276
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The following abbreviations are used in this manuscript:280

281



Version July 27, 2020 submitted to Infrastructures 17 of 18

D = Embedded length of the rod (m);
D50 = Average grain diameter (mm);

E = Young modulus of the cantilever (MPa);
Em = Ménard modulus of the soil (MPa);
Er = Young modulus of the rods (MPa);
Es = Young modulus of the soil (MPa);

f = First frequency (Hz);
fdry = First frequency in air (Hz);
fwet = First frequency in water (Hz);

f = First frequency (Hz);
H = Exposed length of the rod (m);

H′ = Adjustment length (m);
Hc = Free length of the cantilever (m);

I = Inertia of the rod in the vibration direction (m4);
L = Total length of the rod (m);

M = Mass of the rod (kg);
Ma = Added mass of water (kg);

m = Mass of the accelerometer (kg);
S = Section of the rod (m2);
α = Rheological parameter of the soil (-);

ρs = Bulk density of the soil (kg.m−3);
ρr = Bulk density of the rods (kg.m−3);
ρ = Bulk density of the cantilever (kg.m−3).

282
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