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ABSTRACT
We present the cosmological analysis of the configuration-space anisotropic clustering in the completed Sloan Digital Sky
Survey IV extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 galaxy sample. This sample consists of
luminous red galaxies (LRGs) spanning the redshift range 0.6 < z < 1, at an effective redshift of zeff = 0.698. It combines 174 816
eBOSS and 202 642 BOSS LRGs. We extract and model the baryon acoustic oscillation (BAO) and redshift-space distortion
(RSD) features from the galaxy two-point correlation function to infer geometrical and dynamical cosmological constraints. The
adopted methodology is extensively tested on a set of realistic simulations. The correlations between the inferred parameters
from the BAO and full-shape correlation function analyses are estimated. This allows us to derive joint constraints on the three
cosmological parameter combinations: DM(z)/rd, DH(z)/rd, and fσ 8(z), where DM is the comoving angular diameter distance,
DH is the Hubble distance, rd is the comoving BAO scale, f is the linear growth rate of structure, and σ 8 is the amplitude of
linear matter perturbations. After combining the results with those from the parallel power spectrum analysis of Gil-Marin et al.,
we obtain the constraints: DM/rd = 17.65 ± 0.30, DH/rd = 19.77 ± 0.47, and fσ 8 = 0.473 ± 0.044. These measurements are
consistent with a flat Lambda cold dark matter model with standard gravity.

Key words: cosmology: dark energy – cosmology: large-scale structure of Universe – cosmology: observations.

1 IN T RO D U C T I O N

The large-scale structure (LSS) in the late Universe is a fundamental
probe of the cosmological model, sensitive to both universal expan-
sion and structure growth, and complementary to early Universe ob-
servations from the cosmic microwave background. The LSS can be
mapped by large redshift surveys through systematic measurements
of the three-dimensional positions of matter tracers such as galaxies
or quasars. Because the observed LSS is the result of the growth of
initial matter perturbations through gravity in an expanding universe,
it gives the possibility of both testing the expansion and structure
growth histories,which in turn puts us in a unique position to solve

� E-mail: julian.bautista@port.ac.uk (JEB); romain.paviot@lam.fr (RP);
mmaganav@fisica.unam.mx (MVM)

the question of the origin of the late acceleration of the expansion
and dark energy (Clifton et al. 2012; Weinberg et al. 2013; Zhai et al.
2017b; Ferreira 2019).

Over the last two decades, redshift surveys have explored increas-
ingly larger volumes of the Universe at different cosmic times.
The methodology to extract the cosmological information from
those redshift surveys has evolved and has now reached maturity.
Particularly, the baryon acoustic oscillations (BAOs) and the redshift-
space distortions (RSDs) in the two-point and three-point statistics of
the galaxy spatial distribution are now key observables to constrain
cosmological models. The BAO horizon scale imprinted in the matter
distribution was frozen in the LSS at the drag epoch, slightly after
matter–radiation decoupling. This characteristic scale can still be
seen in the large-scale distribution of galaxies at late times and be
used as a standard ruler to measure the expansion history. At the
same time, the galaxy peculiar velocities distorting the line-of-sight
cosmological distances based on observed redshifts are sensitive on
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large scales to the coherent motions induced by the growth rate of
structure, which in turn depends on the strength of gravity. BAO and
RSD are highly complementary, as they allow both geometrical and
dynamical cosmological constraints from the same observations.

The signature of baryons in the clustering of galaxies was first
detected in the Sloan Digital Sky Survey (SDSS; Eisenstein et al.
2005) and 2dF Galaxy Redshift Survey (2dFGRS; Percival et al.
2001; Cole et al. 2005). Since then, further measurements using the
2dFGRS, SDSS, and additional surveys have improved the accuracy
of BAO measurements and extended the range of redshifts covered
from z = 0 to 1. Examples of analyses include those of the SDSS-II
(Percival et al. 2010), 6dFGS (Beutler et al. 2011), WiggleZ (Kazin
et al. 2014), and SDSS-MGS (Ross et al. 2015a) galaxy surveys.
An important milestone was achieved with the Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013), part of the third
generation of the SDSS (Eisenstein et al. 2011). This allowed the
most precise measurements of BAO using galaxies achieved to date
using galaxies as direct tracers (Alam et al. 2017) and Lyman-α
forest measurements (Bautista et al. 2017; du Mas des Bourboux
et al. 2017), reaching a relative precision of 1 per cent on the distance
relative to the sound horizon at the drag epoch.

Although RSDs have been understood and measured since the
late 1980s (Kaiser 1987), it is only in the last decade, when there
has been significant interest in deviations from standard gravity that
would explain the apparent late-time acceleration of the expansion of
the Universe, that the ability of RSD measurements to provide such
tests has been explored (Guzzo et al. 2008; Song & Percival 2009).
This has resulted in renewed interest in RSD with examples of RSD
measurement from the WiggleZ (Blake et al. 2011), 6dFGRS (Beutler
et al. 2012), SDSS-II (Samushia, Percival & Raccanelli 2012), SDSS-
MGS (Howlett et al. 2015), FastSound (Okumura et al. 2016), and
VIPERS (Pezzotta et al. 2017) galaxy surveys, with BOSS achieving
the best precision of ∼6 per cent on the parameter combination fσ 8

(Beutler et al. 2017; Grieb et al. 2017; Sánchez et al. 2017; Satpathy
et al. 2017), which is commonly used to quantify the amplitude of
the velocity power spectrum.

The extended Baryon Oscillation Spectroscopic Survey (eBOSS;
Dawson et al. 2016) programme is the successor of BOSS in the
fourth generation of the SDSS (Blanton et al. 2017). It maps the LSS
using four main tracers: luminous red galaxies (LRGs), emission line
galaxies (ELGs), quasars used as direct tracers of the density field,
and quasars from whose spectra we can measure the Ly α forest. With
respect to BOSS, it explores galaxies at higher redshifts, covering the
range 0.6 < z < 2.2. Using the first 2 yr of data from Data Release 14
(DR14), BAO and RSD measurements have been performed using
different tracers and methods: LRG BAO (Bautista et al. 2018), LRG
RSD (Icaza-Lizaola et al. 2020), quasar BAO (Ata et al. 2018), quasar
BAO with redshift weights (Zhu et al. 2018), quasar BAO Fourier
space (Wang et al. 2018), quasar RSD Fourier space (Gil-Marı́n et al.
2018), quasar RSD Fourier space with redshift weights (Ruggeri et al.
2017, 2019), quasar RSD in configuration space (Hou et al. 2018;
Zarrouk et al. 2018), and quasar tomographic RSD in Fourier space
with redshift weights (Zhao et al. 2019).

In this paper, we perform the BAO and RSD analyses in configura-
tion space of the completed eBOSS LRG sample, part of DR16. This
work is part of a series of papers using different tracers and methods.1

1A summary of all SDSS BAO and RSD measurements with accompanying
legacy figures can be found at sdss.org/science/final-bao-and-rsd-measure
ments/ and the cosmological interpretation of these measurements can be
found at sdss.org/science/cosmology-results-from-eboss/.

The official SDSS-IV DR16 quasar catalogue is described in Lyke
et al. (2020). The production of the catalogues specific for large-
scale clustering measurements of the quasar and LRG sample (input
for this work) is described in Ross et al. (2020), while the analogous
work for the ELG sample is described in Raichoor et al. (2020). From
the same LRG catalogue, Gil-Marı́n et al. (2020) report the BAO and
RSD analyses in Fourier space. The BAO and RSD constraints from
the quasar sample are presented by Hou et al. (2020) in configuration
space and by Neveux & Burtin (2020) in Fourier space. The clustering
from the ELG sample is described by de Mattia et al. (2020) in
Fourier space and by Amelie et al. (2020) in configuration space.
Finally, a series of articles describes the simulations used to test the
different methodologies for each tracer. The approximate mocks used
to estimate covariance matrices and assess observational systematics
for the LRG, ELG, and quasar samples are described in Zhao et al.
(2020) (see also Lin et al. 2020, for an alternative method for ELGs),
while realistic N-body simulations were produced by Rossi et al.
(2020) for the LRG sample, by Smith et al. (2020) for the quasar
sample, and by Alam et al. (2020) for the ELG sample. In Ávila et al.
(2020), halo occupation models for ELGs are studied. A machine-
learning method to remove systematics caused by photometry was
applied to the ELG sample (Kong et al. 2020) and a new method
to account for fibre collisions in the eBOSS sample is described in
Mohammad et al. (2020). The BAO analysis of the Lyman-α forest
sample is presented by du Mas des Bourboux et al. (2020). The
final cosmological implications from all these clustering analyses
are presented in eBOSS Collaboration (2020).

The paper is organized as follows: Section 2 describes the LRG
data set and simulations used in this analysis. Section 3 presents
the adopted methodology and particularly BAO and RSD theoretical
models. We estimate biases and systematic errors from different
sources in Section 4. We present BAO and RSD results in Section 5
and finally conclude in Section 6.

2 DATA SET

In this section, we summarize the observations, catalogues, and
mock data sets that are used to test our methodology, as well as
the clustering statistics used in this work.

2.1 Spectroscopic observations and reductions

The fourth generation of the SDSS (SDSS-IV; Blanton et al. 2017)
employed the two multi-object BOSS spectrographs (Smee et al.
2013) installed on the 2.5-m telescope (Gunn et al. 2006) at the
Apache Point Observatory in New Mexico, USA, to carry out
spectroscopic observations for eBOSS. The target sample of LRGs,
the analysis of which is our focus, was selected from the optical
SDSS photometry from DR13 (Albareti et al. 2017), with additional
infrared information from the Wide-field Infrared Survey Explorer
satellite (Lang, Hogg & Schlegel 2014). The final targeting algorithm
is described in detail in Prakash et al. (2016) and produced about
60 deg−2 LRG targets over the 7500 deg2 of the eBOSS footprint, of
which 50 deg−2 were observed spectroscopically. The selection was
tested over 466 deg2 covered during the Sloan Extended Quasar,
ELG, and LRG Survey (SEQUELS), confirming that more than
41 deg−2 LRGs have 0.6 < z < 1.0 (Dawson et al. 2016).

The raw CCD images were converted to one-dimensional, wave-
length and flux calibrated spectra using version V5 13 0 of the SDSS
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spectroscopic pipeline IDLSPEC2D.2 Two main improvements of this
pipeline since its previous release (DR14; Abolfathi et al. 2018)
include a new library of stellar templates for flux calibration and
a more stable extraction procedure. Ahumada et al. (2020) provide
a summary of all improvements of the spectroscopic pipeline since
SDSS-III.

The redshift of each LRG was estimated with the REDROCK

algorithm.3 This algorithm improves classification rates with respect
to its predecessor REDMONSTER (Hutchinson et al. 2016). REDROCK

uses templates derived from principal component analysis of the
SDSS data to classify spectra, which is followed by a redshift
refinement procedure that uses stellar population models for galaxies.
On average, 96.5 per cent of spectra yield a confident redshift
estimate with REDROCK compared to 90 per cent with REDMONSTER,
with less than 1 per cent of catastrophic redshift errors (details can
be found in Ross et al. 2020).

2.2 Survey geometry and observational features

The full procedure to model the survey geometry and correct for
observational features is described in detail in the companion paper
Ross et al. (2020). We summarize it in the following.

The random catalogue allows estimating the survey geometry and
number density of galaxies in the observed sample. It contains a
random population of objects with the same radial and angular
selection functions as the data. A random uniform sample of points
is drawn over the angular footprint of eBOSS targets to model its
geometry. We use random samples with 50 times more objects
than in the data to minimize the shot noise contribution in the
estimated correlation function, and redshifts are randomly taken from
galaxy redshifts in the data. A series of masks are then applied to
both data and random samples in order to eliminate regions with
bad photometric properties, targets that collide with quasar spectra
(which had priority in fibre assignment), and the central region
of the plates where it is physically impossible to put a fibre. All
masks combined cover 17 per cent of the initial footprint, with the
quasar collision mask accounting for 11 per cent. The spectroscopic
information is finally matched to the remaining targets.

About 4 per cent of the LRG targets were not observed due to
fibre collisions; i.e. when a group of two or more galaxies are closer
than 62 arcsec, they cannot all receive a fibre. On regions of the sky
observed more than once, some collisions could be resolved. These
collisions can bias the clustering measurements, so we applied the
following correction: Ntarg objects in a given collision group for
which Nspec have a spectrum, all objects are up-weighted by wcp =
Ntarg/Nspec. This is different compared to Bautista et al. (2018), where
the weight of the collided object without spectrum was transferred to
its nearest neighbour with valid spectrum. Both corrections are only
approximations valid on scales larger than 62 arcsec. An unbiased
correction method is described in Bianchi & Percival (2017) and
applied to eBOSS samples in Mohammad et al. (2020). We show in
Appendix B that our results are insensitive to the correction method
since it affects mostly the smallest scales.

A similar procedure as in Bautista et al. (2018) was used to account
for the 3.5 per cent of LRG targets without reliable redshift estimate.
The redshift-failure weight wnoz acts as an inverse probability weight,
boosting galaxies with good redshifts such that this weighted sample
is an unbiased sampling of the full population. This assumes that the

2Publicly available at sdss.org/dr16/software/products.
3Publicly available at github.com/desihub/redrock.

Table 1. Sets of cosmological models used in this work. All models are
parametrized by their fraction of the total energy density in form of total matter
�m, cold dark matter �c, baryons �b, and neutrinos �ν , the Hubble constant
h = H0/(100 km s−1 Mpc−1), the primordial spectral index ns, and primordial
amplitude of power spectrum As. With these parameters, we compute the
normalization of the linear power spectrum σ 8 at z = 0 and the comoving
sound horizon scale at drag epoch rdrag. The different labels refer to our
baseline choice (Base), the EZMOCKS (EZ), the NSERIES (NS), the OUTERRIM

(OR) cosmologies, and an additional model (X) with larger value for �m.

Base EZ NS OR X

�m 0.310 0.307 0.286 0.265 0.350
�c 0.260 0.259 0.239 0.220 0.300
�b 0.048 0.048 0.047 0.045 0.048
�ν 0.0014 0 0 0 0.0014
h 0.676 0.678 0.700 0.710 0.676
ns 0.970 0.961 0.960 0.963 0.970
As (10−9) 2.041 2.116 2.147 2.160 2.041
σ 8 (z = 0) 0.800 0.823 0.820 0.800 0.874
rdrag (Mpc) 147.78 147.66 147.15 149.35 143.17

probability of a given galaxy being selected is a function of both its
trace position on the CCD and the overall signal-to-noise ratio of the
spectrograph in which this target was observed, and that the galaxies
not observed are statistically equivalent to the observed galaxies.
Spurious fluctuations in the target selection caused by the photometry
are corrected by weighting each galaxy by wsys. These weights are
computed with a multilinear regression on the observed relations
between the angular overdensities of galaxies versus stellar density,
seeing, and galactic extinction. Fitting all quantities simultaneously
automatically accounts for their correlations. The weights wnoz and
wsys are computed independently.

The observational completeness creates artificial angular varia-
tions of the density that are accounted for using the random catalogue.
The completeness is defined as the ratio of the number of weighted
spectra (including those classified as stars or quasars) to the number
of targets (equation 11 in Ross et al. 2020). This quantity is computed
per sky sector, i.e. a connected region observed by a unique set of
plates. We downweight each point in the random catalogue by the
completeness of its corresponding sky sector.

Optimal weights for large-scale correlations, known as FKP
weights (Feldman, Kaiser & Peacock 1994), are computed with the
estimated comoving density of tracers n̄(z) as a function of redshift
using our fiducial cosmology in Table 1. The final weight for each
galaxy is defined4 as w = wnozwcpwsystwFKP. The weight for each
galaxy from the random catalogue is the same, with the completeness
information already included in wsys.

The eBOSS sample of LRGs overlaps in area and redshift range
with the highest redshift bin of the CMASS sample (0.5 < z <

0.75). We combine the eBOSS LRG sample with all the z > 0.6
BOSS CMASS galaxies and their corresponding random catalogue
(including the non-overlapping with eBOSS), making sure that
the data-to-random number ratio is the same for both samples.
This combination is beneficial for two reasons. First, the combined
sample supersedes the last redshift bin of BOSS measurements
while being completely independent of the first two lower redshift
bins. Secondly, the reconstruction technique applied to this sample
(see the next section) benefits from a higher density of tracers,
reducing potential noise introduced by the procedure. The new

4Note that this definition differs from the one used in BOSS, where w =
(wnoz + wcp − 1)wsyswFKP.
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BAO and RSD analysis from eBOSS LRG 739

Figure 1. The observed number density of eBOSS LRGs (dashed curve),
BOSS CMASS galaxies (dotted curve), and combined CMASS+LRG sample
galaxies (solid curve) at 0.6 < z < 1. This combines NGC and SGC fields.

eBOSS LRG sample covers 4242 deg2 of the total BOSS CMASS
footprint of 9494 deg2 (NGC and SGC combined). Considering their
spectroscopic weights, the new eBOSS sample has 185 295 new
redshifts over 0.6 < z < 1.0 while CMASS contributes with 104 865
redshifts in the overlapping area and 111 892 in the non-overlapping
area. A total of 402 052 LRGs over 0.6 < z < 1.0 contribute to this
measurement, with a total effective comoving volume of 2.72 Gpc3

(1.43 Gpc3 from the CMASS sample and 1.28 Gpc3 from the new
eBOSS sample). A detailed description of these numbers is given in
Ross et al. (2020). In the following, we simply refer to the combined
CMASS+LRG sample as the eBOSS LRG sample. The number
density of CMASS galaxies, LRGs, and combined CMASS+LRG
sample are presented in Fig. 1.

2.3 Reconstruction

While constraints on the growth rate of structure are obtained using
the information from the full shape of the correlation function, BAO
analyses extract the cosmological information only from the position
of the BAO peak. In our BAO analysis, we applied the reconstruction
technique of Burden et al. (2014) and Burden, Percival & Howlett
(2015) to the observed galaxy density field in order to remove a
fraction of the RSDs, as well as non-linear motions of galaxies
that smeared out the BAO peak. This technique sharpens the BAO
feature in the two-point statistics in Fourier and configuration space,
increasing the precision of the measurement of the acoustic scale.
Reconstruction is applied on actual data and on mock catalogues
using a publicly available5 code (Bautista et al. 2018). Our final BAO
results are solely based on reconstructed catalogues, while full-shape
results use the pre-reconstruction sample.

We apply reconstruction to the full eBOSS+CMASS final LRG
catalogue. We use our fiducial cosmology from Table 1 to convert red-
shifts to comoving distances. For the reconstruction, we fix the bias
value to b = 2.3 and assume the standard gravity relation between the
growth rate of structure and �m, i.e. f = �6/11

m (z = 0.7) = 0.815.
We use a smoothing scale of 15 h−1 Mpc. The BAO results are not

5https://github.com/julianbautista/eboss clustering

sensitive to small variations of those parameter choices as studied in
Carter et al. (2020).

2.4 Mocks

In order to test the overall methodology and study the impact
of systematic effects, we have constructed several sets of mock
samples. Approximate methods are considered to be sufficient for
covariance matrix estimates and to derive systematic biases in BAO
measurements. However, the full-shape analysis of the correlation
function requires more realistic N-body simulations, particularly in
order to test the modelling. In this study, our synthetic data sets are
the following:

(i) 1000 realizations of the LRG eBOSS+CMASS survey geom-
etry using the EZMOCK method (Chuang et al. 2015), which employs
the Zel’dovich approximation to compute the density field at a given
redshift and populates it with galaxies. This method is fast and has
been calibrated to reproduce the two- and three-point statistics of the
given galaxy sample, to a good approximation and up to mildly non-
linear scales. The angular and redshift distributions of the eBOSS
LRG sample in combination with the z > 0.6 CMASS sample were
reproduced in these mock catalogues. The full description of the
EZMOCK LRG samples can be found in the companion paper Zhao
et al. (2020). We use these mocks in several steps of our analysis:
to infer the error covariance matrix of our clustering measurements
in the data, to study the impact of observational systematic effects
on cosmology, and to estimate the correlations between different
methods for the calculation of the consensus results.

(ii) 84 realizations of the NSERIES mocks, which are N-body simu-
lation snapshots populated with a single halo occupation distribution
(HOD) model. These mock catalogues reproduce the angular and
redshift distributions of the North Galactic Cap of the BOSS CMASS
sample within the redshift range 0.43 < z < 0.70 (Alam et al. 2017).
While this data set is not fully representative of the eBOSS LRG
sample, we use these N-body mocks to test the RSD models down
to the non-linear regime. The number of available realizations and
their large volume are ideal to test model accuracy in the high-
precision regime. The covariance matrix for these mocks is computed
from 2048 realizations of the same volume with the MD-PATCHY

approximated method (Kitaura, Yepes & Prada 2014). The redshift
of those mocks is z = 0.55.

(iii) 27 realizations extracted from the OUTERRIM N-body simu-
lation (Heitmann et al. 2019), and corresponding to cubical mocks of
1 h−3 Gpc3 each. The dark matter haloes have been populated with
galaxies using four different HODs (Zheng, Coil & Zehavi 2007;
Leauthaud et al. 2011; Tinker et al. 2013; Hearin, Watson & van den
Bosch 2015) at three different luminosity thresholds to cover a large
range of galaxy populations. These mocks are part of our internal
MOCKCHALLENGE and aimed at quantifying potential systematic
errors originating from the HODs. A detailed description of these
simulations and the MOCKCHALLENGE can be found in the compan-
ion paper Rossi et al. (2020). The redshift of those mocks is z= 0.695.

2.5 Fiducial cosmologies

The redshift of each galaxy is converted into radial comoving dis-
tances for clustering measurements by means of a fiducial cosmology.
The fiducial cosmologies employed in this work are shown in Table 1.
Our baseline choice, named ‘Base’, is a flat Lambda cold dark
matter (�CDM) model matching the cosmology used in previous
BOSS analyses (Alam et al. 2017) with parameters within 1σ of
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740 J. E. Bautista et al.

Figure 2. Anisotropic two-point correlation function of eBOSS LRG+CMASS galaxies at 0.6 < z < 1. The left-hand (right) panel shows the pre-reconstruction
(post-reconstruction) two-point correlation function in bins of r⊥ and r�. Bins of size 1.25 h−1 Mpc and a bi-cubic spline interpolation have been used to produce
the contours.

Planck best-fitting parameters (Planck Collaboration I 2018a). Some
of these cosmologies were used to produce the mock data sets
described in Section 2.4. A choice of fiducial cosmology is also
needed when computing the linear power spectrum Plin(k), input for
all our correlation function models in this work (see Sections 3.1 and
3.2). In Sections 4.1 and 4.2, we study the dependence of our results
on the choice of fiducial cosmology.

We define the effective redshift of our data and mock catalogues
as the weighted mean redshift of galaxy pairs,

zeff =
∑

i>j wiwj (zi + zj )/2∑
i>j wiwj

, (1)

where wi is the total weight of the galaxy i and the indices i, j run
over the galaxies in the considered catalogue. We only include the
pairs of galaxies with separations comprised between 25 and 130
h−1 Mpc, which correspond to those effectively used in our full-
shape analysis (see Section 3.2). By doing so, we obtain zeff = 0.698
for the combined sample. The EZMOCKS were constructed to mimic
our data sample and thus have the same zeff. The NSERIES mocks were
constructed to match the BOSS CMASS NGC sample and we obtain
zeff = 0.56. The MOCKCHALLENGE mocks were produced with a
snapshot at z = 0.695 and we use this value as their effective redshift.

2.6 Galaxy clustering estimation

We estimate the redshift-space galaxy clustering in configuration
space by measuring the galaxy anisotropic two-point correlation
function ξ (r, μ). This measurement is performed with the standard
Landy & Szalay (1993) estimator:

ξ (r, μ) = GG(r, μ) − 2GR(r, μ) + RR(r, μ)

RR(r, μ)
, (2)

where GG(r, μ), GR(r, μ), and RR(r, μ) are, respectively, the normal-
ized galaxy–galaxy, galaxy–random, and random–random number of
pairs with separation (r, μ). For the post-reconstruction, we employ
the same estimator except that in the numerator, displaced galaxy
and random catalogues are used instead. Since we are interested
in quantifying RSD effects, we decompose the three-dimensional
galaxy separation vector r into polar coordinates (r, μ) aligned with
the line-of-sight direction, where r is the norm of the separation
vector and μ is the cosine of the angle between the line-of-sight and
separation vector directions. The pair counts are binned in 5 h−1 Mpc
bins in r and 0.01 bins in μ.

The measured anisotropic correlation function, where the galaxy
separation vector r has been decomposed into line-of-sight and
transverse separations (r⊥, r�), is presented in the left-hand panel
of Fig. 2. A clear BAO feature is seen at r ≈ 100 h−1 Mpc as well
as the impact of RSD, which squashes the contours along the line of
sight on large scales. In the right-hand panel of Fig. 2, we show the
post-reconstruction correlation function where some of the isotropy
is recovered and the BAO feature is sharpened.

For the cosmological analysis, we compress the information
contained in the full anisotropic correlation function. We define the
multipole moments of the correlation function by decomposing ξ (r,
μ) on the basis of Legendre polynomials. Since we are working with
binned data, the discrete decomposition is written as

ξ̂	(r) = (2	 + 1)
∑

i

ξ (r, μi)L	(μi)dμ, (3)

where only even multipoles do not vanish given the symmetry of
galaxy pairs and our choice of line of sight. We note that in the
previous equation there is a factor of 2 cancellation due to the imposed
symmetry between negative and positive μ. Throughout this work,
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BAO and RSD analysis from eBOSS LRG 741

we only consider 	 = 0, 2, and 4 multipoles, referred to as monopole,
quadrupole, and hexadecapole, respectively, in the following.

The red points with error bars in Fig. 3 show the even multipoles
of the correlation function from the eBOSS LRG sample. The solid,
dashed, and dotted black curves display the average multipoles
in the different mock data sets used in this study: EZMOCKS,
NSERIES, and MOCKCHALLENGE. The error bars are obtained from
the dispersion of the 1000 EZMOCKS multipoles around their mean.
By construction, the amplitude of the EZmock multipoles matches
the data at separations s < 70 h−1 Mpc. A slight mismatch in the
BAO peak amplitudes between data and EZMOCKS is visible. This
mismatch does not impact cosmological results from the data
since the covariance matrix dependence on the peak amplitude
is small. However, the comparison of the precision of BAO peak
measurements between mocks and data needs to account for this
mismatch: The expected errors of our BAO measurement are smaller
for data than those for the ensemble of EZMOCKS. For comparison,
the average multipoles of the NSERIES mocks, also shown in Fig. 3,
are a better match to the peak amplitude seen in the data.

3 ME T H O D O L O G Y

In this section, we describe the BAO and RSD modelling, fitting
procedure, and how errors on cosmological parameters are estimated.

3.1 BAO modelling

We employ the standard approach used in previous SDSS publi-
cations for measuring the BAO scale in configuration space (e.g.
Anderson et al. 2014; Alam et al. 2017; Ross et al. 2017; Bautista
et al. 2018). The code that produces the model and performs the
fitting to the data is publicly available.6

The aim is to model the correlation function multipoles ξ	(r) as a
function of separations r relevant for BAO (30 < r < 180 h−1 Mpc).
The starting point is the model for the redshift-space anisotropic
galaxy power spectrum P(k, μ),

P (k, μ) = b2
[
1 + β(1 − S(k))μ2

]2(
1 + k2μ2�2

s /2
)

×
[
Pno peak(k) + Ppeak(k)e−k2�2

nl(μ)/2
]
, (4)

where b is the linear bias, β = f/b is the RSDs parameter, k is the
modulus of the wave vector, and μ is the cosine of the angle between
the wave vector and the line of sight. The non-linear broadening
of the BAO peak is modelled by multiplying the ‘peak-only’
power spectrum Ppeak (see below) by a Gaussian distribution with
�2

nl(μ) = �2
‖μ

2 + �2
⊥(1 − μ2). The non-linear random motions on

small scales are modelled by a Lorentzian distribution parametrized
by �s. When performing fits to the multipoles of a single realization
of the survey, the values of (��, �⊥, �s) are held fixed to improve
convergence. The values chosen for these damping terms were
obtained from fits to the average correlation function of the NSERIES

mocks, which are full N-body simulations. We show in Section 4.1
that our results are insensitive to small changes to those values.
Following Seo et al. (2016) theoretical considerations, we apply
a term S(k) = e−k2�2

r /2 to the post-reconstruction modelling of the
correlation function [S(k) = 0 for the pre-reconstruction BAO model].

6https://github.com/julianbautista/eboss clustering

This term models the smoothing used in our reconstruction technique,
where �r = 15 h−1 Mpc (see Section 2.3).

We follow the procedure from Kirkby et al. (2013) to decompose
the BAO peak component Ppeak from the linear power spectrum
Plin. We start by computing the correlation function by Fourier
transforming Plin, and then we replace the correlations over the peak
region by a polynomial function fitted using information outside
the peak region (50 < r < 80 and 160 < r < 190 h−1 Mpc). The
resulting correlation function is then Fourier transformed back to
get Pno peak. The linear power spectrum Plin is computed using the
code CAMB7 (Lewis, Challinor & Lasenby 2000) with cosmological
parameters of our fiducial cosmology (Table 1). The analysis in
Fourier space uses the same procedure (see Gil-Marı́n et al. 2020).
Previous BOSS and eBOSS analyses making BAO measurements
from direct tracer galaxies used the approximate formulae from
Eisenstein, Hu & Tegmark (1998) for decomposing the peak. We have
checked that both methods yield only negligibly different results.

The correlation function multipoles ξ	(s) are obtained from the
multipoles of the power spectrum P	(k), defined as

P	(k) = 2	 + 1

2

∫ 1

−1
P (k, μ)L	(μ) dμ, (5)

where L	 are the Legendre polynomials. The P	 are then Hankel
transformed to ξ	 using

ξ	(r) = i	

2π2

∫ ∞

0
k2j	(kr)P	(k) dk, (6)

where j	 are the spherical Bessel functions. These transforms are
computed using a PYTHON implementation8 of the FFTLog algorithm
described in Hamilton (2000).

We parametrize the BAO peak position in our model via two
dilation parameters that scale separations into transverse, α⊥, and
radial, α�, directions. These quantities are related, respectively, to
the comoving angular diameter distance, DM = (1 + z)DA(z), and to
the Hubble distance, DH = c/H(z), by

α⊥ = DM(zeff )/rd

Dfid
M (zeff )/rfid

d

(7)

α‖ = DH(zeff )/rd

Dfid
H (zeff )/rfid

d

. (8)

where the subscript "fid" refers to their values in the chosen fiducial
cosmology. These values are displayed in Table 2 for several
cosmological models. In our implementation, we apply the scaling
factors exclusively to the peak component of the power spectrum. As
shown by Kirkby et al. (2013), the decoupling between the peak and
full shape of the correlation function makes the constraints on the
dilation parameters to be only dependent on the BAO peak position,
with no information coming from the full shape as it is the case for
RSD analysis.

The final BAO model is a combination of the cosmological
multipoles ξ	 and a smooth function of separation. The smooth
function is meant to account for unknown systematic effects in
the survey that potentially create large-scale correlations that could
contaminate our measurements. Furthermore, there are currently no
accurate analytical models for the post-reconstruction multipoles to
date [the S(k) term in equation (4) is generally not sufficient]. Our

7camb.info
8https://github.com/julianbautista/eboss clustering
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742 J. E. Bautista et al.

Figure 3. Multipoles of the correlation function of data compared to the mock catalogues. The data are the combined eBOSS LRG+CMASS (NGC+SGC)
samples and the mocks are the average multipoles of 1000 EZMOCKS realizations (solid line), 84 NSERIES realizations (dashed line), and 27 MOCKCHALLENGE

mocks populated with L11 HOD model (dotted lines). The top panels show the monopole, quadrupole, and hexadecapole of the pre-reconstruction samples
while the bottom panels show the same for the post-reconstruction case.

final template is written as

ξ t
	(r) = ξ	(α⊥, α‖, r) +

imax∑
i=imin

a	,ir
i . (9)

Our baseline analysis uses imin = −2 and imax = 0, corresponding to
three nuisance parameters per multipole. We find that increasing the
numbers of nuisance terms does not impact significantly the results.
Note that this smooth function cannot be used in the full-shape RSD
analysis since these terms would be completely degenerate with the
growth rate of structure parameter.

Our baseline BAO analysis uses the monopole ξ 0 and the
quadrupole ξ 2 of the correlation function. We performed fits on
mock multipoles including the hexadecapole ξ 4, finding that it does
not add information (see Table 6). We fix β = 0.35 and fit b with a flat
prior between b = 1.0 and 4. For all fits, the broad-band parameters
are free, while both dilation parameters are allowed to vary between
0.5 and 1.5. A total of nine parameters are fitted simultaneously.

3.2 RSD modelling

We describe the apparent distortions introduced by galaxy peculiar
velocities in the redshift-space galaxy clustering pattern using two
different analytical models: the combined Gaussian streaming (GS)
and Convolutional Lagrangian Perturbation Theory (CLPT) formal-
ism developed by Reid & White (2011), Carlson, Reid & White
(2013), Wang, Reid & White (2014), and the Taruya, Nishimichi &
Saito (2010) model (TNS) supplemented with a non-linear galaxy
bias prescription. These two models, frequently used in the literature,
partially account for RSD non-linearities and describe the anisotropic

clustering down to the quasi-linear regime. We use both models
to fit the multipoles of the correlation function and later combine
their results to provide more robust estimates of the growth rate of
structure and geometrical parameters. This procedure should reduce
the residual theoretical systematic errors. In this section, we briefly
describe the two models and assess in Section 4.2 their performance
in the recovery of unbiased cosmological parameters using mock
data sets.

3.2.1 CLPT with GS

CLPT provides a non-perturbative resummation of Lagrangian per-
turbation to the two-point statistic in configuration space for biased
tracers. The Lagrangian coordinates q of a given tracer are related to
their Eulerian coordinates x through the following equation:

x(q, t) = q + �(q, t), (10)

where (q, t) refers to the displacement field evaluated at the
Lagrangian position at each time t. The two-point correlation function
is expanded in its Lagrangian coordinates considering the tracer X,
in our case the LRG, to be locally biased with respect to the matter
overdensity δ(q). The expansion is performed over different orders
of the Lagrangian bias function F [δ(q)], defined as

1 + δX(q, t) = F [δ(q)]. (11)

The Eulerian density contrast field is computed by convolving with
the displacement:

1 + δX(x) =
∫

d3q F [δ(q)]
∫

d3k

(2π )3
eik(x−q−ψ(q)). (12)
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The local Lagrangian bias function F is approximated by a non-
local expansion using its first and second derivatives, where the nth
derivative is given by

〈Fn〉 =
∫

dδ√
2πσ

e−δ2/2σ 2 dnF

dδn
. (13)

The two-point correlation function is obtained by evaluating the
expression ξX(r) = 〈

δX(x)δX(x + r)
〉
, corresponding to equation

(19) of Carlson et al. (2013), and that can be simplified as in their
equation (46):

1 + ξX(r) =
∫

d3qM(r, q), (14)

where M(r, q) is the kernel of convolution taking into account the
displacement and bias expansion up to its second derivative term. The
bias derivative terms are computed using the linear power spectrum
derived from the code CAMB (Lewis et al. 2000) using the fiducial
cosmology described in Table 1.

As we are interested in studying RSD, we need to model the impact
of peculiar velocity. The CLPT provides the pairwise mean velocity
v12(r) and the pairwise velocity dispersion σ 12(r) as a function of the
real-space separation. They are computed following the formalism
developed in Wang et al. (2014), which is similar to the one describe
above but modifying the kernel to take into account the velocity
rather than the density:

v12(r) = (1 + ξ (r))−1
∫

M1(r, q)d3q, (15)

and

σ12(r) = (1 + ξ (r))−1
∫

M2(r, q)d3q. (16)

The kernels M1,2(r, q) also depend on the first two non-local
derivatives of the Lagrangian bias 〈F′ 〉 and 〈F′′ 〉, which are free
parameters in addition to the linear growth rate f in our model.
Hereafter, we eliminate the angle brackets around the Lagrangian
bias terms to simplify the notation in the following sections.

Although CLPT is more accurate than Lagrangian Resummation
Theory from Matsubara (2008) in real space, we still have to improve
the small-scale modelling in order to study RSDs. This is particularly
important considering that part of peculiar velocities is generated by
interactions that occur at the typical scales of clusters of galaxies (∼1
Mpc). This is achieved by mapping the real-space CLPT model of the
two-point statistics into redshift space with the GS model proposed
by Reid & White (2011). The pairwise velocity distribution of tracers
is assumed to have a Gaussian distribution that depends on both the
separation r and the angle between the separation vector and the line
of sight μ.

We use the Wang et al. (2014) implementation that uses CLPT
results as input for the GS model. The redshift-space correlation
function is finally computed as

1 + ξX(r⊥, r‖) =
∫

1√
2π

[
σ 2

12(r) + σ 2
FoG

] [1 + ξX(r)]

× exp

{
− [r‖ − y − μv12(r)]2

2
[
σ 2

12(r) + σ 2
FoG

]
}

dy, (17)

where ξ (r), v12(r), and σ 12(r) are obtained from CLPT. The last
function in the integral takes into account the scale-dependent halo–
halo pairwise velocity and we have to introduce an extra parameter
σ FoG describing the galaxy random motions with respect to their
parent halo, also known as Fingers-of-God (FoG) effect. Reid &

White (2011) demonstrated that the GS model can predict clustering
with an accuracy of ≈2 per cent when dark-matter haloes are used
as tracers. Using galaxies, the accuracy decreases as σ FoG increases.
Considering that about 85 per cent of the galaxies from the LRG
sample are central galaxies (Zhai et al. 2017a), the accuracy remains
close to the one obtained using haloes. In summary, given a fiducial
cosmology, this RSD model has four free parameters [f, F

′
, F

′′
, σ FoG].

3.2.2 TNS model

The other RSD model that we consider is the Taruya et al. (2010)
model extended to non-linearly biased tracers. We refer to it as TNS
in this work. Its implementation closely follows the one presented in
de la Torre et al. (2017). This model is based on the conservation of
the number density in real space and redshift space (Kaiser 1987). In
this framework, the anisotropic power spectrum for unbiased matter
tracers follows the general form (Scoccimarro, Zaldarriaga & Hui
1999)

P s(k, μ) =
∫

d3r
(2π )3

e−ik·r
〈

e−ikf μ�u‖

× [δ(x) + f ∂‖u‖ (x)][δ(x′) + f ∂‖u‖ (x′)]
〉

, (18)

where μ = k�/k, u‖(r) = −v‖(r)/(f aH (a)), v‖(r) is the line-of-
sight component of the peculiar velocity, δ is the matter density field,
�u‖ = u‖(x) − u‖(x′), and r = x − x′. The model by Taruya et al.
(2010) for equation (18) can be written as

P s(k, μ) = D(kμσv)
[
Pδδ(k) + 2μ2f Pδθ (k) + μ4f 2Pθθ (k)

+CA(k, μ, f ) + CB (k, μ, f )
]
, (19)

where θ is the divergence of the velocity field defined as θ = −∇·
v/(aHf). Pδδ , Pθθ , and Pδθ are, respectively, the non-linear matter
density, velocity divergence, and density–velocity divergence power
spectra. CA(k, μ, f) and CB(k, μ, f) are two correction terms that
reduce to integrals of the matter power spectrum given in Taruya et al.
(2010). The phenomenological damping function D(kμσv) not only
describes the FoG effect induced by random motions in virialized
systems, but also has a damping effect on the power spectra. Several
functional forms can be used; in particular, Gaussian or Lorentzian
forms have been extensively used in previous analyses. We opt for a
Lorentzian damping function that provides a better agreement to the
LRG data and mocks,

D(k, μ, σv) = (
1 + k2μ2σ 2

v

)−1
, (20)

where σ v represents an effective pairwise velocity dispersion that is
later treated as a nuisance parameter in the cosmological inference.
This model can be generalized to the case of biased tracers by
including a galaxy biasing model. In that case, the anisotropic galaxy
power spectrum can be rewritten as

P s
g (k, μ) = D(kμσv)

[
Pgg(k) + 2μ2f Pgθ + μ4f 2Pθθ (k)

+CA(k, μ, f , b1) + CB (k, μ, f , b1)
]
, (21)

where b1 is the galaxy linear bias. The explicit expressions for CA(k,
μ, f, b1) and CB(k, μ, f, b1) are given in, e.g. de la Torre & Guzzo
(2012). We adopt here a non-linear, non-local, prescription for galaxy
biasing that follows the work of McDonald & Roy (2009) and Chan,
Scoccimarro & Sheth (2012). Specifically, we use renormalized
perturbative bias scheme presented in Assassi et al. (2014) at one-
loop. In that case, the relation between the galaxy overdensity δg and
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matter overdensity δ is written as

δg = b1δ + b2

2
δ2 + bG2G2 + b�3�3, (22)

where the two operators G2 and �3 are defined as

G2(φ) ≡ (∂i∂jφ)2 − (∂2φ)2, (23)

�3(φ, φv) ≡ G2(φ) − G2(φv), (24)

and φ and φv correspond to the gravitational and velocity potentials,
respectively. In the local Lagrangian picture, the non-local bias
parameters bG2 and b�3 are related to the linear bias parameter b1 as

bG2 = −2

7
(b1 − 1) (25)

b�3 = 11

42
(b1 − 1). (26)

Bispectrum analyses in halo simulations show that those relations
are reasonable approximations (Chan et al. 2012; Saito et al. 2014).
However, as pointed out in Sánchez et al. (2017), fixing b�3 to the
local Lagrangian prediction is not necessarily optimal because b�3

partially absorbs the scale dependence in b1, which should in prin-
ciple be present in the bias expansion. Moreover, local Lagrangian
relation remains an approximation in the non-linear regime (e.g.
Matsubara 2011). We investigate in Section 4 whether fixing b�3 or
not is optimal for the specific case of LRG using NSERIES mocks.
With this biasing model, the galaxy–galaxy and galaxy-velocity
divergence power spectra read (Assassi, Simonovic & Zaldarriaga
2017; Simonovic et al. 2018)

Pgg(k) = b2
1Pδδ(k) + b2b1Iδ2 (k) + 2b1bG2IG2 (k)

+ 2

(
b1bG2 + 2

5
b1b�3

)
FG2 (k) + 1

4
b2

2Iδ2δ2 (k)

+ b2
G2

IG2G2 (k)
1

2
b2bG2Iδ2G2 (k) (27)

Pgθ (k) = b1Pδθ (k) + b2

4
Iδ2θ (k) + bG2IG2θ (k)

+
(

bG2 + 2

5
b�3

)
FG2θ (k). (28)

In the above equations, Iδ2 (k), IG2 (k), FG2 (k), Iδ2δ2 (k), IG2G2 (k),
and Iδ2G2 (k) are one-loop integrals whose expressions can be found
in Simonovic et al. (2018). The expressions for Iδ2θ (k), IG2θ (k),
and FG2θ (k) integrals are nearly identical as for Iδ2 (k), IG2 (k), and
FG2 (k), except that the G2 kernel replaces the F2 kernel in Iδ2 (k),
IG2 (k), and FG2 (k). Those one-loop integrals are computed using the
method described in Simonovic et al. (2018), which uses a power-
law decomposition of the input linear power spectrum to perform
the integrals. This allows a fast and robust computation of those
integrals.

The input linear power spectrum Plin is obtained with CAMB,
while the non-linear power spectrum Pδδ is calculated from the
RESPRESSO code (Nishimichi, Bernardeau & Taruya 2017). This
non-linear power spectrum prediction does agree very well with
successful perturbation theory-based predictions such as RegPT, but
extend their validity to k � 0.4 (Nishimichi et al. 2017). This is very
relevant for configuration-space analysis, where one needs to have
both a correct BAO amplitude and a non-vanishing signal at high k
to avoid aliasing in the transformation from Fourier to configuration
space.

To obtain Pθθ and Pδθ power spectra, we use the universal fitting
functions obtained by Bel et al. (2019) and that depend on σ 8(z), Pδδ ,
and Plin as

Pθθ (k) = PL(k)e−k(a1+a2k+a3k2),

Pδθ (k) = (Pδδ(k)Plin(k))
1
2 e− k

kδ
−bk6

. (29)

The overall degree of non-linear evolution is encoded by the ampli-
tude of the matter fluctuation at the considered effective redshift. The
explicit dependence of the fitting function coefficients on σ 8 is given
by

a1 = −0.817 + 3.198σ8

a2 = 0.877 − 4.191σ8

a3 = −1.199 + 4.629σ8

1/kδ = −0.017 + 1.496σ 2
8

b = 0.091 + 0.702σ 2
8 . (30)

In total, this model has either four or five free parameters, [f,
b1, b2, σ v] or [f , b1, b2, b�3 , σv], depending on the number of
bias parameters that are let free. Finally, the multipole moments
of the anisotropic correlation function are obtained by performing
the Hankel transform of the model P s

	 (k).

3.2.3 Alcock–Paczynski effect

For both RSD models, the Alcock & Paczynski (1979) effect imple-
mentation follows that of Xu et al. (2013). The Alcock–Paczynski
distortions are simplified if we define the α and ε parameters, which
characterize, respectively, the isotropic and anisotropic distortion
components. These are related to α⊥ and α� (equations 7 and 8) as

α = α
1/3
‖ α

2/3
⊥ (31)

ε = (
α‖/α⊥

)1/3 − 1. (32)

For model ξ 0, ξ 2, and ξ 4, the same quantities in the fiducial
cosmology are given by (Xu et al. 2013)

ξfid
0 (rfid) = ξ0(αr) + 2

5
ε

[
3ξ2(αr) + dξ2(αr)

d ln(r)

]
(33)

ξfid
2 (rfid) =

(
1 + 6

7
ε

)
ξ2(αr) + 2ε

dξ0(αr)

d ln(r)
+ 4

7
ε

dξ2(αr)

d ln(r)

+ 4

7
ε

[
5ξ4(αr) + dξ4(αr)

d ln(r)

]
. (34)

ξfid
4 (rfid) = ξ4(αr) + 36

35
ε

[
− 2ξ2(αr) + dξ2(αr)

d ln(r)

]

+ 20

77
ε

[
3ξ4(αr) + 2

dξ4(αr)

d ln(r)

]

+ 90

143

[
7ξ6(αr) + dξ6(αr)

d ln(r)

]
. (35)

We note that this is an approximation for small variations around α =
1 and ε = 0 (Xu et al. 2013). None the less, for the observed values
on those parameters and when comparing to the model prediction
based on the exact transformation, the results are virtually the same.
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3.2.4 The fiducial scale at which σ 8 is measured

We perform an additional step in order to reduce the dependence of
our fσ 8 constraints on the choice of fiducial cosmology. When fitting
the correlation function multipoles, σ 8 is kept fixed to its fiducial
value defined as

σ 2
R =

∫ ∞

0
dk k2Plin(k)W 2

TH(Rk), (36)

where Plin is the linear matter power spectrum predicted by the
fiducial cosmology, WTH is the Fourier transform of a top-hat function
with a characteristic radius of R = 8 h−1 Mpc. The resulting f is
scaled by σ 8. However, in Section 4.2 we show that the recovered
fσ 8 has a strong dependence on the fiducial cosmology when we
have best-fitting α not close to unity. We can reduce this dependence
by recomputing σ 8 using R = 8αh−1 Mpc, where α is the isotropic
dilation factor (equation 32) obtained in the fit. In effect, this keeps
the scale at which σ 8 is fitted fixed relative to the data in units of
h−1 Mpc, which only depends on �fid

m . This is an alternative approach
to the recently proposed σ 12 parametrization (Sánchez 2020), where
the radius of the top-hat function is set to R = 12 Mpc instead of R =
8 h−1 Mpc. Unless otherwise stated, all the reported values of fσ 8 in
this work provide fσ 8 where the scale is fixed in this way.

3.3 Parameter inference

The cosmological parameter inference is performed by means of the
likelihood analysis of the data. The likelihood L is defined such that

− 2 lnL(θ ) =
Np∑
i,j

�i(θ )̂ij�j (θ ), (37)

where θ is the vector of parameters, � is the data-model difference
vector, and Np is the total number of data points. An estimate of the
precision matrix ̂ = (1 − D)Ĉ−1 is obtained from the covariance
Ĉ from 1000 realization of EZmocks, where D = (Np + 1)/(Nmocks

− 1) is a factor that accounts for the skewed nature of the Wishart
distribution (Hartlap, Simon & Schneider 2007). The data vector that
enters in � includes, in the baseline configuration, the monopole
and quadrupole correlation functions for the BAO analysis, and the
monopole, quadrupole, and hexadecapole correlation functions for
the RSD analysis.

In the BAO analysis, the best-fitting parameters (α⊥, α�) are
found by minimizing −2 lnL = χ2 using a quasi-Newton minimum
finder algorithm IMINUIT.9 The errors in α� and α⊥ are found by
computing the intervals where χ2 increases by unity. Gaussianity is
not assumed in the error calculation, but we find that on average,
errors are symmetric and correctly described by a Gaussian. The 2D
errors in (α⊥, α�), such as those presented in Fig. 13, are found by
scanning χ2 values in a regular grid in α⊥ and α�. In the case of
the full-shape analysis, we explore the likelihood with the Markov
chain Monte Carlo (MCMC) ensemble sampler EMCEE.10 The input
power spectrum shape parameters are fixed at the fiducial cosmology
and any deviations are accounted for through the Alcock–Paczynski
parameters α⊥ and α�. We assume the uniform priors on model
parameters given in Table 3.

The final parameter constraints are obtained by marginalizing the
full posterior likelihood over the nuisance parameters. The marginal
posterior is approximated by a multivariate Gaussian distribution

9https://iminuit.readthedocs.io/
10https://emcee.readthedocs.io/

Table 2. Values for the comoving angular diameter distance DM and the
Hubble distance DH = c/H(z) in units of the sound horizon scale at drag
epoch rd, and the normalized growth rate of structures fσ 8. These values are
predictions from the cosmological models in Table 1 computed at typical
redshifts used in this work.

Model zeff
DM
rdrag

DH
rdrag

fσ 8

Base 0.698 17.436 20.194 0.456
Base 0.560 14.529 21.960 0.465
EZ 0.698 17.429 20.211 0.467
NS 0.560 14.221 21.692 0.469
OR 0.695 16.717 19.866 0.447
X 0.698 17.685 20.146 0.504
X 0.560 14.778 22.019 0.518

Table 3. List of fitter parameters and their priors used in full-shape analysis
for the two models.

Par. TNS Prior TNS Par. CLPT-GS Prior CLPT-GS

α⊥ [0.5, 1.5] α⊥ [0.5, 1.5]
α� [0.5, 1.5] α� [0.5, 1.5]
f [0, 2] f [0, 2]
b1 [0.2, 4] 〈F′ 〉 [0, 3]
b2 [−10, 10] 〈F′′ 〉 [−10, 10]
b�3 [−2, 4] σ FoG [0, 40]
σv [0.1, 8] – –

Table 4. Characteristics of the baseline fits for all models in this work, where
Nmock is the number of mocks used in the estimation of the covariance matrix,
Npar is the total number of parameters fitted, Nbins is the total size of the data
vector, (1 − D) is the correction factor to the precision matrix (Hartlap et al.
2007), m1 is the factor to be applied to the estimated error matrix, and m2 is
the factor that scales the scatter of best-fitting parameters of a set of mocks (if
these were used in the calculation of the covariance matrix). The derivation
of m1 and m2 can be found in Percival et al. (2014).

BAO RSD TNS RSD CLPT-GS

Nmock 1000 1000 1000
Npar 9 7 6
Nbins 40 65 63
(1 − D) 0.96 0.93 0.94
m1 1.022 1.053 1.053
m2 1.065 1.128 1.125

with central values given by best-fitting parameter values θ∗ = (α⊥,
α�, fσ 8) and parameter covariance matrix Cθ . Since the covariance
matrix is computed from a finite number of mock realizations, we
need to apply correction factors to the obtained Cθ . These factors are
equations (18) and (22) from Percival et al. (2014) to be applied to
uncertainties and to the scatter over best-fitting values, respectively.
These factors, which depend on the number of mocks, parameters,
and bins in the data vectors, are presented in Table 4. The final
parameter constraints from this work are available to the public in
this format.11

3.4 Combining BAO and RSD constraints

From the same input LRG catalogue, we produced BAO-only
and full-shape RSD constraints, both in configuration and Fourier

11sdss.org/
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space (Gil-Marı́n et al. 2020). Each measurement yields a marginal
posterior on (α⊥, α�) for BAO-only or (α⊥, α�, fσ 8) for the full-
shape RSD analyses. In the following, we describe the procedure
to combine all these posteriors into a single consensus constraint,
while correctly accounting for their covariances. This consensus
result is the one used for the final cosmological constraints described
in eBOSS Collaboration (2020).

We follow closely the method presented in Sánchez et al. (2017) to
derive the consensus result. The idea is to compress M data vectors
xm containing p parameters and their p × p covariance matrices
Cmm from different methods into a single vector xc and covariance
Cc, assuming that the χ2 between individual measurements is the
same as the one from the compressed result. The expression for the
combined covariance matrix is

Cc ≡
(

M∑
m=1

M∑
n=1

C−1
mn

)−1

(38)

and the combined data vector is

xc = Cc

M∑
m=1

(
M∑

n=1

C−1
nm

)
xm, (39)

where Cmn is a p × p block from the full covariance matrix between
all parameters and methods C, defined as

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 · · · C1M

C21 C22 · · · C2M

...
...

. . .
...

CM1 CM2 · · · CMM

⎞
⎟⎟⎟⎟⎟⎟⎠

. (40)

The diagonal blocks Cmm are obtained from the Gaussian approxi-
mation of the marginal posterior from each method. The off-diagonal
blocks Cmn with m �= n cannot be estimated from our fits. We derive
these off-diagonal blocks from results from each method applied
to the 1000 EZMOCKS realizations. More precisely, we compute
the correlation coefficients ρmocks

p1,p2,m,n between parameters p1, p2

and methods m, n using the mocks and scale these coefficients
by the diagonal errors from the data. It is worth emphasizing
that the correlation coefficients between parameters depend on the
given realization of the data, while the ones derived from mock
measurements are ensemble averaged coefficients. Therefore, we
scale the correlations coefficients from the mocks in order to match
the maximum correlation coefficient that would be possible with the
data (Ross, Percival & Manera 2015b). For the same parameter p1

measured by two different methods m and n, we assume that the
maximum correlation between them is given by ρmax = σ p1, m/σ p1, n,
where σ p is the error of parameter p. This number is computed for
the data realization ρdata

max and for the ensemble of mocks ρmocks
max . We

can write the adjusted correlation coefficients as

ρdata
p1,p1,m,n = ρmocks

p1,p1,m,n

ρdata
max

ρmocks
max

. (41)

The above equation accounts for the diagonal terms of the off-
diagonal block Cmn. For the off-diagonal terms, we use

ρdata
p1,p2,m,n = 1

4

(
ρdata

p1,p1,m,n + ρdata
p2,p2,m,n

)(
ρdata

p1,p2,m,m + ρdata
p1,p2,n,n

)
.

(42)

We use the method described above to perform all the constraint
combinations, except for the combination of results from CLPT-GS
and TNS RSD models, which use the same input data vector (pre-

reconstruction multipoles in configuration space). For this particular
combination, we simply assume that C−1

c = 0.5(C−1
mm + C−1

nn ) and
xc = 2C−1

c

(
C−1

mmxm + C−1
nn xn

)
. For all combinations, we chose to

use the results from at most two methods at once (M = 2) in order to
reduce the potential noise introduced by the procedure.

Denoting ξ	 the results from the configuration-space analysis and
P	 that from the Fourier-space analysis, our recipe to obtain the
consensus result for the LRG sample is as follows:

(i) Combine RSD ξ	 TNS and RSD ξ	 CLPT-GS results into RSD
ξ	,

(ii) Combine BAO ξ	 with BAO P	 into BAO (ξ	 + P	),
(iii) Combine RSD ξ	 with RSD P	 into RSD (ξ	 + P	),
(iv) Combine BAO (ξ	 + P	) with RSD (ξ	 + P	) into BAO+RSD

(ξ	 + P	).

Alternatively, we can proceed as

(i) Combine BAO ξ	 with RSD ξ	 into (BAO+RSD) ξ	,
(ii) Combine BAO P	 with RSD P	 into (BAO+RSD) P	,
(iii) Combine BAO+RSD ξ	 with BAO+RSD P	 into

(BAO+RSD) ξ	 + P	.

In Section 4.3, we test this procedure on the mock catalogues.

4 RO BU S T N E S S O F TH E A NA LY S I S A N D
SYSTEMATIC ERRO RS

In this section, we perform a comprehensive set of tests of the adopted
methodology using all the simulated data sets available. We estimate
the biases in the measurement of the cosmological parameters (α⊥,
α�, fσ 8) and derive the systematic errors for both BAO-only and full-
shape RSD analyses. For a given parameter, we define the systematic
error σp,syst as follows. We compare the estimated value of the
parameter xp to a reference value xref

p and set the systematic error
value to

σp,syst = 2σp, if
∣∣xp − xref

p

∣∣ < 2σp, (43)

σp,syst = ∣∣xp − xref
p

∣∣, if
∣∣xp − xref

p

∣∣ > 2σp, (44)

where σ p is the estimated statistical error on xp. As a conservative
approach, we use the maximum value of the bias among the several
cases studied.

4.1 Systematics in the BAO analysis

The methodology described in Section 3.1 was tested using the 1000
EZMOCKS mock survey realizations and 84 NSERIES realizations.
For each realization, we compute the correlation function and its
multipoles, and fit for the BAO peak position to determine the
dilation parameters α�, α⊥ and associated errors. We compare the
best-fitting α⊥, α� to their expected values, which are obtained from
the cosmological models described in Table 1. The effective redshift
of the EZMOCKS is zeff = 0.698 and zeff = 0.56 for NSERIES.

In Fig. 4, we summarize the systematic biases from pre- and
post-reconstruction mocks for a few choices of fiducial cosmology,
parametrized by �fid

m . In pre-reconstruction mocks, biases in the
recovered α values reach up to 0.5 per cent in α⊥ and 1.0 per cent
in α�. These biases are expected due to the impact of non-linear
effects on the position of the peak that cannot be correctly accounted
for with the Gaussian damping terms in equation (4) at this level of
precision (Seo et al. 2016). We recall that we are fitting the average
of all realizations. The reconstruction procedure removes in part the
non-linear effects and this is seen as a reduction of the biases to
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Figure 4. Impact of choice of fiducial cosmology in the recovered values
of α� and α⊥ from the stacks of 1000 multipoles from the EZMOCKS (blue)
and 84 NSERIES mocks (orange), for pre- (top panels) and post-reconstruction
(bottom panels). Associated error bars correspond to the error on the mean
of the mocks. The grey shaded areas correspond to 1 per cent errors. For
comparison, the error on real data is near 1.9 per cent for α⊥ and 2.6 per cent
for α� in the post-reconstruction case.

Table 5. Average biases from BAO fits on the stacked multipoles of 1000
EZMOCKS and 84 NSERIES realizations. All results are based on post-
reconstruction correlation functions.

Sample �fid
m 	max α⊥ − α

exp
⊥ [10−3] α‖ − α

exp
‖ [10−3]

EZ 0.27 2 0.4 ± 0.7 1.1 ± 1.0
EZ 0.27 4 0.5 ± 0.7 1.4 ± 1.0
EZ 0.31 2 0.9 ± 0.7 0.3 ± 1.1
EZ 0.31 4 1.0 ± 0.7 0.4 ± 1.1
EZ 0.35 2 1.3 ± 0.7 1.8 ± 1.0
EZ 0.35 4 1.2 ± 0.7 1.5 ± 1.0
NS 0.286 2 2.3 ± 1.5 3.1 ± 2.4
NS 0.286 4 2.2 ± 1.5 3.0 ± 2.4
NS 0.31 2 3.0 ± 1.5 3.6 ± 2.4
NS 0.31 4 3.0 ± 1.5 3.7 ± 2.4
NS 0.35 2 3.9 ± 1.5 3.2 ± 2.4
NS 0.35 4 3.9 ± 1.5 3.5 ± 2.4

less than 0.2 per cent. The bias reduction is also seen in the NSERIES

mocks, particularly on α⊥, confirming that the bias reduction is not
related to a feature of the mocks induced by the approximate method
used to build them.

Table 5 shows results from Fig. 4 for the post-reconstruction case
only, including the fits with the hexadecapole ξ	 = 4. The impact of
the hexadecapole is negligible even in this very low-noise regime,
for both types of mocks. The reported dilation parameters for almost
all cases are consistent with expected value within 2σ . We see a
2.6σ deviation on α⊥ for the NSERIES case analysed with �fid

m =
0.35. However, this choice of �fid

m is the most distant from the true
value of the simulation and its observed bias is still less than half
a per cent, which is small compared to the statistical power of our
sample. For the EZMOCKS, which have smaller errors, the biases are
up to 0.13 per cent for α⊥ and 0.18 per cent for α�. These biases
are much smaller than the expected statistical errors in our data,

i.e. ∼1.9 per cent for α⊥ and ∼2.6 per cent for α�, showing that
our methodology is robust at this statistical level. In these fits, all
parameters except �rec = 15 h−1 Mpc were left free. The best-fitting
values of �⊥, ��, and �s were used and held fixed in the fits of
individual realizations.

Results from Table 5 and Fig. 4 show no statistically significant
dependence of results with the choice of fiducial cosmology. We
derived the systematic errors for the BAO analysis using the values
from Table 5 and equations (43) and (44). We used only the fits to
the EZMOCKS that have the better precision. The systematic errors
are for α⊥ and α�, respectively,

BAO : σsyst,model = (0.0014, 0.0021), (45)

which are negligible compared to statistical errors of one realization
of our data. Note that the fiducial cosmologies considered are all
flat and assume general relativity. Carter et al. (2020) and Bernal
et al. (2020) find that BAO measurements are robust to a larger
variety of fiducial cosmologies (but all close to the assumed one).
Additional systematic errors should be anticipated when extrapo-
lating to cosmologies that are significantly different than the truth,
for instance yielding dilation parameters significantly different than
unity.

Fig. 5 displays the distribution of recovered α⊥, α� and their re-
spective errors measured from each of the individual EZMOCKS. The
error distribution shows that reconstruction improves the constraints
on α⊥ or α� in 94 per cent of the realizations (89 per cent have
both errors improved). As expected, realizations with smaller errors
generally exhibit larger values of �χ2 = χ2

no peak − χ2
peak, meaning a

more pronounced BAO peak and higher detection significance. We
see no particular trend in the best-fitting α values with �χ2 in the
two top panels. The red stars in Fig. 5 indicate the values obtained
in real data. The error in α⊥ in the data is typical of what is found
in mocks, although for α� it is found at the extreme of the mocks
distribution. As discussed in Section 2.4 and displayed in Fig. 3,
the BAO peak amplitude in the data multipoles is slightly larger
than the one seen in this EZMOCK sample. A similar behaviour is
observed in the eBOSS QSO sample (Hou et al. 2020; Neveux &
Burtin 2020), who also use EZMOCKS from Zhao et al. (2020),
and in the BOSS DR12 CMASS sample (see fig. 12 of Ross et al.
2017).

Table 6 presents a statistical summary of the fits performed on
the EZMOCKS. We tested several changes to our baseline analysis:
include the hexadecapole, change the separation range [rmin, rmax],
allow BAO damping parameters �⊥ and �� to vary within a Gaussian
prior (5.5 ± 2 h−1 Mpc), and fit the pre-reconstruction multipoles. We
remove realizations with fits that did not converge or with extreme
error values (more than 5σ of their distribution, where σ is defined
as the half the range covered by 68 per cent of values). The total
number of valid realizations is given by Ngood in Table 6. In most cases
studied, the observed standard deviation of the best-fitting parameters
σ (α) is consistent with the average per-mock error estimates 〈σα〉,
indicating that our errors are correctly estimated. We also see that
the dispersion of dilation parameters is not significantly reduced
when adding the hexadecapole ξ 4 to the BAO fits, showing that
most of the BAO information is contained in the monopole and
quadrupole at this level of precision. The mean and dispersion of the
pull parameter, defined as Zα = (α − 〈α〉)/σα , are consistent with a
unit Gaussian for almost all cases, which further validates our error
estimates.

All the tests performed in this section show that our BAO
analysis is unbiased and provides correct error estimates. We
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748 J. E. Bautista et al.

Figure 5. Distribution of dilation parameters α⊥ and α� and its estimated errors for pre- and post-reconstruction EZMOCK catalogues with systematic effects.
The colour scale indicates the difference in χ2 values between a model with and without BAO peak. The red stars show results with real data. There is a known
mismatch in the BAO peak amplitude between data and EZmocks causing the accuracy of the data point to be slightly smaller than the error distribution in the
EZmocks (see Section 2.4).

Table 6. Statistics on errors from BAO fits on 1000 EZMOCKS realizations. All results are based on post-reconstruction
correlation functions. σ is the scatter of best-fitting values xi among the Ngood realizations with confident detection or non-
extreme values or errors (out of the 1000), 〈σ i〉 is the mean estimated error per mock, Z = (xi − 〈xi〉)/σ i is the pull quantity
for which we show the mean 〈Zi〉 and standard deviation σ (Z). The first row corresponds to our baseline analysis.

Analysis Ngood α⊥ α�

σ 〈σ i〉 〈Zi〉 σ (Zi) σ 〈σ i〉 〈Zi〉 σ (Zi)

baseline 990 0.022 0.023 −0.02 0.99 0.035 0.036 − 0.03 0.96
	max = 4 995 0.022 0.023 −0.02 0.99 0.035 0.035 − 0.03 0.97
pre-recon 968 0.030 0.030 −0.05 1.07 0.055 0.056 − 0.06 0.97
pre-recon 	max = 4 968 0.029 0.028 −0.03 1.04 0.054 0.054 − 0.07 1.02
rmin = 20 h−1 Mpc 979 0.023 0.026 −0.01 0.93 0.035 0.040 0.04 1.26
rmin = 30 h−1 Mpc 987 0.023 0.024 −0.02 0.95 0.036 0.038 − 0.02 0.92
rmin = 40 h−1 Mpc 995 0.022 0.023 −0.02 0.98 0.035 0.036 − 0.02 0.94
rmax = 160 h−1 Mpc 989 0.022 0.023 −0.02 0.99 0.036 0.036 − 0.03 0.96
rmax = 170 h−1 Mpc 989 0.022 0.023 −0.02 0.99 0.036 0.036 − 0.03 0.96
rmax = 180 h−1 Mpc 990 0.022 0.023 −0.02 0.98 0.035 0.036 − 0.03 0.95
Prior �⊥, � 993 0.022 0.023 −0.02 1.00 0.035 0.035 − 0.03 0.96

apply our baseline analysis to the real data and report results in
Section 5.1.

4.2 Systematics in the RSD analysis

We present in this section the systematic error budget of the full-
shape RSD analysis. Particularly, we discuss the impact of the
choice of scales used in the fit, the bias introduced by each model,
the bias introduced by varying the fiducial cosmology, the bias
associated with the choice of the LRG HOD model, and the impact
of observational effects. These are quantified through the analysis
of the various sets of mocks with both TNS and CLPT-GS models,
which are described in Section 3.2.

4.2.1 Optimal fitting range of scales

We first study the optimal range of scales in the fit for the two
RSD models considered in this work (see Section 3). It is worth
noting that the optimal range of scales is not necessarily the
same for the two models. Generally, full-shape RSD analyses use
scales going from tens of h−1 Mpc to about 130–150 h−1 Mpc.
Including smaller scales potentially increases the precision of the
constraints but at the expense of stronger biases on the recovered
parameters. This is related to the limitations of current RSD models
to fully describe the non-linear regime. On the other hand, including
scales larger than ∼130 h−1 Mpc does not significantly improve
the precision, since the variations of the model on those scales are
small.
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Figure 6. Biases in the measurement of fσ 8, α�, α⊥ obtained from full-shape
fits to the average of 84 multipoles from the NSERIES mocks as a function of the
separation range used. The y-axis displays the value of the minimal separation
rmin used in fits of the monopole, quadrupole (MQ), and hexadecapole (H).
The top and middle rows display results for the TNS model when fixing or
letting free the parameter b�3, respectively. The bottom row presents results
for the CLPT-GS model. The blue circles correspond to the analysis using
�fid

m = 0.286 (the true value of simulations) while the red squares correspond
to �fid

m = 0.31. The grey shaded areas correspond to 1 per cent errors in α⊥,
α� and to 3 per cent in fσ 8. The green shared area shows our choice for
baseline analysis for TNS and CLPT-GS models.

In order to determine the optimal range of scales for our RSD
models, we performed fits to the mean correlation function of the
NSERIES mocks, which are those that most accurately predict the
expected RSD in the data. Fig. 6 shows the best-fitting values of
fσ 8, α�, and α⊥ as a function of the minimum scale used in the
fit, rmin. In each panel, the grey bands show 1 per cent errors in
α⊥, α� and 3 per cent errors in fσ 8 for reference. The top panels
present the measurements from the TNS model when the parameter
b�3 is fixed to the value given by equation (26), while in the mid-
panels this parameter is let free. The bottom panels show best-fitting
values for the CLPT-GS model as studied in Icaza-Lizaola et al.
(2020). As noted in Zarrouk et al. (2018), the hexadecapole is more
sensitive to the difference between the true and fiducial cosmologies
and is generally less well modelled on small scales compared to the
monopole and quadrupole. We therefore consider the possibility of
having a different minimum fitting scale for the hexadecapole with
respect to the monopole and quadrupole that share the same rmin.
For consistency with the other systematic tests, we performed this
analysis using two choices of fiducial cosmologies, �fid

m = 0.286
(blue) and �fid

m = 0.31 (red). The maximum separation in all cases is
rmax = 130 h−1 Mpc, as we find that using larger rmax has a negligible
impact on the recovered parameter values and associated errors.

In the case of the TNS model, we consider two different cases
that correspond to when b�3 is fixed to its Lagrangian prediction
and when b�3 is allowed to vary. In the case of �fid

m = 0.286 and
when b�3 is fixed, in the top panels of Fig. 6, we can see that fσ 8 is
overestimated by 1.5 per cent when using scales above 25 h−1 Mpc
and by 2 per cent below. Using rmin > 25 h−1 Mpc reduces the bias to

about 1 per cent on fσ 8. For α� and α⊥ parameters, biases range from
0.3 to 0.5 per cent and are all statistically consistent with zero. When
b�3 is let free, in the middle panels of Fig. 6, the model provides
more robust measurements of fσ 8 at all tested ranges. The biases in
fσ 8 over all ranges do not exceed 0.6σ , compared to approx. 2.5σ

for the fixed b�3 case. We also remark that letting b�3 free also
provides a better fit to the BAO amplitude and the hexadecapole on
the scales of 20–25 h−1 Mpc. We see a 1 per cent bias on α� when
rmin = 20 h−1 Mpc for all three multipoles. This bias is, however,
reduced by increasing the hexadecapole minimum scale to rmin =
25 h−1 Mpc. The most optimal configuration for the TNS model is
to let b�3 free and fit the monopole and quadrupole in the range
20 ≤ r ≤ 130 h−1 Mpc and the hexadecapole in the range 25 ≤ r
≤ 130 h−1 Mpc, as marked by the green band in Fig. 6. If we use
�fid

m = 0.31, the trends and quantitative results are similar to the case
with �fid

m = 0.286.
For the CLPT-GS model, an exploration of the optimal fitting range

was done in Icaza-Lizaola et al. (2020). Two sets of tests have been
performed. The first set consisted of fitting the mean of the mocks
when varying rmin and the second, fitting the 84 individual mocks
and measuring the bias and variance of the best fits when varying
rmin. We revisit the first set of tests, but this time performing a full
MCMC analysis to determine best fits and errors. The bottom panels
of Fig. 6 summarize the results. In the case of �fid

m = 0.286, we
see that using rmin = 25 h−1 Mpc for all multipoles yields biases of
0.1, 1.1, and 1.6 per cent in α⊥, α�, and fσ 8, respectively. Increasing
rmin for the hexadecapole while fixing rmin = 25 h−1 Mpc for the
monopole and quadrupole does not change the results significantly;
the biases are 0.1 per cent for all ranges in α⊥, and 1 per cent also
for all ranges in α�. For fσ 8 variation of 0.1–0.2 per cent arises when
varying the range, but this variation in statistically consistent with
zero. In the case of �fid

m = 0.31, we find very similar trends. Using
rmin = 25 h−1 Mpc for all multipoles yields biases of 0.2, 0.9, and
1.6 in α⊥, α�, and fσ 8, respectively. When we decrease the range
of the fits, the biases on (α⊥, α�, fσ 8) vary by (0.1–0.2, 0.2–0.3,
0.3–0.4) per cent. These variations are not significant and we decide
to keep the lowest considered minimum scales on the hexadecapole
in the fits.

Compared with previous BOSS full-shape RSD analysis in con-
figuration space, we used for CLPT-GS model the same minimum
scale for the monopole and quadrupole (Alam et al. 2017; Satpathy
et al. 2017). The hexadecapole was not included in BOSS analyses.
The exploration for the optimal minimum scale to be used for the
hexadecapole was done in Icaza-Lizaola et al. (2020) and revisited
in this work. The systematic error associated with the adopted fitting
range is also consistent with previous results for the case where only
the monopole and quadrupole are used, as reported in Icaza-Lizaola
et al. (2020). The TNS model was not used in configuration space
for analysing previous SDSS samples. However, as we describe in
Section 4.2.2, the bias associated with both models when using their
optimal fitting range is consistent between them, as well as consistent
with previous BOSS results.

Overall, these tests performed on the NSERIES mocks allow us
to define the optimal fitting ranges of scales for both RSD models.
Minimizing the bias of the models while keeping rmin as small as
possible, we eventually adopt the following optimal ranges:

(i) TNS model: 20 < r < 130 h−1 Mpc for ξ 0 and ξ 2, and 25 < r
< 130 h−1 Mpc for ξ 4,

(ii) CLPT-GS model: 25 < r < 130 h−1 Mpc for all multipoles,

which serve as baseline in the following. We compare the perfor-
mance of the two models using these ranges in the following sections.
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Table 7. Performance of the two full-shape models on the NSERIES mocks.
Fits were performed on the average of 84 multipoles. We report the shifts of
best-fitting parameters relative to their expected values. For �fid

m = 0.286, we
expect that both the α parameters are equal to 1. For �fid

m = 0.31, α
exp
⊥ =

0.9788, α
exp
‖ = 0.9878 while for �fid

m = 0.35 we expect α
exp
⊥ = 0.9623,

α
exp
‖ = 0.9851. Since the growth rate of structures does not depend on the

assumed cosmology, we expect to recover f σ
exp
8 = 0.469 for all cases.

Model �fid
m �α⊥ [10−2] �α� [10−2] �fσ 8 [10−2]

CLPT-GS 0.286 0.2 ± 0.2 −0.9 ± 0.3 − 0.6 ± 0.5
CLPT-GS 0.31 − 0.2 ± 0.2 −0.8 ± 0.3 − 0.0 ± 0.5
CLPT-GS 0.35 − 0.7 ± 0.2 −1.1 ± 0.3 0.0 ± 0.5
TNS 0.286 − 0.2 ± 0.2 −0.5 ± 0.3 0.6 ± 0.4
TNS 0.31 − 0.3 ± 0.2 −0.6 ± 0.3 0.3 ± 0.4
TNS 0.35 − 0.5 ± 0.2 −0.5 ± 0.3 − 0.3 ± 0.4

Figure 7. Biases in best-fitting parameters for both CLPT-GS (blue) and
TNS (red) models from fits to the average multipoles of 84 NSERIES mocks.
Shaded grey areas show the equivalent of 1 per cent error for α⊥, α� and
3 per cent for fσ 8. In the right-hand panel, crosses indicate fσ 8 values when
σ 8 is not recomputed as described in Section 3.2.4. The true cosmology of
the mocks is �m = 0.286. For reference, the errors on our data sample are
∼2, 3, and 10 per cent for α⊥, α�, and fσ 8, respectively.

4.2.2 Systematic errors from RSD modelling and adopted fiducial
cosmology

We quantify in this section the systematic error introduced by the
RSD modelling and the choice of fiducial cosmology. For this, we
used the NSERIES mocks.12 The measurements of α⊥, α�, and fσ 8

from fits to the average multipoles are given in Table 7 and shown
in Fig. 7. The shaded area in the figure corresponds to 1 per cent
deviation for α⊥, α� expected values and 3 per cent for fσ 8 expected
value. We used both TNS (red) and CLPT-GS (blue) models and
consider three choices of fiducial cosmologies parametrized by their
value of �fid

m . Note that, as for the BAO analysis, we only test flat
�CDM models close to the most probable one. We expect the full-
shape analysis to be biased if the fiducial cosmology is too different
from the truth (the parametrization with α⊥ and α� would not fully
account for the distortions and the template power spectrum would
differ significantly).

We find that both RSD models are able to recover the true
parameter values within these bounds. We estimate the systematic
errors related to RSD modelling using equations (43) and (44) by
considering the shifts for the case where �fid

m = 0.286, which is the
true cosmology of the NSERIES mocks. We obtain for α⊥, α�, and
fσ 8, respectively,

CLPT − GS : σsyst,model = (0.4, 0.9, 1.0) × 10−2 (46)

12Given the mismatch between the clustering of the MOCKCHALLENGE mocks
and data, and its larger cosmic variance compared to NSERIES mocks, we
decided to use MOCKCHALLENGE only for the quantification of systematic
errors related to the halo occupation models.

TNS : σsyst,model = (0.4, 0.6, 0.9) × 10−2. (47)

The biases on the recovered parameters shown in Fig. 7 induced
by the choice of fiducial cosmology remain within 1, 1, and 3 per cent
for α⊥, α�, and fσ 8, respectively. For α⊥, both CLPT-GS and TNS
models produce biases lower than 2σ for all cosmologies except
�fid

m = 0.35, which is the most distant value from the true cosmology
of the simulation �m = 0.286. For α�, all biases are consistent with
zero at 2σ level for the TNS model, while CLPT-GS shows biases
slightly larger than 2σ for all �fid

m .
The right-hand panel of Fig. 7 shows the measured fσ 8 when

using the original value of σ 8 from the template (crosses) and
when recomputing it with the scaling of R = 8 h−1 Mpc by the
isotropic dilation factor α = α

(2/3)
⊥ α

(1/3)
‖ (filled circles) as described

in Section 3.2.4. Both TNS and CLPT-GS models show a consistent
dependence with �fid

m when σ 8 is not re-evaluated: Larger �fid
m yields

smaller fσ 8. This is also found in the Fourier-space analysis of Gil-
Marı́n et al. (2020) and in fig. 14 of Smith et al. (2020). As we
recompute σ 8, this dependence is considerably reduced, which in
turn reduces the contribution of the choice of fiducial cosmology
to the systematic error budget. Using equations (43) and (44), with
the entries of Table 7 (with σ 8 re-computed) where �fid

m �= 0.286
compared to the entries where �fid

m = 0.286, we obtain the following
systematic errors associated with the choice of fiducial cosmology
for α⊥, α�, and fσ 8, respectively:

CLPT − GS : σsyst,fid = (0.9, 1.0, 1.4) × 10−2 (48)

TNS : σsyst,fid = (0.5, 0.8, 1.2) × 10−2 (49)

These systematic errors would be twice as large if σ 8 was not
recomputed as described in Section 3.2.4.

4.2.3 Systematic errors from HOD

We quantify in this section the potential systematic errors introduced
by the models with respect to how LRGs occupy dark matter haloes.
This is done by analysing mock catalogues produced with different
HOD models that mimic different underlying galaxy clustering
properties. The same input dark matter field is used when varying the
HOD model. We use the OUTERRIM mocks described in Section 2.4
and in Rossi et al. (2020). Specifically, we analysed the mocks
constructed using the ‘Threshold 2’ for the HOD models from
Leauthaud et al. (2011), Tinker et al. (2013), and Hearin et al. (2015)
and performed fits to the average multipoles over the 27 realizations
available for each HOD model.

Fig. 8 and Table 8 show the results. In this figure, each best-fitting
parameter is compared to the average best fit over all HOD models
in order to quantify the relative impact of each HOD (instead of
comparing with their true value). The biases with respect to the true
values were quantified in the previous section. The shaded regions
represent 1 per cent error for α⊥ and α�, and 3 per cent error for fσ 8.

We find that the biases for both RSD models are all within 1σ

from the mean, although statistical errors are quite large (around
1 per cent for α⊥, α�) compared to NSERIES mocks for instance. Also,
the observed shifts are all smaller than the systematic errors estimated
in the previous section. If we were to use the same definition for the
systematic error introduced in Section 4, the relatively large errors
from these measurements would produce a significant contribution
to the error budget. Therefore, we consider that HOD has a negligible
contribution to the total systematic error budget.
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Figure 8. Best-fitting values of α⊥, α�, and fσ 8 from fitting the average
multipoles of the OUTERRIM mocks compared to their average over all HOD
models. Blue points show results for the CLPT-GS model and red points show
results for the TNS model. The shaded area shows 1 per cent error for α⊥, α�

and 3 per cent for fσ 8.

Table 8. Performance of the full-shape analyses on the OUTERIM mocks
produced using different HOD recipes. For each HOD (Leauthaud et al.
2011; Tinker et al. 2013; Hearin et al. 2015), we display results obtained
from our two RSD models (CLPT-GS and TNS). All results are from fits
to the average multipoles of 27 realizations. Each row displays the shift of
best-fitting parameters with respect to the average parameters over the three
HOD models: �x = x − 〈x〉HOD. We found that these shifts are not significant
and therefore do not contribute to systematic errors.

HOD Model �α⊥ [10−2] �α� [10−2] �fσ 8 [10−2]

L11 CLPT-GS 0.0 ± 0.7 0.0 ± 1.1 − 0.1 ± 1.7
T13 CLPT-GS 0.1 ± 0.8 − 0.2 ± 1.2 − 0.6 ± 1.8
H15 CLPT-GS 0.0 ± 0.7 0.3 ± 1.1 0.6 ± 1.8
L11 TNS − 0.4 ± 0.5 − 0.7 ± 1.1 0.7 ± 1.5
T13 TNS 0.2 ± 0.6 0.8 ± 1.0 − 0.9 ± 1.4
H15 TNS 0.2 ± 0.6 − 0.1 ± 1.0 0.2 ± 1.5

4.2.4 Systematic errors from observational effects

We investigate in this section the observational systematics. We used
a set of 100 EZMOCKS to quantify their impact on our measurements.
From the same set, we added different observational effects. For
simplicity, those samples were made from mocks reproducing
only the eBOSS component of the survey, neglecting the CMASS
component. We consider that the systematic errors estimated this way
can be extrapolated to the full eBOSS+CMASS sample by assuming
that their contribution is the same over the CMASS volume. We thus
produced the following samples:

(1) no observational effects included, which we use as reference,
(2) including the effect of the radial integral constraint (RIC;

de Mattia & Ruhlmann-Kleider 2019), where the redshifts of the
random catalogue are randomly chosen from the redshifts of the data
catalogue,

(3) including RIC and all angular features: fibre collisions, redshift
failures, and photometric corrections.

For each set, we computed the average multipoles and fitted them
using our two RSD models. The covariance matrix is held fixed
between cases. Table 9 summarizes the biases in α⊥, α�, and fσ 8

caused by the different observational effects. The shifts are relative
to results of mocks without observational effects. We find that the
RIC produces the greatest effect, particularly for the CLPT-GS model
for which the deviation on fσ 8 is slightly larger than 2σ . Indeed, the
quadrupole for mocks with RIC has smaller absolute amplitude,
which translates into small fσ 8 values. However, when adding
angular observational effects the shifts are all broadly consistent

Table 9. Impact of observational effects on the full-shape analysis using
EZMOCKS. Each row displays the shifts of best-fitting parameters with respect
to the case without observational effects (‘no syst’): �x = x − xno syst. Fits are
performed on the average multipoles of 100 realizations. We test the cases of
mocks with RIC and mocks with the combination of RIC and all angular
observational effects (fibre collisions, redshift failures, and photometric
fluctuations). The angular effects introduced in mocks are corrected using
the same procedure used in data. For simplicity, the mocks used here are only
for the eBOSS part of the survey.

Type Model �α⊥ [10−2] �α� [10−2] �fσ 8 [10−2]

RIC CLPT-GS − 0.3 ± 0.5 1.1 ± 0.6 − 1.7 ± 0.8
+Ang. Sys. CLPT-GS 0.0 ± 0.4 0.3 ± 0.6 0.0 ± 0.9
RIC TNS 0.6 ± 0.5 − 0.1 ± 0.7 − 0.8 ± 0.9
+Ang. Sys. TNS 0.8 ± 0.5 − 0.2 ± 0.7 0.1 ± 0.9

Table 10. Summary of systematic errors obtained from tests with mock
catalogues. The total systematic error σ syst is the quadratic sum of each
contribution. We compare the systematic errors to the statistical errors from
our baseline fits on real data. The last rows display the final error that is a
quadratic sum of statistical and systematic errors.

Type Model σα⊥ σα‖ σf σ8

Modelling CLPT-GS 0.004 0.009 0.010
TNS 0.004 0.006 0.009

Fid. cosmology CLPT-GS 0.009 0.010 0.014
TNS 0.005 0.008 0.012

Obs. effects CLPT-GS 0.009 0.012 0.017
TNS 0.010 0.014 0.018

σ syst CLPT-GS 0.013 0.018 0.024
TNS 0.012 0.017 0.023
P	 0.012 0.013 0.024

σ stat CLPT-GS 0.020 0.028 0.045
TNS 0.018 0.031 0.040
P	 0.027 0.036 0.042

σ syst/σ stat CLPT-GS 0.66 0.63 0.54
TNS 0.65 0.55 0.58
P	 0.43 0.37 0.58

σtot =
√

σ 2
syst + σ 2

stat CLPT-GS 0.024 0.033 0.051

TNS 0.021 0.035 0.046
P	 0.029 0.038 0.048

with zero, which indicates that the two effects partially cancel each
other.

Using values from Table 9 and equations (43) and (44), we derive
the following systematic errors from observational effects for α⊥,
α�, and fσ 8, respectively:

CLPT − GS : σsyst,obs = (0.9, 1.2, 1.7) × 10−2 (50)

TNS : σsyst,obs = (1.0, 1.3, 1.8) × 10−2. (51)

These systematic errors are about 50 per cent of the statistical
errors for each parameter, which corresponds to the most significant
contribution to the systematic error budget.

4.2.5 Total systematic error of the full-shape RSD analysis

Table 10 summarizes all systematic error contributions to the full-
shape measurements discussed in the previous sections. We show
the results for our two configuration-space RSD models TNS and
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Figure 9. Comparison between best-fitting values (left-hand panels) and estimated errors (right-hand panel) for (α⊥, α�, fσ 8) using 1000 realizations of
EZMOCKS fitted with the TNS and CLPT-GS models. The values obtained with real data are indicated by stars in each panel or as coloured vertical lines in the
histograms. The thin black dashed line on the 2D plots refers to the true values of each parameter in the EZMOCKS.

CLPT-GS and for the Fourier-space analysis of Gil-Marı́n et al.
(2020). We compute the total systematic error σ syst by summing
up all the contributions in quadrature, assuming that they are all
independent. By comparing the systematic errors with the statistical
error from the baseline fits to the data (see Section 5.2), we find
that the systematic errors are far from being negligible: more than
50 per cent of the statistical errors for all parameters. The systematic
errors are in quadrature to the diagonal of the covariance of each
measurement. We do not attempt to compute the covariance between
systematic errors and this approach is more conservative (it does not
underestimate errors).

4.3 Statistical properties of the LRG sample

We can also use the EZMOCKS for evaluating the statistical properties
of the LRG sample, in particular to quantify how typical is our data
compared with EZMOCKS, but also for measuring the correlations
among the different methods and globally validating our error
estimation.

The left-hand panel of the Fig. 9 presents a comparison between
the best fit (α⊥, α�, fσ 8) and their estimated errors from fits of
the TNS and CLPT-GS models. The confidence contours contain
approximately 68 per cent and 95 per cent of the results around
the mean. The contours and histograms reveal a good agreement
for the two models. Stars indicate the corresponding best-fitting
values obtained from the data. The correlations between best-fitting
parameters of both models are 86, 83, and 93 per cent for α⊥,
α�, and fσ 8, respectively. A similar comparison for the errors is
presented in the right-hand panel of the Fig. 9. The errors inferred
from the data analysis, shown as stars, are in good agreement with
the 2D distributions from the mocks, lying within the 68 per cent
contours. The histograms comparing the distributions of errors for
both methods also show a good agreement, in particular for α�

and fσ 8. For α⊥, we observe that the distribution from CLPT-GS
is slightly peaked towards smaller errors, while for TNS the error

distribution has a larger dispersion for this parameter. The correlation
coefficients between estimated errors from the two models are: 56,
38, and 39 per cent for α⊥, α�, and fσ 8, respectively.

Table 11 summarizes the statistical properties of errors for α⊥, α�,
and fσ 8 for both BAO and full-shape RSD analysis in configuration
space (noted ξ	). We also include for reference the results from
Fourier-space analysis of Gil-Marı́n et al. (2020), noted P	. For each
parameter, we show the standard deviation of the best-fitting values,
σ , the mean estimated error 〈σ 〉, the mean of the pull, Zi = (xi −
〈x〉)/σ x, where x = α⊥, α�, fσ 8, and its standard deviation σ (Z). If
errors are correctly estimated and follow a Gaussian distribution,
we expect that σ = 〈σ i〉, 〈Zi〉 = 0, and σ (Z) = 1. For method,
we remove results from non-converged chains and 5σ outliers in
both best-fitting values and errors (with σ defined as half of the
range covered by the central 68 per cent values). Table 11 also
shows the results from combining different methods employing
the procedure described in Section 3.4. For each combination, we
create the covariance matrix C (equation 40) from the correlation
coefficients obtained from 1000 EZMOCKS fits, with small adjust-
ments to account for the observed errors of a given realization. The
correlation coefficients (before this adjustment) are shown in Fig. 10
for all five methods. The BAO measurements from configuration
and Fourier spaces are 87 and 88 per cent correlated for α⊥ and α�,
respectively. In RSD analyses, these correlations reduce to slightly
less than 80 per cent between α⊥ and α� of both spaces, while fσ 8

correlations reach 84 per cent. The fact that these correlations are not
exactly 100 per cent indicates that there is potential gain combining
them.

For the BAO results (top three rows of Table 11), we see good
agreement between σ x and 〈σ 〉 for all the parameters in both the
spaces. The mean of the pull 〈Zi〉 is consistent with zero (their errors
are roughly 0.02) and the standard deviation σ (Zi) is slightly smaller
than unity for all variables, indicating that errors might be slightly
overestimated. The combined BAO results of (ξ	 + P	) have errors
slightly reduced to 2.2 per cent for α⊥ and 3.4 per cent in α� (based
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Table 11. Statistics on errors from consensus results on 1000 EZMOCKS realizations. For each parameter, we show the standard deviation of best-fitting values,
σ (xi), the mean estimated error 〈σ i〉, the mean of the pull, Zi = (xi − 〈xi〉)/σ i, and its standard deviation σ (Zi). Ngood shows the number of valid realizations for
each case after removing extreme values and errors at 5σ level.

Observable Ngood α⊥ α� fσ 8

σ 〈σ i〉 〈Zi〉 σ (Zi) σ 〈σ i〉 〈Zi〉 σ (Zi) σ 〈σ i〉 〈Zi〉 σ (Zi)

BAO ξ	 987 0.023 0.023 − 0.02 0.98 0.036 0.035 − 0.02 0.96 – – – –
BAO P	 978 0.024 0.024 − 0.02 0.95 0.039 0.040 0.00 0.90 – – – –
BAO ξ	 + P	 970 0.022 0.022 − 0.02 1.01 0.034 0.034 − 0.02 0.97 – – – –

RSD ξ	 CLPT 819 0.023 0.021 0.01 1.03 0.033 0.033 − 0.04 0.95 0.046 0.045 − 0.01 0.97
RSD ξ	 TNS 951 0.024 0.023 − 0.05 1.03 0.037 0.033 − 0.05 1.07 0.046 0.045 − 0.01 0.95
RSD ξ	 781 0.021 0.021 − 0.01 0.99 0.031 0.032 − 0.03 0.96 0.042 0.045 − 0.01 0.95
RSD P	 977 0.025 0.026 0.02 0.94 0.037 0.036 − 0.04 1.00 0.046 0.046 0.01 0.96
RSD ξ	 + P	 767 0.019 0.020 0.00 0.98 0.030 0.031 − 0.03 0.97 0.041 0.043 − 0.00 0.97

BAO+RSD ξ	 772 0.018 0.019 − 0.01 1.00 0.024 0.025 − 0.03 0.97 0.043 0.040 − 0.02 1.06
BAO+RSD P	 955 0.019 0.020 0.00 0.96 0.028 0.029 − 0.03 0.96 0.044 0.042 − 0.01 1.05
BAO×RSD P	 986 0.019 0.019 0.03 0.99 0.029 0.028 − 0.06 1.02 0.041 0.045 − 0.01 0.92

BAO (ξ	 + P	) + 747 0.017 0.018 − 0.01 1.00 0.024 0.025 − 0.03 0.97 0.042 0.039 − 0.02 1.09
RSD (ξ	 + P	) – – – – – – – – – – – – –
(BAO+RSD) ξ	 + 747 0.017 0.018 − 0.01 1.01 0.024 0.025 − 0.03 0.99 0.042 0.039 − 0.02 1.09
(BAO+RSD) P	 – – – – – – – – – – – – –

Figure 10. Correlation coefficients between α⊥, α�, and fσ 8 for all methods
and models obtained from fits to 1000 EZMOCK realizations of the eBOSS
LRG+CMASS sample. The values of fσ 8 have been corrected with the
procedure described in Section 3.2.4.

on the scatter σ of the best-fitting values). The σ (Zi) are both closer
to 1.0, indicating better estimate of errors for the combined case. As
a conservative approach, the BAO errors on data (Section 5.1) are
therefore not corrected by this overestimation.

Full-shape RSD results (fourth to eighth rows in Table 11) also
show good agreement between σ x and 〈σ 〉 for all the parameters for
both models and both spaces. Fig. 11 shows the pull distributions
for both CLPT-GS and TNS models. The mean of the pull for α⊥
and fσ 8 is consistent with zero in all cases though the mean pull for
α� is negative, indicating a slightly skewed distribution. The σ (Zi)
values for CLPT-GS and TNS models are consistent with one for α⊥
and slightly different than one for α� and fσ 8. Their combination
(sixth row) with inverse variance weighing slightly compensates
for these differences, yielding better estimated errors, with σ (Zi)

closer to one for all three parameters. The full-shape measurements
in Fourier space (seventh row) show similar behaviour than the
ones in configuration space, with errors larger than measurements
in configuration space. This is due to the larger number of nuisance
parameters in the Fourier-space analysis and to the choice of scales
used in the Fourier-space fits (0.02 ≤ k ≤ 0.15 h Mpc−1), which do
not exactly translate to the range in separation used in our fits (25 <

r < 130 h−1 Mpc), and may contain less information on average. The
combined ξ	 + P	 full-shape results in the eighth row present smaller
dispersion on all parameters relative to each individual method. The
pull values indicating slightly overestimated errors, which we do not
attempt to correct.

The ninth and tenth rows of Table 11 show results of combining
BAO and full-shape RSD results for a given space, ξ	 or P	, while
fully accounting for their large covariance as described in Section 3.4.
We see that the scatter of α⊥ and α� is reduced by ∼20 and 30 per cent,
respectively, relative to their BAO-only analyses. For fσ 8 the scatter
of best-fitting values is the same as the full-shape-only analyses,
as expected (BAO only do not provide extra information on fσ 8).
The values of σ (Zi) for the combined results are consistent with
one for α⊥, α�, though for fσ 8 they are more than 5 per cent larger
than unity for both configuration and Fourier space. This would
indicate that our combination procedure from Section 3.4 produces
slightly underestimated errors for fσ 8. In Gil-Marı́n et al. (2020),
an alternative method was suggested to extract the consensus results
from BAO and RSD analysis: a simultaneous fit. Both BAO and
RSD models are fitted simultaneously to the concatenation of the
pre- and post-reconstruction data vectors. This fit requires the full
covariance matrix between pre- and post-reconstruction multipoles
and is estimated from 1000 EZMOCKS. Results of simultaneous
fits on mocks are shown in the eleventh row of Table 11 and are
noted ‘BAO×RSD P	’. These are to be compared with our usual
method of combining posteriors, noted ‘BAO+RSD’ and shown in
the tenth row. First, we see good agreement between the scatter
of best-fitting values of all three parameters between BAO×RSD
and BAO+RSD. However, the simultaneous fit overestimates the
errors in fσ 8 by 8 per cent, based on its σ (Zi) value. While in
theory the simultaneous fit is a better procedure, accounting for
all correlations, in practice we only use 1000 mocks to estimate a
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Figure 11. Normalized distributions of the pull for the α�, α⊥, and fσ 8

from fits of TNS and CLPT-GS models on EZMOCKS. The blue dashed lines
represent the centred normalized Gaussian distribution.

Figure 12. Best-fitting BAO model to the monopole (top) and
quadrupole (bottom) of the post-reconstruction correlation function of the
eBOSS+CMASS LRG sample. The legend displays the χ2 value of the fit.

larger covariance matrix with large off-diagonal terms. Therefore,
we cannot conclude from this test which method leads to better
estimated errors. We use BAO+RSD entries for the consensus
results.

The last two rows of Table 11 show statistics on the final consensus
results from the LRG sample when combining BAO and full shape
from both Fourier and configuration spaces. These results reflect the
full statistical power of the LRG sample. The excellent agreement
between the statistics of these two rows shows that the order of
combination does not impact results. The dispersion σ on α⊥ and α�

is reduced to 1.8 and 2.6 per cent, respectively, while we had 2.2 and

3.4 per cent for only BAO, and 2.0 and 3.2 per cent for only full shape.
The pull distributions for α⊥ and α� are consistent with a Gaussian
distribution. The scatter in fσ 8 is not reduced compared to individual
methods, which is expected since BAO does not add information
on this parameter, so the consensus error should be equal to the one
obtained from the full-shape fits. However, the σ (Zi) for fσ 8 indicates
that our consensus errors on this parameter might be underestimated
by 10 per cent. While this seems to be significant, this result can be a
consequence of the Gaussian assumption of all individual likelihoods
not holding for all realizations, or the combination procedure itself
might lead to underestimated errors (as seen with fσ 8 in the ninth
and tenth rows), though we would need more mocks to test these
hypotheses carefully.

For this work, we consider the underestimation on fσ 8 consensus
errors (last two rows of Table 11) as another source of systematic
error. The simplest correction to this underestimation is to scale the
estimated errors of fσ 8 in each realization by σ (Zi) = 1.09. We
proceed to apply this correction factor to the consensus fσ 8 errors
with our data sample. This factor is to be applied only to statistical
errors. In Section 5.3, we describe how we apply with this scaling in
the presence of systematic errors.

5 R ESULTS

We provide in this section the results of the BAO analysis, the
full-shape RSD analysis, and the combination of the two for the
eBOSS LRG sample. The analysis assumes an effective redshift for
the sample of zeff = 0.698.

5.1 Result from the BAO analysis

We present in Fig. 12 our best-fitting BAO model to the post-
reconstruction eBOSS LRG multipoles. The associated reduced chi-
squared is χ2/dof = 39/(40 − 9) = 1.26. By scaling the resulting α⊥
and α� by (DM/rd)fid and (DH/rd)fid, respectively (equations 7 and 8),
we obtain

DBAO,ξ	
=

(
DM/rd

DH/rd

)
=

(
17.86 ± 0.33

19.34 ± 0.54

)
(52)

and the covariance matrix is

DM/rd DH/rd

CBAO,ξ	
=

⎛
⎝1.11 × 10−1 −5.86 × 10−2

− 2.92 × 10−1

⎞
⎠ . (53)

The errors correspond to a BAO measurement at 1.9 per cent in the
transverse direction and 2.8 per cent in the radial direction, the best
constraints ever obtained from z > 0.6 galaxies. The correlation
coefficient between both parameters is −0.33.

Fig. 13 shows in blue the 68 and 95 per cent confidence contours in
the (DM/rd, DH/rd) space for the BAO measurement in configuration
space. Our best-fitting values are consistent within 1.26σ to the
prediction of a flat �CDM model given by Planck 2018 best-
fitting parameters (Planck Collaboration VI 2018b) assuming a χ2

distribution with 2 degrees of freedom. This measurement is also
in excellent agreement with the BAO analysis performed in Fourier
space (Gil-Marı́n et al. 2020), shown as red contours in Fig. 13.
Since Fourier- and configuration-space analyses use the same data,
final measurements are highly correlated. Based on measurements
of the same 1000 realizations of EZMOCKS, we obtain correlation
coefficients of 0.86 for both DM/rd and DH/rd. As these correlations
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BAO and RSD analysis from eBOSS LRG 755

Figure 13. Constraints on DM/rd and DH/rd at zeff = 0.698 from the BAO
analysis of the eBOSS LRG sample post-reconstruction. Contours show 68
and 95 per cent confidence regions for the configuration-space analysis in
blue (this work), the Fourier-space analysis from Gil-Marı́n et al. (2020) in
salmon, and the consensus BAO result in grey. The expected values in a flat
�CDM model with Planck 2018 best-fitting parameters, shown by the black
star, lie at 1.26σ from our best-fitting parameters of the configuration-space
analysis.

Table 12. The BAO measurement with the DR16 eBOSS+CMASS LRG
data set using the standard pipeline described in Section 3.1 and other analysis
choices. Note that for cases with different �fid

m , we scale the obtained α⊥, α�

by the distance ratios in order to make them comparable with the case where
�fid

m = 0.31.

case α⊥ α� χ2/d.o.f.

Baseline 1.024 ± 0.019 0.956 ± 0.023 39.0/(40 − 9)
wsyswcpwnoz = 1 1.022 ± 0.018 0.954 ± 0.023 30.1/(40 − 9)
�⊥, �� free 1.027 ± 0.016 0.947 ± 0.019 31.9/(40 − 11)
�⊥, �� prior 1.025 ± 0.017 0.952 ± 0.021 36.2/(40 − 11)
+ξ4 1.031 ± 0.019 0.949 ± 0.024 53.5/(60 − 12)
�fid

m = 0.27 1.026 ± 0.020 0.950 ± 0.023 33.3/(40 − 9)
�fid

m = 0.35 1.026 ± 0.019 0.951 ± 0.022 39.6/(40 − 9)
DR12 method 1.023 ± 0.019 0.955 ± 0.024 34.5/(40 − 10)

Pre-recon 1.035 ± 0.025 0.957 ± 0.035 42.0/(40 − 9)
NGC only 1.038 ± 0.024 0.943 ± 0.024 42.3/(40 − 9)
SGC only 0.993 ± 0.032 0.982 ± 0.070 44.5/(40 − 9)

are not unity, there is some gain, in combining both measurements.
Using the methods presented in Section 3.4, we compute the
combined BAO measurements between Fourier and configuration
space. The result is displayed as grey contours in Fig. 13 and in

Table 14 as ‘BAO ξ	 + P	’. The error of the combined result is only
2 per cent smaller than the error of the configuration-space analysis
alone.

Table 12 shows the impact on the BAO results in configuration
space of different modifications in the methodology around the
baseline configuration. The middle part of the table shows that our
result is reasonably insensitive to some of these changes. Setting all
systematic weights to unity causes only mild shifts to best-fitting
parameters while estimated errors are unchanged. Removing the
corrections by weights significantly distorts the broad shape of the
correlation function. The fact that our BAO results are insensitive
to these corrections proves that practically all information comes
uniquely from the BAO peak and not from the full shape of the
correlation function. This is a strong robustness validation of our
BAO measurement. When leaving BAO damping parameters (�⊥,
��) free or constrained within a Gaussian prior, the best-fitting
values barely change while their errors are smaller than our baseline
analysis. As observed on mocks, some realizations present sharper
peaks due to noise and a sharper model could be considered as a
better fit. However, we prefer to be conservative and not allow for
this artificial increase in precision in our BAO analysis. Including
the hexadecapole or changing the fiducial cosmology shifts alphas
by less than one error bar, which is consistent to what is observed
in mocks. We performed the BAO fits using the methods used in
the BOSS DR12 analysis (Alam et al. 2017), which gives results in
excellent agreement with our baseline method, with a slight better
χ2. In the third part of Table 12, we present the pre-reconstruction
result with similar best-fitting α⊥ and α� but with errors larger
by factors of 1.3 and 1.5, which is typical as seen in mocks
(Fig. 5). Pre-reconstruction BAO-only fits using our methodology
show biases of about 1 per cent in the mocks; therefore, we do
not recommend using pre-reconstruction results without accounting
for these biases. The NGC and SGC results are two independent
samples and their best-fitting α⊥ and α� are 0.25 and 0.53σ from each
other, respectively, therefore not representing a significant difference
among hemispheres.

5.2 Results from the full-shape RSD analysis

We present in Fig. 14 the best-fitting TNS (red) and CLPT-GS (blue)
RSD models to the pre-reconstruction eBOSS LRG multipoles. The
associated reduced chi-squared values are χ2/dof = 85.2/(65 − 7) =
1.47 for TNS and χ2/dof = 83.7/(63 − 6) = 1.47 for CLPT-GS.
While these values are unlikely explained by statistical fluctuations,
we verified that the values reported for the χ2 for both models are
within EZMOCK χ2 distributions. Both models perform similarly on

Figure 14. Best-fitting full-shape models to the eBOSS+CMASS multipoles. The left-hand, middle, and right-hand panels display mono, quad, and
hexadecapole, respectively. The monopole is scaled by r2 while the other two are scaled by r. The CLPT-GS model is shown by the blue dashed line
while the TNS model is shown by the red solid line. Note the baseline ranges used for each model are slightly different (see Fig. 6).
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data, but some differences are visible in Fig. 14. The TNS model
produces a slightly sharper BAO peak than the CLPT-GS model,
clearly visible in the monopole. This is due the fact that, intrinsically,
the CLPT-GS model tends to predict a slighter higher BAO damping
compared to Eulerian perturbation theory, as implemented here in the
TNS model with RESPRESSO prescription. The CLPT-GS model
has a slightly higher hexadecapole amplitude than the TNS model
but both models seem to underestimate the hexadecapole amplitude
below 35 h−1 Mpc by 1σ of the statistical uncertainties of the data.
This underestimation in the amplitude of the hexadecapole is also
present in the mocks for both the NSERIES and EZMOCKS and was
already reported in Icaza-Lizaola et al. (2020) explaining the relative
high χ2 of the data.

Table 13 shows the impact of different modifications in the
methodology around the baseline configuration. First, if we change
the range of scales used in the hexadecapole by changing rmin

from 25 to 35 h−1 Mpc. We see a decrease of the reduced chi-
squared as we remove these scales from the hexadecapole, which
are underestimated by the models. Removing those scales impact
the measured cosmological parameters, particularly α�, which is
shifted by about 1σ . We performed the same cuts on the analysis of
EZMOCKS, finding that such a shift lies at about 2.3σ of the shifts
observed in 1000 mocks (see details in Appendix A). The NGC
and SGC fields are two independent samples and we find that their
individual best-fitting α⊥ and α�, and fσ 8 are 0.7σ , 0.5σ , and 0.3σ

from each other, respectively, for CLPT-GS and 0.7σ , 0.8σ , and 0.1σ

for TNS, which is not a significant difference.
The marginal posteriors on α⊥, α�, and fσ 8 and associated

68 per cent and 95 per cent confidence contours are shown in Fig. 15.
The posteriors obtained from both models are in good agreement.
Entries denoted as ‘RSD ξ	 CLPT-GS’ and ‘RSD ξ	 TNS’ in Table 14
give the best-fitting parameters and 1σ error (including systematic
errors), translated into DM/rd, DH/rd, and fσ 8. We find an excellent
agreement in the best-fitting parameters and errors between the two
RSD models, as expected from the posteriors. The full posteriors
including all nuisance parameters can be found in Appendix C.

We combine the results from our two RSD models using a
weighted average based on the individual covariance matrices (see
Section 3.4). The combined measurement is indicated by ‘RSD ξ	’ in
Table 14 and shown with dashed contours in Fig. 15. Central values
and errors of the combined result fall approximately in between the
values of each individual measurement.

The combined best-fitting parameters and covariance matrix of the
full-shape RSD analysis in configuration space, including systematic
errors, are

DRSD,ξ	
=

⎛
⎜⎜⎝

DM/rd

DH/rd

f σ8

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

17.42 ± 0.40

20.46 ± 0.70

0.460 ± 0.050

⎞
⎟⎟⎠ (54)

DM/rd DH/rd f σ8

CRSD,ξ	
=

⎛
⎜⎜⎜⎝

1.59 × 10−1 6.28 × 10−3 6.13 × 10−3

− 4.88 × 10−1 −4.83 × 10−3

− − 2.46 × 10−3

⎞
⎟⎟⎟⎠ . (55)

This corresponds to 2.3 and 3.4 per cent measurements of the trans-
verse and radial dilation parameters and a 11 per cent measurement
of the growth rate of structure times σ 8. The errors on DM/rd and
DH/rd are slightly larger than the ones from the BAO-only analysis,
as expected, but the correlation coefficient between them is reduced
from −0.33 to 0.02. This happens because information on dilation

parameters also comes from the full shape of the correlation function,
rather than just the BAO peak. For instance, the correlation coefficient
between fσ 8 and DM/rd is 0.31 and between fσ 8 and DH/rd is
−0.14.Fig. 16 displays the constrains of our configuration space RSD
analysis in blue and the equivalent ones in Fourier space in saumon,
both in very good agreement. The Fourier space constraints have
slightly larger error bars than the configuration space ones, consistent
with the results on mock catalogs (Table 11). Grey contours in
Fig. 16 show the constraints of the combination of Fourier and
configuration space analyses. They are displayed in the 8th row of
Table 14.

5.3 Consensus results

We present in Fig. 17 the final results of this work obtained by
the combination of BAO and full-shape RSD analyses in both
configuration and Fourier spaces. Accounting for all sources of
systematic error discussed in Sections 4.2 and 4.3, the best-fitting
parameters and associated covariance matrix are

DLRG =

⎛
⎜⎜⎝

DM/rd

DH/rd

f σ8

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

17.65 ± 0.30

19.77 ± 0.47

0.473 ± 0.044

⎞
⎟⎟⎠ (56)

DM/rd DH/rd f σ8

CLRG =

⎛
⎜⎜⎜⎝

9.11 × 10−2 −3.38 × 10−2 2.47 × 10−3

− 2.20 × 10−1 −3.61 × 10−3

− − 1.96 × 10−3

⎞
⎟⎟⎟⎠ , (57)

which translate into 1.7 and 2.4 per cent measurements of DM/rd

and DH/rd, respectively. The correlation between these two is
−24 per cent. The error on fσ 8 is 9.4 per cent, which is the most
precise measurement to date in this redshift range. We note that this
final measurement is not sensitive to the order of combinations, as
seen in the second panel of Fig. 17 and in the last row of Table 14.
Those measurements agree well with the predictions from Planck
Collaboration I (2018a), which predict at this redshift: 17.48, 20.23,
and 0.462, respectively, for a flat �CDM model assuming that gravity
is described by General Relativity. These values are shown as stars
in Fig. 17.

Systematic errors originating from observational effects, mod-
elling, and combination methods were carefully included in our
measurements and are responsible for inflating final errors by 6,
13, and 20 per cent, respectively, on DM/rd, DH/rd, and fσ 8. In
Section 4.3, we found that our statistical errors on the consensus
fσ 8 were slightly underestimated. To apply this correction on
the data consensus, we proceed as follows. First, we compute
consensus with and without accounting for systematic errors from
Table 10. The difference between their error matrices gives us the
additive systematic matrix. Then, we scale the statistical errors
on fσ 8 by 1.09 and we add back the additive systematic ma-
trix. This procedure yields the results reported in equations (56)
and (57).

5.4 Comparison with previous results

Our final consensus result for the DR16 LRG sample is shown in
equations (56) and (57), and used a total of 402 052 (weighted)
galaxies over 9463 deg2 (with 4242 deg2 observed by eBOSS).
Bautista et al. (2018) and Icaza-Lizaola et al. (2020) describe,
respectively, the BAO and full-shape RSD measurements using the
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Table 13. The full-shape measurements with the DR16 eBOSS+CMASS LRG data set from our baseline analysis described in
Section 3.2 followed by results from other analysis choices. The presented errors are purely statistical and do not include systematic
errors.

Model Analysis α⊥ α� fσ 8 χ2/d.o.f.

CLPT-GS baseline 0.997 ± 0.020 1.013 ± 0.028 0.471 ± 0.045 83.7/(63 − 6) = 1.47
CLPT-GS rmin = 35 h−1 Mpc for ξ4 1.017 ± 0.022 0.971 ± 0.031 0.499 ± 0.046 79.3/(61 − 6) = 1.44
CLPT-GS NGC only 1.015 ± 0.025 1.009 ± 0.031 0.464 ± 0.055 81.1/(63 − 6) = 1.40
CLPT-GS SGC only 0.985 ± 0.036 1.041 ± 0.062 0.439 ± 0.078 71.3/(63 − 6) = 1.25
TNS baseline 1.001 ± 0.018 1.013 ± 0.031 0.451 ± 0.040 85.2/(65 − 7) = 1.47
TNS rmin = 35 h−1 Mpc for ξ4 1.013 ± 0.016 0.976 ± 0.027 0.458 ± 0.036 73.7/(63 − 7) = 1.32
TNS Without ξ4 1.019 ± 0.019 0.963 ± 0.035 0.472 ± 0.044 50.1/(44 − 7) = 1.35
TNS NGC only 1.024 ± 0.029 1.013 ± 0.036 0.436 ± 0.053 80.6/(65 − 7) = 1.39
TNS SGC only 0.993 ± 0.034 1.076 ± 0.070 0.423 ± 0.076 69.1/(65 − 7) = 1.19

Table 14. Summary table with results from this work, from Gil-Marı́n et al.
(2020), and their combination. All reported errors include the systematic
component. The effective redshift of all measurements is zeff = 0.698.

Method DM/rd DH/rd fσ 8

BAO ξ	 17.86 ± 0.33 19.34 ± 0.54 –
BAO P	 17.86 ± 0.37 19.30 ± 0.56 –
BAO ξ	 + P	 17.86 ± 0.33 19.33 ± 0.53 –

RSD ξ	 CLPT 17.39 ± 0.43 20.46 ± 0.68 0.471 ± 0.052
RSD ξ	 TNS 17.45 ± 0.38 20.45 ± 0.72 0.451 ± 0.047
RSD ξ	 17.42 ± 0.40 20.46 ± 0.70 0.460 ± 0.050
RSD P	 17.49 ± 0.52 20.18 ± 0.78 0.454 ± 0.046
RSD ξ	 + P	 17.40 ± 0.39 20.37 ± 0.68 0.449 ± 0.044

BAO+RSD ξ	 17.65 ± 0.31 19.81 ± 0.47 0.483 ± 0.047
BAO+RSD P	 17.72 ± 0.34 19.58 ± 0.50 0.474 ± 0.042

BAO (ξ	 + P	) + 17.65 ± 0.30 19.77 ± 0.47 0.473 ± 0.044
RSD (ξ	 + P	) – – –
(BAO+RSD) ξ	

+
17.64 ± 0.30 19.78 ± 0.46 0.470 ± 0.044

(BAO+RSD) P	 – – –

DR14 LRG sample, which contains 126 557 galaxies over 1844 deg2.
In the DR14 sample, CMASS galaxies outside of the eBOSS footprint
were not used. Because of that, the effective redshift of the DR14
measurements is slightly higher, at zeff = 0.72.

Bautista et al. (2018) reported a 2.5 per cent measurement of
the ratio of the spherically averaged distance to the sound horizon
scale, DV(z = 0.72)/rd = 16.08+0.41

−0.40. This result was obtained with
isotropic fits to the monopole of the post-reconstruction correlation
function. The statistical power of the DR14 sample is relatively low
for anisotropic BAO constraints and has large non-Gaussian errors.
Converting our DR16 anisotropic measurement of equation (56)
into spherically averaged distances, we obtain: DV(z = 0.698)/rd =
16.26 ± 0.20, which is well within 1σ from the DR14 value. The
error on DV has reduced by a factor of 2, slightly more than the
square root of the increase in effective volume, which gives a factor
of

√
Veff,DR16/Veff,DR14 = √

2.73/0.9 ∼ 1.74. Note that in DR16 we
combine BAO and full-shape analysis in Fourier and configuration
spaces, which maximizes the amount of extracted cosmological
information.

Icaza-Lizaola et al. (2020) presented the full-shape RSD analysis
in the DR14 LRG sample in configuration space, yielding fσ 8 =
0.454 ± 0.134, DM/rd = 17.07 ± 1.55, and DH/rd = 19.17 ± 2.84.
All values are consistent within 1σ of DR16 results, even though
errors for DR14 are quite large given the even lower significance

Figure 15. Comparison between the TNS and CLPT-GS final posterior
distributions over the three main parameters using the DR16 data. The
distributions are in good agreement for the two models. The vertical dashed
lines on the 1D distributions refer to the mean. Dashed line contours
show the combined result from the two models, assuming Gaussian er-
rors. The full posteriors including nuisance parameters can be found in
Appendix C.

of the BAO peak in the pre-reconstruction multipoles. The error on
the growth rate of structure fσ 8 reduces by a factor of 3 in DR16
compared to DR14, clearly benefiting from the larger sample and the
combination with post-reconstruction BAO results that help breaking
model degeneracies.

Our DR16 LRG results at 0.6 < z < 1.0 supersede the highest
redshift results of the DR12 BOSS sample at 0.5 < z < 0.75, which
has an effective redshift of zeff = 0.61. Alam et al. (2017) report
1.4, 2.2, and 7.8 per cent measurements of DM/rd, DH/rd, and fσ 8,
respectively. While the errors in the high-redshift bin are slightly
smaller than our DR16 result, it has a large correlation with the
intermediate-redshift bin at 0.4 < z < 0.6. Our DR16 measurement
is thus virtually independent of the first two DR12 BOSS redshift
bins, and has effectively more weight in the final joint cosmolog-
ical constraints. The cosmological implications of our DR16 LRG
measurements are fully described in eBOSS Collaboration (2020).
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Figure 16. Constraints on DM/rd, DH/rd, and fσ 8 zeff = 0.698 from the full-
shape RSD analysis of the completed eBOSS LRG sample pre-reconstruction.
Contours show 68 and 95 per cent confidence regions for the analyses in
configuration space (blue), Fourier space (red), and the combined (grey). The
expected values in a flat �CDM model with best-fitting parameters from
Planck 2018 results are indicated as a black star.

6 C O N C L U S I O N

This work presented the cosmological analysis of the configuration-
space anisotropic clustering in the DR16 eBOSS LRG sample, which
is used for the final cosmological analysis of the completed eBOSS
survey. We extracted and model the BAO and RSD features from
the galaxy two-point correlation function monopole, quadrupole,
and hexadecapole moments. We used the reconstruction technique
to sharpen the BAO peak and mitigate associated non-linearities.
The pre- and post-reconstruction multipole moments were used
to perform a full-shape RSD analysis and a BAO-only analysis,
respectively. In the RSD analysis, we considered two different RSD
models, whose results were later combined to increase the robustness
and accuracy of the measurements. The combination of the BAO-only
and full-shape RSD analyses allowed us to derive joint constraints on
the three cosmological parameter combinations: DH(z)/rd, DM(z)/rd,
and fσ 8(z). This analysis is complementary to that performed in
Fourier space and presented in Gil-Marin et al. (2020). We found an
excellent agreement between the inferred parameters in both spaces,
both for BAO-only and full-shape RSD analyses. After combining the
results with those from that in Fourier space, we obtain the following
final constraints: DM/rd = 17.65 ± 0.30, DH/rd = 19.77 ± 0.47, and
fσ 8 = 0.473 ± 0.044, which are currently the most accurate at zeff =
0.698.

The adopted methodology has been extensively tested on a set
of realistic simulations and shown to be very robust against sys-
tematics. In particular, we investigated different potential sources of
systematic errors: inaccuracy in the modelling of both BAO/RSD and
intrinsic galaxy clustering, arbitrary choice of reference cosmology,
and systematic errors from observational effects such as redshift
failures, fibre collision, incompleteness, or the RIC. We quantified
the associated systematic error contributions and included them on
the final cosmological parameter constraints. Overall, we found that
the total systematic error inflates errors by 6, 13, and 20 per cent for
α⊥, α�, and fσ 8.

Figure 17. Final measurements of DM/rd, DH/rd, fσ 8 from the completed
eBOSS LRG sample at zeff = 0.698. The top and bottom panels show two
possible procedures for obtaining the final result. The grey contours show the
final results, which are virtually the same in both panels (two bottom lines in
Table 14). The black star indicates the prediction in a flat �CDM model with
parameters from Planck 2018 results.

The cosmological parameters inferred from the DR16 eBOSS
LRG sample are in good agreement with the predictions from
General Relativity in a flat �CDM cosmological model with pa-
rameters set to Planck 2018 results. These measurements com-
plement those obtained from the other eBOSS tracers (de Mat-
tia et al. 2020; du Mas des Bourboux et al. 2020; Hou et al.
2020; Neveux & Burtin 2020; Raichoor et al. 2020). The full
cosmological interpretation of all eBOSS tracer results combined
with previous BOSS results is presented in eBOSS Collaboration
(2020).

Future large spectroscopic surveys such as DESI or Euclid will
probe much larger volumes of the Universe. This will allow reducing
the statistical errors on the cosmological parameters considerably, at
the per cent level or below. For those, it will be crucial to control
the level of systematics at an extremely low level. This is today a

MNRAS 500, 736–762 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/1/736/5907692 by guest on 25 August 2022



BAO and RSD analysis from eBOSS LRG 759

challenge and the work presented here has shown the current state-
of-the-art methodology, which will have to be further developed
and improved in view of the optimal exploitation of next-generation
surveys.
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Ávila S. et al., 2020, MNRAS, in press, preprint (arXiv:2007.09012), ,
Bautista J. E. et al., 2017, A&A, 603, A12
Bautista J. E. et al., 2018, ApJ, 863, 110
Bel J., Pezzotta A., Carbone C., Sefusatti E., Guzzo L., 2019, A&A, 622,

A109
Bernal J. L., Smith T. L., Boddy K. K., Kamionkowski M., 2020, preprint

(astro-ph/2004.07263)
Beutler F. et al., 2011, MNRAS, 416, 3017
Beutler F. et al., 2012, MNRAS, 423, 3430
Beutler F. et al., 2017, MNRAS, 466, 2242
Bianchi D., Percival W. J., 2017, MNRAS, 472, 1106
Blake C. et al., 2011, MNRAS, 415, 2876
Blanton M. R. et al., 2017, AJ, 154, 28
Burden A., Percival W. J., Manera M., Cuesta A. J., Vargas Magana M., Ho

S., 2014, MNRAS, 445, 3152
Burden A., Percival W. J., Howlett C., 2015, MNRAS, 453, 456
Carlson J., Reid B., White M., 2013, MNRAS, 429, 1674
Carter P., Beutler F., Percival W. J., DeRose J., Wechsler R. H., Zhao C.,

2020, MNRAS, 494, 2076
Chan K. C., Scoccimarro R., Sheth R. K., 2012, Phys. Rev. D, 85, 083509
Chuang C.-H., Kitaura F.-S., Prada F., Zhao C., Yepes G., 2015, MNRAS,

446, 2621
Clifton T., Ferreira P. G., Padilla A., Skordis C., 2012, Phys. Rep., 513, 1
Cole S. et al., 2005, MNRAS, 362, 505
Dawson K. S. et al., 2013, AJ, 145, 10
Dawson K. S. et al., 2016, AJ, 151, 44
de Mattia A. A. R. et al., 2020, preprint (arXiv:2007.09008),
de la Torre S., Guzzo L., 2012, MNRAS, 427, 327
de la Torre S. et al., 2017, A&A, 608, A44
de Mattia A., Ruhlmann-Kleider V., 2019, JCAP, 8, 036
du Mas des Bourboux H. et al., 2017, A&A, 608, A130
du Mas des Bourboux H. J. R. et al., 2020, ApJ, 901, 153
eBOSS Collaboration, 2020, preprint (arXiv:2007.08991)
Eisenstein D. J., Hu W., Tegmark M., 1998, ApJ, 504, L57
Eisenstein D. J. et al., 2005, ApJ, 633, 560
Eisenstein D. J. et al., 2011, AJ, 142, 72
Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426, 23
Ferreira P. G., 2019, ARA&A, 57, 335
Gil-Marı́n H. et al., 2018, MNRAS, 477, 1604
Gil-Marı́n H. et al., 2020, MNRAS, 498, 2492
Grieb J. N. et al., 2017, MNRAS, 467, 2085
Gunn J. E. et al., 2006, AJ, 131, 2332
Guzzo L. et al., 2008, Nature, 451, 541
Hamilton A. J. S., 2000, MNRAS, 312, 257
Hartlap J., Simon P., Schneider P., 2007, A&A, 464, 399
Hearin A. P., Watson D. F., van den Bosch F. C., 2015, MNRAS, 452, 1958

MNRAS 500, 736–762 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/1/736/5907692 by guest on 25 August 2022

http://www.sdss.org
https://sas.sdss.org/
http://dx.doi.org/10.3847/1538-4365/aa9e8a
http://dx.doi.org/ 10.3847/1538-4365/ab929e 
http://dx.doi.org/10.1093/mnras/stx721
http://dx.doi.org/10.3847/1538-4365/aa8992
http://dx.doi.org/10.1038/281358a0
https://arxiv.org/abs/2007.09009
http://dx.doi.org/10.1093/mnras/stt2206
http://dx.doi.org/10.1088/1475-7516/2014/08/056
http://dx.doi.org/10.1088/1475-7516/2017/11/054
http://dx.doi.org/10.1093/mnras/stx2630
https://arxiv.org/abs/2007.09012
http://dx.doi.org/10.1051/0004-6361/201730533
http://dx.doi.org/10.3847/1538-4357/aacea5
http://dx.doi.org/10.1051/0004-6361/201834513
https://arxiv.org/abs/2004.07263
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21136.x
http://dx.doi.org/10.1093/mnras/stw3298
http://dx.doi.org/10.1093/mnras/stx2053
http://dx.doi.org/10.1111/j.1365-2966.2011.18903.x
http://dx.doi.org/10.3847/1538-3881/aa7567
http://dx.doi.org/10.1093/mnras/stu1965
http://dx.doi.org/10.1093/mnras/stv1581
http://dx.doi.org/10.1093/mnras/sts457
http://dx.doi.org/ 10.1093/mnras/staa761 
http://dx.doi.org/10.1103/PhysRevD.85.083509
http://dx.doi.org/10.1093/mnras/stu2301
http://dx.doi.org/10.1016/j.physrep.2012.01.001
http://dx.doi.org/10.1111/j.1365-2966.2005.09318.x
http://dx.doi.org/10.1088/0004-6256/145/1/10
http://dx.doi.org/10.3847/0004-6256/151/2/44
https://arxiv.org/abs/2007.09008
http://dx.doi.org/10.1111/j.1365-2966.2012.21824.x
http://dx.doi.org/10.1051/0004-6361/201630276
http://dx.doi.org/ 10.1088/1475-7516/2019/08/036
http://dx.doi.org/10.1051/0004-6361/201731731
https://arxiv.org/abs/2007.08991
http://dx.doi.org/10.1086/311582
http://dx.doi.org/10.1086/466512
http://dx.doi.org/10.1088/0004-6256/142/3/72
http://dx.doi.org/10.1086/174036
http://dx.doi.org/10.1146/annurev-astro-091918-104423
http://dx.doi.org/10.1093/mnras/sty453
http://dx.doi.org/10.1093/mnras/stw3384
http://dx.doi.org/10.1086/500975
http://dx.doi.org/10.1038/nature06555
http://dx.doi.org/10.1046/j.1365-8711.2000.03071.x
http://dx.doi.org/10.1051/0004-6361:20066170
http://dx.doi.org/10.1093/mnras/stv1358


760 J. E. Bautista et al.

Heitmann K. et al., 2019, ApJS, 245, 16
Hou J. et al., 2018, MNRAS, 480, 2521
Hou J. A. S. et al., 2020, preprint (arXiv:2007.08998)
Howlett C., Ross A. J., Samushia L., Percival W. J., Manera M., 2015,

MNRAS, 449, 848
Hutchinson T. A. et al., 2016, AJ, 152, 205
Icaza-Lizaola M. et al., 2020, MNRAS, 492, 4189
Kaiser N., 1987, MNRAS, 227, 1
Kazin E. A. et al., 2014, MNRAS, 441, 3524
Kirkby D. et al., 2013, J. Cosmol. Astropart. Phys., 2013, 024
Kitaura F.-S., Yepes G., Prada F., 2014, MNRAS, 439, L21
Kong H. et al., 2020, MNRAS, in press, preprint (arXiv:2007.08992),
Landy S. D., Szalay A. S., 1993, ApJ, 412, 64
Lang D., Hogg D. W., Schlegel D. J., 2014, preprint (arXiv:1410.7397)
Leauthaud A., Tinker J., Behroozi P. S., Busha M. T., Wechsler R. H., 2011,

ApJ, 738, 45
Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
Lin S. et al., 2020, MNRAS, 498, 5251
Lyke B. et al., 2020, ApJS, 250, 8
McDonald P., Roy A., 2009, J. Cosmol. Astropart. Phys., 08, 020
Matsubara T., 2008, Phys. Rev. D, 77, 063530
Matsubara T., 2011, Phys. Rev. D, 83, 083518
Mohammad F. et al., 2020, MNRAS, 498, 128
Neveux R., Burtin E. A. E., 2020, MNRAS, in press, https://ui.adsabs.harvar

d.edu/abs/2020MNRAS.498..128M/abstract,
Nishimichi T., Bernardeau F., Taruya A., 2017, Phys. Rev. D, 96, 123515
Okumura T. et al., 2016, PASJ, 68, 38
Percival W. J. et al., 2001, MNRAS, 327, 1297
Percival W. J. et al., 2010, MNRAS, 401, 2148
Percival W. J. et al., 2014, MNRAS, 439, 2531
Pezzotta A. et al., 2017, A&A, 604, A33
Planck Collaboration I, 2018a, A&A, 641, A1
Planck Collaboration VI, 2018b, A&A, 641, A6
Prakash A. et al., 2016, ApJS, 224, 34
Raichoor A. et al., 2020, preprint (arXiv:2007.09007)
Reid B. A., White M., 2011, MNRAS, 417, 1913
Ross A. J., Samushia L., Howlett C., Percival W. J., Burden A., Manera M.,

2015a, MNRAS, 449, 835
Ross A. J., Percival W. J., Manera M., 2015b, MNRAS, 451, 1331
Ross A. J. et al., 2017, MNRAS, 464, 1168
Ross A. et al., 2020, MNRAS, 498, 2354
Rossi G. et al., 2020, preprint (arXiv:2007.09002)
Ruggeri R., Percival W. J., Gil-Marı́n H., Zhu F., Zhao G.-B., Wang Y., 2017,

MNRAS, 464, 2698
Ruggeri R. et al., 2019, MNRAS, 483, 3878
Saito S., Baldauf T., Vlah Z., Seljak U., Okumura T., McDonald P., 2014,

Phys. Rev. D, 90, 123522
Samushia L., Percival W. J., Raccanelli A., 2012, MNRAS, 420, 2102
Sánchez A. G., 2020, preprint (astro-ph/2002.07829)
Sánchez A. G. et al., 2017, MNRAS, 464, 1640
Satpathy S. et al., 2017, MNRAS, 469, 1369
Scoccimarro R., Zaldarriaga M., Hui L., 1999, ApJ, 527, 1
Seo H.-J., Beutler F., Ross A. J., Saito S., 2016, MNRAS, 460, 2453
Simonovic M., Baldauf T., Zaldarriaga M., Carrasco J. J., Kollmeier J. A.,

2018, J. Cosmol. Astropart. Phys., 04, 030
Smee S. A. et al., 2013, AJ, 146, 32
Smith A. et al., 2020, preprint (arXiv:2002.07829)
Song Y.-S., Percival W. J., 2009, J. Cosmol. Astropart. Phys., 2009, 004
Taruya A., Nishimichi T., Saito S., 2010, Phys. Rev. D, 82, 063522
Tinker J. L., Leauthaud A., Bundy K., George M. R., Behroozi P., Massey R.,

Rhodes J., Wechsler R. H., 2013, ApJ, 778, 93
Wang L., Reid B., White M., 2014, MNRAS, 437, 588
Wang D. et al., 2018, MNRAS, 477, 1528
Weinberg D. H., Mortonson M. J., Eisenstein D. J., Hirata C., Riess A. G.,

Rozo E., 2013, Phys. Rep., 530, 87
Xu X., Cuesta A. J., Padmanabhan N., Eisenstein D. J., McBride C. K., 2013,

MNRAS, 431, 2834
Zarrouk P. et al., 2018, MNRAS, 477, 1639
Zhai Z. et al., 2017a, ApJ, 848, 76

Zhai Z., Blanton M., Slosar A., Tinker J., 2017b, ApJ, 850, 183
Zhao G.-B. et al., 2019, MNRAS, 482, 3497
Zhao C. et al., 2020, preprint (arXiv:2007.08997)
Zheng Z., Coil A. L., Zehavi I., 2007, ApJ, 667, 760
Zhu F. et al., 2018, MNRAS, 480, 1096

APPENDI X A : IMPAC T O F SCALES USED
F RO M T H E H E X A D E C A P O L E

We present in Fig. A1 the distribution in the EZMOCKS of the
difference on parameter constraints and reduced χ2 induced by
including or not the smallest scales of the hexadecapole in the fit.
We find that the distribution for each of the parameters is centred on
zero with a standard deviation of 0.006, 0.015, and 0.01 for α⊥, α�,
and fσ 8, respectively, which correspond to 0.3, 0.4, and 0.2 per cent
of the uncertainties on the RSD TNS measurements in the data. This
demonstrates that cosmological constraints are stable to the choice
of the truncation scale for the hexadecapole. The vertical line shows
the corresponding shift in the data. This shift remains within 1σ

of the EZMOCKS distribution for fσ 8 and reaches up to 2.3σ for
α�. For the reduced χ2, the observed difference is on the edge of the
EZMOCKS distribution. Even if few EZMOCKS realizations exhibit the
same variation as in the data, the observed shifts are still statistically
consistent.

Fig. A2 displays the difference on the geometrical distortion
parameters between the BAO post-reconstruction and RSD TNS
measurements in the EZMOCKS. Similarly as in the previous figure,
the vertical line shows the difference found in the data. While
the differences for α⊥ and α� are smaller when the smallest
scales of the hexadecapole are removed from the RSD fits, both
measurements seem to be consistent with BAO post-reconstruction
measurements similarly as in the mocks. Both distributions are
centred on zero with a standard deviation between BAO and RSD

Figure A1. Variation of the cosmological parameters and the reduced chi-
squared as a function of the truncation scale of the hexadecapole for the TNS
model. The normalized distributions correspond to 1000 EZMOCKS while the
vertical lines correspond to the shift for the data.

Figure A2. Absolute difference between TNS and BAO post-recon con-
straint on the alphas. The normalized distributions correspond to 1000
EZMOCKS, while the two vertical lines correspond to the two different
truncation scales for the hexadecapole.
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measurements of 0.04 and 0.06 for α⊥ and α�, respectively. This
shows that as expected RSD measurements provide a more uncertain
determination of the geometrical distortion parameters than BAO
measurements.

APPENDIX B: IMPAC T O F FIBRE C OLLISI ON
C O R R E C T I O N SC H E M E

Mohammad et al. (2020) present an improved correction scheme
for fibre collisions for the eBOSS LRG sample but without CMASS
galaxies. It is based on the method of Bianchi & Percival (2017),
commonly referred to as the pair inverse probability (PIP) weighting.
We performed fits of our BAO and full-shape RSD models to the
multipoles for this restricted sample. Note that this sample is about
two-thirds of the full sample used in our work. Table B1 compares the

results on α⊥, α�, and fσ 8 obtained with our baseline fibre collision
correction to those using PIP weights. We see that the changes are
small compared to the statistical errors for all methods and models.
This is expected since PIP weights mostly impact the clustering on
the smallest scales not used in our analysis (r < 20 h−1 Mpc), while
the baseline correction already well accounts for large-scale effects.

APPENDI X C : FULL PARAMETER SPAC E
POSTERI OR D I STRI BUTI ONS

For the sake of readability, we do not present the full parameter space
posterior distribution of our chains in the main text. However, it could
be of interest to see the full information. Due to some differences
between parameters in the two models we use, we separately present
the full posterior distributions for TNS and CLPT-GS in Figs C1 and
C2, respectively.

Table B1. Impact of the choice of fibre collision correction scheme on the recovered α⊥,
α�, and fσ 8 parameters in the eBOSS LRG sample without CMASS galaxies.

Model Par Base PIP

α⊥ 1.189 ± 0.062 1.199 ± 0.070
BAO α� 0.850 ± 0.071 0.843 ± 0.074

χ2/dof 47.7/48 = 0.99 51.7/48 = 1.08

α⊥ 1.009 ± 0.046 0.980 ± 0.044
CLPT-GS α� 1.027 ± 0.056 1.035 ± 0.055

fσ 8 0.473 ± 0.066 0.446 ± 0.066
χ2/dof 67.8/54 = 1.26 71.5/54 = 1.32

α⊥ 1.024 ± 0.044 1.001 ± 0.041
TNS α� 1.038 ± 0.050 1.032 ± 0.046

fσ 8 0.451 ± 0.068 0.420 ± 0.065
χ2/dof 71.1/58 = 1.23 74.8/58 = 1.29

Figure C1. Full posterior distribution of the MCMC chain for the TNS model.
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Figure C2. Full posterior distribution of the MCMC chain for the CLPT-GS model.
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