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ABSTRACT
We present the anisotropic clustering of emission-line galaxies (ELGs) from the Sloan Digital Sky Survey IV (SDSS-IV) extended
Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16). Our sample is composed of 173 736 ELGs covering
an area of 1170 deg2 over the redshift range 0.6 ≤ z ≤ 1.1. We use the convolution Lagrangian perturbation theory in addition to the
Gaussian streaming redshift space distortions to model the Legendre multipoles of the anisotropic correlation function. We show
that the eBOSS ELG correlation function measurement is affected by the contribution of a radial integral constraint that needs to
be modelled to avoid biased results. To mitigate the effect from unknown angular systematics, we adopt a modified correlation
function estimator that cancels out the angular modes from the clustering. At the effective redshift, zeff = 0.85, including
statistical and systematical uncertainties, we measure the linear growth rate of structure fσ 8(zeff) = 0.35 ± 0.10, the Hubble
distance DH (zeff)/rdrag = 19.1+1.9

−2.1, and the comoving angular diameter distance DM(zeff)/rdrag = 19.9 ± 1.0. These results are in
agreement with the Fourier space analysis, leading to consensus values of: fσ 8(zeff) = 0.315 ± 0.095, DH (zeff)/rdrag = 19.6+2.2

−2.1,
and DM(zeff)/rdrag = 19.5 ± 1.0, consistent with �CDM model predictions with Planck parameters.

Key words: galaxies: distances and redshifts – dark energy – distance scale – large-scale structure of Universe – cosmology:
observations.

1 IN T RO D U C T I O N

For the last 20 yr, physicists have known that the expansion of
the Universe is accelerating (Riess et al. 1998; Perlmutter et al.
1999), but not why this is happening, although the mechanism
has been given a name: dark energy. In the simplest mathematical
model, the acceleration is driven by a cosmological constant �,
inside Einstein’s field equations of General Relativity (GR), and this
model is referred to as the standard model of cosmology or the
Lambda cold dark matter (�CDM) model. Precise measurements
of the cosmic microwave background (Planck Collaboration XIII
2016), combined with the imprint of the baryon acoustic oscillations
(BAO) in the clustering of galaxies (Cole et al. 2005; Eisenstein
et al. 2005), in particular for those from the Baryon Oscillation
Spectroscopic Survey (BOSS), (Alam et al. 2017) indicate that dark

� E-mail: amelie.tamone@epfl.ch

energy contributes 69 per cent of the total content of the Universe,
while dark and baryonic matter only contribute 26 per cent and
5 per cent, respectively.

Measurements of BAO are only one component of the information
available from a galaxy survey. The observed large-scale distribution
of galaxies depends on the distribution of matter (which includes the
BAO signal), the link between galaxies and the mass known as the
bias, geometrical effects that project galaxy positions into observed
redshifts and angles, and redshift space distortions (RSDs).

RSDs arise because the measured redshift of a galaxy is affected
by its own peculiar velocity, a component that arises from the
growth of cosmological structure. These peculiar velocities lead to
an anisotropic clustering, as first described in the linear regime by
Kaiser (1987). In linear theory, the growth rate of structure f is often
parametrized using

f (a) = d ln D(a)

d ln a
, (1)
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where D(a) is the linear growth function of density perturbations and
a is the scale factor. In practice, RSDs provide measurements of the
growth rate via the quantity f(z)σ 8(z), where σ 8(z) is the amplitude
of the matter power spectrum at 8 h−1 Mpc (Song & Percival 2009).
In the framework of GR, the growth rate f is related to the total matter
content of the Universe �m through the generalized approximation
(Peebles 1980):

f (z) � �m(z)γ , (2)

where the exponent γ depends on the considered theory of gravity and
is predicted to be γ � 0.55 in GR (Linder & Cahn 2007). Therefore,
by measuring the growth rate of structure in the distribution of
galaxies as function of redshift, we can put constrains on gravity,
and test if dark energy could be due to deviations from GR (Guzzo
et al. 2008).

BAO and RSD measurements are highly complementary, as they
allow both geometrical and dynamical cosmological constraints from
the same observations. In addition, BAO measurements break a crit-
ical degeneracy affecting RSD measurements: clustering anisotropy
arises both due to RSDs and also if one assumes a wrong cosmology
to transform redshifts to comoving distances. The latter is known as
the Alcock–Paczynski (AP) effect (Alcock & Paczynski 1979) and
generates distortions both in the angular and radial components of
the clustering signal. The AP effect shifts the BAO peak, while
leaving the RSD signal unaffected, and hence anisotropic BAO
measurements break the AP–RSD degeneracy and enhance RSD
measurements.

Using BAO and RSD measurements, spectroscopic surveys of
galaxies are now amongst the most powerful tools to test our cosmo-
logical models and in particular to probe the nature of dark energy.
Up until now, the most powerful survey has been BOSS (Dawson
et al. 2013), which made two ∼1 per cent precision measurements
of the BAO position at z = 0.32 and z = 0.57 (Alam et al. 2017),
coupled with two ∼8 per cent precision measurements of fσ 8 from the
RSD signal. The extended Baryon Oscillation Spectroscopic Survey
(eBOSS; Dawson et al. 2016) program is the follow-up for BOSS in
the fourth generation of the Sloan Digital Sky Survey (SDSS; Blanton
et al. 2017). With respect to BOSS, it explores large-scale structure
at higher redshifts, covering the range 0.6 < z < 2.2 using four
main tracers: luminous red galaxies (LRGs), emission-line galaxies
(ELGs), quasars used as direct tracers of the density field, and quasars
from whose spectra we can measure the Ly α forest. In this paper, we
present RSD measurements obtained from ELGs in the final sample
of eBOSS observations: Data Release 16 (DR16). Using the first 2
yr of data released as DR14 (Abolfathi et al. 2018), BAO and RSD
measurements have been made using the LRGs (Bautista et al. 2018;
Icaza-Lizaola et al. 2020) and quasars (Ata et al. 2018; Gil-Marı́n
et al. 2018; Zarrouk et al. 2018), but not the ELG sample, which was
not complete for that data release.

The eBOSS ELG sample, covering 0.6 < z < 1.1, is fully
described in Raichoor et al. (2020). As well as allowing high-redshift
measurements, this sample is important because it is a pathfinder
sample for future experiments as DESI (DESI Collaboration 2016a,
b), Euclid (Laureijs et al. 2011), PFS (Sugai et al. 2012; Takada
et al. 2014), or WFIRST (Doré et al. 2018) which will also focus
on ELGs. We analyse the first three even Legendre multipoles of
the anisotropic correlation function to measure RSDs and present an
RSD + BAO joined measurement. A companion paper describes the
BAO and RSD measurements made in Fourier space (de Mattia et al.
2020), while BAO measurements in configuration space are included
in Raichoor et al. (2020). A critical component for interpreting our
measurements is the analysis of fast mock catalogues (Lin et al. 2020;

Zhao et al. 2020b). We also use mocks based on N-body simulations
to understand the systematic errors (Alam et al. 2020a; Avila et al.
2020).

The eBOSS ELG sample suffers from significant angular fluctu-
ations because it was selected from imaging data with anisotropic
properties, which imprint angular patterns (Raichoor et al. 2020) such
that we cannot reliably use angular modes to measure cosmological
clustering. Traditionally, when the modes affected are known they
are removed from the measurement either by assigning weights to
correct for observed fluctuations (Ross et al. 2011), or by nullifying
those modes (Rybicki & Press 1992). In fact, these approaches are
mathematically equivalent (Kalus et al. 2016). In the extreme case
that we do not know the contaminant modes, one can consider nulling
all angular modes. This can be achieved by matching the angular
distributions of the galaxies and mask – an extreme form of weighting
(Burden et al. 2017; Pinol et al. 2017) or, in the procedure we adopt,
by using a modified statistic designed to be insensitive to angular
modes.

The ELG studies described above are part of a coordinated release
of the final eBOSS measurements of BAO and RSD in all samples
including the LRGs over 0.6 < z < 1.0 (Bautista et al. 2020; Gil-
Marı́n et al. 2020) and quasars over 0.8 < z < 2.2 (Hou et al. 2020;
Neveux et al. 2020). For these samples, the construction of data
catalogues is presented in Ross et al. (2020), Lyke et al. (2020),
and N-body simulations for assessing systematic errors (Rossi et al.
2020; Smith et al. 2020). At the highest redshifts (z > 2.1), our release
includes measurements of BAO in the Lyman α forest (du Mas des
Bourboux et al. 2020). The cosmological interpretation of all of our
results together with those from other cosmological experiments is
found in eBOSS Collaboration (2020). An SDSS BAO and RSD
summary of all tracer measurements and their full cosmological
interpretation can be found on the SDSS website.1

We summarize the ELG data used in Section 2, and the mock
catalogues in Section 3. The analysis method that nulls angular
modes, designed to reduce systematic errors is described in Section 4.
The model fitted to the data is presented in Section 5. Section 6
validates with the mock catalogues our chosen modelling and the
analysis method to reduce angular contamination. Finally, we present
our results in Section 7, and conclusions in Section 8.

2 DATA

In this section, we summarize the eBOSS ELG large-scale structure
catalogues that are studied in this paper and refer the reader to
Raichoor et al. (2020) for a complete description. The eBOSS ELG
sample was selected on the grz-bands photometry of intermediate
releases (DR3, DR5) of the DECam Legacy Survey imaging (DE-
CaLS), a component of the DESI Imaging Legacy Surveys (Dey et al.
2019). This photometry is more than one magnitude deeper than the
SDSS photometry. The target selection is slightly different in the
two caps, as the DECaLS photometry is deeper in the South Galactic
Cap (SGC) than in the North Galactic Cap (NGC). The selected
targets were then spectroscopically observed during approximately
1 h with the BOSS spectrograph (Smee et al. 2013) at the 2.5-m
aperture Sloan Foundation Telescope at Apache Point Observatory
in New Mexico (Gunn et al. 2006). We refer the reader to Raichoor
et al. (2017) for a detailed description of the target selection and
spectroscopic observations.

1https://www.sdss.org/science/final-bao-and-rsd-measurements/.
https://www.sdss.org/science/cosmology-results-from-eboss/
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Table 1. Effective area and number of reliable redshifts per Galactic cap and
in the combined ELG sample.

zmin zmax NGC SGC ALL

Effective area (deg2) – – 369.5 357.5 727.0
Reliable redshifts 0.6 1.1 83 769 89 967 173 736

0.7 1.1 79 106 84 542 163 648
Effective redshift 0.6 1.1 0.849 0.841 0.845

0.7 1.1 0.860 0.853 0.857

Figure 1. Redshift density of the eBOSS ELG sample per Galactic cap and
for the combined sample.

The catalogues used contain 173 736 ELGs with a reliable spec-
troscopic redshift, zspec, between 0.6 and 1.1, within a footprint split
in two caps, the NGC and SGC. For the spectroscopic observations,
each cap is split into two ‘chunks’, which are approximately rect-
angular regions where the tiling completeness is optimized. Table 1
presents the number of used zspec and the effective area, i.e. the
unmasked area weighted by tiling completeness, for each cap and
for the combined sample; it also reports redshift information if one
restricts to 0.7 < zspec < 1.1, as this range is used in the RSD analysis
(see Section 7).

Different weights and angular veto masks are applied to data, to
correct for variations of the survey selection function, as described
in more details in Raichoor et al. (2020). In particular, weights are
introduced to correct for fluctuations of the ELG density with imaging
quality (systematic weight wsys), to account for fibre collisions
(close-pair weight wcp), and to correct for redshift failures (wnoz

weight). Fig. 1 shows the redshift density (n(z)) of the ELG sample
for the two Galactic caps and the combined sample. The more
numerous zspec < 0.8 ELGs in the SGC are a consequence of the
target selection choice to explore a larger box in the g − r versus r
− z colour–colour diagram, enabled by the deeper photometry there
(Raichoor et al. 2017). As in previous BOSS/eBOSS analyses (e.g.
Anderson et al. 2014), we also define inverse-variance wFKP weights,
wFKP = 1/(1 + n(z) · P0) (Feldman, Kaiser & Peacock 1994), with
P0 = 4000 h−3 Mpc3.

Consistently with the other eBOSS analyses, we define the
effective redshift (zeff) of the ELG sample as the weighted mean

spectroscopic redshift of galaxy pairs (zi, zj):

zeff =
∑

i,j wtot,iwtot,j(zi + zj )/2∑
i,j wtot,iwtot,j

, (3)

where wtot = wsys · wcp · wnoz · wFKP and the sum is performed over
all galaxy pairs between 25 and 120 h−1 Mpc. We report in Table 1
the different zeff values for the NGC, SGC, and combined sample for
0.6 < zspec < 1.1 and 0.7 < zspec < 1.1.

A random catalogue of approximately 40 times the data density
is created to account for the survey selection function of the
weighted data. Angular coordinates of random objects are uniformly
distributed and those objects outside the footprint and masks are
rejected. Random objects are assigned data redshifts, according to
the shuffled scheme introduced in Ross et al. (2012). As described
in Raichoor et al. (2020), this was done per chunk, in separate
subregions of approximately constant imaging depth, in order to
account for the fact that targets selected in regions of shallower
imaging have lower redshifts on average.

As shown in de Mattia & Ruhlmann-Kleider (2019) and de Mattia
et al. (2020), using the shuffled-z scheme leads to the suppression of
radial modes and impacts the multipoles of the measured correlation
function. This effect has to be modelled, a point we develop in
Section 5.2.

Despite the different corrections, the eBOSS ELG sample still
suffers from significant angular systematics (see Section 4.1), likely
due to unidentified systematics in the imaging data used to select
ELG targets, a point further discussed in de Mattia et al. (2020). This
triggered our using of the modified correlation function described in
Section 4.2 to cancel the angular modes.

3 MO C K S

In this section, we briefly describe the mock catalogues used in
the analysis. Those mock catalogues are of two types: approximate
mocks to estimate the covariance matrix and validate the pipeline
analysis and precise N-body mocks to validate the model.

3.1 EZmocks

A thousand EZmock catalogues for each Galactic cap are used to
estimate the covariance matrices for parameter inference. These
mocks rely on the Zel’dovich approximation (Zel’dovich 1970)
to generate the dark matter density field, with 10243 grids in a
53 h−3 Gpc3 comoving box. ELGs are then populated using an
effective galaxy bias model, which is directly calibrated to the two-
and three-point clustering measurements of the eBOSS DR16 ELG
sample (Chuang et al. 2015; Zhao et al. 2020b). The cosmology used
to generate the EZmocks is a flat �CDM model with:

h = 0.6777, �m = 0.307115, �b = 0.048206,

σ8 = 0.8225, ns = 0.9611. (4)

To account for the redshift evolution of ELG clustering, the
EZmock simulations are generated with seven redshift snapshots.
These snapshots are converted to redshift space, to construct slices
with the redshift ranges of (0.6, 0.7), (0.7, 0.75), (0.75, 0.8), (0.8,
0.85), (0.85, 0.9), (0.9, 1.0), and (1.0, 1.1). The slices are then
combined, and the survey footprint and veto masks are applied to
construct light-cone mocks that reproduce the geometry of the data.

Depending on how the radial and angular distributions of the
eBOSS data are migrated to the light-cone mocks, two sets of
EZmocks – without systematics and with systematics – are generated.

MNRAS 499, 5527–5546 (2020)
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For the mocks without systematics, only the radial selection is
applied, to mimic the redshift evolution of the eBOSS ELG number
density. Moreover, the radial selections are applied separately for
different chunks, since their spectroscopic properties are different
(Raichoor et al. 2020). Thus, the only observational effect applied on
the angular distribution of the EZmocks without systematics is the
footprint geometry and veto masks.

The EZmocks with systematics, however, encode observational
systematic effects, namely angular photometric systematics, fibre
collisions, and redshift failures. For example, a smoothed angular
map of galaxy positions is extracted directly from the data, and
applied to the mocks. The photometric and spectroscopic effects are
then corrected by the exact same weighting procedure as in data (see
de Mattia et al. 2020; Zhao et al. 2020b, for details). In particular,
mock data redshifts are randomly assigned to mock random cat-
alogues with the ‘shuffled-z’ scheme in chunks of homogeneous
imaging depth (using the depth map of the eBOSS data).

In this study, we further use two variants of the EZmocks with
systematics, which differ in their random catalogues. The redshift
distribution of the random objects should reflect the radial survey
selection function of the corresponding galaxy catalogue. This can
be achieved in two ways, either by sampling the random redshifts
based on the true radial selection function n(z) of data, or by taking
directly the shuffled redshifts from the galaxy catalogue. We dub
these two schemes ‘sampled-z’ and ‘shuffled-z’, respectively. For
the EZmocks with systematics, only the ‘shuffled-z’ randoms are
used.

3.2 N-body mocks

The eBOSS ELG sample significantly differs from the other eBOSS
tracers from a galaxy formation point of view. These galaxies are
sites of active star formation with various astrophysical processes
at play, such as the consumption of gas or the effect of the local
environment. This means the kinematical properties of eBOSS ELGs
could be different from those of the underlying dark matter haloes.
One must thus test the robustness of any cosmological inference
against galaxy formation physics. To do so, we tested our model
against a wide variety of eBOSS ELG mock catalogues that include
accurate non-linear evolution of dark matter and various deviations
in galaxy kinematics from the underlying dark matter distribution.
These tests are described in detailed in a companion paper (Alam
et al. 2020a). Briefly, we employ two different N-body simulations,
the MULTI DARK PLANCK (MDPL2; Klypin et al. 2016) and the OUTER

RIM (OR; Heitmann et al. 2019).
The MDPL2 simulation provides a halo catalogue produced with

the ROCKSTAR halo finder (Behroozi, Wechsler & Wu 2013) in a cubic
box of 1 h−1 Gpc using a flat �CDM cosmology with parameters:

h = 0.6777, �m = 0.307115, �b = 0.048206,

σ8 = 0.8228, ns = 0.9611. (5)

The OR simulation provides a halo catalogue produced with the
Friends of Friends halo finder of Davis et al. (1985) in a cubic box
of 3 h−1 Gpc using a flat �CDM cosmology with parameters:

h = 0.71, �m = 0.26479, �b = 0.04479,

σ8 = 0.8, ns = 0.963. (6)

Three different parametrizations for the shape of the mean HOD
(halo occupation distribution) of central galaxies are used. The first
parametrization called SHOD is the standard HOD model where at

least one central galaxy of a given type is found in massive enough
dark matter haloes. Although this model is more appropriate for
modelling magnitude or stellar mass selected samples (Zheng et al.
2005; White et al. 2011), it can be modified to account for the
incompleteness in mass of a sample such as the ELG one. The second
parametrization is called HMQ that essentially quenches galaxies at
the centre of massive haloes and suppresses the presence of ELGs
in the centre of haloes, as suggested by observations and models of
galaxy formation, and hence should provide more realistic realization
of star-forming ELGs (Alam et al. 2020b). The third parametrization,
called SFHOD, accounts for the incompleteness of the ELG sample
by modelling central galaxies with an asymmetric Gaussian (Avila
et al. 2020). Such a shape is based on the results from the galaxy
formation and evolution model presented in Gonzalez-Perez et al.
(2018). In each of these models, besides the shape of the mean
HOD, other aspects have been varied to mimic different possible
baryonic effects over the ELGs distribution such as the satellite
distribution, infalling velocities, the off-centring of central galaxies,
and the existence of assembly bias.

In total, 22 MDPL2 mocks were available, with 11 types of mocks
for each of the SHOD and HMQ models. OR mocks encompassed
6 out of the 11 same types for each model, and 5 SFHOD models
with assumptions that enhance the parameter space explored by the
SHOD and HMQ ones are selected.

As the MDPL2 cosmology is close to our fiducial BOSS cosmol-
ogy (equation 7), we use the latter to analyse the MDPL2 mocks. We
analyse the OR mocks with their own cosmology (equation 6). For
the covariance matrix, we use an analytical covariance as defined in
Grieb et al. (2016).

4 ME T H O D

4.1 The two-point correlation function

To compute galaxy pair separations of data and EZmocks, observed
redshifts need first to be converted into comoving distances. To do so,
we use the same flat �CDM fiducial cosmology as in BOSS DR12
analysis (Alam et al. 2017):

h = 0.676, �m = 0.31, �� = 0.69, �b = 0.04814,

σ8 = 0.8, ns = 0.97,
∑

mν = 0.06 eV. (7)

Afterwards, in order to quantify the anisotropic galaxy clustering
in configuration space, one usually resorts to the two-point correla-
tion function ξ (2PCF), which is defined as the excess probability
of finding a pair of galaxies separated by a certain vector distance s
with respect to a random uniform distribution. In the next sections,
we refer to that 2PCF as the ‘standard 2PCF’.

An unbiased estimate ξ̂ of the correlation function ξ can be
computed for a line-of-sight separation s� and transverse separation
s⊥, using the Landy & Szalay (1993, LS) estimator:

ξ̂ (s⊥, s‖) = DD(s⊥, s‖) − 2DR(s⊥, s‖) + RR(s⊥, s‖)

RR(s⊥, s‖)
, (8)

where DD, DR, and RR are the normalized galaxy–galaxy, galaxy–
random, and random–random pair counts, respectively. The pair
separation can also be written in terms of s and μ = s�/s = cos (θ ),
where θ is the angle between the pair separation vector s and the line
of sight.

Projecting on the basis of Legendre polynomials, the two-
dimensional correlation function is compressed into multipole mo-
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Figure 2. Two-dimensional correlation function in the directions perpendicular and parallel to the line of sight. Panels from left to right are for: standard 2PCF
(equation 8), shuffled 2PCF (equation 12), modified 2PCF with no cut (equation 13), and modified 2PCF with a cut (equation 14). The top row displays the
measurement from the eBOSS ELG data sample, the middle row displays the mean of the 1000 ‘shuffled-z’ EZmocks with systematics (100 mocks for the shuffled
2PCF), and the bottom row shows the difference between the mean of the 1000 ‘shuffled-z’ EZmocks with and without systematics (100 mocks for the shuffled
2PCF). For the modified 2PCF, all parameters are taken at their fiducial values (see text). The black circles illustrate our fiducial fitting range in s for the multipoles.

ments of order l (Hamilton 1992):

ξ�(s) ≡ 2� + 1

2

∫ 1

−1
dμξ (s, μ)Pl(μ)

= 2� + 1

2

∫ π

0
dθ

√
1 − μ2ξ (s⊥, s‖)P�(μ), (9)

where P�(μ) is the Legendre polynomial of order �.
Equations (9) are integrated over a spherical shell of radius s,

while measurements of ξ̂ (s⊥, s‖) are performed in bins of width s
in s⊥, s�. Converting the last integral in equation (9) to sums over
bins leads to the following definition of the estimated multipoles of
the correlation function (Chuang & Wang 2013):

ξ̂�(s) ≡ (2� + 1)

2

π

n

n∑
i=1

√
1 − μ2

i ξ̂ (si
⊥, si

‖)P�(μi), (10)

where the sum extends over n bins in s⊥, s� obeying

s − s

2
<

√
s2
‖ + s2

⊥ < s + s

2
.

We use the public code CUTE (Alonso 2012) to evaluate the LS
estimator of the correlation function from the data and FCFC code
(fast correlation function calculator; Zhao et al., in preparation) for
the mocks: both codes provide consistent measurements. For both
mocks and data, we then compute the first even multipoles, ξ̂0, ξ̂2

and ξ̂4, in bins of width s = 8 h−1 Mpc for each cap separately.

The combined multipoles over both caps, referred as ALL, are
computed by averaging the NGC and SGC multipoles, weighted
by their respective effective areas, ANGC and ASGC:

ξ̂ALL
� (s⊥, s‖) = ξ̂NGC

� (s⊥, s‖)ANGC + ξ̂SGC
� (s⊥, s‖)ASGC

ANGC + ASGC
. (11)

The top and middle left panels of Fig. 2 show the standard
2PCF of the data and mean of the 1000 ‘shuffled-z’ EZmocks with
systematics, respectively. The squashing effect due to RSD can be
observed for both data and EZmocks; the BAO signal is clearly visible
in the EZmocks, but not in data, because of the overall low statistics,
as seen in Raichoor et al. (2020). For the mocks, and for data to a
lesser extent, we see a negative clustering at s� ∼ 0: this is due to the
‘shuffled-z’ scheme adopted to assign redshifts to random objects,
which creates an excess of DR and RR pairs at those values. The
bottom left panel of Fig. 2 displays the difference between the mean
of the 1000 ‘shuffled-z’ EZmocks without and with systematics: the
systematics show up mostly at small s⊥ (radial, due to spectroscopic
observations) and large s� (angular, due to the imaging systematics).

Fig. 3 shows the standard 2PCF multipoles for the data and for
the ‘shuffled-z’ EZmocks with or without systematics, separately
for the NGC and the SGC. Adding systematics to the EZmocks
improves the agreement with data, especially for the monopole in
the SGC and for the quadrupole in both caps. The overall agreement
is satisfactory. However, there are remaining discrepancies between
the data and the EZmocks with systematics, the most significant ones
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Figure 3. Multipoles of the standard 2PCF as measured from the eBOSS
ELG data sample in each cap and from the mean of the shuffled-z EZmocks
with and without systematics. The bands represent the 1σ dispersion around
the mean of the mocks. Errors on data points come from 1σ dispersion of
mocks with systematics. Vertical dashed lines define the baseline fitting range.

being at intermediate scales, ∼40 to 80 h−1 Mpc, in the NGC for the
monopole and the quadrupole. As detailed in the next section, those
are likely due to remaining angular systematics in the data.

The excess clustering observed in the monopole of NGC sample
around ∼60 h−1 Mpc and its absence of BAO peak are consistent
with statistical fluctuations and discussed in Raichoor et al. (2020).

4.2 Modified 2PCF

In order to mitigate those systematics in our RSD analysis, we use
a modified 2PCF built on the standard ξ (s⊥, s�) for the model and
ξ̂ (s⊥, s‖) for data and mocks. Actually, as will be shown in Section 6.3
with the EZmocks, fitting the standard 2PCF multipoles ξ̂�(s) does
not allow us to recover unbiased cosmological parameters when data-
like systematics are included in the mocks – and corrected as in data.
The principle of the modified 2PCF is thus to null the angular modes
from the clustering.

Our approach builds on the method presented in Burden et al.
(2017) designed for the DESI survey, in which they proposed a
modification of the correlation function that nulls the angular modes
from the clustering. Burden et al. (2017) introduce the shuffled 2PCF
which is a modification of the LS estimator from equation (8):

ξ̂ shuff (s⊥, s‖) = DD(s⊥, s‖) − 2DS(s⊥, s‖) + SS(s⊥, s‖)

RR(s⊥, s‖)
, (12)

where S stands for a random catalogue built with random picks of
the data angular positions and with a radial distribution following
the data one (according to the ‘shuffled-z’ scheme in our case).
Using such a random S catalogue, with the same angular clustering
as that in the galaxy catalogue, implies that angular modes are
removed in the shuffled 2PCF, at the cost of an overall loss of
information. Second column of Fig. 2 shows the two-dimensional
shuffled 2PCF of data (first row) and the mean (second row) of 100
EZmocks with systematics: angular signal at small s⊥ and large s�
are removed. On the bottom row of the second column of Fig. 2,
we present the difference between the mean of EZmocks with and
without systematics. As most systematics are removed compared to

the standard 2PCF, this suggests that the nature of the uncorrected
systematics mostly comes from angular signal and that the shuffled
2PCF removes them.

A model for the shuffled 2PCF was also presented in Burden
et al. (2017) and shown to provide an unbiased isotropic BAO
measurement. However, a more advanced modelling is required for
an RSD analysis, as we are measuring anisotropic information from
the monopole, quadrupole, and hexadecapole. The model of Burden
et al. (2017) involves subtracting terms integrated over the line of
sight which thus include scales for which the RSD model may be
invalid (see Section 5). Such small scales will be discarded from
our fits. For that reason, we do not use the shuffled 2PCF for our
measurements on data and mocks, but rely on a modified 2PCF
where we can control the boundaries of integration for both data and
model. The modified 2PCF we adopt is based on:

ξmod(s⊥, s‖) = ξ (s⊥, s‖) (13a)

− 2
∫ smax

‖

−smax
‖

ξ (s⊥, s ′
‖)n̄(χmod + s ′

‖/2)ds ′
‖ (13b)

+
∫ ∞

0
n̄2(χ )dχ

∫ smax
‖

−smax
‖

ξ (s⊥, s ′
‖)ds ′

‖, (13c)

where n̄(χ ) is the normalized data radial density as a function of the
comoving line-of-sight distance χ and χmod is the comoving line-of-
sight distance at a given redshift zmod, defined hereafter. smax

‖ is the
maximum parallel scale included in the correction. Equation (13b)
corresponds to the cross-correlation between the three-dimensional
overdensity and the projected angular overdensity and equation (13c)
corresponds to the angular correlation function. We provide more
details about equation (13) in Appendix A. The third column of
Fig. 2 illustrates the modified 2PCF defined in equation (13): it
clearly shows its efficiency to remove the angular clustering in the
data (top row) and in the mocks (middle row), with as a consequence
a significant removal of the angular systematics. This can also be
seen on the third bottom panel, where the systematics included are
almost completely cancelled. We note that the modified 2PCF and
the shuffled 2PCF are very similar.

In our implementation, we use smax
‖ = 190 h−1 Mpc and zmod =

0.83 as baseline parameters. Both quantities are treated as param-
eters and chosen to minimize the systematics. One can note in
equations (13b) and (13c) that the integration does not depend on

the value of s =
√

s2
⊥ + s ′2

‖ . However, since the CLPT–GS model

is not valid on small scales, our RSD analysis will be performed
only for scales above a minimum value smin, namely s > smin (smin

= 32 h−1 Mpc in our baseline settings, see Section 5). Introducing
this selection in equations (13b) and (13c), and noting for clarity
A(s ′

‖) = n̄(χmod + s ′
‖/2) and B = ∫ ∞

0 n̄2(χ )dχ , we end up with the
following modified 2PCF:

ξmod
cut (s⊥, s‖) = ξ (s⊥, s‖) (14a)

+
∫

smin
‖ (s⊥)<|s′

‖|<smax
‖

(−2A(s ′
‖) + B) · ξ (s⊥, s ′

‖)ds ′
‖,

(14b)

where smin
‖ (s⊥) is defined as smin

‖ (s⊥) =
√

(scut
min)2 − s2

⊥ with scut
min the

minimum value of s used in the correction. Except stated otherwise,
scut

min is fixed at smin, i.e. the minimum scale used in the RSD analysis.
The right-column panels of Fig. 2 show the modified 2PCF defined
in equation (14): though cutting out scales smaller than smin in the
integration removes less of the clustering amplitude for s⊥ < smin
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Figure 4. Multipoles of the modified 2PCF as measured from the eBOSS
ELG data sample in each cap and from the mean of the shuffled-z EZmocks
with and without systematics. The bands represent the 1σ dispersion around
the mean of the mocks. We note that EZmocks with and without systematics
mostly overlap, as a result of angular systematics being removed by the
modified 2PCF. Errors on data points come from 1σ dispersion of mocks
with systematics. Vertical dashed lines define the baseline fitting range.

for both data and EZmocks (top and bottom), one can see that the
efficiency to reduce angular systematics (the two right-hand panels
in last row of Fig. 2) is of the same order as that of equation (13),
where no cut is imposed in the integration.

Equation (14) is the modified 2PCF we use in this paper for
the RSD analysis for both measurements (on data and mocks) and
modelling. We can then define Legendre multipoles ξmod

cut,� using
equations (9) or (10). Multipoles of the modified 2PCF with a cut
scut

min = 32 h−1 Mpc as measured from the eBOSS ELG sample in
separate caps and from EZmocks with and without systematics are
shown in Fig. 4 using zmod = 0.83 and smax

‖ = 190 h−1Mpc. EZmocks
and data are more in agreement than in the case of the standard 2PCF
multipoles, shown in Fig. 3. It thus suggests that removing some of
the angular modes allowed us to partially remove systematics.

We emphasize that the modified 2PCF introduced in equation (13)
does not aim at providing a model for the shuffled 2PCF defined in
equation (12). It is a 2PCF estimator that acts similarly to the shuffled
2PCF and removes angular modes significantly. Our need to discard
small scales in the integration over s ′

‖ in equations (13b) and (13c),
because of model inaccuracies, led us to adopt equation (14) as a
final 2PCF estimator, for both measurements and modelling.

4.3 Reconstruction

For the isotropic BAO part of the combined RSD + BAO measure-
ments, we use the reconstructed galaxy field to improve our mea-
surements (Eisenstein et al. 2007). Indeed applying reconstruction
aims at correcting large-scale velocity flow effects, sharpening the
BAO peak.

The reconstruction method used in this study follows the works
of Burden, Percival & Howlett (2015) and Bautista et al. (2018)
which describe a procedure to remove RSD effects. We apply three
iterations and assume for the eBOSS ELG sample a linear bias b
= 1.4 and a growth rate f = 0.82. The smoothing scale is set at
15 h−1Mpc. Vargas-Magaña et al. (2018) showed that the choice of

parameter values and cosmology used for reconstruction induces no
bias in BAO measurements.

RSD measurements rely on the pre-reconstruction multipoles and
those are then used jointly with the post-reconstruction monopole
for the combined RSD + isotropic BAO fit.

4.4 Covariance matrix

We estimate the multipole covariance matrix from the 1000 EZmocks
as

C��′
ij = 1

N − 1

N∑
n=1

[
ξn
� (si) − ξ̄�(si)

] [
ξn
�′ (sj ) − ξ̄�′ (sj )

]
, (15)

where N is the number of EZmocks, (�, �
′
) are multipole orders, (i,

j) run over the separation bins, and ξ̄�(si) is the average value over
mocks for multipole � in bin si:

ξ̄�(si) = 1

N

N∑
n=1

ξn
� (si). (16)

In the case of RSD fitting, we use the first three even Legendre
pre-reconstruction multipoles, � = 0, 2, 4. The procedure is the
same whether we use the standard 2PCF or the modified one of
Section 4.2. In the case of RSD + BAO fitting, we also consider the
post-reconstruction monopole, so � = 0, 2, 4, 0rec, where 0rec stands
for the latter.

We then follow the procedure described in Hartlap, Simon &
Schneider (2007) to obtain an unbiased estimator of the inverse
covariance matrix, and multiply the inverse covariance matrix from
the mocks by a correction factor (1 − (Nd + 1)/(Nm − 1)) where
Nm is the number of mocks and Nd the number of bins used in the
analysis. To account for the uncertainty in the covariance matrix
estimate, we rescale the fitted parameter errors as proposed in
Percival et al. (2014).

Fig. 5 shows the correlation matrices computed from the 1000
EZmocks, using the definition C ij /

√
C ii Cjj for the four multipoles

and their cross-correlations, that are used for the baseline RSD +
BAO analysis. We can notice the differences between the modified
and standard 2PCF multipoles, anticorrelations being stronger for
the modified 2PCF than for the standard one. On the other hand, the
pre- and post-reconstruction monopoles are less strongly correlated
when the modified 2PCF is used.

5 MO D EL

5.1 RSD: CLPT–GS model

Galaxy redshift measurements are a combination of the Hubble rate
of expansion and the peculiar velocity of galaxies along the line of
sight. Therefore, what we are effectively measuring is a combination
of both the matter density field and the velocity field. The galaxy
correlation function is thus affected by multiple sources of non-
linearities that are theoretically challenging to model. Kaiser (1987)
was the first to derive the linear theory formalism in redshift space,
to describe the effect of the peculiar motion of galaxies causing
an apparent contraction of the structures along the line of sight.
Hamilton (1992) then extended the formalism to real space. However,
the formalism is valid only on scales larger than ∼ 80 h−1Mpc, where
we assume a linear coupling between the matter and velocity fields:

∇ · v = −f δm, (17)
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Figure 5. The complete RSD + BAO correlation matrices from 1000
EZmocks computed in 8 h−1 Mpc bins from 0 to 200 h−1Mpc for the
combined NGC + SGC sample, using the standard (top) and modified
(bottom) RSD 2PCF. The latter is computed with scut

min = 32 h−1Mpc, zmod

= 0.83, and smax
‖ = 190 h−1Mpc as in the baseline analysis. The post-

reconstruction monopole for BAO is always computed from the standard
2PCF. On both axes we show the fiducial range of the RSD analysis, from 36
to 156 h−1 Mpc in central bin values.

where f is the growth rate of structure, v the velocity field, and δm

the underlying matter density field. On smaller scales, the non-linear
coupling between the velocity and the matter density fields becomes
non-negligible and we need therefore to extend the above formalism
beyond linear theory to account for the small-scale non-linearities.

In this work, we adopt the same perturbative approach that was
previously used in other publications from BOSS (Alam et al. 2015;
Satpathy et al. 2017) and eBOSS (Zarrouk et al. 2018; Bautista et al.
2020) to model RSD on quasi-linear scales (∼30 to 80 h−1 Mpc),
by combining the Lagrangian perturbation theory with Gaussian
streaming (GS) model.

5.1.1 CLPT

The convolution Lagrangian perturbation theory (CLPT) was intro-
duced by Carlson, Reid & White (2013) to give accurate predictions
for correlation functions in real and redshift spaces for biased tracers.
In this framework, we perform a perturbative expansion of the dis-

placement field �(q, t). With this approach, � traces the trajectory
of a mass element starting from an initial position q in Lagrangian
coordinates to a final position x in Eulerian coordinates through

x(q, t) = q + �(q, t), (18)

where the first-order solution of this expansion corresponds to the
Zel’dovich approximation (Zel’dovich 1970; White 2014). Under
the assumption that the matter is locally biased, the tracer density
field, δX(x), can be written in terms of the Lagrangian bias function
F of a linear dark matter field δm(x):

1 + δX(x) = F [δm(x)]. (19)

The CLPT model from Carlson et al. (2013) uses contributions up
to second-order bias, F1 and F2 whose explicit expression can be
found in Matsubara (2008). The first Lagrangian bias F1 is related
to Eulerian bias on large scale through b1 = 1 + F1.

According to N-body simulations (Carlson et al. 2013), the CLPT
model performs very well for the real space correlation function down
to very small scales (10 h−1 Mpc). It also shows a good accuracy for
the monopole of the correlation function in redshift space down
to ∼20 h−1 Mpc . However, it suffers from some inaccuracies on
quasi-linear scales (30–80 h−1 Mpc) for the quadrupole in redshift
space. To overcome this, Wang, Reid & White (2014) proposed to
extend the above formalism by combining it with the GS model
proposed by Reid & White (2011). The method considers the real
space correlation function ξ (r), the pairwise infall velocity v12(r), and
the velocity dispersion σ 12(r) computed from CLPT as inputs to the
GS model, as will be described in the next section. The expressions
for these functions in the CLPT model are given below (see Wang
et al. 2014 for more details):

1 + ξ (r) =
∫

d3qM0(r, q), (20)

v12(r) = [1 + ξ (r)]−1
∫

d3qM1,n(r, q), (21)

σ 2
12,nm(r) = [1 + ξ (r)]−1

∫
d3qM2,nm(r, q), (22)

σ 2
‖ (r) =

∑
nm

σ 2
12,nmr̂nr̂m, (23)

σ 2
⊥(r) =

∑
nm

(
σ 2

12,nmδK
nm − σ 2

‖
)
/2. (24)

Here, M0(r, q), M1, n(r, q), and M2, nm(r, q) are convolution
kernels that depend on a linear matter power spectrum Plin(k) and
the first two Lagrangian bias parameters, as the bias expansion
is up to second order. The vectors r̂n, r̂m are unit vectors along
the direction of the pair separation, σ 2

12,nm is the pairwise velocity
dispersion tensor, and δK

nm is the Kronecker delta. The code2 used
in this paper to perform the CLPT calculations was developed by
Wang et al. (2014). We use the software CAMB (Lewis, Challinor
& Lasenby 2000) to compute the linear power spectrum Plin(k)
for the fiducial cosmology used for the fitting, namely the BOSS
cosmology (equation 7), except for the OR mocks.

5.1.2 The Gaussian streaming model

In the GS model, the redshift space correlation function ξ s(s⊥, s�) is
modelled as

1 + ξ s(s⊥, s‖) =
∫

dr‖ [1 + ξ (r)]P(r‖), (25)

2https://github.com/wll745881210/CLPT GSRSD

MNRAS 499, 5527–5546 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/4/5527/5917997 by guest on 21 M
ay 2024

https://github.com/wll745881210/CLPT_GSRSD


ELG eBOSS RSD measurements 5535

where

P(y) = 1√
2πσ12(r, μ)

exp

{
−

[
s‖ − r‖ − μv12(r)

]2

2σ 2
12(r, μ)

}
(26)

and

σ 2
12(r, μ) = μ2σ 2

‖ (r) + (1 − μ2)σ 2
⊥(r) + σ 2

FoG.

r� corresponds to the line-of-sight separation in real space, while
s� is the line-of-sight separation in redshift space and s⊥ is the
transverse separation both in redshift and real spaces. The quantity

r =
√

r2
‖ + s2

⊥ gives the pair separation in real space, and μ = r�/r

corresponds to the cosine of the angle between the pair separation
vector r and the line-of-sight separation in real space r�. The
parameter σ FoG accounts for the proper motion of galaxies on small
scales (Jackson 1972; Reid & White 2011), causing an elongation of
the distribution of galaxies along the line of sight, an effect known as
the Finger of God. In practice, σ FoG is an isotropic velocity dispersion
whose role is to account for the scale dependence of the quadrupole
on small scales.

5.2 Radial integral constraint

In this section, we discuss the impact of the shuffled scheme used
for redshift assignment in the random catalogues on the 2PCF
measurement and modelling.

The LS estimator from equation (8) effectively estimates the
observed galaxy correlation function by comparing the observed
(weighted) distribution of galaxies to the three-dimensional survey
selection function as sampled by the random catalogue. In principle,
the normalization of the LS estimator makes it insensitive to the
survey selection function, if the random catalogue indeed samples
the ensemble average of the galaxy density. With the shuffled-z
scheme, the data radial selection function is directly imprinted on
the random catalogue and the density fluctuations are forced to be
zero along the line of sight: radial modes are suppressed, which
effectively modifies clustering measurements on large scales. This
so-called radial integral constraint (RIC) effect is not suppressed by
the normalization of the LS estimator and must be included in the
2PCF modelling. Note that in the case of the eBOSS ELG sample,
the impact of the radial selection function is even increased by the
division of the survey footprint into smaller chunks accounting for
the variations of the radial selection function with imaging depth.

In de Mattia & Ruhlmann-Kleider (2019), modelling corrections
due to the RIC were derived for the power spectrum analysis. These
results are hereafter extended to the correlation function. The impact
of the window function (superscript c) and RIC (superscript ic) on
the correlation function multipoles were modelled in de Mattia &
Ruhlmann-Kleider (2019) with the following equation:

ξ cic
� (s) = ξ c

� (s) − IC
δ,ic
� (s) − IC

ic,δ
� (s) + IC

ic,ic
� (s), (27)

where ξ c
� (s) are multipoles of the product of the correlation function ξ

by the window function (see equation 2.10 in de Mattia & Ruhlmann-
Kleider 2019) and, for each (i, j) ∈ {(δ, ic), (ic, δ), (δ, δ)}:

IC
i,j

� (s) =
∫

d2
∑

p

4π

2p + 1
ξp()W i,j

�p (s,). (28)

W i,j

�p are the window function multipoles, as given in equa-
tions 2.16 and 2.19 in de Mattia & Ruhlmann-Kleider (2019).
However, the LS estimator (equation 8) removes the window function
effect with the RR(s, μ) term in the denominator. Hence, callingWδ,δ

q

the window function multipoles (e.g. equation 2.11 in de Mattia &
Ruhlmann-Kleider 2019), we build the ratios:

W i,j

�p,new(s,) = 2� + 1

2

∫ 1

−1
dμ

∑qmax
q=0 W i,j

qp (s,)Lq (μ)∑qmax
q=0 W

δ,δ
q (s)Lq (μ)

L�(μ)

(29)

to be used instead of the W i,j

�p in equation (28). In practice, we
use qmax = 6. In addition, a shot noise contribution to the integral
constraint corrections must be accounted for, as given by terms
SN

ij

� (s) of equations 3.6 and 3.7 in de Mattia & Ruhlmann-Kleider
(2019). We proceed similarly to account for the removal of the
window function effect in the LS estimator, i.e. instead of the SN

ij

� (s)
we use

SN
i,j

�,new(s) = 2� + 1

2

∫ 1

−1
dμ

∑qmax
q=0 SNi,j

q (s)Lq (μ)∑qmax
q=0 W

δ,δ
q (s)Lq (μ)

L�(μ). (30)

In practice, to include the RIC into our model, we correct the
multipoles of the correlation function from the CLPT–GS model, ξ s

(as given by equation 25) according to equation (27).

5.3 RSD parameter space

We account for the AP effect by introducing two dilation parameters,
α⊥ and α�, that rescale the observed separations, s⊥, s�, into the true
ones, s ′

⊥, s ′
‖. Hence, the standard 2PCF model at the true separation

is

ξ s(s ′
⊥, s ′

‖) = ξ s(α⊥s⊥, α‖s‖). (31)

In our baseline analysis, this ξ s(α⊥s⊥, α�s�) is used to compute the
RIC correction (equation 27) and the modified 2PCF (equation 14).

The above dilation parameters relate true values of the Hubble
distance DH(zeff) and comoving angular diameter distance DM(zeff)
at the effective redshift to their fiducial values:

a‖ = DH(zeff ) rfid
drag

Dfid
H (zeff ) rdrag

, (32)

a⊥ = DM(zeff ) rfid
drag

Dfid
M (zeff ) rdrag

, (33)

where the superscript fid stands for values in the fiducial cosmology
and rdrag is the comoving sound horizon at the redshift at which the
baryon-drag optical depth equals unity (Hu & Sugiyama 1996).

The growth rate of structure f(z) defined in equation (1) is taken
into account in the correlation function model via v12(r) and σ 12(r),
as those are proportional to f(z) and f2(z), respectively. The two
Lagrangian biases F1 and F2 as described by equation (19) are free
parameters of the model. The second Lagrangian bias F2 impacts
mainly the small scales (Wang et al. 2014) and thus is mostly
degenerate with σ FoG and not well constrained by the data. Due
to its small impact on the scales of interest, we chose to fix F2

= F2(F1) using the peak background splitting assumption (Cole &
Kaiser 1989) with a Sheth–Tormen mass function (Sheth & Tormen
1999).

Altogether, we thus explore a five-dimensional parameter space
p = {

α‖, α⊥, f (z), F1, σFoG

}
in our RSD analysis. The growth rate

being degenerate with σ 8, we hereafter report values of fσ 8. As
explained in Gil-Marı́n et al. (2020), to remove the h dependence of
σ 8, we rescale σ 8 by taking the amplitude of the power spectrum at
8 × αiso h−1Mpc, where αiso is defined hereafter.
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5.4 Isotropic BAO

An alternative way to parametrize the AP effect is to decompose
the distortion into isotropic and anisotropic shifts. The isotropic
component αiso is related to parallel and transverse shifts, α� and
α⊥, via:

αiso = α
1/3
‖ α

2/3
⊥ . (34)

It corresponds to the isotropic shift of the BAO peak position in
the monopole of the correlation function; the anisotropic shift ε is
defined as 1 + ε = α‖α

−1/3
⊥ .

BAO measurements from the eBOSS ELG sample in configuration
space are presented in Raichoor et al. (2020). We hereafter fit the
post-reconstruction BAO using the same BAO model as in Raichoor
et al. (2020):

ξBAO(s, αiso) = Bξtemp(αiso · s) + A0 + A1/s + A2/s
2, (35)

where B is the post-reconstruction bias, the Ai’s are broad-band
parameters with i = 0, 1, 2. The template ξ temp is the Fourier transform
of the following power spectrum:

P (k, μ) = 1 + μ2βe−k2�2
r /2

1 + k2μ2�2
s /2

(
Plin − Pnw

ek2((1−μ2)�2
⊥+μ2�2

‖ )/2
+ Pnw

)
, (36)

where Plin is a linear power spectrum taken from CAMB and Pnw

is a ‘no-wiggle’ power spectrum computed with the formula from
Eisenstein & Hu (1998). We use the same smoothing scales as in
Raichoor et al. (2020), i.e. �r = 15 h−1Mpc, �s = 3 h−1Mpc, �⊥ =
3 h−1Mpc, �� = 5 h−1 Mpc, and we set β = 0.593 (see also Ross
et al. 2016; Seo et al. 2016).

For the modelling of the post-reconstruction BAO signal, we do
not include an RIC correction as the effect on the post-reconstruction
monopole is absorbed by the broad-band parameters.

5.5 Parameter estimation

In this paper, we perform RSD measurements and a joint fit of RSD
and isotropic BAO. For both RSD and combined RSD + BAO fits, we
use a nested sampling algorithm called MULTINEST (Feroz, Hobson
& Bridges 2009) to infer the posterior distributions of the set of
cosmological parameters p. MULTINEST is a Monte Carlo method
that efficiently computes the Bayesian evidence, but also accurately
produces posterior inferences as a by-product. Our analysis makes
use of the publicly available PYTHON version3 of MULTINEST. For the
frequentist fits of our analysis, we use the MINUIT algorithm4 (James
& Roos 1975) which is specifically used to get the best fits of data and
single mocks. The likelihood L is computed from the χ2 assuming
a Gaussian distribution:

L ∝ exp

(
−χ2( p)

2

)
, (37)

where the χ2 is constructed from the correlation function multipoles
measured from data catalogues, ξd

� , and predicted by the model, ξm
� ,

as follows:

χ2( p) =
�,�′∑
i,j

[
ξd
� (si) − ξm

� (si , p)
]

C��′
ij

[
ξd
�′ (sj ) − ξm

�′ (sj , p)
]
. (38)

Here, indexes (i, j) run over the separation bins and C��′
ij is the

inverse covariance matrix computed from the 1000 EZmocks (see

3https://johannesbuchner.github.io/PyMultiNest/
4https://github.com/scikit-hep/iminuit

Table 2. Flat priors on the RSD model parameters used in the cosmological
analysis of this paper.

Parameter Min value Max value

α�, α⊥ 0.6 1.4
f(z) 0 1.5
F1 −0.2 2
σ FoG 0 10

αiso 0.8 1.2
B Gaussian

Section 4.4). Indexes (�, �
′
) run over the multipoles of the correlation

function, where � = 0, 2, 4 if RSD only and � = 0, 2, 4, 0rec

if a combined RSD + BAO fit is performed. We recall that ξd
�

and ξm
� can be computed from a standard 2PCF or a modified

one. The priors on the parameters of the RSD model are flat
priors given in Table 2. Performing the joined fit RSD + BAO by
combining the likelihoods allows the Gaussian assumption required
to combine RSD and BAO posteriors as in Bautista et al. (2020) to be
relaxed.

For the RSD + BAO fit, the BAO isotropic shift, αiso, is related to
the two anisotropic AP parameters through equation (34). However,
we add an additional prior constraint by adding a flat prior on αiso

from 0.8 to 1.2. Due to reconstruction, the B bias can be different than
b1, therefore B is not fixed at 1 + F1 but is kept as a free parameter.
We use a Gaussian prior on log(B) with the same parameters used in
Raichoor et al. (2020).

When fitting on to the combined data sample, we chose to have
only one set of biases for the whole sample, neglecting the difference
between caps.

Unless otherwise specified, we fit the RSD multipoles over a range
in separation from 32 to 160 h−1 Mpc and from 50 to 150 h−1 Mpc
for the post-reconstruction monopole, using in both cases 8 h−1 Mpc
bins and the BOSS cosmology (equation 7) at the effective redshifts
quoted in Table 1.

6 T E S T S O N M O C K S

In this section, we present tests on mocks in order to validate our
analysis. We first demonstrate the robustness of our CLPT–GS model
with accurate N-body mocks; we then validate our analysis choices
with the approximate EZmocks for both RSD and RSD + BAO fits.
Results from the latter tests are presented in Table 3.

6.1 CLPT–GS model validation

We quantify here the ability of the CLPT–GS model to recover the
cosmological parameters from accurate mocks made from the OR N-
body simulation. We present a summary of the results, and refer the
reader to Alam et al. (2020a), where those are presented in details.

First, the non-blind mocks described in Section 3.2 were analysed.
The statistical uncertainty on the recovered parameter values in these
accurate mocks is 0.5–0.6 per cent, 0.3–0.5 per cent, and 1–2 per cent
in α�, α⊥, and fσ 8, respectively. No statistically significant bias in
the parameter values was observed, despite the wide range of ELG
HOD models used.

A set of blind mocks was then analysed, to test for possible biases,
primarily in fσ 8, that could arise due to theoretical approximations
in the model. To create these mocks, the peculiar velocities of the
galaxies were scaled by an undisclosed factor leading to a change
in the expected value of f and thus fσ 8. The other cosmological

MNRAS 499, 5527–5546 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/4/5527/5917997 by guest on 21 M
ay 2024

https://johannesbuchner.github.io/PyMultiNest/
https://github.com/scikit-hep/iminuit


ELG eBOSS RSD measurements 5537

Table 3. Results of RSD and BAO + RSD fits (in bold in the Table) on 1000 EZmocks. We present the median and the 0.16 and
0.84 quantiles of the distribution of the best-fitting values. Except for the first measurement, we use ‘shuffled-z’ EZmocks.

α� α⊥ fσ 8

RSD
Standard 2PCF

No systematics and sampled-z, no IC corrections 1.024+0.069
−0.071 0.998+0.053

−0.054 0.454+0.057
−0.058

No systematics, no IC corrections 0.983+0.065
−0.068 1.051+0.057

−0.059 0.435+0.055
−0.055

No systematics 1.003+0.067
−0.067 1.010+0.053

−0.055 0.455+0.057
−0.055

All systematics 1.006+0.075
−0.073 0.988+0.058

−0.056 0.415+0.056
−0.057

Modified 2PCF
No systematics, baseline (smax

‖ = 190 h−1 Mpc, zmod = 0.83) 0.999+0.067
−0.070 1.011+0.053

−0.056 0.462+0.066
−0.067

No systematics, smax
‖ = 100 h−1 Mpc, zmod = 0.84 0.996+0.070

−0.064 1.011+0.054
−0.048 0.462+0.060

−0.056

No systematics, smax
‖ = 180 h−1 Mpc, zmod = 0.83 1.004+0.066

−0.070 1.015+0.054
−0.058 0.461+0.062

−0.055

No systematics, smax
‖ = 190 h−1 Mpc, zmod = 0.82 0.999+0.067

−0.070 1.012+0.054
−0.055 0.464+0.071

−0.073

No systematics, smax
‖ = 190 h−1 Mpc, zmod = 0.84 1.001+0.066

−0.067 1.011+0.054
−0.054 0.460+0.065

−0.061

No systematics, smax
‖ = 200 h−1 Mpc, zmod = 0.83 1.001+0.063

−0.069 1.013+0.056
−0.055 0.462+0.068

−0.069

No systematics, smax
‖ = 200 h−1 Mpc, zmod = 0.87 1.002+0.066

−0.071 1.012+0.053
−0.055 0.459+0.057

−0.057

No systematics, no cut 1.020+0.088
−0.082 1.012+0.055

−0.063 0.435+0.112
−0.110

All systematics, baseline (smax
‖ = 190 h−1 Mpc , zmod = 0.83) 0.996+0.075

−0.075 1.001+0.063
−0.062 0.454+0.066

−0.065

All systematics, smax
‖ = 100 h−1 Mpc, zmod = 0.84 0.995+0.073

−0.070 0.986+0.063
−0.056 0.422+0.057

−0.059

All systematics, smax
‖ = 180 h−1 Mpc, zmod = 0.82 1.001+0.072

−0.072 1.006+0.062
−0.060 0.454+0.068

−0.067

All systematics, smax
‖ = 180 h−1 Mpc, zmod = 0.83 0.999+0.073

−0.076 1.001+0.063
−0.068 0.449+0.065

−0.066

All systematics, smax
‖ = 180 h−1 Mpc, zmod = 0.84 0.995+0.073

−0.072 0.998+0.063
−0.065 0.445+0.059

−0.061

All systematics, smax
‖ = 190 h−1 Mpc, zmod = 0.82 1.002+0.071

−0.073 1.007+0.066
−0.057 0.455+0.068

−0.066

All systematics, smax
‖ = 190 h−1 Mpc, zmod = 0.84 1.000+0.072

−0.073 1.001+0.062
−0.063 0.447+0.065

−0.069

All systematics, smax
‖ = 200 h−1 Mpc, zmod = 0.82 1.003+0.069

−0.072 1.009+0.062
−0.056 0.457+0.079

−0.074

All systematics, smax
‖ = 200 h−1 Mpc, zmod = 0.83 1.003+0.069

−0.071 1.008+0.061
−0.056 0.453+0.071

−0.071

All systematics, smax
‖ = 200 h−1 Mpc, zmod = 0.84 0.996+0.073

−0.063 1.002+0.061
−0.062 0.452+0.066

−0.065

All systematics, smax
‖ = 200 h−1 Mpc, zmod = 0.87 0.997+0.071

−0.069 0.996+0.062
−0.062 0.438+0.056

−0.058

All systematics, no cut 1.018+0.086
−0.082 1.011+0.060

−0.061 0.436+0.110
−0.109

All systematics, +1/2bins 1.002+0.069
−0.070 1.008+0.064

−0.071 0.459+0.068
−0.073

RSD + BAO
Standard 2PCF

No systematics 1.005+0.072
−0.073 1.012+0.050

−0.052 0.459+0.061
−0.059

All systematics 0.979+0.080
−0.083 0.969+0.062

−0.065 0.418+0.062
−0.058

Modified 2PCF
No systematics 0.996+0.067

−0.069 1.009+0.046
−0.045 0.462+0.064

−0.065

All systematics 0.997+0.068
−0.069 1.003+0.052

−0.053 0.455+0.066
−0.065

All systematics, +1/2bins 0.997+0.070
−0.068 1.004+0.054

−0.052 0.460+0.071
−0.073

parameters were unaffected. The mean deviations of the fitted cos-
mological parameters with respect to expectations are 0.9 per cent,
0.7 per cent, and 1.6 per cent in α�, α⊥, and fσ 8, showing that the
CLPT–GS model describes the blind mock catalogues remarkably
well.

These tests on N-body mocks demonstrate that the CLPT–GS
model provides unbiased RSD measurements, within the statistical
error of the mocks. Following Alam et al. (2020a), we adopt as
our modelling systematic errors: 1.8 per cent, 1.4 per cent, and
3.2 per cent for α�, α⊥, and fσ 8 respectively. We note that these
errors are an order of magnitude smaller than the statistical error of
the eBOSS ELG sample (see Section 7), and will marginally affect
the precision of our measurements.

6.2 Radial integral constraint modelling

In Section 5.2, we justified the use of the ‘shuffled-z’ scheme to
assign redshifts to random objects, for both data and mocks, in order
to reproduce the radial selection function of the survey. This scheme
has a significant impact on the multipole measurements in the eBOSS
ELG sample, as illustrated in Fig. 6 with the EZmocks (dashed lines
with shaded regions), using either the ‘sampled-z’ scheme (blue)
or the ‘shuffled-z’ one (green). At large scales, the increase in the
quadrupole and decrease in the hexadecapole are noticeable. We
account for this RIC effect in our modelling with the formalism
presented in Section 5.2, and we test hereafter the impact of that
correction on the estimated cosmological parameters. Results are
presented in the upper part of Table 3.

MNRAS 499, 5527–5546 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/4/5527/5917997 by guest on 21 M
ay 2024



5538 A. Tamone et al.

Figure 6. Multipoles of the standard 2PCF as measured in EZmocks without
systematics, using the ‘sampled-z’ (blue) or the ‘shuffled-z’ (green) scheme.
Left-hand panels are for the NGC, right-hand panels for the SGC. The dotted
lines and the shaded area represent the mean of the mocks and the dispersion
at 1σ around the mean, respectively. Blue solid and dashed green lines
are the CLPT–GS model prediction without and with the RIC correction,
respectively. Cosmological parameters used for the model are: (α�, α⊥, f, F1,
σ FoG) = (1.0, 1.0, 0.84, 0.4, 2.0).

The baseline for this test is provided by fits on the ‘sampled-z’
EZmocks, using a standard 2PCF model based on CLPT–GS at the
data effective redshift. When compared to the values expected for
our fiducial cosmology, the results show deviations of 2.4 per cent,
0.2 per cent, and 0.9 per cent for a�, a⊥, and fσ 8, respectively.
Those small deviations may come from the fact that EZmocks are
approximate mocks meant to determine the covariance matrix to be
used in the measurements. The linear scales around the BAO are
well reproduced but the small scales and hence the full shape fits are
not accurate enough for model validation. In this sense, we note that
the corresponding value of the isotropic BAO scale αiso = 1.007 is
consistent with the value measured in Raichoor et al. (2020) from
the post-reconstruction monopole.

Performing a similar fit, i.e. without RIC correction, using the
‘shuffled-z’ scheme instead of the ‘sampled-z’ one, the previous
cosmological parameter estimations are shifted by 4.0 per cent,
5.3 per cent, and 4.2 per cent for a�, a⊥, and fσ 8. Those shifts are
large, and explained by the significant differences in the multipoles
between the ‘sampled-z’ and the ‘shuffled-z’ schemes due to the RIC
effect (Fig. 6). It justifies that we correct our modelling for this effect.
Including the correction as described in Section 5.2, the deviations
are significantly reduced to 2.1 per cent, 1.2 per cent, and 0.2 per cent
for a�, a⊥, and fσ 8, respectively. The growth rate is almost perfectly
recovered and the remaining biases in α� and α⊥ are reasonable.
The observed shifts are taken as systematic errors due to the RIC
modelling in our final error budget (see Table 5).

6.3 Mitigating unknown angular systematics in RSD fits

As already mentioned, the eBOSS ELG sample suffers from un-
known angular systematics that are not corrected by the photometric
weights. These systematic effects bias our cosmological results (see

Figure 7. χ2
mod measuring the difference between multipoles of the modified

2PCF obtained on ‘shuffled-z’ EZmocks with and without systematics
(equation 39), as a function of the modified 2PCF free parameters, zmod

and smax
‖ . The dashed line encompasses the eight neighbouring pixels around

the minimum, marked with a white cross. Black crosses indicate pixels with
χ2

mod < 0.1. We note that the standard 2PCF would provide χ2 ∼ 3.

below). In this section, we show that the modified 2PCF (Section 4.2)
is efficient at reducing those biases.

Here, our reference consists in fitting an RIC-corrected model on to
‘shuffled-z’ EZmocks without systematics using the standard 2PCF
(see Standard 2PCF, ‘no systematics’ row in Table 3). Performing a
similar fit on the ‘shuffled-z’ EZmocks with systematics, shifts those
reference values by 0.3 per cent, 2.2 per cent, and 9.6 per cent for a�,
a⊥, and fσ 8, respectively. The shift in fσ 8 is significant and justifies
our use of the modified 2PCF defined by equation (14) in Section 4.2
to cancel the angular modes.

The free parameters zmod and smax
‖ of the modified 2PCF are chosen

by minimizing the following quantity:

χ2
mod

(
zmod, s

max
‖

) = 
(
Cmod

cut

)−1
T, (39)

where  = ξmod
cut,syst(zmod, s

max
‖ ) − ξmod

cut (zmod, s
max
‖ ) is the vector of

differences between the multipoles of the modified 2PCF (� = 0,
2, 4) measured from the mean of the EZmocks with and without
systematics and restricted to our fiducial fitting range in s, and
Cmod

cut is the covariance matrix built from the 1000 EZmocks without
systematics, using the modified 2PCF. The minimization yields zmod

= 0.83 and smax
‖ = 190 h−1Mpc. In the following, we will choose

those two parameters as our baseline choice. The 2D variations
of χ2

mod with respect to both parameters are represented in Fig. 7,
which shows a valley around our minimum (represented by the
darker blue pixels). The minimum is well defined at the centre of
this valley. Moreover, the minimum χ2

mod reaches a value below
0.1 that indicates that the modified 2PCF successfully mitigates the
systematic effects introduced in the mocks. Using the covariance
matrix with systematics or using the modified 2PCF with no cut in s
(see equation 13) result in the same minima.

To quantify the systematic error related to the modified 2PCF, we
compare in Table 3 fit results to the modified and standard 2PCF
multipoles from the mean of the mocks for the ‘no systematics’ case
(we recall that we use ‘shuffled-z’ EZmocks and an RIC-corrected
model as baseline). We find deviations of 0.3 per cent, 0.04 per cent,
and 1.4 per cent in α�, α⊥, and fσ 8, respectively. Then, we vary zmod

and smax
‖ around their nominal values and take as a systematic error

the largest of the observed deviations for each parameter. For zmod,
we obtain 0.3 per cent, 0.2 per cent, and 1.8 per cent for α�, α⊥, and
fσ 8, respectively. For smax

‖ , the equivalent numbers are 0.2 per cent,
0.3 per cent, and 1.5 per cent. The error we assign to using the
modified 2PCF in the absence of systematics is taken conservatively
as the sum in quadrature of the three effects previously described,
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which amounts to 0.5 per cent, 0.4 per cent, and 2.7 per cent for α�,
α⊥, and fσ 8, respectively. We also show that taking more extreme
values for the parameters (smax

‖ = 200 h−1 Mpc , zmod = 0.87 and
smax
‖ = 100 h−1 Mpc , zmod = 0.84) implies deviations that are at same

level. This shows the robustness of the modified 2PCF to recover
the correct values of the cosmological parameters in the absence
of systematic effects in the mocks. We note that larger biases are
observed when the parameter smin

‖ of the modified 2PCF is set to 0
in equation (14) (see ‘no cut’ label in Table 3). This especially the
case for fσ 8, which is expected since using the model for very small
scales, where it is invalid, distributes model inaccuracies over all
scales.

We now study the response of the modified 2PCF in the case of
shuffled-z EZmocks with ‘all systematics’ (and an RIC-corrected
model). Deviations with respect to results from the modified 2PCF
and mocks without systematics are 0.3 per cent, 0.9 per cent, and
1.7 per cent for α�, α⊥, and fσ 8, respectively, showing a significant
reduction with respect to the corresponding results from the standard
2PCF reported at the beginning of the section. This demonstrates that
the modified 2PCF is key for this analysis as it reduces the bias on fσ 8

by a factor of nearly 6. When compared to results from the standard
2PCF and mocks without systematics, the deviations in cosmological
parameters are small (0.7 per cent, 0.9 per cent, and 0.4 per cent
for α�, α⊥, and fσ 8), nevertheless, there is a mild increase of the
dispersion of about 10 per cent for α�, 15 per cent for α⊥, and 15
per cent for fσ 8.

We also evaluate the impact of changes of zmod and smax
‖ around

their nominal values by considering the eight neighbouring pixels
around the minimum defined in Fig. 7, which correspond to changes
of zmod ∈ {0, ±0.01} and smax

‖ ∈ {0, ±10} h−1Mpc. First, we
consider the shifts induced by a small increase in χ2

mod, i.e. pixels
marked by black crosses in Fig. 7 which have χ2

mod < 0.1. The
largest deviations with respect to mocks without systematics and
the modified 2PCF with baseline parameters are obtained for smax

‖ =
200 h−1Mpc and zmod = 0.84: 0.3 per cent, 0.9 per cent, and 2.1
per cent for α�, α⊥, and fσ 8, respectively. These numbers become
0.6 per cent, 0.8 per cent, and 0.7 per cent when the comparison is
made w.r.t. the standard 2PCF. The deviations are only marginally
larger than those previously quoted, as expected since we are close to
the minimum. Considering all neighbouring pixels, the largest biases
are obtained for smax

‖ = 180 h−1Mpc and zmod = 0.84, which is the
neighbouring pixel with the largest χ2

mod value. With respect to mocks
without systematics and the modified 2PCF with baseline parameters,
we observe deviations of 0.4 per cent, 1.3 per cent, and 3.6 per cent
for α�, α⊥, and fσ 8. These numbers become 0.7 per cent, 1.2
per cent, and 2.3 per cent when comparing to the standard 2PCF
case. In the case of fσ 8, this is about twice the deviation observed
for our baseline parameters when using the modified 2PCF and six
times with the standard 2PCF. While the cosmological parameters are
still better recovered with the modified 2PCF than with the standard
one, the above results underline that the mitigation efficiency of
the modified 2PCF strongly depends on the values of its two free
parameters. For completeness, we observe that settings smax

‖ or zmod

to more extreme values (100 h−1Mpc and 0.87, respectively) degrade
significantly the efficiency of mitigation: this is understood since the
systematics are no longer corrected as efficiently as with the baseline
parameters.

Results of fits to EZmocks with systematics using the modified
2PCF (with (smax

‖ , zmod) at their baseline values) and the standard
one are compared in Figs 8 and 9. Both the standard and modified
2PCFs provide similar χ2 distributions, but due to systematics, the
standard 2PCF fits are driven by extra correlations in the quadrupole

Figure 8. χ2 distributions for RSD fits to multipoles of the standard (step
line in blue) and modified 2PCF (filled in red) (using a cut in s at 32 h−1 Mpc
for the latter) in 1000 EZmocks with systematics. Dashed blue and solid red
vertical lines are the χ2 for the eBOSS ELG data sample for the standard and
modified 2PCF, respectively.

at intermediate scales (see middle panels of Fig. 3) which results in
clearly biased values for α⊥ and fσ 8. Fig. 9 shows that on average,
the modified 2PCF brings a significant improvement for these two
parameters.

6.4 Joined RSD + BAO fit

As in de Mattia et al. (2020), we perform a joined fit of RSD
and isotropic BAO. We take into account the cross-correlation be-
tween the pre-reconstruction multipoles and the post-reconstruction
monopole, and combine their likelihoods, as explained in Section 5.5.

When fitting the ‘shuffled-z’ EZmocks without systematics using
the standard 2PCF, combining with isotropic BAO has a small effect
on the median best-fitting parameter values of individual mocks. We
indeed observe shifts of 0.2 per cent, 0.2 per cent, and 0.9 per cent
for α�, α⊥, and fσ 8, respectively (see second part of Table 3). The
same is observed when using the modified 2PCF with the baseline
parameters in the RSD part of the fit: shifts are of 0.3 per cent, 0.2
per cent, and 0.2 per cent for α�, α⊥, and fσ 8 compared to pure
RSD fits with the modified 2PCF.

As already observed for pure RSD fits, adding systematics biases a
lot the results compared to fits on EZmocks without systematics; for
RSD + BAO fits with the standard 2PCF, all parameters are biased
low, by 2.6 per cent for α�, 4.2 per cent for α⊥, and 8.8 per cent for
fσ 8. For the AP parameters, these deviations are larger than in the
RSD fits.

It again motivates the use of the modified 2PCF to mitigate the
systematics. As compared to RSD + BAO fits on mocks without
systematics using the modified (standard) 2PCF, RSD + BAO fits
with the modified 2PCF on mocks with systematics deviate by only
0.1 per cent (0.9 per cent) for α�, 0.6 per cent (0.8 per cent) for
α⊥, and 1.9 per cent (1.1 per cent) for fσ 8, which are comparable
to those in the pure RSD case. This suggests that with the standard
2PCF, RSD + BAO fits are driven by systematics in pre- and post-
reconstruction multipoles that can be correlated and highlights again
the need for the modified 2PCF.
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Figure 9. Comparison of parameter best-fitting values for RSD fits based on the standard 2PCF (x-axis) and the modified one (y-axis) obtained for the 1000 EZ-
mocks with systematics. Cyan dotted lines correspond to the mean of the fits on EZmocks without systematics using the standard 2PCF, which is the reference case
here. Solid lines indicate the mean values of the parameters for the modified (red horizontal) and standard (blue vertical) 2PCF. The solid grey line is the identity.

7 R ESULTS

In this section, we present the results and tests made on the eBOSS
ELG data sample. We perform RSD and combined RSD + isotropic
BAO measurements. All results are reported in Table 4.

Following de Mattia et al. (2020), we decided to limit the redshift
range for the RSD fit to 0.7 < z < 1.1 due to the higher variations of
the radial selection function with depth in the 0.6 < z < 0.7 interval.
The posteriors become also more stable with this restricted redshift
range. Limiting the RSD fit to 0.7 < z < 1.1 moves the effective
redshift of the combined sample from 0.845 to 0.857 (Table 1). As
we still keep the full range for the BAO part of the joined fit, we
chose to fix the effective redshift to zeff = 0.85 for the combined
RSD + BAO measurements. Indeed, as argued in de Mattia et al.
(2020), changing the effective redshift from 0.845 to 0.857 induces
shifts in the cosmological parameter measurements of 0.3 per cent
for fσ 8, 0.7 per cent for DH/rdrag, and 1.1 per cent for DM/rdrag,
which are small compared to the statistical uncertainty.

Results of RSD + BAO fits to the combined data sample
are presented in Fig. 10, which compares data and best-fitting
model predictions for the post-reconstruction monopole and the pre-
reconstructed 2PCF multipoles. The right-hand panel corresponds to
results obtained with the standard 2PCF. While both monopole best
fittings provide reasonable BAO peak positions, the quadrupole best
fitting displays an unphysical ‘BAO peak’ at s ∼ 90 h−1Mpc, driven
by a bump in the data, likely due to remaining angular systematics,
which as a consequence biases the AP parameters. The degeneracy
between the AP parameters and the growth rate observed in the
posteriors, presented in Fig. 11 (blue contours), can explain the low
value measured for fσ 8. The fact that the model provides a good
fit to all multipoles, including the quadrupole, explains the low χ2

obtained with the standard 2PCF, see Fig. 8.
Pure RSD fits on the eBOSS ELG sample with the standard 2PCF

give results far away from what is expected from EZmocks, for the
combined sample and separate caps. Compared to values measured
in data (‘baseline’ of RSD Standard 2PCF), RSD fits to EZmocks
with systematics using the standard 2PCF provide a larger value
of α� in 33/1000 cases and the same fraction provides a smaller
value of α⊥. However, we observe no mock with a value of fσ 8

smaller than that in data and only a few mocks with a value around
35 per cent larger. We interpret those unlikely results as due to the
remaining angular systematics present in the data and to the low
significance BAO detection in the eBOSS ELG sample presented in

Raichoor et al. (2020). Changing the redshift range to zmin = 0.6
gives even more extreme results, with 14/1000 and 13/1000 mocks
showing larger values of α� and lower values of α⊥ than in data,
respectively. Adding the isotropic BAO to the fit (‘baseline’ of RSD
+ BAO Standard 2PCF) brings only slight changes to the previous
results: 25/1000 mocks have a larger value than that measured for
α�, 132/1000 have a smaller value for α⊥, and 2/1000 mocks have
a smaller value for fσ 8. The data measurements are still far from
expected in the mocks.

To mitigate the remaining angular systematics in the data sam-
ple, we fit the modified 2PCF from equation (14) with the same
baseline parameter values as for the EZmocks, i.e. zmod = 0.83
and smax

‖ = 190 h−1Mpc, for which we observed that the systematic
effects injected in the mocks were optimally reduced.

Cosmological parameter measurements for pure RSD fits with the
modified 2PCF (‘baseline’ of RSD Modified 2PCF) are significantly
different from those with the standard 2PCF: the value of α� decreases
by 17.8 per cent and those of α⊥ and fσ 8 increase by 12.6 per cent
and 146.5 per cent, respectively. Now 293/1000 mocks have a
smaller value of α�, 283/1000 a smaller value of α⊥ and there
are 135/1000 mocks with a smaller value of fσ 8. Overall the new
measurements are all within 1σ from the median of the fits to
‘shuffled-z’ EZmocks with systematics using the modified 2PCF.
Larger differences between fits to data with the standard and modified
2PCFs are observed in 36/1000 and 80/1000 mocks for α� and α⊥.
However, no fit on mocks exhibits a difference as large as that in data
for fσ 8.

Adding the post-reconstruction monopole of the standard 2PCF to
the pre-reconstruction multipoles of the modified 2PCF for a joined
RSD + BAO fit (‘baseline’ of RSD + BAO Modified 2PCF) changes
the previous results of pure RSD fits, increasing the value of α� by
8.2 per cent, that of α⊥ by 2.3 per cent, and decreasing the value of fσ 8

by 8.9 per cent. There are 285/1000 mocks with a higher value of α�,
388/1000 with a lower value of α⊥ ,and 61/1000 mocks with a lower
value of fσ 8. In terms of the BAO isotropic shift derived from RSD fits
using the modified 2PCF, adding the post-reconstruction monopole
increases the value of αiso from 0.949 (‘baseline’ of RSD Modified
2PCF) to 0.995 (‘baseline’ of RSD + BAO Modified 2PCF) which is
more consistent with the value measured by Raichoor et al. (2020).
Compared with the results from BAO + RSD fits using the standard
2PCF, the value of α� decreases by 10.4 per cent, while those of
α⊥ and fσ 8 increase by 9.4 per cent and 103.5 per cent, respectively
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Table 4. RSD and BAO + RSD fits (in bold in the Table) on the eBOSS ELG sample. We present the median and 1σ errors from the
posterior distributions (as being the 0.16/0.84 quantiles from the distribution) and, in brackets, the best-fitting value.

α� α⊥ fσ 8

RSD
Standard 2PCF

Baseline 1.163+0.087
−0.083 (1.159) 0.847+0.071

−0.082 (0.855) 0.155+0.069
−0.060 (0.074)

zmin = 0.6 1.212+0.086
−0.088 (1.188) 0.801+0.096

−0.109 (0.847) 0.100+0.079
−0.069 (0.061)

Modified 2PCF
Baseline (smax

‖ = 190 h−1 Mpc, zmod = 0.83) 0.956+0.125
−0.109 (0.863) 0.954+0.046

−0.050 (0.950) 0.382+0.078
−0.094 (0.424)

No sys. cov 0.983+0.132
−0.141 (0.854) 0.965+0.050

−0.050 (0.954) 0.373+0.083
−0.100 (0.429)

No wnoz 0.949+0.13
−0.107 (0.862) 0.956+0.055

−0.055 (0.951) 0.385+0.081
−0.083 (0.423)

+1/2bins 0.864+0.154
−0.088 (0.813) 0.946+0.057

−0.054 (0.942) 0.394+0.077
−0.095 (0.405)

OR cosmology (rescaled) 0.976+0.113
−0.102 (0.907) 0.951+0.050

−0.045 (0.954) 0.372+0.080
−0.093 (0.401)

zmin = 0.6 1.018+0.121
−0.121 (0.929) 0.935+0.039

−0.045 (0.942) 0.323+0.081
−0.090 (0.366)

smax
‖ = 180 h−1 Mpc, zmod = 0.82 0.968+0.124

−0.115 (0.862) 0.948+0.050
−0.051 (0.948) 0.368+0.079

−0.088 (0.421)

smax
‖ = 180 h−1 Mpc, zmod = 0.83 0.993+0.121

−0.131 (0.862) 0.945+0.049
−0.053 (0.935) 0.348+0.084

−0.099 (0.404)

smax
‖ = 180 h−1 Mpc, zmod = 0.84 1.029+0.104

−0.141 (0.875) 0.938+0.050
−0.051 (0.931) 0.311+0.092

−0.087 (0.382)

smax
‖ = 190 h−1 Mpc, zmod = 0.82 0.925+0.139

−0.094 (0.855) 0.952+0.055
−0.052 (0.951) 0.404+0.077

−0.088 (0.438)

smax
‖ = 190 h−1 Mpc, zmod = 0.84 0.988+0.118

−0.125 (0.869) 0.946+0.047
−0.052 (0.943) 0.350+0.085

−0.093 (0.404)

smax
‖ = 200 h−1 Mpc, zmod = 0.82 0.906+0.138

−0.083 (0.847) 0.970+0.062
−0.053 (0.956) 0.444+0.075

−0.082 (0.458)

smax
‖ = 200 h−1 Mpc, zmod = 0.83 0.908+0.126

−0.085 (0.852) 0.961+0.051
−0.051 (0.955) 0.424+0.074

−0.081 (0.446)

smax
‖ = 200 h−1 Mpc, zmod = 0.84 0.934+0.136

−0.093 (0.880) 0.957+0.049
−0.055 (0.953) 0.391+0.079

−0.085 (0.226)

No cut 0.936+0.190
−0.108 (0.84) 0.958+0.061

−0.061 (0.958) 0.405+0.133
−0.196 (0.458)

Separate caps
SGC, standard 2PCF 1.100+0.090

−0.085 (1.100) 0.946+0.077
−0.078 (0.955) 0.236+0.082

−0.087 (0.215)

SGC, modified 2PCF 1.041+0.093
−0.097 (1.032) 1.026+0.118

−0.091 (1.008) 0.378+0.102
−0.116 (0.329)

NGC, standard 2PCF 1.196+0.113
−0.212 (1.400) 0.759+0.085

−0.067 (0.725) 0.147+0.095
−0.059 (0.060)

NGC, modified 2PCF 0.875+0.377
−0.089 (0.822) 0.932+0.371

−0.104 (0.921) 0.463+0.095
−0.108 (0.464)

RSD + BAO
Standard 2PCF

Baseline 1.154+0.071
−0.063 (1.153) 0.892+0.040

−0.045 (0.909) 0.171+0.058
−0.059 (0.157)

zmin = 0.6 1.198+0.060
−0.069 (1.183) 0.846+0.046

−0.045 (0.860) 0.109+0.064
−0.059 (0.104)

Modified 2PCF
Baseline ( smax

‖ = 190 h−1 Mpc , zmod = 0.83) 1.034+0.091
−0.098 (1.042) 0.976+0.045

−0.045 (0.978) 0.348+0.082
−0.084 (0.316)

No sys. cov 1.040+0.093
−0.112 (1.050) 0.974+0.046

−0.043 (0.978) 0.342+0.086
−0.091 (0.308)

No wnoz 1.037+0.089
−0.097 (1.044) 0.980+0.044

−0.044 (0.981) 0.342+0.088
−0.083 (0.314)

+1/2bins 0.975+0.120
−0.101 (0.904) 0.978+0.055

−0.049 (1.003) 0.354+0.094
−0.110 (0.378)

zmin = 0.6 1.082+0.083
−0.107 (1.098) 0.950+0.035

−0.041 (0.954) 0.299+0.080
−0.076 (0.262)

smax
‖ = 180 h−1 Mpc, zmod = 0.82 1.047+0.085

−0.106 (1.049) 0.971+0.043
−0.046 (0.972) 0.333+0.085

−0.083 (0.304)

smax
‖ = 180 h−1 Mpc, zmod = 0.83 1.057+0.082

−0.097 (1.069) 0.966+0.045
−0.043 (0.966) 0.317+0.082

−0.076 (0.281)

smax
‖ = 180 h−1 Mpc, zmod = 0.84 1.077+0.077

−0.100 (1.087) 0.958+0.042
−0.043 (0.957) 0.288+0.081

−0.073 (0.255)

smax
‖ = 190 h−1 Mpc, zmod = 0.82 1.027+0.087

−0.103 (0.989) 0.978+0.050
−0.045 (0.987) 0.361+0.084

−0.086 (0.365)

smax
‖ = 190 h−1 Mpc, zmod = 0.84 1.058+0.082

−0.090 (1.069) 0.968+0.044
−0.045 (0.967) 0.319+0.080

−0.081 (0.282)

smax
‖ = 200 h−1 Mpc, zmod = 0.82 0.988+0.096

−0.089 (0.946) 0.991+0.051
−0.047 (0.997) 0.398+0.079

−0.087 (0.410)

smax
‖ = 200 h−1 Mpc, zmod = 0.83 1.009+0.093

−0.097 (0.950) 0.988+0.050
−0.046 (0.995) 0.383+0.079

−0.089 (0.401)

smax
‖ = 200 h−1 Mpc, zmod = 0.84 1.028+0.088

−0.099 (0.980) 0.979+0.044
−0.045 (0.992) 0.351+0.083

−0.084 (0.368)

No cut 1.036+0.107
−0.131 (0.920) 0.972+0.059

−0.053 (0.997) 0.339+0.145
−0.128 (0.424)

Separate caps
SGC, standard 2PCF 1.074+0.085

−0.084 (1.069) 0.935+0.055
−0.052 (0.938) 0.241+0.085

−0.080 (0.225)

SGC, modified 2PCF 1.025+0.086
−0.093 (1.023) 0.988+0.069

−0.062 (0.979) 0.355+0.104
−0.104 (0.314)

NGC, standard 2PCF 1.229+0.089
−0.097 (1.204) 0.682+0.072

−0.035 (0.874) 0.085+0.048
−0.019 (0.163)

NGC, modified 2PCF 0.872+0.168
−0.078 (0.824) 0.920+0.064

−0.072 (0.906) 0.450+0.090
−0.106 (0.458)
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Figure 10. 2PCF multipoles from eBOSS ELG data compared to CLPT–
GS models. Left: Pre-reconstruction mulipoles from the modified 2PCF
of equation (14) with baseline parameter values, and post-reconstruction
monopole from the standard 2PCF. The modified 2PCF model (in red) is that
from the RSD + BAO fit to the four multipoles in the left-hand panels. Right:
Multipoles of the standard 2PCF compared to the standard 2PCF model with
parameters from the RSD + BAO fit to the multipoles in the right-hand panels
(in blue) and in the left-hand panels (in red). The bands are 1σ dispersions of
the EZmocks for the modified (red) and standard (blue) 2PCF.

(‘baseline’ of RSD + BAO Modified versus Standard 2PCF). The
differences in measured parameter values between fits using the
standard or modified 2PCF are more frequent on RSD + BAO fits to
EZmocks with systematics than for pure RSD fits: 154/1000 mocks
have a larger shift than the observed one for α� and 139/1000 for
α⊥ instead of 36/1000 and 80/1000, respectively, for pure RSD fits
as stated above. For fσ 8 there is still no mock for which such a
difference is observed. We conclude that, as already observed on
mocks, the modified 2PCF, being less prone to systematics, provides
a more reliable estimator to derive cosmological measurements from
data and that adding BAO regularizes the measurements.

The left-hand panel of Fig. 10 shows the pre-reconstruction
multipoles and the post-reconstruction monopole of the modified
2PCF used for the RSD + BAO fits along with predictions from
the best-fitting model. The agreement between the best-fitting model
and the measured multipoles is good and the excess of clustering
in the quadrupole at intermediate scale is significantly reduced in
data, no longer driving the fit. On the right-hand panel, we show
the predictions from the standard 2PCF model using best-fitting
values from the RSD + BAO fit with the modified 2PCF (in red
on the graph). The model agrees quite well with the measured
standard 2PCF multipoles, except at intermediate scales for the
quadrupole, which are contaminated by systematics; we also note
a better agreement for the lower s bins for the monopole. The
posteriors of the modified 2PCF RSD + BAO fit are presented
in Fig. 11 (red contours). As discussed above, removing angular
modes with the modified 2PCF leads to different cosmological

Figure 11. Posteriors of the RSD + BAO fits to standard (in blue) and
modified (in red) 2PCF multipoles as measured from the eBOSS ELG sample.

parameter estimates than with the standard 2PCF, though with similar
degeneracies. We also note that due to information loss with the
modified 2PCF, the posteriors are slightly wider than in the standard
case.

We now test the robustness of the results from the above analysis
with the modified 2PCF. Parameters of the latter were varied,
removing the cut in the correction terms (i.e. using equation 13),
and varying zmod and smax

‖ values, since, as stated in Section 6.3,
those are the most sensitive parameters. As for EZmocks, we
vary zmod and smax

‖ values in the ranges zmod ∈ {0, ±0.01} and
smax

‖ ∈ {0,±10} h−1Mpc around their baseline values. We note that
within the explored region, deviations in data measurements from the
baseline results are in agreement with expectations from the mocks.
Indeed staying on the diagonal defined by the crosses in Fig. 7 gives
small shifts with respect to baseline measurements and for most of
the tested (zmod, smax

‖ ) values, the deviations increase in accordance
with the χ2

mod(zmod, s
max
‖ ) value from the mocks. In agreement with

the mocks, the largest deviations are observed for zmod = 0.84 and
smax
‖ = 180. Shifts with respect to our baseline results in the pure

RSD case amount to 8.0 per cent, 1.9 per cent, and 20.7 per cent in
α�, α⊥, and fσ 8, respectively. Shifts are slightly smaller in the RSD
+ BAO case: 4.2 per cent, 1.8 per cent, and 17.2 per cent. In the RSD
case, such deviations are consistent with mocks at the 3σ level for
a� and at the 2σ level for α⊥, but no mock shows a difference as
large as for data for fσ 8. As those parameter values are not optimal
for our analysis (see Fig. 7) large shifts are not surprising. Moreover,
we know that our data sample suffers from systematic effects that
are more complex than those introduced in the mocks, as observed
when using the standard 2PCF (see Fig. 3). Nevertheless, we adopt
a conservative approach and add the above shifts, i.e. 4.2 per cent,
1.8 per cent, and 17.2 per cent in α�, α⊥, and fσ 8, to our systematic
budget to account for residual, uncorrected systematics in data. This
error also includes the uncertainty due to the sensitivity of our results
to the modified 2PCF free parameters.

When moving the s-bin centres by half a bin width (i.e. 4 h−1Mpc),
we observe large changes especially in α�. The shifts for RSD + BAO
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Table 5. Systematic error budget. The last row gives statistical and systematic
errors added in quadrature.

α� α⊥ fσ 8

From N-body mocks
CLPT modelling 1.8 per cent 1.4 per cent 3.2 per cent

From EZmocks
Modelling RIC 2.1 per cent 1.2 per cent 0.2 per cent
Modified 2PCF 0.5 per cent 0.4 per cent 2.7 per cent

From data
Uncorrected systematics 4.2 per cent 1.8 per cent 17.2 per cent

Statistical uncertainties +0.091
−0.098

+0.045
−0.045

+0.082
−0.084

Systematics uncertainties 0.052 0.025 0.062
Total +0.105

−0.111
+0.051
−0.051

+0.103
−0.104

fits are 5.7 per cent, 0.2 per cent, and 1.7 per cent in α�, α⊥, and fσ 8,
respectively. Larger shifts are observed in 124/1000, 788/1000, and
766/1000 mocks in α�, α⊥, and fσ 8 respectively. The observed shifts
in data are therefore compatible with statistical fluctuations.

The measurements are stable when using the covariance matrix
from ‘shuffled-z’ EZmocks without systematics: in the RSD + BAO
case, we observe shifts of 0.6 per cent, 0.2 per cent, and 1.7 per cent in
α�, α⊥, and fσ 8, compatible with statistical fluctuations. They remain
stable also when we remove the wnoz weights when computing the
correlation function: we observe small shifts of 0.3 per cent in α�,
0.4 per cent in α⊥, and 1.7 per cent in fσ 8. We finally checked the
impact of changing the BOSS fiducial cosmology (equation 7) to
the OR one (equation 6). Compared to our baseline results in the
pure RSD case, we see deviations of 2.1 per cent in α�, 0.3 per cent
in α⊥, and 2.6 per cent in fσ 8. Those deviations are compatible
with statistical fluctuations and considering the large systematic
uncertainty already included for data instabilities, we do not add
an extra systematic error.

Taking into account all systematic uncertainties from Table 5 and
adding them in quadrature to statistical errors, we quote our final
measurements from the joined RSD + BAO fit with multipoles of
the modified 2PCF at the effective redshift zeff = 0.85:

α‖ = 1.034+0.105
−0.111 , α⊥ = 0.976+0.051

−0.051 , f σ8 = 0.348+0.103
−0.104. (40)

The linear bias of our combined data sample for a σ 8 fixed at our
fiducial cosmology (equation 7) is measured to be b1 = 1.52+0.16

−0.14,
where quoted errors are statistical only.

Converting the AP parameters into Hubble and comoving angular
distances using equations (33), we finally have:

DH (zeff )/rdrag = 19.1+1.9
−2.1,

DM (zeff )/rdrag = 19.9 ± 1.0,

f σ8(zeff ) = 0.35 ± 0.10. (41)

Those values are in agreement within less than 1σ with the values
measured in Fourier space as reported in de Mattia et al. (2020). This
allows to combine our two measurements into a consensus one for
the eBOSS ELG sample, as presented in de Mattia et al. (2020):

DH (zeff )/rdrag = 19.6+2.2
−2.1,

DM (zeff )/rdrag = 19.5 ± 1.0,

f σ8(zeff ) = 0.315 ± 0.095. (42)

These results are compatible with a �CDM model using a Planck
cosmology.

8 C O N C L U S I O N

We performed a pure RSD analysis and a joined RSD + BAO analysis
in configuration space for the eBOSS DR16 ELG sample described in
Raichoor et al. (2020). This sample is composed of 173 736 galaxies
with a reliable redshift in the range 0.6 < z < 1.1, covering an
effective area of ∼730 deg2 over the two NGC and SGC regions.
The post-reconstruction BAO measurement in configuration space
of this sample is analysed in Raichoor et al. (2020). The BAO and
RSD measurements in Fourier space and a consensus of our results
for the eBOSS ELG sample are presented in de Mattia et al. (2020).

Our RSD fit is done on the 0.7 < z < 1.1 data multipoles (� = 0, 2,
4), using the CLPT–GS theoretical model. As part of the eBOSS ELG
mock challenge (Alam et al. 2020a), we first demonstrate the validity
of the CLPT–GS model in our fitting range using realistic ELG
mocks. Those are built from accurate N-body simulations, populated
with a broad range of models describing ELG variety, and split into
sets of ‘non-blind’ and ‘blind’ mocks.

A set of approximate mocks, the EZmocks (Zhao et al. 2020b),
are used to estimate the covariance matrix and also to validate the
analysis pipeline. As for the data, those EZmocks have redshifts
from randoms selected from the parent galaxy catalogue themselves,
in order to properly reproduce the survey radial selection function.
However, this choice leads to radial mode suppression, which we
account for in the correlation function modelling with a correction
based on the formalism developed in de Mattia & Ruhlmann-Kleider
(2019). We validate and quantify the error budget coming from that
correction using the EZmocks.

The eBOSS ELG data sample is affected by residual angular
systematics, which need to be corrected for before proceeding to
RSD fits, to avoid biasing our cosmological measurements. To
mitigate these angular systematics, we performed our RSD fits using
a modified 2PCF estimator, which is computed consistently for
the data, the EZmocks, and the model, discarding the small scales
where the accuracy of the CLPT–GS model is not demonstrated.
We carefully assessed the validity of that approach with a set
of the EZmocks in which we injected data-like systematics. We
demonstrated the efficiency of our approach to remove angular
systematics.

Once the validity of the RSD analysis and its error budget have
been established, we performed a similar analysis for the isotropic
BAO measurement on the reconstructed monopole (� = 0rec).

Finally, we did a series of tests on the RSD-only and RSD +
BAO results from the ELG data sample. Due to the non-Gaussianity
of our results, the RSD + BAO joined fits are performed by
combining their likelihoods. Taking into account all systematic errors
from our budget as well as statistical errors, we obtain our final
measurements from the joined RSD + BAO fit to the modified 2PCF
multipoles at the effective redshift zeff = 0.85: a‖ = 1.034+0.105

−0.111,
a⊥ = 0.976+0.051

−0.051, and f σ8 = 0.348+0.103
−0.104. From this joined analysis,

we obtain DH (zeff )/rdrag = 19.1+1.9
−2.1, DM(zeff)/rdrag = 19.9 ± 1.0,

and fσ 8(zeff) = 0.35 ± 0.10. These results are in agreement within
less than 1σ with those found by de Mattia et al. (2020) with an
RSD + BAO analysis performed in Fourier space. We also present
a consensus result between the two analyses, fully described in
de Mattia et al. (2020): DH (zeff )/rdrag = 19.6+2.2

−2.1, DM(zeff)/rdrag =
19.5 ± 1.0, and fσ 8(zeff) = 0.315 ± 0.095, which are in agreement
with �CDM predictions based on Planck parameters.

The presence of remaining angular systematics in the eBOSS ELG
data led us to develop a specific analysis tool, the modified 2PCF
estimator presented in this paper, that we consistently applied to
the data, mocks, and RSD model. Such an approach, along with
other developments based on the eBOSS data (Kong et al. 2020;
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Mohammad et al. 2020; Rezaie et al. 2020), will pave the way for the
analysis of the RSD and BAO in the next generation of surveys that
massively rely on ELGs, such as DESI, Euclid, PFS, or WFIRST.
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APPENDIX A : MODIFIED CORRELATION –
DETA ILS

We provide in this appendix more context to the equation (13).
Starting from equation 3.8 of Burden et al. (2017), the shuffled

correlation function can be written for a normalized data density
n̄(χ ) as

ξ shuff (r, r ′) = 〈δ(r)δ(r ′)〉 − 2
〈
δ(r)

∫
δ(γ, χ ′)n̄(χ ′)dχ ′〉 (A1)

+ 〈 ∫
δ(γ, χ ′)n̄(χ ′)dχ ′

∫
δ(γ ′, χ ′′)n̄(χ ′′)dχ ′′〉,

(A2)

where δ is the density field, r , r ′ are the comoving positions, γ , γ
′
are

the corresponding angular positions, and χ stands for line-of-sight
positions.

The first term corresponds to the standard 2PCF. Using the same
approximation as in Burden et al. (2017, equation 3.9) and doing the
substitution χ

′
to χ = χ

′ − χ , the second term becomes〈
δ(r)

∫
δ(γ, χ ′)n̄(χ ′)dχ ′〉 =

∫
ξ (θ, χ, χ ′)n̄(χ ′)dχ ′ (A3)

=
∫

ξ (θ, χ )n̄(χ + χ )dχ (A4)

writing θ = γ
′ − γ . To be more flexible in the scales introduced

in the correction, we further change n̄(χ + χ ) to n̄(χmod + χ/2)
where χmod = (χ + χ

′
)/2 is fixed (without changing the variable of

integration). As already stated, we emphasize that such approxima-
tions have no impact on the validity of our analysis as we use the
modified 2PCF as a new estimator applied consistently on data and
model.

The third term corresponds to the angular correlation function
w(θ ). Using the same substitution as previously and the Limber
approximation (Limber 1953), it becomes

w(θ ) =
∫ ∫

ξ (θ, χ )n̄(χ )n̄(χ + χ )dχdχ (A5)

=
∫

n̄2(χ )dχ

∫
ξ (θ,χ )dχ. (A6)

Gathering all terms together we end up with the adopted modified
2PCF of equation (13).
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