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A detection of the stochastic gravitational-wave background (SGWB) from unresolved compact binary
coalescences could be made by Advanced LIGO and Advanced Virgo at their design sensitivities.
However, it is possible for magnetic noise that is correlated between spatially separated ground-based
detectors to mimic a SGWB signal. In this paper we propose a new method for detecting correlated
magnetic noise and separating it from a true SGWB signal. A commonly discussed method for addressing
correlated magnetic noise is coherent subtraction in the raw data using Wiener filtering. The method
proposed here uses a parametrized model of the magnetometer-to-strain coupling functions, along with
measurements from local magnetometers, to estimate the contribution of correlated noise to the traditional
SGWB detection statistic. We then use Bayesian model selection to distinguish between models that
include correlated magnetic noise and those with a SGWB. Realistic simulations are used to show that this
method prevents a false SGWB detection due to correlated magnetic noise. We also demonstrate that it can
be used for a detection of a SGWB in the presence of strong correlated magnetic noise, albeit with reduced
significance compared to the case with no correlated noise. Finally, we discuss the advantages of using a
global three-detector network for both identifying and characterizing correlated magnetic noise.
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I. INTRODUCTION

During their first two observational runs, Advanced
LIGO [1] and Advanced Virgo [2] detected gravita-
tional-wave (GW) signals from ten binary black hole
mergers, and one binary neutron star merger [3]. During
the third observation run (O3), numerous low-latency alerts
for binary black hole, binary neutron star, and neutron star–
black hole mergers have been sent out to astronomers [4].
Exceptional events from O3 are now being published,
including new compact binary mergers that could be
neutron star–black hole mergers [5,6]. These detections
have already made a broad-reaching impact on stellar
astrophysics, the study of dense nuclear matter, and
beyond. In the coming years, one of the main targets of
ground-based interferometeric GW detectors will be a
detection of the stochastic gravitational-wave background
(SGWB). In this paper, we address a potential hurdle faced
on the way to the eventual detection of such a background.
We expect a SGWB from unresolved compact binary

coalescences (CBCs) could be detectable by the time
Advanced LIGO and Advanced Virgo reach design sensi-
tivity [7]. Other sources, both astrophysical and cosmo-
logical, can contribute to the SGWB, the most exciting of
which include GWs from the early Universe [8]. SGWB
searches can also complement transient GW searches,
through, e.g., searching for alternative polarizations of
GWs [9–11], and can be used together with transient
detections to constrain the star formation history of the
Universe [12].
Unlike for transient signals, searches for a SGWB

require long integration times because the signal is much
smaller than the intrinsic detector noise. We search for the
SGWB by cross-correlating outputs from two or more
widely separated detectors, and when there are no corre-
lated noise sources between the detectors, the only limiting
factor of the search is total observation time [13,14]. In the
presence of noise that is correlated between the detectors,
however, we must accurately estimate and separate the
relative strengths of the correlated noise and the SGWB.
Correlated noise in GW detectors caused by Earth’s

electromagnetic field, in the form of the Schumann reso-
nances, could be comparable to the sensitivity of SGWB
searches performed by the advanced detector network in
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the near future [13,15,16]. Analytic models of the impact of
correlated noise in GW detectors have been explored in
recent work, such as [17,18]. Meanwhile, the focus of most
attempts at mitigating the effects of correlated detector
noise on SGWB searches has centered on Wiener filtering
of the correlated signal using local environmental sensors
[15,16,19,20]. In addition, a method for validating a
potential SGWB signal once it is detected using geodesy
[21] has also been proposed. The geodesy method provides
a check on whether a proposed SGWB signal is consistent
with an isotropic SGWB or if it is more consistent with
environmental disturbances. Such a method offers com-
plementary information to approaches that attempt to
subtract or mitigate correlated noise.
In this paper, we take a different tact. We model the

contribution of correlated magnetic noise from Schumann
resonances to the frequency-domain SGWB estimator used
by most searches [22]. We propose a method to simulta-
neously detect correlated magnetic noise and a SGWB
using local on-site magnetometers and current SGWB
search data products. We then demonstrate this method
using realistic time-domain and frequency-domain syn-
thetic datasets with varying levels of correlated magnetic
noise. Such a method offers an alternative to Wiener
filtering, but could also be used on data that has already
had Wiener filtering subtraction applied, given that Wiener
filtering in the low signal-to-noise regime can result in
imperfect subtraction [20].
The rest of this paper is organized as follows. In Sec. II,

we introduce the cross-correlation statistic used in SGWB
searches, and highlight complications introduced by corre-
lated detector noise. In Sec. III, we explain the Schumann
resonances and their coupling to the detectors, and we
present the way we model this coupling. We then present a
method of simulating synthetic time series data that
includes a correlated magnetic spectrum in a multidetector
network. In Sec. IV, we discuss a model for the SGWB
search statistic that includes correlated magnetic noise,
and demonstrate how we use that model to codetect the
presence of correlated magnetic noise and a SGWB. We
present results on synthetic data in Sec. V, and finish with
a brief discussion and suggestions for future work
in Sec. VI.

II. SGWB AND SEARCH METHODS

If we assume the SGWB is isotropic, Gaussian, sta-
tionary, and unpolarized, then it is fully characterized by
the dimensionless energy density per logarithmic frequency
interval

ΩgwðfÞ ¼
1

ρc

dρgwðfÞ
d lnðfÞ ; ð1Þ

where dρgw is the GW energy density in the frequency
interval ln f to ln f þ d ln f, and ρc ¼ 3H2

0c
2=ð8πGÞ is the

critical energy density to close the Universe. It is common
to model the SGWB spectrum as a power law:

ΩgwðfÞ ¼ Ωα

�
f
fref

�
α

; ð2Þ

where Ωα is the amplitude at a reference frequency, fref ,
and α is the spectral index. We will use fref ¼ 25 Hz.
Unresolved CBCs give a background spectrum with

α ¼ 2=3; slow roll inflation models and cosmic strings
predict α ¼ 0. It is also common to consider a model that is
flat in GW power, which corresponds to α ¼ 3, to mimic
signals like those from phase transitions and supernovae
[8]. Recent estimates suggest that the SGWB could be
detected by the Advanced LIGO and Advanced Virgo
detector network once these detectors reach design sensi-
tivity and integrate for OðyearsÞ [7].
In what follows, we consider a SGWB search that uses a

cross-correlation estimator that is optimal for a Gaussian,
stationary, unpolarized, and isotropic background. Our
estimator, ĈijðfÞ, for the SGWB measured from detectors
i and j is

Ĉijðf; tÞ ¼
2

T

Re½s̃�i ðf; tÞs̃jðf; tÞ�
ΓijðfÞS0ðfÞ

; ð3Þ

where s̃iðf; tÞ is the Fourier transform of the strain time
series in detector i starting at time t, ΓijðfÞ is the
normalized overlap reduction function (ORF) [13,23]
between detectors i and j, T is the duration over which
the Fourier transform is taken, and S0ðfÞ is the spectral
shape for a SGWB that is flat in energy density,
S0ðfÞ ¼ 3H2

0=ð10π2f3Þ.
In the limit where the total GW strain amplitude in

detector i, h̃iðfÞ, is much less than the intrinsic detector
noise, ñiðfÞ, the variance of Ĉijðf; tÞ is given by

σ2ijðf; tÞ ¼
1

2ΔfT
Piðf; tÞPjðf; tÞ
ΓijðfÞ2S0ðfÞ2

; ð4Þ

where Piðf; tÞ is the one-sided power spectral density
(PSD) of detector i between times t and tþ T, and Δf is
the frequency resolution.
In general, Eqs. (3) and (4) are estimated for many

short time segments of T ¼ 192 s and these segments are
optimally combined in a postprocessing step given by

ĈijðfÞ ¼
P

kĈij;kðfÞσ−2ij;kðfÞP
kσ

−2
ij;kðfÞ

; ð5Þ

σijðfÞ ¼
�X

k
σ−2ij;kðfÞ

�
−1=2

; ð6Þ
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where k indexes the time segments. For a set of Nt time
segments starting at times ftkgk¼Nt

k¼1 , we have defined
Ĉij;kðfÞ ¼ Ĉijðf; tkÞ, and likewise for its variance.
It is worth considering the expectation value of the

estimator, hĈijðfÞi, in some detail (we will suppress the
time dependence for brevity). Let us assume that s̃iðfÞ can
be written as

s̃iðfÞ ¼ h̃iðfÞ þ ñiðfÞ; ð7Þ

where ñiðfÞ is the Fourier transform of the instrument noise
in detector i, and

h̃iðfÞ ¼
X
A

Z
d2r̂FA

i ðf; r̂Þh̃Aðf; r̂Þe−2πifx⃗i·r⃗=c ð8Þ

is the total GW signal in detector i located at x⃗i.
Here FA

i ðf; r̂Þ is the response of detector i to a plane
wave traveling in direction r̂ with polarization A, and
h̃Aðf; r̂Þ is the Fourier amplitude of that plane wave.
Consequently,

hs̃�i ðfÞs̃jðf0Þi ¼ hh̃�i ðfÞh̃jðf0Þi þ hh̃�i ðfÞñjðf0Þi
þ hñ�i ðfÞh̃jðf0Þi þ hñ�i ðfÞñjðf0Þi: ð9Þ

If we assume that the SGWB is isotropic, Gaussian,
stationary, and unpolarized, then it is well described by
a single power spectral density SgwðfÞ,

hh̃�i ðfÞh̃jðf0Þi ¼
1

2
δTðf − f0ÞΓijðfÞSgwðfÞ; ð10Þ

where δTðf − f0Þ is the finite-time approximation to the
Dirac delta function, and SgwðfÞ is related to the dimen-
sionless energy density as follows:

SgwðfÞ ¼
3H2

0

10π2
ΩgwðfÞ

f3
: ð11Þ

Note that, for the existing detectors, the overlap reduction
function, ΓijðfÞ, accounts for all the geometric factors that
come into play when cross-correlating data from different
detectors [13].
Combining Eqs. (9)–(11), substituting into Eq. (3), and

then including the time dependence again, we find

hĈijðf; tÞi ¼ ΩgwðfÞ þ 2Re

�hñ�i ðf; tÞñjðf; tÞi
TΓijðfÞS0ðfÞ

�
; ð12Þ

where we have assumed that the GW signal and the
intrinsic noise are uncorrelated, hh̃�i ðfÞñjðf0Þi ¼ 0, and
that the noise in each frequency bin is independent. It is

clear from Eq. (12) that in the absence of correlated noise,
i.e., hñ�i ðfÞñjðfÞi ¼ 0, hĈijðfÞi is an estimator for ΩgwðfÞ.
However, this is not the case when hñ�i ðfÞñjðfÞi ≠ 0.
Schumann resonances are a potential source of correlated

magnetic noise. An estimate of the correlated magnetic noise
contribution in the isotropic SGWB search using data from
Advanced LIGO’s first and second observing runs indicates
that it is not yet an issue for current searches [24]. However,
as detectors grow more sensitive, this will likely change, and
the magnetic noise budget could dominate the signal [16].
Hence, a careful treatment of correlated magnetic noise is of
vital importance.

III. SIMULATING GW DATA
WITH CORRELATED NOISE

In this section, we discuss how we simulate GW data that
is contaminated with correlated noise due to the Schumann
resonances. In Sec. III A we discuss the Schumann reso-
nances and their general properties. In Sec. III B we present
a model for the coupling of magnetic fields into GW
detectors. In Sec. III C we show how to simulate multiple
data streams that have correlated Gaussian noise compo-
nents, and then we apply that method to our specific
use case.

A. Schumann resonances

In 1952, Schumann predicted the existence of global
extremely low frequency peaks in the electromagnetic field
of Earth, which were subsequently observed [25,26]. The
resonances are eigenmodes of the conducting spherical
cavity formed by the surface of Earth and its ionosphere,
and are excited by lightning discharges [27]. The first
harmonic, which corresponds to the circumference of
Earth, is at hertz, and the subsequent harmonics are at
14, 20.8, and 27.3 Hz. The first mode has the strongest
resonance peak, with each consecutive peak being weaker
than the previous one. In Fig. 1, we show the power spectral
density seen in low-noise magnetometers on site at the
Advanced Virgo detector. We can clearly see the first five
harmonics of the Schumann resonances. There is a diurnal
variation in the amplitude of the Schumann resonances
that corresponds to electrical storms that start at similar
times and places each day [28,29]. The amplitude of the
resonance peaks can vary by as much as a factor of 2
between the loudest and quietest times of the day, depend-
ing on the time of year and the location [27,29,30]. What is
shown in Fig. 1 represents a trough in the height of the
peaks over the course of the day at Virgo. Despite this
diurnal variation, we will model the spectrum as stationary
in this paper for simplicity.
The Schumann resonances, being global excitations,

are coherent across the Oð1000 kmÞ distance scales
between GW detectors [19,20]. We model the time series
induced in magnetometers from the Schumann resonances
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as Gaussian, stationary, and unpolarized, with a power
spectral density that can be described by a set of
Lorentzians centered around the main harmonics. We
assume that the data in two magnetometers, m̃iðfÞ and
m̃jðfÞ, have a cross-spectral density given by

hm̃�
i ðfÞm̃jðf0Þi ¼

1

2
δTðf − f0ÞγMij ðfÞMðfÞ; ð13Þ

where MðfÞ is the correlated power spectral density
and γMij ðfÞ is the magnetic analog to the GW ORF, Γij.
This model is equivalent to Eq. (23) of [17], and we refer
the reader to that paper for an in-depth discussion of
the model.

B. Coupling to detectors

Magnetic fields can induce noise in GW detectors by
coupling to metallic materials in the suspension system of
the detector, or by inducing currents in the cabling. The
magnetic coupling is estimated by injecting magnetic noise
into the detector, and measuring the detector’s response,
and the response of the witness magnetometers near the
detectors. Peaks in the detectors’ strain channels are related
to the peaks in the magnetometer channels via the coupling
function, TðfÞ [15]:

ñðfÞ ¼ TðfÞm̃ðfÞ: ð14Þ

The exact frequency dependence of the coupling function is
uncertain, and it can change over the course of a long
observation run [31]. Throughout this paper, we will
assume that the coupling is constant in time, is well
described by a power law, and is real. It takes the form

TðfÞ ¼ κ

�
f

10 Hz

�
−β

× 10−23 strain=pT; ð15Þ

where κ is the amplitude of the coupling at 10 Hz and β is
the spectral index of the power law. In [16], they estimated
a coupling function with κ ¼ 2, β ¼ 2.67 for LIGO
Hanford Observatory (LHO). Measurements made after
the second observation run (O2) found κ ¼ 0.38 at LHO
and κ ¼ 0.25 at LIGO Livingston Observatory (LLO),
and β ¼ 3.55, 4.61 [31] at LHO and LLO, respectively.
Meanwhile for Virgo, post-O2 measurements indicate
κ ¼ 0.275 and β ¼ 2.50 [32]. These measurements high-
light that the coupling functions differ in both shape and
amplitude at each site.
We made three simplifying assumptions in defining

Eq. (15), and relaxing each of these assumptions will
need to be explored further in future work. For example, it
is known that the strength of the coupling function can
change as a function of time due to things like routine
maintenance on the detectors. Next, recent measurements
at LHO indicate that TðfÞ has a more complicated
frequency structure than a simple power law. There is
evidence, for example, of a shift to a positive spectral
index near 60 Hz. Finally, the assumption that TðfÞ is real
will also need to be revisited in the future. It could be
modeled by multiplying Eq. (15) by a frequency-depen-
dent phasor term, eiϕðfÞ, but there are no measurements at
present for the frequency structure of that phase or how it
behaves as a function of time. It is possible to generalize
the simulations we perform to inject signals that relax
these assumptions and evaluate the effect they have on the
method we discuss later; however, we reserve such
studies for future work.

C. Simulating data

In this section, we first discuss how we generate
correlated synthetic magnetometer data streams with a
specific overlap reduction function and cross power. We
then discuss how we translate that into strain data using a
coupling function. We close with a discussion of the
parameters we use to simulate the data.

1. Simulating correlated Gaussian signals

Here we discuss simulating a correlated Gaussian
signal with a specific MðfÞ and γMij ðfÞ between detectors.
Let us consider a network of N detectors. Individual
on-site magnetometer measurements combine to give an
N-dimensional column vector, m̃ðfÞ, and the magnetic

FIG. 1. Power spectral density of magnetometer data near the
Advanced Virgo detector. The blue is the inverse-averaged power
spectral density for many 32 s chunks of data for the period from
00∶00 to 02∶00 UTC on July 9, 2019. We use inverse averaging
to account for possible magnetic transients that occur during this
time. We produce the orange curve by removing the large, narrow
spectral features and applying a smoothing filter. We can clearly
see five harmonics of the Schumann resonances. The large,
narrow spectral features are caused by local magnetic noise on
site at Virgo.
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overlap reduction functions are then a Hermitian N × N
matrix, γMðfÞ:

hm̃ðfÞm̃†ðf0Þi ¼ 1

2
δðf − f0ÞγMðfÞMðfÞ: ð16Þ

The individual elements of the γMðfÞ matrix represent
the overlap reduction function between different baselines,
evaluated at f. We then decompose γM using a Cholesky
decomposition [33]:

γMðfÞ ¼ LðfÞLðfÞ†; ð17Þ

where LðfÞ is a lower-triangular matrix. We can then use
LðfÞ to construct the correlated magnetometer data,

m̃ðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
MðfÞ
2

r
LðfÞη̃ðfÞ; ð18Þ

with η̃ðfÞ being white Gaussian noise with a covariance
matrix given by the identity matrix:

hη̃ðfÞη̃†ðf0Þi ¼ Iδðf − f0Þ: ð19Þ

Once we obtain m̃ðfÞ, which mimic local magnetometer
measurements, we project it onto the detectors using a
power-law coupling function as in Eq. (15). We then
inverse-Fourier transform that strain spectrum to produce
hðtÞ, and add it to Gaussian detector noise that is uncorre-
lated between the separate detectors and has a PSD
consistent with design sensitivity for the Advanced
LIGO and Advanced Virgo detectors [34].

2. Correlated magnetic noise PSD
and γMij ðf Þ for synthetic datasets

When constructing a dataset with synthetic magnetic
noise, we must choose a power spectral density of the
correlated magnetic signal between sites, MðfÞ. This
PSD should include the first several harmonics of the
Schumann resonances. Throughout the rest of this paper,
we model each peak as a separate Lorentzian, with the
fundamental peak having an amplitude of 1 pT2=Hz.
A plot of the simulated PSD is shown in Fig. 2. We
only include harmonics below 30 Hz for this study.
While the true correlated magnetic PSD does not fall
off as rapidly as our simulated version, the steep coupling
functions we consider in Sec. V will make higher
frequencies negligible when the magnetic noise is pro-
jected onto the detectors.
We use the real part of coherence measurements

between magnetometers located on site at LHO, LLO,
and Virgo to estimate γMij ðfÞ for each detector pair, and we

use these measurements throughout the rest of this paper
when creating synthetic datasets. Our use of the real part
of the coherences in this case does not affect the results.
This can be seen by substituting Eq. (14) into Eq. (12).
A term like Eq. (13) comes out, multiplied by TiðfÞ and
TjðfÞ, which are assumed to be real. A similar, explicit
calculation along these lines is done in Sec. IV. If TiðfÞ
were not real, then we would need to use the full, complex
coherences for γMij ðfÞ. More details related to these
measurements are discussed in the Appendix. A plot of
the measured γMij ðfÞ is shown for the three detector pairs
of interest in Fig. 3. For comparison, we also include
ΓijðfÞ, which is the analogous quantity for GWs. The
differences between γMij ðfÞ and ΓijðfÞ help us to dis-
criminate between correlated magnetic noise and a
SGWB in Sec. IV.

FIG. 2. Injected MðfÞ spectrum. We simulate the first four
Schumann peaks as Lorentzians with reasonable amplitudes and
widths.

FIG. 3. From top to bottom we show γMij ðfÞ (solid lines) and
ΓijðfÞ (dashed lines) for ij ¼ HL, HV, and LV. We discuss how
we measure γMij ðfÞ in the Appendix.
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IV. SIMULTANEOUS ESTIMATION
OF CORRELATED NOISE AND

GRAVITATIONAL WAVES

Various techniques have been proposed to address
correlated noise due to Schumann resonances in the output
of GW detectors. The most prominent of these techniques
is Wiener filtering [15,16,19,20]. Wiener filtering relies on
witness magnetometers that are positioned near the detec-
tors in order to experience the same Schumann resonances,
but not too close to be exposed to the local magnetic noise.
The downside of Wiener filtering is that it requires a large
coherence between the witness and target channels, which
means that for weakly coupled signals it can be difficult to
completely subtract the noise [19,20].
We propose an alternative method to address correlated

noise, specifically as it pertains to a search for a SGWB.
We model the correlated magnetic noise in GW detectors
using the data collected by the magnetometers placed near
the detector sites, and a parametrized model for the
magnetic field to GW detector coupling. We then include
this model as a contribution to the estimator, ĈijðfÞ in
Eq. (3), together with a SGWB model. The way we treat
magnetometer data here is reminiscent of the a priori
subtraction scheme presented in [16], except that here we
offer a straightforward way to handle uncertainty in the
measurement of the coupling functions by treating them as
nuisance parameters that we marginalize over. We reserve
a comparison between our method and Wiener filtering
for future work.

A. Correlated noise model

We can rewrite Eq. (11) to include separate correlated
magnetic and uncorrelated noise terms

s̃iðfÞ ¼ h̃iðfÞ þ ñui ðfÞ þ TiðfÞm̃iðfÞ; ð20Þ

where ñui ðfÞ is the uncorrelated noise in detector i, and
TiðfÞm̃iðfÞ represents the correlated magnetic noise.
Substituting Eqs. (20) and (15) into Eq. (3) we find

hĈijðfÞi ¼ ΩgwðfÞ þ ΩM;ijðfÞ; ð21Þ

where ΩM;ijðfÞ represents the magnetic contribution,
which we derive next.
We construct the magnetic model, ΩM;ijðfÞ, by first

treating local magnetometer data the same way we analyze
GW strain data. We break the magnetometer data into
T ¼ 192 s data chunks, and we calculate the cross-power
term in the same way as Eq. (3), replacing the strain data
with local magnetometer data. That is, for the data between
tk and tk þ T we calculate

M̂ij;kðfÞ ¼
2

T

Re½m̃�
i ðf; tkÞm̃jðf; tkÞ�
ΓijðfÞS0ðfÞ

: ð22Þ

We postprocess the magnetometer data with the same
weights used for postprocessing the GW data, viz.

M̂ijðfÞ ¼
P

kM̂ij;kðfÞσ−2ij;kðfÞP
kσ

−2
ij;kðfÞ

: ð23Þ

The weights, σij;kðfÞ, are the same as those expressed in
Eq. (4). They are calculated using GW strain data and not
magnetometer data. This way we treat the magnetometer
data the same way the magnetic contribution to the final
ĈijðfÞ statistic is treated. We then use this final measure-
ment to construct the magnetic contribution to the model,
which is given by

ΩM;ijðfÞ ¼ κiκj

�
f

10 Hz

�
−βi−βj

M̂ijðfÞ × 10−22: ð24Þ

The factor of 10−22 assumes that the units of m̃iðfÞ
are THz−1.

B. Parameter estimation and model selection

We use a parameter estimation and model selection
scheme similar to those set out in [10,11,35]. We choose a
Gaussian likelihood for ĈijðfÞ given by

lnpðĈijðfÞjθgw; θMÞ ¼ −
1

2

X
f

�½ĈijðfÞ −Ωgwðf; θgwÞ −ΩM;ijðf; θMÞ�2
σ2ijðfÞ

þ ln ð2πσ2ijðfÞÞ
�
; ð25Þ

where θgw and θM represent parameters for the GW and
magnetic models, respectively. In the case where we have
cross-correlation statistics for multiple baselines, we con-
sider the total likelihood to be the product of the individual
likelihoods for each pair of detectors. The resulting multi-
baseline likelihood is given by

pðfĈijðfÞgij∈pairsjθgw; θMÞ ¼
Y

ij∈pairs
pðĈijðfÞjθgw; θMÞ:

ð26Þ
It is straightforward to use Eq. (26) to estimate the

posterior distribution of the parameters, θgw and θM, either
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by brute-force calculation or by Markov chain Monte Carlo
methods [36,37].
We will also compare different models for the data using

Bayesian model selection. The four models we consider are
(1) NOISE: ΩMðfÞ ¼ ΩgwðfÞ ¼ 0,
(2) GW: ΩMðfÞ ¼ 0, ΩgwðfÞ ≠ 0,
(3) SCHU: ΩMðfÞ ≠ 0, ΩgwðfÞ ¼ 0,
(4) GW+SCHU: ΩMðfÞ ≠ 0, ΩgwðfÞ ≠ 0.

The form of the SGWB model, ΩgwðfÞ, is the power law in
Eq. (2), with θgw ¼ Ω2=3 and α ¼ 2=3 fixed. The form of
ΩMðfÞ is given by Eq. (24) with θM ¼ ðκi; κj; βi; βjÞ when
two detectors are involved. Another set of coupling
parameters are included when a third detector is used.
We compare these models using Bayes factors [38]. For

example, comparing the GW model to the NOISE model
we have

BGW
NOISE ¼

R
dθgwpðĈijðfÞjθgwÞpðθgwÞ

N
; ð27Þ

where N is given by evaluating Eq. (25) for ΩMðfÞ ¼
ΩgwðfÞ ¼ 0, and pðθgwÞ is the prior on the GW model
parameters. When BGW

NOISE > 1 there is support for the GW
model compared to theNOISEmodel. A further discussion
of interpretation of Bayes factors can be found in, e.g.,
Chap. 3 of [14]. In this paper, we will consider “strong”
support for one model over another when lnB > 8. The
numerator of Eq. (27) is referred to as the evidence of the
GWmodel and is denotedZGW. The prior distribution used
for each parameter in the model throughout the rest of this
paper is shown in Table I.
We use the nested sampler CPNest [38,39] through the

front-end package BILBY [40] to both explore the posterior
distribution of each parameter and estimate the evidence for
each model.

V. RESULTS ON SYNTHETIC DATA

In this section we show results for end-to-end simula-
tions of a SGWB search using GW data with correlated
magnetic noise. In Sec. VA we briefly review data
simulation schemes in the time and frequency domains.

In the rest of this section we seek to answer three
main questions:
(1) How does including three detectors aid in our ability

to detect the correlated magnetic noise and constrain
parameters associated with it?

(2) Can we detect GWs in the context of correlated
magnetic noise? How is the significance of the
detection affected by the presence of that noise?

(3) Can a noisy measurement of M̂ijðfÞ or a strong
correlated magnetic signal lead to a false SGWB
detection?

A. Synthetic data and parameters

1. Time series simulations

We simulate the strain time series for the LHO, LLO, and
Virgo detectors with correlated magnetic noise using the
techniques described in Sec. III. We then run the standard
pipeline used by LIGO-Virgo for the isotropic search for
a SGWB to calculate ĈijðfÞ and M̂ijðfÞ for all possible
detector pairs.1 All SGWB injections are made in the
frequency domain on those data products and assume a
power-law spectrum with α ¼ 2=3 to mimic an astrophysi-
cal SGWB from unresolved CBCs.
The three different year-long synthetic datasets we

consider are described in Table II. We consider datasets
with no correlated magnetic noise (none), realistic corre-
lated magnetic noise (realistic) based on post-O2 mea-
surements [31,32], and strong correlated magnetic noise
(strong). The strong dataset corresponds to a larger
coupling strength than we currently observe, but is meant
to be a stand-in for situations where we do observe
correlated magnetic noise. This could occur either due to
an increase in the sensitivity of detectors or a change in the
coupling functions themselves.

2. Frequency-domain simulations

For Monte Carlo simulations of many noise realizations
we will directly simulate Eq. (24) in the frequency domain.
This simulation method is used in the final two parts of this
section, and will also consider the same none, realistic, and
strong scenarios detailed in Table II.

TABLE I. List of prior distributions used for each parameter for
results presented in Secs. V B 1 and V B 2.

Parameter Prior

Ω2=3 LogUniform(10−12, 10−7)
κH Uniform(0, 10)
κL Uniform(0, 10)
κV Uniform(0, 10)
βH Uniform(0, 10)
βL Uniform(0, 10)
βV Uniform(0, 10)

TABLE II. Correlated magnetic noise parameters for four
different synthetic datasets.

Run name κH βH κL βL κV βV

None 0 0 0 0 0 0
Realistic 0.38 3.55 0.35 4.61 0.275 2.50
Strong 5 3.55 5 4.61 5 2.50

1See https://git.ligo.org/stochastic-public/stochastic.
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B. Advantages in detecting correlated magnetic
noise using a three-detector network

We begin by looking at the advantage of having a three-
detector, global network as opposed to a simple two-
detector network. To evaluate this situation, we use the
time-domain data discussed previously. We first look at the
effect using three detectors has on model selection, before
discussing the advantages of using three detectors when
performing parameter estimation.

1. Model selection

In Table III we show log-Bayes factors comparing
different models when there is no injected SGWB. The
first column indicates the strength of the correlated noise
injection and the second column indicates which detectors
were used in the parameter estimation. The other four
columns present Bayes factors comparing different models.
The results for the none and realistic injections are

shown in the first four rows of Table III. The log-Bayes
factors indicate that there is no preference for a model
with correlated magnetic noise compared to Gaussian
noise (lnBSCHU

NOISE) or for any model that includes a
SGWB compared to Gaussian noise (lnBGW

NOISE and
lnBSCHUþGW

NOISE ). Thus, insofar as our simple coupling model
is accurate, it is unlikely that at design sensitivity
Schumann resonances will be detectable after one year
of integration time. However, the coupling functions can
change as a function of time, and how they impact the
search is highly sensitive to the strength and frequency
spectrum of the coupling between the magnetic field and
the strain channel of the detector.
The strong injection results are shown in the fifth and

sixth rows of Table III. There is little evidence for correlated
magnetic noise with the Hanford-Livingston pair of detec-
tors, but when we include Virgo in the network, we make a
clear detection, with lnBSCHU

NOISE ¼ 33.29. While we make a
detection of Schumann resonances, lnBSCHUþGW

SCHU ¼ 0.38
indicates that there is no preference for a model that
also includes a SGWB compared to a model that contains
just correlated magnetic noise. Including a third detector

significantly aids in our ability to detect and characterize
correlated magnetic noise in this situation.

2. Parameter estimation

It is also important that we are able to accurately recover
the correct parameters for the SGWB, even when there is a
strong correlated magnetic noise injection.
In Fig. 4, we show a corner plot with 1D and 2D

marginalized posterior distributions for each parameter
over which we sample for the strong injection (last row
of Table II). In this case, there is no SGWB. The green
posteriors indicate using only LHO and LLO, while the
blue include Virgo in the network as well. It is clear that
including Virgo significantly improves our estimates of
the Schumann parameters. In the two-detector scenario the
magnetic parameters are nearly unconstrained. Whereas,
when using the three-detector network, we are able to
achieve reasonable estimates of βH, βL, and βV . This makes
sense given the model selection results (fifth and sixth
rows of Table III), which indicate that adding Virgo
improved our ability to detect correlated magnetic noise.
Furthermore, the posterior on Ω2=3 in Fig. 4 can be used to
set an upper limit on Ω2=3 in the presence of correlated
magnetic noise. In Sec. V C, where we perform frequency-
domain injections, we will discuss how upper limits on
Ω2=3 are affected by the presence of correlated magnetic
noise.
In Fig. 5 we show posteriors with a SGWB injection of

Ω2=3 ¼ 10−8. The strength of this injection is chosen for
illustrative purposes. We see that the posterior on Ω2=3 is
well constrained but represents an overestimate of the
true injected value by 14%. Due to computational restric-
tions, we are unable to perform repeated time-domain
simulations to evaluate whether this is a systematic bias
in our method. However, we did perform repeated fre-
quency-domain simulations (using the method described
in Sec. VA 2) with magnetic and gravitational-wave para-
meters drawn from the priors in Table I. Using probability-
probability estimates as a diagnostic [41], we see no
evidence of systematic bias on our estimate of Ω2=3.
Including Virgo does not improve our ability to constrain

Ω2=3. However, it adds significantly to our ability to detect
and constrain parameters in the correlated magnetic noise
model. A correlated noise detection that is dominated by
pairs of detectors that include Virgo is still able to constrain
the coupling function parameters in all three detectors,
which means that a third detector can aid in our ability to
model the correlated noise contribution in the detector pair
that is most sensitive to a SGWB.

C. SGWB detection with correlated
magnetic noise

In this section we show we are able to detect GWs
when correlated magnetic noise is present and we show

TABLE III. We show odds ratios that compare different models
when no GW injection is made. We show results for all three
injected datasets using just the Hanford (H), Livingston (L) pair,
as well as the full Hanford, Livingston, Virgo (V) network.

Run
name Dets lnBGW

NOISE lnBSCHU
NOISE lnBSCHUþGW

NOISE lnBSCHUþGW
SCHU

None HL −0.65 −0.26 −1.0 −0.74
None HLV −0.75 0.45 −0.32 −0.77
Realistic HL −0.61 −0.36 −1.01 −0.65
Realistic HLV −0.57 −0.53 −1.18 −0.65
Strong HL 0.28 0.32 0.59 0.27
Strong HLV 0.59 33.29 33.67 0.38
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how the presence of correlated magnetic noise affects
the significance of that detection. We performed 300
Monte Carlo simulations, in the frequency domain, of
the strong and none correlated noise parameters in
Table II. We did this for Ω2=3 ¼ 0; 10−8, and 3 × 10−9,
assuming 1 yr of integration time. The results are shown in
three panels in Fig. 6, where we show the distribution of
lnBSCHUþGW

SCHU for each simulation. Throughout this section

we use the full three-detector network and all inference is
done with the prior distributions in Table I.
The top panel of Fig. 6, where Ω2=3 ¼ 0, shows that for

both the strong correlated magnetic noise injection (blue,
solid) and the no correlated magnetic noise case we see no
preference for the model including GWs compared to the
one that only includes correlated magnetic noise, as one
would expect. In the absence of a detection of Ω2=3, we can

FIG. 4. Parameter estimation results for strong correlated noise injection and no SGWB injection. Blue lines and contours correspond
to using Hanford, Livingston, and Virgo data. Green lines and contours correspond to using only the Hanford, Livingston pair of
detectors. Dashed lines indicate the injected value of each parameter. It is evident that including three detectors improves the recovery of
κ and β for all three detectors. In both cases, the posterior on Ω2=3 is consistent with no SGWB.
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use the posterior distribution on that parameter to set 90%
upper limits for each of the 300 realizations. The median
90% upper limit on Ω2=3 set for the ensemble of injections
is 4.8 × 10−10 for both the strong and none cases.
In the middle panel of Fig. 6 we show results for

Ω2=3 ¼ 3 × 10−9, which is within the range of the expected
SGWB due to unresolved CBCs [7]. There is mild evi-
dence for a SGWB for both distributions, with the none

distribution (orange, dashed line) peaking at
lnBSCHUþGW

SCHU ≈ 6 and the strong distribution (blue, solid
line) peaking at lnBSCHUþGW

SCHU ≈ 4. It is clear that when
strong correlated noise is present the significance is lower
than when there is no correlated noise.
In the bottom panel of Fig. 6 we show results for

Ω2=3 ¼ 10−8. This value is larger than expected for an
astrophysical background from unresolved CBCs [7], but is

FIG. 5. Parameter estimation results for strong correlated noise injection and Ω2=3 ¼ 10−8. Blue lines and contours correspond to
using Hanford, Livingston, and Virgo data. Green lines and contours correspond to using only the Hanford, Livingston pair of detectors.
Dashed lines indicate the injected value of each parameter. It is evident that including three detectors improves the recovery of κ and β
for all three detectors. The posterior distributions of Ω2=3 for both scenarios are consistent with one another, and indicate a 14%
overestimate of Ω2=3.
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chosen for illustrative purposes. When there is strong
correlated magnetic noise present (blue, solid line) the
distribution peaks at a lower value than when there is no
correlated magnetic noise injected (orange, dashed line),
indicating a drop in the significance of the SGWB detection
when correlated magnetic noise is present. The median of
the simulations with strong correlated magnetic noise is

lnBSCHUþGW
SCHU ¼ 32.2 compared to lnBSCHUþGW

SCHU ¼ 42.2 for
the none simulation, corresponding to a 31% drop in the
detection statistic.
Figure 6 shows that the presence of correlated magnetic

noise reduces the significance of a GW detection. In Fig. 7
we show how lnBSCHUþGW

SCHU scales with time for the strong
(blue, solid line) and none (orange dashed line) cases with
an injection of Ω2=3 ¼ 3 × 10−9. We also show a third case
where we consider a noisy measurement of M̂ijðfÞ, which
we will discuss in Sec. V D. The strong and none cases are
clearly different, and the time to detection (in this case the
time to reach lnBSCHUþGW

SCHU ¼ 8) is increased to 2.1þ1.7
−0.7 yr

for the strong case compared to 1.5þ0.9
−0.6 yr for the none

case (values given define the 68% confidence regions).

D. Can a poor measurement of M̂ijðf Þ lead
to a false SGWB detection?

To this point, we have not considered the effect of local
magnetometer noise, which can reduce the significance
with which we measure the noise that is correlated between
the detectors. In this section, we address whether a low-
SNR measurement of M̂ijðfÞ, defined in Eq. (23), or very
strong correlated noise could lead to a false GW detection.
To evaluate this question, we perform frequency-domain
injections with increasing values of κ from 0 to 9 for each
detector, and the same β values for LHO, LLO, and Virgo
that were used for the realistic and strong injections in
Table II. For this test, we use the full three-detector network
and we extend the upper range of the priors, shown in
Table I, on κ from 10 to 20.
We also vary the confidence with which we measure

M̂ijðfÞ. We perform our frequency-domain injection using

FIG. 6. We show the distribution of lnBSCHUþGW
SCHU for the strong

(blue, solid) and none (orange, dashed) injection parameters, and
Ω2=3 ¼ 0 (top panel), Ω2=3 ¼ 3 × 10−9 (middle panel), and
Ω2=3 ¼ 10−8 (bottom panel). In the top panel we see no evidence
for a GW detection. In the middle and bottom panels we see
evidence the presence of a SGWB in both cases (although that
evidence is marginal in the middle panel). The presence of
correlated magnetic noise has clearly shifted the Bayes factor
distributions downward.

FIG. 7. We show how lnBSCHUþGW
SCHU scales as a function of time

using 1000 injections in the frequency domain with increasing
observation time with a SGWB injection of Ω2=3 ¼ 3 × 10−9.
The strong case (blue, solid line) is clearly below the none case
(orange, dashed line). We also show the strong case with a noisy
measurement of M̂ijðfÞ with a magnetic SNR of 5 (green, dash-
dotted line). It does not appear that a noisy measurement of
M̂ijðfÞ significantly hinders our ability to detect a SGWB.
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MðfÞ presented in Fig. 2. We then simulate a “measure-
ment” at a chosen signal-to-noise ratio (SNR) in each
frequency bin by drawing M̂ijðfÞ from a normal distribu-
tion with mean γMij ðfÞMðfÞ and variance σ2MðfÞ. Due to the
fact that the SNR and MðfÞ are chosen a priori, we
rearrange the definition of the SNR to set the standard
deviation in each frequency bin,

σMðfÞ ¼
γMij ðfÞMðfÞ

SNR
: ð28Þ

We perform frequency domain injections with SNRs
ranging from 1 to 35.
In Fig. 8 we show lnBSCHUþGW

SCHU for the range of κ and
magnetic SNR values we inject and with Ω2=3 ¼ 0. The
Bayes factors in Fig. 8 are consistent with no detection—
they span a similar range to those in the top panel of Fig. 6,
where we assumed a perfect measurement of M̂ijðfÞ. This
result indicates that a false detection of a SGWB is unlikely,
even with an uncertain measurement of the Schumann
resonances.
We also test whether a noisy measurement of M̂ijðfÞ

could increase time to detection of a SGWB. We do this by
showing how lnBSCHUþGW

SCHU scales with time for κ ¼ 5

(strong case) and SNR ¼ 5 in Fig. 7 with the green dash-
dotted curve. There is a not a clear reduction in detection
strength compared to the blue solid curve, which is the
same correlated magnetic noise strength but with a no-noise
measurement of M̂ijðfÞ. The time to detection for the noisy
measurement case is 2.1þ1.2

−0.9 yr, which is around 50%
longer than the case with no correlated noise and compa-
rable to the case where we make a noiseless measurement
of the magnetic field.

VI. DISCUSSION

In this paper we perform realistic simulations of correlated
magnetic noise in interferometric gravitational-wave detec-
tors, and propose a new method to detect a SGWB in the
presence of that correlated magnetic noise. The method
reliably separates a SGWB from correlated magnetic noise,
although significance of that detection can be reduced either
by the presence of strong correlated noise, or through a noisy
measurement of the correlated magnetic fields. We also
showed that a three-detector network improves our ability to
detect, estimate, and subtract the correlated magnetic noise
compared to just a single detector pair. Moreover, in the
absence of a SGWB detection, upper limits on the SGWB
are a natural by-product of the analysis.
The method presented here is an alternative to Wiener

filtering, but could also be used in tandem with Wiener
filtering. For example, this method could be used to find
correlated noise not successfully subtracted using Wiener
filtering. A full comparison of the efficiency of this method
compared to Wiener filtering is reserved for future work.
Moreover, any proposed SGWB signal could be verified
using the geodesy methods discussed in Ref. [21]. In that
scenario, themaximum a posteriori parameters could be used
to subtract off the correlatedmagnetic noise, and the proposed
remaining SGWB signal could be analyzed using geodesy.
This method is easily applicable to current searches for a

SGWB, and should help make a reliable detection of a
SGWB using ground-based interferometric detectors. Future
work should focus on using a model for the magnetic
coupling functions that is more flexible than a simple power
law, making direct comparisons with other proposed meth-
ods, and working toward incorporating the time variability of
both coupling functions and Schumann resonances.
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FIG. 8. We show a grid of lnBSCHUþGW
SCHU for different values of κ

(the same κ is used for all three detectors) and the magnetic SNR
defined in Eq. (28). The range of lnBSCHUþGW

SCHU across the whole
grid is consistent with no SGWB detection. This indicates it is
unlikely that a false SGWB detection could be caused by a noisy
measurement of M̂ijðfÞ or the presence of strong correlated
magnetic noise.
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APPENDIX: SIMULATED MAGNETIC NOISE
PROPERTIES

We use low-noise magnetometers on site at the
Advanced LIGO and Advanced Virgo detectors and corre-
late them to deduce what γMij , defined in Eq. (13), looks like.
A discussion of the magnetometers and their locations is
given in Ref. [20]. We use the real part of complex
coherence (RPCC), defined as

γMij ðf; tÞ ¼ Re

"
m̃�

i ðf; tÞm̃jðf; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̃�

i ðf; tÞm̃iðf; tÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m̃�
jðf; tÞm̃jðf; tÞ

q
#
;

ðA1Þ

where m̃iðf; tÞ is the Fourier transform of the data from
magnetometer i starting at time t evaluated at frequency f.
We calculate the numerator and denominator of γMij ðf; tÞ
separately over 4 s segments and average them separately
over 1800 s of data to create an estimate of γMij ðf; tÞ for that
1800 s chunk of data. We do this for each 1800 s chunk of
data available from July 9, 2019 00∶00 UTC–September 7,
2019 00∶00 UTC. We then take a histogram at each
frequency over all of the 1800 s measurements. A heat
map of this histogram is shown in Fig. 9 for each possible
detector pair. For the simulations discussed in Sec. V, we
use the median over the time chunks at each frequency,
indicated by the white line in each panel in Fig. 9. This is
indicated by the white line in Fig. 9.
The RPCC is not an exact measurement of γMij ðfÞ. It

approximates this value only insofar as the “signal,” MðfÞ,
dominates the noise in the individual magnetometers.
However, in the absence of a reliable analytic calculation
(which is available in the GW case, for example), it is a good
heuristic for capturing the sign and general shape of γMij ðfÞ.
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