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ABSTRACT

We show that, in the context of patchy reionisation, an accurate description of the angular power spectrum of the kinetic Sunyaev–
Zel’dovich (kSZ) effect is not possible with simple scaling relations between the amplitude of the spectrum and global parameters,
such as the reionisation midpoint and its duration. We introduce a new parameterisation of this spectrum, based on a novel description
of the power spectrum of the free electrons density contrast Pee(k, z) in terms of the reionisation global history and morphology. We
directly relate features of the spectrum to the typical ionised bubble size at different stages in the process and, subsequently, to the
angular scale at which the patchy kSZ power spectrum reaches its maximum. We successfully calibrated our results on a custom set of
advanced radiative hydrodynamical simulations and later found our parameterisation to be a valid description of a wide range of other
simulations and, therefore, reionisation physics. In the end, and as long as the global reionisation history is known, two parameters
are sufficient to derive the angular power spectrum. Such an innovative framework applied to cosmic microwave background data and
combined with 21 cm intensity mapping will allow a first consistent detection of the amplitude and shape of the patchy kSZ signal,
giving in turn access to the physics of early light sources.
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1. Introduction

From the launch of the Cosmic Background Explorer (COBE)
in 1989 to the publication of the latest results of the Planck
satellite in 2018 (Planck Collaboration I 2020), the study of the
cosmic microwave background (CMB) has triggered a tremen-
dous amount of research. Cosmological parameters have been
estimated with exquisite precision and our knowledge of cos-
mic inflation has been greatly improved. Along the line of sight,
the primordial part of the CMB signal is largely modified by
the interaction of CMB photons with structures that formed later
in the Universe. Notably, their interaction with free electrons in
the intergalactic medium (IGM) modify the shape and amplitude
of the measured CMB temperature and polarisation power spec-
tra. The presence of these electrons is the result, in particular,
of cosmic reionisation, an era potentially extending from a red-
shift of z ∼ 15 to z ∼ 5 when the first galaxies are thought to
have ionised the neutral hydrogen and helium in the surrounding
IGM.

CMB photons lose energy from scattering off low-energy
electrons. In CMB data analysis, this effect is accounted for
when computing the Thomson optical depth. To do so, one
needs to assume a global history of reionisation, that is, a
redshift-evolution for the IGM global ionised fraction xe(z). In
standard Boltzmann solvers which are used to compute theoret-
ical predictions in CMB data analysis such as the CAMB code

(Lewis et al. 2000; Howlett et al. 2012)1, the reionisation sce-
nario used is a step-like transition of xe(z), where the global
ionised fraction jumps from 10% to 75% over a (fixed) redshift
interval of ∆z = 1.73 (Planck Collaboration I 2016). However,
this parameterisation does not match simulations and obser-
vations well since we expect the ionisation fraction to slowly
rise when the first sources light up, before taking off as soon
as about 20% of the IGM is ionised (Robertson et al. 2015;
Greig & Mesinger 2016; Gorce et al. 2018). This minimal model
can have a huge impact on reionisation constraints: The value of
τ inferred from Planck 2016 data varies from 0.066±0.016 for a
step-like process to 0.058±0.012 for a more accurate description
(Douspis et al. 2015; Planck Collaboration. Int. XLVII 2016). It
is therefore essential to take the asymmetric evolution of xe(z)
into account when trying to accurately constrain reionisation,
and global parameters such as the reionisation midpoint zre and
duration ∆z are not sufficient.

CMB photons can also gain energy from scattering off
electrons with a non-zero bulk velocity relative to the CMB
rest-frame in a process called the kinetic Sunyaev–Zel’dovich
effect (hereafter kSZ effect, see Zeldovich & Sunyaev 1969;
Sunyaev & Zeldovich 1980). This interaction adds power to
the CMB temperature spectrum on small angular scales (` &
2000, that is smaller than about 5 arcmin), where secondary
1 Available at https://camb.info.
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anisotropies, including kSZ, dominate the signal. The impact
of kSZ on the CMB power spectrum is often split between the
homogeneous kSZ signal, which come from the Doppler shifting
of photons on free electrons that are homogeneously distributed
throughout the IGM once reionisation is over, and the patchy
kSZ signal, when CMB photons scatter off isolated ionised bub-
bles along the otherwise neutral line of sight. Therefore, the
kSZ power spectrum is sensitive to the duration and morphol-
ogy of reionisation (McQuinn et al. 2005; Mesinger et al. 2012).
For example, the patchy signal is expected to peak around ` ∼
2000, corresponding to the typical bubble size during reionisa-
tion (Zahn et al. 2005; Iliev et al. 2007).

Secondary anisotropies only dominate the primordial power
spectrum on small scales, where existing all-sky surveys such as
Planck perform poorly. The observational efforts of the ground-
based Atacama cosmology telescope (ACT)2 and the South Pole
telescope (SPT)3 have allowed upper constraints to be put on the
amplitude of the kSZ power spectrum at ` = 3000. Using ACT
observations at 148 GHz, Dunkley et al. (2011) find DSZ

3000 ≡

` (` + 1) CSZ
`=3000/2π = 6.8 ± 2.9 µK2 at the 68% confidence level

(C.L.) for the sum of thermal and kinetic SZ. In a first analy-
sis, Reichardt et al. (2012) derive from the three frequency bands
used by SPTDkSZ

3000 < 2.8 µK2 (95% C.L.). This limit is however
significantly loosened when anti-correlations between the ther-
mal SZ effect (tSZ) and the cosmic infrared background (CIB)
are considered. By combining SPT results with large-scale CMB
polarisation measurements, Zahn et al. (2012) are subsequently
able to constrain the amplitude of the patchy kSZ by setting
an upper limit Dpatchy

3000 ≤ 2.1 µK2 (95% C.L.) translated into an
upper limit on the duration of reionisation ∆z ≡ z (xe = 0.20) −
z (xe = 0.99) ≤ 4.4 (95% C.L.), again largely loosened when
CIB×tSZ correlations are considered. Using Planck’s large-scale
temperature and polarisation (EE) data, combined with ACT and
SPT high-` measurements, and taking the aforementioned cor-
relations into account, Planck Collaboration. Int. XLVII (2016)
find a more constraining upper limit on the total kSZ signal
DkSZ

3000 < 2.6 µK2 with a 95% confidence level. Finally, adding
new data from SPTpol4 to their previous results (George et al.
2015; Reichardt et al. 2020) claim the first 3σ detection of the
kSZ power spectrum with an amplitude DkSZ

3000 = 3.0 ± 1.0 µK2,
translated into a confidence interval on the patchy amplitude
D

pkSZ
3000 = 1.1+1.0

−0.7 µK2 using the models of homogeneous signal
given in Shaw et al. (2012). These results are further pushed
using the scaling relations derived by Battaglia et al. (2013) to
obtain an upper limit on the duration of reionisation ∆z < 4.1.

Previous works have focused on relating the amplitude of
the kSZ power spectrum at ` = 3000 to common reionisation
parameters such as its duration and its midpoint. Battaglia et al.
(2013) use large dark matter simulations (L & 2 Gpc h−1), post-
processed to include reionisation, to construct light-cones of
the kSZ signal and estimate its patchy power spectrum. The
authors find the scalings DkSZ

3000 ∝ z̄ and DkSZ
3000 ∝ ∆z0.51 where

z̄ is approximately the midpoint of reionisation and here ∆z ≡
z (xe = 0.25) − z (xe = 0.75). Very large box sizes are necessary
to capture the large-scale velocity flows contributing to the kSZ
power spectrum at high-` and results based on insufficiently
large simulations will significantly underestimate the power at
these scales. Shaw et al. (2012) find that a simulation box of side
length 100 Mpc h−1 would miss about 60% of the kSZ power
at ` = 3000. For their own work, Shaw et al. (2012) there-
2 https://act.princeton.edu
3 http://pole.uchicago.edu
4 The second camera deployed on SPT, polarisation sensitive.

fore choose a completely different approach: they use hydrody-
namical simulations to map the gas density to the dark matter
power spectrum and later include this bias in a purely analytical
derivation of the kSZ angular power spectrum. Because the non-
linear dark matter power spectrum can be computed using the
HALOFIT procedure (Smith et al. 2003) and because the veloc-
ity modes can be estimated fully from linear theory under a
few assumptions, they avoid the limitations caused by simu-
lation resolution and size mentioned above. With this method,
the authors find a power-law dependence on both the reionisa-
tion midpoint zre and the optical depth τ for the homogeneous
signal. For their most elaborate simulation, dubbed CSF, the
cosmology-dependent scaling relations write DkSZ

3000 ∝ τ0.44 and
DkSZ

3000 ∝ zre
0.64 but are independent since one parameter is fixed

before varying the other. The authors note that the current uncer-
tainties on cosmological parameters such asσ8 will wash out any
potential constraint on zre and τ obtained from the measurement
of the kSZ spectrum.

In this work, we choose to follow a similar approach. We
build a comprehensive parameterisation allowing the full deriva-
tion of the kSZ angular power spectrum from a known reion-
isation history and morphology. In Sect. 2, we review the the-
oretical derivation of the kSZ power spectrum and propose a
new parameterisation of the power spectrum of free electrons
density contrast, based on the shape of the power spectrum of a
bubble field. In Sect. 3, we present the simulations we later use
to calibrate this parameterisation. In Sect. 4, we use the result-
ing expression of Pee(k, z) to compute the patchy kSZ angular
power spectrum of our simulations and later apply the same
procedure to different types of reionisation simulations. Finally,
in Sect. 5, we discuss the physical meaning of our parame-
ters and conclude. All distances are in comoving units and the
cosmology used is the best-fit cosmology derived from Planck
2015 CMB data (Planck Collaboration I 2016): h = 0.6774,
Ωm = 0.309, Ωbh2 = 0.02230, Yp = 0.2453, σ8 = 0.8164 and
TCMB = 2.7255 K. Unless stated otherwise, Pδδ describes the
non-linear total matter power spectrum, xe(z) is the ratio of H ii
and He ii ions to protons in the IGM, and the reionisation dura-
tion is defined by ∆z = z (xe = 0.25) − z (xe = 0.75). The code
used to compute the kSZ power spectrum can be found online5.

2. Derivation of the kSZ angular power spectrum

2.1. Temperature fluctuations

The CMB temperature anisotropies coming from the scattering
of CMB photons off clouds of free electrons with a non-zero bulk
velocity u relative to the CMB rest-frame along the line of sight
n̂ write

δTkSZ(n̂) =
σT

c

∫
dη
dz

dz
(1 + z)

e−τ(z) ne(z) u · n̂, (1)

with σT being the Thomson cross-section, c the speed of light,
η the comoving distance to redshift z and u · n̂ the compo-
nent of the peculiar velocity of the electrons along the line of
sight. As mentioned before, τ is the Thomson optical depth,
τ(z) = cσT

∫ z
0 ne(z′)/H(z′) (1 + z′)2 dz′. ne is the mean free elec-

trons number density at redshift z from which we derive the den-
sity contrast δe via ne = n̄e(1 + δe). We choose the limits of the
integral in Eq. (1) depending on the type of signal we are inter-
ested in: for homogeneous kSZ, we integrate from 0 to zend, the
redshift when reionisation ends; for patchy kSZ, the main focus

5 https://github.com/adeliegorce/tools4reionisation
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of this work, we integrate from zend to the highest redshift consid-
ered in the simulation (here, zmax = 15). The contribution from
redshifts larger than the onset of reionisation, when the only free
electrons in the IGM are leftovers from recombination, is found
to be negligible.

We define q ≡ u(1+δe) = u+uδe ≡ u+qe the density-weighted
peculiar velocity of the free electrons. It can be decomposed into
a divergence-free qB and a curl-free qE components. We write
their equivalents in the Fourier domain as q̃ = q̃E + q̃B. As
pointed out by Jaffe & Kamionkowski (1998), when projected
along the line of sight, q̃E will cancel and only the component of
q̃ perpendicular to k, that is q̃B, will contribute to the kSZ sig-
nal. We want an expression for the kSZ angular power spectrum
CkSZ
`
≡ T 2

CMB|
˜δT kSZ(k)|2 where k ≡ `/η is the Limber wave-

vector and ` is the multipole moment, which can be related to an
angular scale in the sky. In the small angle limit, the kSZ angu-
lar power spectrum can be derived from Eq. (1) using the Limber
approximation:

C` =
8π2

(2` + 1)3

σ2
T

c2

∫
n̄e(z)2

(1 + z)2 ∆2
B,e(`/η, z) e−2τ(z) η

dη
dz

dz, (2)

with ∆2
B,e(k, z) ≡ k3PB,e(k, z)/(2π2) and PB,e the power spec-

trum of the curl component of the momentum field defined by
(2π)3PB,e δD(k − k′) = 〈q̃B,e(k) q̃∗B,e(k′)〉 where δD is the Dirac
delta function, the tilde denotes a Fourier transform and the
asterisk a complex conjugate.

Expanding 〈q̃B,e q̃∗B,e〉, we obtain:

q̃B,e(k) =

∫
d3 k′

(2π)3 ( k̂′ − µk̂) ṽ(k′) δ̃e
(
|k − k′|

)
, (3)

where µ = k̂ · k̂′, so that

〈q̃B,e(k) q̃∗B,e(k′)〉
(2π)3δD(|k − k′|)

≡
2π2

k3 ∆2
B,e(k, z)

=
1

(2π)3

∫
d3k′

[
(1 − µ2) Pee(|k − k′|) Pvv(k′)

−
(1 − µ2) k′

|k − k′|
Pev(|k − k′|) Pev(k′)

]
, (4)

where the z-dependencies have been omitted for simplicity.
Pee(k, z) is the power spectrum of the free electrons density
fluctuations and Pev is the free electrons density – velocity
cross-spectrum. In the linear regime, we can write u(k) =
ik ( f ȧ/k) δ̃(k), where a is the scale factor and f the linear growth
rate defined by f (a) = dlnD/dlna for D the growth function.
With this we can compute the velocity power spectrum fully
from linear theory and not be limited by the simulation size and
resolution:

Pvv(k, z) =

(
ȧ f (z)

k

)2

Plin
δδ (k, z) (5)

where Plin
δδ is the linear total matter power spectrum. We also

assume for the cross-spectrum:

Pve(k, z) ' bδe(k, z)Pδv(k, z) =
f ȧ(z)

k
bδe(k, z)Plin

δδ (k, z), (6)

where the bias bδe is defined by the ratio of the free elec-
trons power spectrum over the non-linear matter power spectrum
bδe(k, z)2 = Pee(k, z)/Pδδ(k, z). Although coarse, this approxima-
tion only has a minor impact on our results: it implies variations

of ∼0.05 µK2 in the power spectrum amplitude (see also Alvarez
2016). The final expression of the power spectrum of the curl
component of the momentum field then writes

PB,e(k, z) =
1

(2π)3 f (z)2ȧ(z)2
∫

d3k′(1 − µ2)×[
1

k′2
Pee(|k − k′|) Plin

δδ (k′, z)

−
bδe(k′, z)
|k − k′|2

bδe(|k − k′|, z) Plin
δδ (|k − k′|, z) Plin

δδ (k′, z)
]
,

(7)

which we can plug into Eq. (2) to find the final expression for
the kSZ angular power spectrum.

2.2. The power spectrum of free electrons density contrast

In Shaw et al. (2012), the authors choose to describe the
behaviour of the free electrons power spectrum in terms
of a biased matter power spectrum: they take Pee(k, z) ≡
bδe(k, z)2Pδδ(k, z) and calibrate bδe(k, z) on their simulations,
either extrapolating or assuming a reasonable behaviour for the
scales and redshifts not covered by the simulations. However,
because Pee describes the free electrons density fluctuations, it
has a relatively simple structure, close to the power spectrum of
a field made of ionised spheres on a neutral background, shown
in Fig. 1, and using a bias is not necessary.

Consider a box of volume V = L3 filled with n fully ionised
bubbles of radius R, randomly distributed throughout the box so
that their centres are located at ai for i ∈ {1, n}. The density of
free electrons in the box follows

ne(r) =
n̄e

f

n∑
i=1

Θ

(
|r − ai|

R

)
, (8)

where Θ (x) is the Heaviside step function, n̄e is the mean num-
ber density of electrons in the box and f the filling fraction of the
box (here, f = xe). n̄e/ f is the number of electrons in one bubble
divided by its volume and, ignoring overlaps, f = 4/3πR3n/V .
Consider the electron density contrast field δe on which Pee(k, z)
is built:

δe(r) =
ne(r)

n̄e
− 1 =

1
f

n∑
i=1

Θ

(
|r − ai|

R

)
− 1, (9)

represented on Fig. 2 for one of the simulations used in this work.
δe(r) Fourier–transforms into

δ̃e(k) =
L3

n
W(kR)

n∑
i=1

e−ik·ai , (10)

where W is the spherical top-hat window function W(y) =
(3/y3)

[
sin y − y cos y

]
. Using this expression, and following

Bharadwaj & Pandey (2005), the power spectrum of the electron
density contrast field writes:

Pee(k) =
4
3
πR3 1

f
W2(kR), (11)

which has units Mpc3. Figure 1 gives an example of such a power
spectrum. We have generated an ionisation field made of enough
bubbles of radius R = 15 px = 5.5 Mpc6 to reach a filling fraction

6 The bubble radii actually follow a Gaussian distribution centred on
15 px with standard deviation 2 px.
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Fig. 1. Free electrons density contrast power spectrum for a box filled
with enough bubbles of radius R = 15 px = 5.5 Mpc to reach a filling
fraction f = 1%. Points are results of a numerical computation of the
power spectrum, compared to the theoretical model (solid line). The
dotted vertical line corresponds to k = 1/R, the dashed vertical line to
91/4/R, the dashed horizontal line to 4/3πR3/ f and the tilted dashed line
has slope k−4.

f = 1% in a box of 5123 pixels and side length L = 128/h Mpc.
We compare the expression in Eq. (11) with power spectrum val-
ues computed directly from the 3D field and find a good match.
On very small or very large scales, the window function behaves
as:

W(y) ∼
3
y3 ×

y3

3
= 1 as y→ 0

W(y) ∼
3
y3 × y =

3
y2 as y→ ∞

(12)

so that Pee(k) ∼ 4/3πR3/ f is constant (see dashed horizontal line
on the figure) on very large scales and has higher amplitude for
smaller filling fractions. On small scales, the toy model power
spectrum decreases as k−4 (see tilted dashed line on the figure).
The intersection point of the horizontal and tilted dashed lines
on the figure corresponds to k = 91/4/R (dashed vertical line),
hinting at a relation between the cut-off frequency and the bubble
size. Interestingly, Xu et al. (2019) find a similar feature, also
related to the typical bubble size, in the bias between the H i and
matter fields.

This behaviour is close to what we observe in the free elec-
trons density power spectra of the custom set of simulations used
in this work in the early stages of reionisation, as can be seen on
the right panel of Fig. 2. Therefore, we choose in this work to
use a direct parameterisation of the scale and redshift evolution
of Pee(k, z) during reionisation and calibrate it on our simula-
tions. The parameters, α0 and κ, are defined according to:

Pee(k, z) =
α0 xe(z)−1/5

1 + [k/κ]3xe(z)
· (13)

In log-space, on large scales, Pee has a constant amplitude which,
as mentioned above, depends on the filling fraction and there-
fore reaches its maximum α0 at the start of the reionisation
process, when the variance in the free electron field is maxi-
mal (see Sect. 5.1). It then slowly decreases as xe(z)−1/5. Before
the onset of reionisation, despite the few free electrons left over
after recombination, the amplitude of Pee is negligible. This con-
stant power decreases above a cut-off frequency that increases

with time, following the growth of ionised bubbles, according
to κxe(z)−1/3. There is no power above this frequency, that is on
smaller scales: there is no smaller ionised region than rmin(z) =

2πx1/3
e /κ at this time. For empirical reasons, we choose the power

to decrease as k−3 and not k−4 as seen in the theoretical power
spectrum on small scales. This difference can be explained by
the fact that in our simulations, small ionised regions will keep
appearing as new sources light up, maintaining power on scales
smaller than the typical bubble size. Additionally, the density
resolution will allow correlations between regions within a given
bubble, whereas in the toy models ionised bubbles are only filled
with ones. The complexity of the electron density contrast field
is illustrated for one of the six simulations used in this work on
Fig. 2: the underlying matter field is visible within the ionised
regions.

Once reionisation is over and all IGM atoms are ionised, the
fluctuations in free electrons density follow those of dark matter
on large scales (k < 1 Mpc−1). On smaller scales, gas thermal
pressure induces a drop in Pee(k, z) compared to the dark mat-
ter. To describe this evolution at low redshifts, we choose the
same parameterisation as Shaw et al. (2012), given in Eq. (14),
to describe the gas bias bδe(k, z)2 = Pee(k, z)/Pδδ(k, z) but adapt
the parameters to our simulations, which however do not cover
redshifts lower than 5.5:

bδe(k, z)2 =
1
2

[
e−k/k f +

1
1 + (gk/k f )7/2

]
. (14)

We find k f = 9.4 Mpc−1 and g = 0.5, constant with redshift.
Our values for k f and g are quite different from those obtained
by Shaw et al. (2012), as in their work power starts dropping
between 0.05 and 0.5 Mpc−1 compared to k ∼ 3 Mpc−1 for our
simulations. This can be explained by our simulations making
use of adaptive mesh refinement, therefore resolving very well
the densest regions, so that our spectra are more sensitive to
the thermal behaviour of gas. This model, where k f and g are
constant parameters, is a very basic one. It will however be suf-
ficient for this work since we focus on the patchy component
of the kSZ effect, at z ≥ 5.5. Additionally, as shown later, the
scales mostly contributing to the patchy kSZ signal correspond
to modes 10−3 < k Mpc−1 < 1 where Pee follows the matter
power spectrum, so that a precise knowledge of bδe(k, z) is not
required. In the future, if we want to apply our results to con-
strain reionisation with the measured CMB temperature power
spectrum, we will need a better model as the observed signal
will be the sum of homogeneous and patchy kSZ, with the for-
mer dominating on all scales.

To account for the smooth transition of Pee from a power-law
to a biased matter power spectrum, illustrated in the right panel
of Fig. 2, we write the final form for the free electrons density
fluctuations power spectrum as

Pee(k, z) =
[
fH − xe(z)

]
×

α0 xe(z)−1/5

1 + [k/κ]3xe(z)
+ xe(z) × bδe(k, z)2Pδδ(k, z), (15)

for fH = 1 + Yp/4Xp ' 1.08, with Yp and Xp the primordial mass
fraction of helium and hydrogen respectively. The total matter
power spectrum Pδδ is computed using the Boltzmann integra-
tor CAMB (Lewis et al. 2000; Howlett et al. 2012) for the linear
terms and the HALOFIT procedure for the non-linear contribu-
tions (Smith et al. 2003).
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Fig. 2. Left panel: snapshot of the electron density contrast field for the first of the six simulations, at z = 7.2 and xe = 0.49. Right panel: free
electrons power spectrum of the same simulation at fixed redshifts (fixed ionised levels). The shaded area corresponds to scales contributingDpatchy

3000
the most (see Sect. 3.2) and the solid black line to the field shown in the left panel.

3. Calibration on simulations

3.1. Description of the simulations

The simulations we use in this work were produced with the
EMMA simulation code (Aubert et al. 2015) and previously
used in Chardin et al. (2019). The code tracks the collisionless
dynamics of dark matter, the hydrodynamics of baryons, star for-
mation and feedback, and the radiative transfer using a moment-
based method (see Aubert et al. 2018; Deparis et al. 2019). This
code adheres to an Eulerian description, with fields described
on grids, and enables adaptive mesh refinement techniques to
increase the resolution in collapsing regions. Six simulations
with identical numerical and physical parameters were produced
in order to make up for the limited physical size of the box and
the associated sample variance. They only differ in the random
seeds used to generate the initial displacement phases, result-
ing in 6 different configurations of structures within the simu-
lated volumes. Each run has a (128 Mpc/h)3 volume sampled
with 10243 cells at the coarsest level and 10243 dark matter par-
ticles. Refinement is triggered when the number of dark mat-
ter particles exceeds 8, up to 6 refinement levels. Initial con-
ditions were produced using MUSIC (Hahn & Abel 2013) with
a starting redshift of z = 150, assuming Planck Collaboration I
(2016) cosmology. Simulations were stopped at z ∼ 6, before
the full end of reionisation. The dark matter mass resolution is
2.1×108 M� and the stellar mass resolution is 6.1×105 M�. Star
formation proceeds according to standard recipes described in
Rasera & Teyssier (2006), with an overdensity threshold equal
to 20 to trigger the gas-to-stellar particle conversion with a 0.1
efficiency: such values allow the first stellar particles to appear
at z ∼ 17. Star particles produce ionising radiation for 3 Myr,
with an emissivity provided by the Starburst99 model for a
Top-Heavy initial mass function and a Z = 0.001 metallicity
(Leitherer et al. 1999). Supernova feedback follows the prescrip-
tion used in Aubert et al. (2018): as they reach an age of 15 mil-
lion years, stellar particles dump 9.8 × 1011 J per stellar kg in
the surrounding gas, 1/3 in the form of thermal energy, 2/3 in
the form of kinetic energy. Using these parameters, we obtain
a cosmic star formation history consistent with constraints by
Bouwens et al. (2015) and end up with 20 millions stellar par-
ticles at z = 6. The simulations were produced on the Occi-
gen (CINES) and Jean-Zay (IDRIS) supercomputers, using CPU
architectures : a reduced speed of light of 0.1c has been used to
reduce the cost of radiative transfer.

Table 1 gives the midpoint zre and end of reionisation zend for
each simulation, as well as the duration of the process, defined

Table 1. Characteristics of the six high resolution simulations used.

zre zend τxe ∆z

1 7.09 5.96 0.0539 1.17
2 7.16 5.92 0.0545 1.19
3 7.16 5.67 0.0544 1.16
4 7.05 5.60 0.0532 1.16
5 7.03 5.56 0.0531 1.15
6 7.14 5.79 0.0543 1.16
Mean 7.10 5.84 0.0541 1.16

Notes. zre is the midpoint of reionisation xe(zre) = 0.5 fH, zend the redshift
at which xe(z) (extrapolated) reaches fH and τ is the Thompson optical
depth. ∆z corresponds to z0.25 − z0.75.

as the time elapsed between global ionisation fractions of 25%
and of 75%7. The upper panel of Fig. 5 shows the interpolated
reionisation histories, where data points correspond to the snap-
shots available for each simulation. Originally, our simulations
do not include the first reionisation of helium. We correct for this
by multiplying the IGM ionised fraction of hydrogen xH ii mea-
sured in the simulations by fH = 1 + Yp/4Xp ' 1.08. Because
we limit our study to redshifts z > 5.5, the second reionisation of
helium is ignored. Figure 2 shows the electron density contrast
field for the first of our six simulations, close to the midpoint
of reionisation. The complexity of the structure of this field is
summarised in its power spectrum, shown in the right panel.
Figure 3 compares the Pee(k, z) spectra of the six simulations,
taken either at fixed redshift (first column) or fixed scale (right
column). Despite identical numerical and physical parameters
and very similar reionisation histories, the six simulations have
different free electrons density power spectra, which translates
into different kSZ power spectra.

3.2. Calibration procedure

We simultaneously fit the power spectra of the six simulations to
Eq. (15) on a scale range 0.05 < k/Mpc−1 < 1.00 (20 bins),
corresponding to the scales which contribute the most to the
signal at ` = 3000 (see next paragraph), and a redshift range
of 6.5 ≤ z ≤ 10.0 (10 bins), corresponding to the core of

7 Some of our simulations end before reionisation is achieved, there-
fore we extrapolate xe(z) to find the zend value.
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Fig. 3. Result of the fit of Eq. (15) on the free electrons power spectrum of our six simulations, for three redshift bins (left panels) and three
scale bins (right panels). The best-fit is shown as the thick black line with the accompanying 68% confidence interval, and the spectra of the six
simulations as thin coloured lines. Error bars on data points are computed from the covariance matrix (see text for details).

the reionisation process (0.07 < xe < 0.70)8. We sample the
parameter space of α0 and κ on a regular grid (with spacings
∆ logα0 = 0.001 and ∆κ = 0.0001) for which we compute the
following likelihood:

χ2 =

6∑
n=1

∑
zi

∑
k j

1
σ2

e

[
Pdata

ee (k j, zi) − Pmodel
ee (k j, zi)

]2
, (16)

where {zi} and {k j} are the redshift and scale bins and the first
sum is over the six simulations. Because our sample of six simu-
lations is not sufficient to derive a meaningful covariance matrix,
we choose to ignore correlations between scales across redshifts
and use the diagonal of the covariance matrix to derive error bars
σe for each data point. We refer the interested reader to a dis-
cussion of this choice in Appendix A. We choose the best-fit as
the duplet (α0, κ) for which the reduced χ2 reaches its minimum
value of 1.059. The best-fit values, with their 68% confidence
8 Because the snapshots of each simulation are not taken at the same
redshifts or ionisation levels, we interpolate Pee(k, z) for each simulation
and then compute the interpolated spectra for a common set of ionisa-
tion levels, with less elements than the original number of snapshots.
Note that the original binning in scales for Pee(k, z) is the same for the
six simulations but reduced from 38 to 20 bins.
9 The raw value is χ2 ∼ 2500.

intervals are

logα0/Mpc3 = 3.93+0.05
−0.06

κ = 0.084+0.003
−0.004 Mpc−1.

(17)

We note a strong correlation between the two parameters due to
both physical – see Sect. 5.1 – and analytical reasons. Indeed, the
value of κ impacts the low-frequency amplitude of the Pee(k, z)
model. The best-fit model, compared to the Pee(k, z) spectra of
the six simulations Eq. (15) is fitted on, can be seen in Fig. 3
for three different redshift bins (left-hand column) and three dif-
ferent scale bins (right-hand column). Overall, we see a good
agreement between the fit and the data points on the scales of
interest, despite the simplicity of our model.

Given the large number of Pee(k, z) data points originally
(∼3500) and the complexity of the evolution of Pee with k and
z, we must limit our fits to given ranges. In order to assess what
scales and redshifts contribute the most to the final kSZ signal,
we look at the evolution of the integrand on z in Eq. (2) with
time and at the evolution of the integral on k in Eq. (7) with
scales. The results are shown in Fig. 4. The left (resp. right)
upper panel presents the evolution of Pee(k, z) with scales (resp.
redshift) after applying the fitting procedure described above.
The width of each line represents the contribution of the redshift
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Fig. 4. Upper panels: Pee(k, z) as fitted
on spectra from the fourth simulation, as a
function of scales (left panel) and of red-
shift (right panel). For reference, the fit
is compared to data points for z = 7.8
(xe = 0.26) and k = 0.14 Mpc−1 respec-
tively, with corresponding colour. The width
of each line represents the contribution of
the redshift (resp. scale) of the correspond-
ing scale (resp. redshift) to the final patchy
kSZ amplitude at ` = 3000. Lower panels:
corresponding probability densities (dashed
lines) and cumulative distributions (solid
lines). Shaded areas correspond to the first
50% of the signal. The dotted vertical line
on the lower right panel marks the midpoint
of reionisation.

(resp. scale) of the corresponding colour to the final patchy kSZ
amplitude at ` = 3000. The lower panels present the correspond-
ing probability density and cumulative distribution functions. We
find that redshifts throughout reionisation contribute homoge-
neously to the signal, since 50% stems from redshifts z ≤ 7.2,
slightly before the midpoint zre = 7.0. Redshifts on the range
6.5 < z < 8.5 contribute the most as they represent about 75%
of the final kSZ power. Conversely, redshifts z > 10 contribute
to only 0.4% of the total signal. On the lower panel, we see
that scales outside the range 10−3 Mpc−1 < k < 1 Mpc−1 con-
tribute very marginally to the final signal (about 0.2%), whereas
the range 10−2 < k/Mpc−1 < 10−1 makes up about 70% of
D3000. Therefore, we choose to only keep data within the red-
shift range 6.5 < z < 10.0 (i.e. 7% < xe < 70%) and the scale
range 10−3 < k/Mpc−1 < 1 to constrain our fits. For reference,
on Fig. 4, we compare the fit to data points at z = 7.8 (xe = 0.26)
and k = 0.14 Mpc−1 for the first simulation, and find an overall
good match.

4. Propagation to the kSZ power spectrum

4.1. Results on our six simulations

Now that we have a fitted Pee(k, z), we can compute the kSZ
angular power spectrum using Eq. (2). We find:

D
p
3000 = 0.80 ± 0.06 µK2 (18)

and the angular scale at which the patchy angular spectrum
reaches its maximum is `max = 1800+300

−100. The angular patchy
power spectrum is shown on the lower panel of Fig. 5. The error
bars correspond to the propagated 68% confidence interval on
the fit parameters. The amplitude of the homogeneous signal
largely dominates that of the patchy signal, being about 4 times
larger. The total kSZ amplitude reaches D3000 = 4.2 µK2 and
so slightly exceeds the upper limits on the total kSZ amplitude
given by SPT and Planck when SZxCIB correlations are allowed
(resp. Reichardt et al. 2020; Planck Collaboration. Int. XLVII
2016) but is however within the error bars of the ACT results
(Sievers et al. 2013). With respect to the patchy signal, the
amplitude is in perfect agreement with the claimed detection by

Fig. 5. Results for our six simulations. Upper panel: global reionisation
histories, for H ii and He ii. The dotted horizontal line marks the reioni-
sation midpoint zre. Lower panel: angular kSZ power spectrum after fit-
ting Eq. (15) to the Pee(k, z) data points from our six simulations (thick
solid line) compared to the spectra obtained when interpolating the data
points for each simulation (thin solid lines). Error bars correspond to
the propagation of the 68% confidence interval on the fit parameters.
The data point corresponds to constraints from Reichardt et al. (2020)
at ` = 3000.

the SPT at Dpatchy
3000 = 1.1+1.0

−0.7 µK2 (Reichardt et al. 2020), noting
that our simulations reionise in a time very close to their con-
straint ∆z = 1.1+1.6

−0.7. The spectrum exhibits the expected bump in
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Fig. 6. Evolution of the amplitude of the patchy power spectrum at
` = 3000, D3000 with the reionisation duration (upper panel) and
the reionisation midpoint zre (lower panel), for different values of our
parameters. Error bars correspond to the dispersion of kSZ amplitude
at ` = 3000 (68% confidence level) propagated from errors on the fit
parameters. The diamond data point corresponds to a seventh simu-
lation, with reionisation happening earlier. In both panels, results are
compared to those of Battaglia et al. (2013), rescaled to our cosmology.

amplitude, here around ` ∼ 1800, corresponding to larger scales
than those found in other works (Iliev et al. 2007; Mesinger et al.
2012), hinting at larger ionised bubbles on average. Figure 5
gives an idea of the variance in the kSZ angular power spec-
trum for given physics – in particular a given matter distri-
bution, and very similar reionisation histories: the distribution
among simulations gives a reionisation midpoint defined at zre =
7.10 ± 0.06, corresponding to a range of kSZ power spectrum
amplitude D3000 = 0.80 ± 0.06 µK2 (at 68% confidence level).
Part of this variance can be related to sample variance, since
our simulations have a too small side length (L = 128 Mpc h−1)
to avoid it (Iliev et al. 2007). We compare in Fig. 5 the kSZ
power spectrum resulting from fitting Eq. (15) on our six simu-
lations simultaneously to the six spectra obtained when interpo-
lating the Pee(k, z) data points available for each simulation: the
six interpolated spectra lie withing the confidence limits of our
best-fit.

Fixing the fit parameters to their most likely value for the
fourth simulation, we artificially vary the reionisation history
and compute the corresponding power spectrum. We succes-
sively fix the reionisation redshift but increase its duration ∆z
or fix the duration but shift the midpoint zre. This corresponds
to a scenario where the reionisation morphology is exactly the
same, but happens later or earlier in time. We find clear scaling
relations between the amplitude of the signal at ` = 3000,D3000,
and both the reionisation duration ∆z and its midpoint zre. How-
ever, they are sensibly different from the results of Battaglia et al.

(2013) as can be seen in Fig. 6. Even after rescaling to their
zre = 8 and cosmology, we get a much lower amplitude. Note
also that their patchy spectra bump around ` = 3000, whereas
in our simulations the power has already dropped by ` = 3000
(Fig. 5), hinting at a very different reionisation morphology from
ours. When we vary κ and α0 artificially, by fixing logα0 = 3.54
instead of 3.70 as before, there is still a scaling relation, but
both the slope and the intercept change. All of this demonstrates
that the amplitude of the patchy signal largely depends on the
physics of reionisation (here via the κ and α0 parameters) and
∆z and zre are not sufficient to derive D3000. Simulations closer
to those used in Battaglia et al. (2013) would likely give larger
values for κ and α0, therefore increasing the amplitude to val-
ues closer to the authors’ results. To confirm this, we generate
a new simulation, with same resolution and box size but with
twice as much star formation as in the six initial simulations,
therefore reionising earlier (zre = 7.94) but on a similar redshift
interval (∆z = 1.20). Applying the fitting procedure described
above, we find logα0 = 4.10 and κ = 0.08 Mpc−1. The resulting
patchy kSZ power spectrum can be seen in Fig. 7, along with
the reionisation histories and the evolution of the typical bubble
size rmin = 2π/κxe(z)1/3. Results for this simulation are com-
pared with what was obtained for our six simulations. The kSZ
spectrum corresponding to an early reionisation scenario bumps
at larger scales (`max = 1400) with a much larger maximum
amplitude (Dmax = 0.98 µK2) but interestingly the amplitudes
at ` = 3000 are similar. This suggests that focusing on D3000 is
not sufficient to characterise the kSZ signal.

These results corroborate the work of Park et al. (2013), who
found that the scalings derived in Battaglia et al. (2013) are
largely dependent on the simulations they were calibrated on,
and therefore cannot be used as a universal formula to constrain
reionisation. Notably, an asymmetric reionisation history xe(z)
naturally deviates from this relation. Global parameters such as
∆z and zre are not sufficient to accurately describe the patchy
kSZ signal, and one needs to take the physics of reionisation into
account to get an accurate estimation of not only the shape, but
also the amplitude of the power spectrum. Additionally, limiting
ourselves to the amplitude at ` = 3000 to constrain reionisation
can be misleading.

4.2. Tests on other simulations

We now look at the rsage simulation, described in Seiler et al.
(2019), to test the robustness of our parameterisation. This simu-
lation starts off as an N-body simulation (Seiler et al. 2018), con-
taining 24003 dark matter particles within a 160 Mpc side box,
resolving halos of mass ∼4 × 108 M� with 32 particles. Galax-
ies are evolved over cosmic time following the Semi-Analytic
Galaxy Evolution (SAGE) model of Croton et al. (2016), modi-
fied to include an improved modelling of galaxy evolution during
the Epoch of Reionisation, including the feedback of ionisation
on galaxy evolution. The semi-numerical code cifog (Hutter
2018a,b) is used to generate an inhomogeneous ultraviolet back-
ground (UVB) and follow the evolution of ionised hydrogen dur-
ing the EoR. Three versions of the rsage simulation are used,
each corresponding to a different way of modelling the escape
fraction fesc of ionising photons from their host galaxy into the
IGM. The first, dubbed rsage const, takes fesc constant and
equal to 20%. The second, rsage fej, considers a positive scal-
ing of fesc with fej, the fraction of baryons that have been ejected
from the galaxy compared to the number remaining as hot and
cold gas. In the last one, rsage SFR, fesc scales with the star for-
mation rate and thus roughly with the halo mass. Because they
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Fig. 7. Comparison of results for our six initial simulations, corresponding to a late reionisation scenario, and for an additional seventh simulation,
corresponding to an early reionisation scenario. Left panel: reionisation histories. Middle panel: patchy kSZ angular power spectra. The data point
corresponds to constraints from Reichardt et al. (2020). Right panel: minimal size of ionised regions as a function of global ionised level. Shaded
areas correspond to the 68% confidence level on kSZ amplitude propagated from the probability distributions of the fit parameters.

are based on the same dark matter distribution, the three sim-
ulations start reionising at similar times (z ∼ 13), but different
source properties lead to different reionisation histories, shown
in the left upper panel of Fig. 8. In rsage SFR, the ionised bub-
bles are statistically larger than the other two simulations at a
given redshift: this results into rsage SFR reaching 50% of ion-
isation at zre = 7.56 vs. zre = 7.45 and zre = 7.37 for rsage
const and rsage fej respectively, and the full ionisation being
achieved in a shorter time. For more details, we refer the inter-
ested reader to Seiler et al. (2019). Applying the fitting proce-
dure to the three simulations, we find that the parameterisation
of Eq. (15) is an accurate description of the evolution of their
Pee(k, z) spectra (detailed fit results are given in Appendix B.2).
Resulting patchy kSZ angular power spectra are shown in the
upper middle panel of Fig. 8. First, we find that rsage fej has
the smallest α0 value, with logα0 = 2.87 ± 0.04. Because α0
is the maximum amplitude of the Pee(k, z) spectrum, built upon
the free electrons density contrast field δe(r) = ne(r)/n̄e − 1,
it will scale with the variance of the ne(r) field. Therefore a
smaller α0 value is equivalent to a smaller field variance at
all times. This is consistent with the picture of the different
rsage simulations we have: as presented in Seiler et al. (2019),
rsage fej exhibits the smallest ionised bubbles on average.
For a given filling fraction, a field made of many small bub-
bles covering the neutral background rather homogeneously will
have smaller variance than one made of a few large bubbles.
This in turn explains why rsage SFR gives the largest α0 value
(logα0 = 3.47 ± 0.04), and, later, the largest kSZ amplitude
(Fig. 8). Second, the rsage SFR simulation has the smallest
value of κ (κ = 0.123 ± 0.004 Mpc−1): the upper right panel
of Fig. 8 shows the evolution of rmin = 2π/κx1/3

e with ioni-
sation level for the three models. Because rsage SFR has the
largest ionised bubbles on average (Seiler et al. 2019), this result
confirms the interpretation of 1/κ as an estimate of the typical
bubble size during reionisation. Additionally, the patchy power
spectrum derived from rsage SFR peaks at larger angular scales
(`max ∼ 2400) than for the other simulations, as can be seen in
the upper middle panel of the figure. Interestingly, the largest α0
value leads to the strongest kSZ signal and the smallest κ value to
the spectrum whose bump is observed on the largest scales (the
smallest `max). We investigate these potential links in the next
section.

We now turn to three 21CMFAST (Mesinger & Furlanetto
2007; Mesinger et al. 2011) simulations with dimensions L =
160 Mpc for 2563 cells (same box size and resolution as rsage).
Between the three runs, we vary the parameter Mturn, the
turnover mass, which corresponds to the minimum halo mass
before exponential suppression of star formation. For Mturn =
108 M�, the box is fully ionised by zend = 6.25 and the mid-
point of reionisation is reached at zre = 8.92 for a process lasting
∆z = 1.91. For Mturn = 109 M�, we find zend = 4.69, zre = 7.11
and ∆z = 1.66, which is closest to rsage and our initial six sim-
ulations. Finally, Mturn = 1010 M� yields zend = 3.37, zre = 5.41
and ∆z = 1.47. Indeed, the point of these simulations is not only
to test the sensitivity of our approach to astrophysical param-
eters, but also to see the impact of very different reionisation
histories on the patchy kSZ power. We find that Eq. (15) again
nicely fits the evolution of the Pee(k, z) spectra of these simu-
lations, as shown in Appendix B.1. The resulting reionisation
histories, patchy kSZ spectra and rmin(xe) are shown in the lower
panels of Fig. 8. For Mturn = 108 M�, many small-mass halos
are active ionising sources, resulting in an ionising field made
of many small bubbles at the start of the process. This trans-
lates into this simulation having the largest best-fit κ value of the
three (κ = 0.130 ± 0.003 Mpc−1) and so the smallest rmin(xe).
Naturally, the resulting kSZ spectrum peaks at smaller angular
scales. For the other extreme case Mturn = 1010 M�, because
the minimal mass required to start ionising is larger, the ion-
ising sources are more efficient and the ionised bubbles larger.
Indeed, we find a smaller value of κ = 0.093 ± 0.003 Mpc−1.
With larger bubbles, we also expect the variance in the ionisa-
tion field at the start of the process to be higher than if many
small ionised regions cover the neutral background. This corre-
sponds to the larger value of logα0 = 3.79 ± 0.04 found for this
simulation, compared to 3.30 ± 0.03 for the first one. However,
this larger value of α0 this time does not result into the strongest
kSZ signal because of the very different reionisation histories of
the three simulations. As we have seen in the previous section,
the amplitude of the signal is strongly correlated with the dura-
tion and midpoint of reionisation, resulting in the first simulation
(Mturn = 108 M�), corresponding to the earliest reionisation, hav-
ing the strongest signal. This again emphasises how essential it
is to consider both reionisation morphology and global history
to derive the final kSZ spectrum.

A90, page 9 of 14

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038170&pdf_id=7


A&A 640, A90 (2020)

Fig. 8. Comparison of results for the three rsage simulations (upper panels) and the three 21CMFAST runs (lower panels) considered. Left panels:
reionisation histories. Middle panels: patchy kSZ angular power spectra. The data point corresponds to constraints from Reichardt et al. (2020).
Right panels: minimal size of ionised regions as a function of global ionised level. The shaded areas correspond to the 68% confidence interval
propagated from the 68% confidence intervals on the fit parameters.

These results show that our proposed simple two-parameter
expression for Pee(k, z) can accurately describe different types of
simulations, that is different types of physics, further validating
the physical interpretation of the parameters α0 and κ detailed in
the next Section.

5. Discussion and conclusions

5.1. Physical interpretation of the parameters

Many previous works have empirically related the angular scale
at which the patchy kSZ power spectrum reaches its maxi-
mum `max to the typical size of bubbles during reionisation
(McQuinn et al. 2005; Iliev et al. 2007; Mesinger et al. 2012).
To test for this relation, we compute the patchy kSZ power spec-
trum for a given reionisation history xe(z) and α0 but let κ val-
ues vary. We find a clear linear relation between κ and `max as
shown in Fig. 9. Despite very different reionisation histories and
physics at stake, previous results on the six high-resolution sim-
ulations, on 21CMFAST, and on rsage, roughly lie along this
line. This means that a detection of the patchy power spectrum
in CMB observations would make it possible to directly estimate
`max, giving access to κ without bias from reionisation history,
and to the evolution of the typical bubble size. As the growth
of ionised regions depends on the physical properties of early
galaxies, such as their ionising efficiency or their star formation
rate and on the density of the IGM, constraints on κ could, in
turn, give constraints on the nature of early light sources and of
the early IGM.

Fig. 9. Evolution of the peaking angular scale of the patchy kSZ power
spectrum for one given reionisation history but different values of the κ
parameter. The red dotted line is the result of a linear regression. Infer-
ences are compared to results for different simulations.

Additionally, we can link the theoretical expression of the
large-scale amplitude of the bubble power spectrum in Eq. (11)
with our parameterisation of Pee(k, z) in Eq. (13): α0x−1/5

e ↔

4/3πR3/xe(z). Because of the simplicity of the toy model, this
relation is not an equivalence. For example, contrary to the toy
model, in our simulations, the locations of the different ionised
bubbles are correlated, following the underlying dark matter
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distribution and this correlation will add power to the spectrum
on large scales. This analogy can however explain the correla-
tion observed between α0 and κ when fitting Eq. (15) to data
(recall that R ∝ 1/κ). Finally, since α0 is independent of redshift,
it will be a pre-factor for the left-hand side of Eq. (7), therefore
we expect a strong correlation between this parameter and the
amplitude of the spectrum at ` = 3000 and with the maximum
amplitude reached by the spectrum. We confirm this intuition by
fixing the reionisation history and κ but varying α0 on the range
3.0 < logα0 < 4.4 and comparing the resulting spectra: there is
a clear linear relation between these two parameters and α0, but
in this case results for rsage and 21CMFAST do not follow the
correlation. Interestingly, the shape of the different resulting kSZ
power spectra is strictly identical (namely, `max does not change
when varying α0), hinting at the fact that `max depends only on κ
and not α0 or reionisation history. Therefore it will be possible to
make an unbiased estimate of κ from the shape of the measured
spectrum. The rsage simulations show that, for a similar reion-
isation history, a larger value of α0 will lead to a stronger kSZ
signal; but looking at 21CMFAST, we found that an early reion-
isation scenario can counterbalance this effect and lead to high
amplitude despite low α0 values. This corroborates the results of
Mesinger et al. (2012), which find that the amplitude of the spec-
trum is determined by both the morphology (and so the α0 value)
and the reionisation history. Therefore, fitting CMB data to our
parameterisation will likely lead to strongly correlated values of
α0 and parameters such as ∆z or zre. Other methods should be
used to constrain the reionisation history and break this degen-
eracy, such as constraints from the value of the Thomson opti-
cal depth, or astrophysical constraints on the IGM ionised level.
Conversely, 21 cm intensity mapping should be able to give inde-
pendent constraints on α0.

5.2. Conclusions and prospects

In this work, we have used state-of-the-art reionisation simula-
tions (Aubert et al. 2015) to calibrate an analytical expression of
the angular power spectrum of the kSZ effect stemming from
patchy reionisation. We have shown that describing the shape,
but also amplitude of the signal only in terms of global param-
eters such as the reionisation duration ∆z and its midpoint zre
is not sufficient: it is essential to take the physics of the pro-
cess into account. In our new proposed expression, the parame-
ters can be directly related to both the global reionisation history
xe(z) and to the morphology of the process. With as few as these
three parameters, we can fully recover the patchy kSZ angular
power spectrum, in a way that is quick and easy to forward-
model. Our formalism contrasts with current works, which use
an arbitrary patchy kSZ power spectrum template enclosing an
outdated model of reionisation. Applying it to CMB data will
result in obtaining for the first time the actual shape of the patchy
kSZ power spectrum, taking consistently into account reionisa-
tion history and morphology. In future works, we will apply this
framework to CMB observations from SPT and, later, CMB-S4
experiments. Then, the inferred values of α0 and κ will provide
us with detailed information about the physics of reionisation:
κ will constrain the growth of ionised bubbles with time and
α0 the evolution of the variance of the ionisation field during
EoR, both being related to the ionising properties of early galax-
ies. The complex derivation of the kSZ signal, based on a series
of integrals, leads to correlations between our parameters. For
example, a high amplitude of the spectrum can be explained
either by a large value of α0 due to a high ionising efficiency
of galaxies, or by an early reionisation. Such degeneracies,

however, could be broken by combining CMB data with other
observations: astrophysical observations of early galaxies and
quasars will help grasp the global history of reionisation and
constrain parameters such as ∆z and zre, while 21 cm inten-
sity mapping will help understand reionisation morphology,
putting independent constraints on α0 and κ. The main challenge
remains to separate first the kSZ signal from other foregrounds,
and then the patchy kSZ signal from the homogeneous one. To
solve the first part of this problem, Calabrese et al. (2014) sug-
gest to subtract the theoretical primary power spectrum (derived
from independent cosmological parameter constraints obtained
from polarisation measurements) from the observed one so that
the signal left is the kSZ power spectrum alone. Secondly, one
would need a good description of the homogeneous spectrum,
similar to the results of Shaw et al. (2012) but updated with more
recent simulations, in order to estimate how accurately one can
recover the patchy signal. Additionally, this result sheds light on
the scaling relations observed in previous works by giving them
a physical ground. For example, features in the free electron
contrast density power spectrum explain the relation between
the amplitude at which the patchy kSZ spectrum bumps `max

and the typical bubble size, which was observed empirically
in many previous works (McQuinn et al. 2005; Iliev et al. 2007;
Mesinger et al. 2012).

On average, our results are in good agreement with previous
works, despite a low amplitude of the patchy kSZ angular power
spectrum at ` = 3000 (∼0.80 µK2) for our fiducial simulations.
There is undoubtedly a bump around scales ` ∼ 2000 that can
be related to the typical bubble size and the amplitude of the
total (patchy) kinetic SZ spectrum ranges from 4 to 5 µK2 (0.5 to
1.5 µK2, respectively) for plausible reionisation scenarios, there-
fore lying within the error bars of the latest observational results
of ACT (Sievers et al. 2013) and SPT (Reichardt et al. 2020). We
have found that the majority of the patchy kSZ signal stems from
scales 10−3 < k/Mpc−1 < 1 and from the core of the reioni-
sation process (10% < xe < 80%), ranges on which we must
focus our efforts to obtain an accurate description. This analy-
sis does not consider third- and fourth-order components of the
kSZ signal, which can represent as much as 10% of the total
signal (Alvarez 2016), and uses a coarse approximation for the
electrons density – velocity cross spectra. In contrast to previ-
ous works, these results are not simulation-dependent as we have
tested the robustness of our model by confronting it to different
types of simulations, capturing different aspects of the process.
However, the analytic formulation of our derivations was cali-
brated on a relatively small simulation, of side length 128 Mpc h,
which could bias our results. To further support our approach,
using a larger radiative hydrodynamical simulation would be
useful. Additionally, one could derive the kSZ power from light-
cones constructed with our simulation, but the limited size of the
simulation might lead to a significant underestimate of the kSZ
power (Shaw et al. 2012; Alvarez 2016).
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Appendix A: Variations on the fit

A.1. Six fits for six simulations

Table A.1. Results obtained when fitting Eq. (15) to the six simulations
separately.

Sim logα0 [Mpc3] κ [Mpc−1] D
p
3000 [µK2] `max

1 3.86 ± 0.08 0.093 ± 0.006 0.75 µK2 1900
2 3.85 ± 0.08 0.094 ± 0.006 0.81 µK2 1900
3 3.80 ± 0.08 0.098 ± 0.007 0.86 µK2 1900
4 3.78 ± 0.08 0.100 ± 0.007 0.82 µK2 1900
5 3.91 ± 0.08 0.089 ± 0.007 0.82 µK2 1800
6 3.87 ± 0.08 0.093 ± 0.006 0.83 µK2 1900

Notes. Maximum likelihood parameters are given with 68% confidence
intervals.

Fig. A.1. Comparison of the patchy kSZ power spectra resulting from
one fit on the six simulations (black solid line, with 68% confidence
interval as the shaded area) or from six fits (coloured solid lines). The
data point corresponds to constraints from Reichardt et al. (2020).

Instead of fitting the six simulations simultaneously, we choose
to fit each simulation individually to Eq. (15) with the same error
bars as the fitting procedure described in Sect. 4. This allows
to use the original Pee(k, z) data points from each simulation,
without interpolating them, and the original reionisation history
rather than an averaged one. The results are shown in Table A.1,
where the maximum likelihood parameters, along with their 68%
confidence intervals, and the corresponding values of D3000 and
`max are given. The six maximum likelihood values of α0 and κ
lie within the 95% confidence interval of the parameter distri-
butions obtained in Sect. 4 and so do the resulting patchy kSZ
spectra, as shown in Fig. A.1.

A.2. Attempt at deriving a covariance matrix from a sample
of six

Because of the very insufficient number of simulations avail-
able to derive a covariance matrix, even when bootstrapping, we
choose to average covariance matrices over bins.

Average over z-bins. First, we choose to ignore correlations
between scales over redshifts and use a covariance matrix C,
average of the 6 × 10 covariance matrices obtained for each
simulation and each redshift bin. C has therefore dimensions

(20, 20)10. We fit Eq. (15) to the six simulations, trying to min-
imise:

χ2 =
∑

zi

XT
i C−1 Xi, (A.1)

where Xi = Pdata
ee ({k j}, xi) − Pmodel

ee ({k j}, xi). We find a mini-
mal reduced χ2 of 125, reached for logα0 = 4.12 and κ =
0.078 Mpc−1 and giving Dp

3000 = 0.97 µK2 and `max = 1500.
This difference comes from a poor match between the maxi-
mum likelihood Pee(k, z) and the data points on scales 0.1 <
k/Mpc−1 < 0.3. These scales correspond to the power cut-off,
so that the value of κ is poorly constrained and, later, the kSZ
power spectrum is distorted.

Average over k-bins. Secondly, we choose to ignore cor-
relations between redshifts over scales and use a covariance
matrix C, average of the 6 × 20 covariance matrices obtained
for each simulation and each scale bin. C has therefore dimen-
sions (10, 10). Comparing the correlation coefficients obtained
for the two approaches, we note that the correlations are higher
for this approach. We fit Eq. (15) to the six simulations, trying to
minimise:

χ2 =
∑

ki

XT
i C−1 Xi, (A.2)

where Xi = Pdata
ee (ki, {x j}) − Pmodel

ee (ki, {x j}). We find a mini-
mal reduced χ2 of 4.46, reached for logα0 = 3.65 and κ =
0.135 Mpc−1 and giving Dp

3000 = 1.46 µK2 and `max = 2700.
The excess power comes from the fact that the fit systematically
overestimate the Pee power on small scales (k > 0.3 Mpc−1).

Appendix B: Detailed results on rsage and
21CMFAST

B.1. Fits on 21CMFAST

We now fit Eq. (15) to the power spectra of our three 21CMFAST
runs. To account for sample variance, we perform 20 realisa-
tions of each simulation – the choice of 20 being motivated by
Kaur et al. (2020) and computational limitations. From these 20
realisations we derive relative error bars on Pee(k, z) values, cor-
responding to the 68% confidence level on the distribution of
values for each bin. The results obtained for 21CMFAST and
their interpretation are consistent with what is obtained for the
other simulations. The upper panel of Fig. B.1 shows the best-fit
model for Pee(k, z), along with snapshot values, for the second
simulation.

B.2. Fits on rsage

Because we only have one realisation of each rsage simula-
tion, we apply the relative error bars derived from 21CMFAST
to the rsage Pee(k, z) data points. On the scales and redshifts
range covered by the fit, the error bars σ(k, z) derived from
the 20 realisations of each of the three 21CMFAST simula-
tions follow σ(k, z) = 10bPee(k, z)(k/k0)a, where k0 = 1Mpc−1,
a = −1.12 ± 0.79 and b = −1.74 ± 0.70 have been found by fit-
ting the σ(k, z) values of the 60 simulations simultaneously. We
then apply this expression to the spectra of the rsage simula-
tions, a reasonable first approximation of cosmic variance. We
fit Eq. (15) to the spectra of the three simulations. The lower

10 Recall we have 10 redshift bins and 20 scale bins after interpolating
the spectra.
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Fig. B.1. Result of fitting Eq. (13) to the spectra of the 21CMFAST run for Mturn = 109 M� (upper panel) and of rsage fej (lower panel). The
error bars correspond to the 68% confidence level on the spectra of 20 realisations of the same 21CMFAST run.

panel of Fig. B.1 shows the best-fit model for Pee(k, z), along
with snapshot values, for rsage fej. Note that here, we only

show the spectra on the redshift range used for the fit, where the
power-law structure is not as striking as for higher redshifts.
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