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ABSTRACT

We present a void clustering analysis in configuration-space using the completed Sloan Digital Sky Survey IV (SDSS-IV)
extended Baryon Oscillation Spectroscopic Survey (eBOSS) DR16 samples. These samples consist of Luminous Red Galaxies
(LRGs) combined with the high-redshift tail of the SDSS-IIT Baryon Oscillation Spectroscopic Survey (BOSS) DR12 CMASS
galaxies (called as LRG+CMASS sample), Emission Line Galaxies (ELGs), and quasars (QSOs). We build void catalogues
from the three eBOSS DR16 samples using a ZOBOV-based algorithm, providing 2814 voids, 1801 voids, and 4347 voids in the
LRG+CMASS, ELG, and QSO samples, respectively, spanning the redshift range 0.6 < z < 2.2. We measure the redshift space
distortions around voids using the anisotropic void-galaxy cross-correlation function and we extract the distortion parameter .
We test the methodology on realistic simulations before applying it to the data, and we investigate all our systematic errors on
these mocks. We find BRG(z = 0.74) = 0.415 4 0.087, BFXCS(z = 0.85) = 0.665 £ 0.125 and BVO(z = 1.48) = 0.313 £ 0.134,
for the LRGH+CMASS, ELG, and QSO sample, respectively. The quoted errors include systematic and statistical contributions.
In order to convert our measurements in terms of the growth rate fog, we use consensus values of linear bias from the eBOSS
DR16 companion papers, resulting in the following constraints: fog(z = 0.74) = 0.50 & 0.11, fog(z = 0.85) = 0.52 £ 0.10, and
fos(z=1.48) =0.30 &£ 0.13. Our measurements are consistent with other measurements from eBOSS DR 16 using conventional
clustering techniques.

Key words: dark energy —large-scale structure of the Universe.

effect counteracting gravitational attraction, often depicted as a

1 INTRODUCTION dark energy which is encoded by the cosmological constant A.

Observational cosmology has been leading for more than 20 yr now
to the discovery of one of the greatest puzzles in contemporary
physics: the acceleration of cosmic expansion. Discovered in 1998
through the study of Type la supernovae (Riess et al. 1998; Perlmutter
et al. 1999), cosmic acceleration can be understood as a repulsive

* E-mail: maubert@ipnl.in2p3.fr

In an attempt to find the underlying theory behind the late-time
cosmic acceleration, two widely accepted approaches are generally
proposed. The first is to assume the presence of an additional degree
of freedom in the form of scalar fields as a way to allow the dark
energy to evolve (Copeland, Sami & Tsujikawa 2006). The second
is to consider modified gravitational theories which deviate from
Einstein’s General Relativity (GR) on cosmological scales (Nojiri,
Odintsov & Oikonomou 2017).
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To break the degeneracy between dark energy and modified
gravity, a key test is to measure the linear growth rate of structure,
which provides a measure of how fast structure is assembled in the
Universe as a function of cosmic time. Constraints on the growth
rate can be provided by galaxy redshift surveys. Indeed, galaxies that
trace cosmic structure are subject to peculiar velocities which add an
additional Doppler component to the cosmological redshift due to the
Hubble flow. This line-of-sight component introduces anisotropies in
the inferred spatial clustering of galaxies, a signal known as redshift
space distortions (RSDs) (Kaiser 1987). Since these velocities are
related to the gravity of the cluster, the RSD pattern can be used
to extract information on the growth rate, and thus allows us to
distinguish between different theories of gravity (Peacock et al. 2001;
Guzzo et al. 2008). In GR, the growth rate is well approximated by
the empirical relationship (Linder 2005):

=9, (1

where @, is the matter density and y = 0.55.

Techniques for extracting the RSD signal from galaxy redshift
surveys have developed considerably over the past decade (Guzzo
et al. 2008), in particular from large data sets such as the 6 deg
Field Galaxy Survey 6dFGS (Beutler et al. 2012), the WiggleZ Dark
Energy Survey (Blake et al. 2011; Contreras et al. 2013), the VIMOS
Public Extragalactic Redshift Survey (VIPERS) (de la Torre et al.
2017; Pezzotta et al. 2017), the Baryon Oscillation Spectroscopic
Survey (BOSS) (Alam et al. 2017), the Subaru FMOS galaxy redshift
survey (FastSound) (Okumura et al. 2016), and recently the extended-
BOSS DR14 (Gil-Marin et al. 2018; Zarrouk et al. 2018; Ruggeri
et al. 2019; Zhao et al. 2019; Icaza-Lizaola et al. 2020). However,
extracting the linear RSD signal from galaxy redshift surveys is
non-trivial since the gravitational peculiar motions of galaxies are
not fully linear and the RSD effect must be correctly modelled at
non-linear scales.

It has been shown that the growth rate can also be probed
with cosmic voids. Indeed, these underdense regions of matter,
which account for about 80 per cent of the total volume of the
observable Universe, are strongly affected by the growth of large-
scale structure. Specifically, galaxies close to the edge of a void
tend to be pushed away from the void centre, being attracted to the
surrounding structure under the influence of gravity (Dubinski et al.
1993; Padilla, Ceccarelli & Lambas 2005). These RSDs introduce
an anisotropy to the void-galaxy cross-correlation (Paz et al. 2013;
Hamaus et al. 2015; Cai et al. 2016; Achitouv et al. 2017; Nadathur &
Percival 2019) sensitive to the linear growth rate of structure. Recent
measurements of the growth rate using voids have been performed
on BOSS (Hamaus et al. 2016, 2017, 2020; Achitouv 2019; Nadathur
et al. 2019), 6dFGS (Achitouv et al. 2017), and VIPERS (Hawken
et al. 2017). Constraining the linear growth rate of structure using
the RSD patterns around voids rather than on galaxies has several
uses. First, it is expected that, unlike the galaxy autocorrelation
function, which is quadratic in the density of galaxies, void-galaxy
cross-correlation merely depends on galaxy density linearly, with
reduced non-linear dynamics (Hamaus et al. 2014a; Nadathur &
Percival 2019). Secondly, the study of RSDs around voids presents
the opportunity to measure the growth of density perturbations in
low-density regions. The comparison with the results from galaxy
clustering in overdense regions is an attractive test for departures
from Einstein gravity.

Since the proof of the existence of voids in the distribution of galax-
ies (Gregory & Thompson 1978; Joeveer, Einasto & Tago 1978), in-
terest in using voids for cosmology has never ceased to grow (Lavaux
& Wandelt 2012). As voids are nearly devoid of matter, they have
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proved to be very promising objects for exploring the imprint of
possible modifications of GR such as f(R) gravity or extended gravity
theories (Hui, Nicolis & Stubbs 2009; Clampitt & Cai 2013; Cai,
Padilla & Li 2015; Zivick et al. 2015; Achitouv 2016; Voivodic et al.
2017; Cautun et al. 2018; Falck et al. 2018; Paillas et al. 2019; Perico
et al. 2019) or the dark energy equation of state (Bos et al. 2012;
Pisani et al. 2015). Voids are also powerful probes to test the non-
Gaussian nature of the primordial perturbation field (Kamionkowski,
Verde & Jimenez 2009), to constrain the mass of neutrinos (Massara
et al. 2015; Kreisch et al. 2019) or to investigate alternative dark
matter scenario like warm dark matter (Yang et al. 2015).

In this work, we perform an RSD analysis around cosmic voids
using data samples from the extended Baryon Oscillation Spectro-
scopic Survey (eBOSS, Dawson et al. 2016) Data Release 16 (DR16,
Ahumada et al. 2020) of the Sloan Digital Sky Survey IV (Blanton
etal.2017).eBOSS conducted a 5-yr observation program, surveying
the large-scale structure of the Universe over a redshift range from 0.6
t03.5. The eBOSS data samples we study are Luminous Red Galaxies
(LRGs), Emission Line Galaxies (ELGs), and quasars (QSOs). The
construction of data catalogues is described in Ross et al. (2020)
and Lyke et al. (2020), while mock catalogues are described in Zhao
et al. (2021). The final eBOSS measurements of Baryon Acoustic
Oscillation (BAO) and RSD in the clustering samples have been
performed for LRG (Gil-Marin et al. 2020; Bautista et al. 2021),
ELG (Tamone et al. 2020; de Mattia et al. 2021; Raichoor et al.
2021), and QSO (Neveux et al. 2020; Hou et al. 2021). At the
highest redshifts (z > 2.1), the coordinated release of final eBOSS
measurements includes measurements of BAO in the Ly o forest (du
Mas des Bourboux et al. 2020). The multitracer analyses to measure
BAO and RSD using LRG and ELG samples are presented in Wang
et al. (2020). The cosmological interpretation of these results in
combination with the final BOSS results and other probes is found
in Alam et al. (2021a).

Prior to the final DR16 analysis, the signature of RSDs around
voids was already performed using the first two years of data from
Data Release 14 (DR14) in Hawken et al. (2020). Using DR16, we
have six times more voids in the LRG and QSO samples compared
to DR14, and we have for the first time a void catalogue derived from
the ELG sample.

The paper is organized as follows. Section 2 describes the
DRI16 galaxy samples and synthetic mock catalogues used in this
analysis. Section 3 presents the void finding routine applied to the
aforementioned samples and the selection criteria applied to voids.
In Section 4, we present the linear RSD model used to estimate
the growth rate of structure in the DR16 sample; we describe its
application on mocks and evaluate systematic errors from different
sources. In Section 5, we present the final constraints on the growth
rate of structure using voids and finally conclude in Section 6.

2 DATA SET

This study is part of a coordinated release of the final eBOSS
measurements from the final release from SDSS-1V, DR16 (Ahumada
et al. 2020). In this section, we describe the eBOSS DR16 data sets
(Section 2.2) and present the synthetic mock catalogues that mimic
the properties of the eBOSS data and that are used to compute the
covariance and estimate systematic errors (Section 2.3).

2.1 Overview of the eBOSS survey

Starting in 2014 with the fourth phase of the Sloan Digital Sky
Survey program (SDSS-IV; Blanton et al. 2017), the eBOSS

MNRAS 513, 186-203 (2022)

€202 UIBIN LE UO JosN SYND Aq 095¥5G9/98 L/1/€ L G/a191HE/SIU/WOD dNO"DlWSPESE//:SAY WOlj PapEOjUMOQ



188 M. Aubert et al.

survey (Dawson et al. 2016) was the successor of BOSS (Dawson
et al. 2013). The eBOSS targets were primarily observed using the
BOSS double-armed spectrographs (Smee et al. 2013) on the 2.5-
m Sloan Telescope (Gunn et al. 2006). A particular feature of the
eBOSS survey is the use of four tracers of matter: LRGs in the
redshift range 0.6 < z < 1.0, ELGs in the redshift range 0.6 < z <
1.1, QSOs used as direct tracers of the matter field in 0.8 < z < 2.2,
and higher redshift QSOs (z > 2.1) used for Ly « forest. The latter
are excluded from the analysis presented here.

2.2 DR16 data samples

The target selection of both LRG and QSO samples was conducted
with the SDSS imaging photometry; a detailed description of these
catalogues is given in the companion paper Ross et al. (2020). The
ELG target selection was done using the DECaLS part of the DESI
Legacy Imaging Surveys' (Dey et al. 2019) and the creation of the
ELG catalogue is presented in the companion paper Raichoor et al.
(2021). In this section, we give a brief introduction to the data samples
used in our analysis.

2.2.1 The LRG sample

The LRG sample was selected from the optical SDSS DR 13 photom-
etry (Albareti et al. 2017) with additional publicly available infrared
data from the WISE satellite (Wright et al. 2010). The final LRG
selection is described in Prakash et al. (2016), for which colour cuts
were applied to provide a sample with redshifts in the range 0.6 <
z < 1.0. The statistics for the eBOSS LRG sample are presented
in Ross et al. (2020, table 4), with a total of 174816 LRG over a
footprint of 4242 deg?.

Following galaxy clustering analyses on the LRG sample
in Fourier space (Gil-Marin et al. 2020) and configuration
space (Bautista et al. 2021), we combine eBOSS LRGs with BOSS
CMASS galaxies with z > 0.6. The combined LRG+CMASS
catalogue contains 377 458 galaxies with 0.6 < z < 1.0 over a total
footprint of 9493 deg?. All eBOSS LRGs are assumed to be within
the CMASS footprint.

2.2.2 The ELG sample

ELGs are star-forming galaxies with strong emission lines, tar-
geted as [O1]doublet emitter at (A3727, A3729 A) for eBOSS.
ELGs are primary targets in future spectroscopic surveys such
as DESI ([O1jemitter; DESI Collaboration et al. 2016a,b) and
Euclid (H o emitter; Amendola et al. 2018). The ELG selection
performed in the DECaLS program (Dey et al. 2019) for eBOSS
is described in Raichoor et al. (2017). The building of the ELG
catalogues for eBOSS DR16 is fully detailed in Raichoor et al.
(2021). This catalogue contains 173 736 ELGs in the range 0.6 < z
< 1.1 over a footprint of 1170 deg?.

2.2.3 The QSO sample

The QSO sample covers a wide redshift range, bridging the gap
between the CMASS galaxies at z < 0.7 and the high-redshift QSOs
at z > 2.2 that probe the Ly « forest in the BOSS survey (Dawson
et al. 2013). The CORE QSO target selection is described in Myers

Thttp:/legacysurvey.org/
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et al. (2015), using both optical imaging data from SDSS and mid-
infrared data from the WISE survey (Wright et al. 2010). The DR16
QSO catalogue is presented in Lyke et al. (2020), while the QSO
clustering catalogue that we use is described in Ross et al. (2020).
The number of eBOSS QSOs is 343708 covering a sky area of
4808 deg? (see Ross et al. 2020, table 3), and spanning the redshift
range 0.8 <z <2.2.

2.2.4 Random catalogues

For each of the above tracers, random catalogues are generated
matching the angular and radial distribution of the data samples, but
without any intrinsic clustering structure. The detailed description
of the catalogue creation is given in Ross et al. (2020) and Raichoor
etal. (2021) for the LRG and QSO samples and for the ELG sample,
respectively. The number density in random catalogues is at least
40 times larger than that of the data, in order to minimize shot noise.

2.2.5 Weights

As galaxy redshift estimation depends on the observation conditions,
weights are calculated to correct for possible systematic effects.
These weights are used for creating void catalogues and for counting
pairs when estimating the correlation function. They are briefly
described here.

A few per cent of targets are not observed due to fibre collisions.
This happens when two or more galaxies are within 62 arcsec
and only one has an assigned fibre. The applied correction is to
up-weight all objects in the same group by the close-pair weight
Wep = Niarg/Nepec; Where Ny is the number of targets in the
given group and Ny the number with spectroscopic observation. A
similar weight w,,, is defined for galaxies with no reliable redshift.
The correction for redshift failure is based on the spectrograph
signal-to-noise ratio and the fibre ID. Similarly, to account for
imaging systematics that generate spurious fluctuations in target
selection, a weighting wsys is applied to each galaxy. Since the radial
distribution of the tracers is not uniform but follows a radial mean
density dependence n(z), an FKP weight is applied to objects in
order to minimize the variance for clustering measurements, defined
as (Feldman, Kaiser & Peacock 1994):

wekp = 1/[1 + n(z) Pol, ()

where Py is the typical power-spectrum value at the scale of BAO.
For the different eBOSS tracers:

Po1rg = 10000 773 Mpc?, 3)
Po e = 4000 13 Mpc?, “)
Po.oso = 6000 /3 Mpc?. )

The final weight for each galaxy can then be written as
W = Wnoz X Wcp X Wsyst X WFKP- (6)

This weighting scheme is the same for the data catalogue and the
random catalogue.

2.3 Mock catalogues

In order to compute the covariance matrix and investigate systematic
effects, we use synthetic mocks that mimic the data samples.
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2.3.1 EZmocks

EZMOCKS are fast generated mocks that encode effective structure
formation and tracer bias models. They take into account radial dis-
tributions, veto masks, and survey footprints as well as observational
systematic effects. Mocks are used to compute the covariance matrix
and to validate the analysis pipeline.

EZMOCKS are based on the Zel’dovitch approximation to generate
a dark matter field at a given redshift (Chuang et al. 2015). The
creation of mock catalogues for the LSS eBOSS tracers is extensively
presented in Zhao et al. (2021). EZMOCKS consist of a set of 1000 re-
alizations of light-cone mock catalogues for each type of tracers. For
each of the EZMOCKS realization is associated a random catalogue, as
required for the normalization of clustering measurement and to fully
simulate the dependence of random catalogues in observed data. The
fiducial cosmological model used for constructing the EZMOCKS is
flat A cold dark matter (ACDM) with

Qn =0.307, @, =0.0482, h =0.678,
og = 0.8225, ny, =0.96, (7)

which are the best-fitting values from the Planck 2013 results (Ade
et al. 2014).

2.3.2 NSERIES mocks

NSERIES mocks are full N-body simulation populated with a single
Halo Occupation Distribution (HOD) model. These mocks, which re-
produce the BOSS CMASS LRG sample at the effective redshift z =
0.56, are very useful to test model accuracy in the non-linear regime.
A total of seven independent periodic boxes projected through 12
different orientations for each box gives 84 pseudo-independent
realizations for an effective volume of 84 x (2.6 1~ Gpc)?.
The underlying cosmology for NSERIES mocks is

Qn, = 0.286, ©, =0.0470, h =0.700,
og =0.82, ng = 0.96. (8)

2.3.3 OUTERRIM mocks

OUTERRIM mocks were created in the framework of the eBOSS
mock challenge whose purpose was to provide N-body-based mocks
to study eventual systematic effects of the HOD models on standard
galaxy clustering measurements. Those mocks are based on the N-
body OUTERRIM simulation (Habib et al. 2016; Heitmann et al.
2019a,b) of 10240* particles in a (347! Gpc)® volume and built
from snapshots of the simulation.

The underlying cosmology for OUTERRIM simulation is close to
the best-fitting model from WMAP-7 (Komatsu et al. 2011):

Qn =0.2648, 2, =0.0448, h =0.71,
oy = 0.8, ny =0.963. 9)

OuterRim ELG mocks: OUTERRIM ELGs are built from a single
snapshot at z = 0.865, close to that of the DR16 ELG sample.
Six sets of mocks were produced, each with a different HOD
model. The detailed description of the mock construction and HOD
models can be found in Alam et al. (2021b). In this paper, we
use one blind mock of the ELG mock challenge with a galaxy
number density similar to that of the data and populated with the
HMQ3 (HighMassQuenched-3) HOD model. This mock contains 30
pseudo-independent realizations with periodic boundary conditions.

OuterRim QSO mocks: OUTERRIM QSOs are built from a snapshot
at z = 1.433. From this snapshot, 20 sets of mocks were created and
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populated with 20 different HOD models. In order to include the
effect of QSOs redshift uncertainties, an additional redshift smearing
was added to mocks, providing four variations of the same mock with
a redshift smearing of varying intensity. The detailed description of
the mock construction, HOD modelling, and redshift smearing along
with their impact on standard clustering measurements are described
in Smith et al. (2020). We use a ‘non-blind’ mock populated with
the HOD10 model with a prescription of a realistic redshift smearing
case. It contains 100 pseudo-independent realizations with a tracer
density comparable to that of the QSO sample.

3 VOID CATALOGUES

In this section, we present the construction of void catalogues from
the data and EZMOCKS in eBOSS DR16 samples. We describe the
main steps of the void finding algorithm (Section 3.1) and present
the selection cuts applied to remove voids too close to the survey
edge (Section 3.2). We then present statistics of final void catalogues
and compare basic properties of voids between data and EZMOCKS
(Section 3.3).

3.1 Void finding algorithm

REVOLVER? (Nadathur et al. 2019) is a multipurpose algorithm that
applies both reconstruction and void-finding on a given galaxy or
simulated data sample. We use the void finding part of the algorithm
only, without applying prior reconstruction.

Prior to any void finding, the galaxy positions are transformed to
comoving space in /! Mpc assuming a flat ACDM cosmology with
Qn, =0.31.

The void finding part of REVOLVER is comprised of a python wrap-
per around the ZOBOV algorithm Neyrinck (2008). The ZOBOV al-
gorithm performs a Voronoi Tessellation Field Estimation (hereafter
VTFE) on the discrete sample of tracers: each tracer is assigned a cell
which encompasses all the nearest points to the considered tracer.
This process allows an estimation of a local volume associated with a
given tracer. By definition of the VTFE, the inverse of the estimated
volume provides a measure of the local density within each cell.
Local density minima in the tessellation field are then identified and
adjacent low-density galaxies are merged in order to form zones of
minimal density without density threshold. This process is reiterated
for the zones, allowing us to identify low-density regions throughout
the survey footprint: these regions are called voids.

REVOLVER applies a rescaling to the volumes estimated through
the VTFE in order to take into account both the selection function and
weights correcting for systematics in the survey, with the following
association: eres = V; xw./wy, where V; is the volume of the
Voronoi cell enclosing the galaxy j, w, is the weight arising from
the selection function estimated in the void finder, and wy is the
combined systematic weights defined in equation (6) without the
wrgp contribution.

In order to practice a consistent tessellation of the density field
and avoid leakage at the boundary of the survey both in redshift and
footprint, buffer particles are positioned along the survey boundaries
with a density of 100 7. The galaxies are checked for any proximity
to these particles and are flagged not to be trusted in case of adjacency.
Underdense zones processed from ZOBOV are then flagged as edge if
considered too close to the boundary because of the higher probability
of their volume to be ill-defined.

Zhttp://github.com/seshnadathur/Revolver
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Table 1. Statistics of void catalogues identified in EZMOCKS catalogues and eBOSS DR16 LSS catalogues. The
quantity Ng is the number of galaxies or QSOs, Ny and Ny .t are the number of voids before and after selection cuts
as described in Section 3.2, respectively. The numbers N, and N, ¢ are averages over the 1000 realizations and the
errors on these mean values are typically of the order of £2. The quantity z.f is the effective redshift of the void

catalogues after selection cuts.

Sample Ng Ny Ny,cut Z range Zeff Fmax Area (degz)
EZMOCKS

LRG+CMASS 380 190 4283 2832 06<z<10 0.740 3.52 9493
ELG 173736 2209 1895 06<z<1.1 0.847 3.60 1170
QSO 343700 5449 4321 08<z<22 1.478 3.52 4808
Data sample

LRG+CMASS 377458 4228 2814 06<z<10 0.740 3.52 9493
ELG 173736 2097 1801 06<z<1.1 0.847 3.60 1170
QSO 343708 5451 4347 08<z<22 1.478 3.52 4808

In the post-processing part, zones are separated if needed in order
to obtain the smallest entity corresponding to an underdensity. It
differs from other ZOBOV-based void finders (Sutter et al. 2014b),
VIDE in this sense, because it does not try to probe the void hierarchy,
finding only what would be called child void. This should not
affect the making of our samples, as no prior void samples made
from available galaxy data sets using ZOBOV-like algorithm have
managed to be sensitive to the void hierarchy. The centre of such
a void is then defined as the volume-weighted barycentre of the
galaxies defining the void. An effective radius is estimated from the
total volume of the voids taken as that of a sphere:

3 1/3
ry, = <4ﬂzj:vj) , (10

where V; is the volume associated with the Voronoi cell of the galaxy
Jj used to define the void and its barycentre. All properties pertaining
to the voids use the non-rescaled Voronoi volume V; to compute the
properties, while the rescaled density p™* = 1/V™ is used as a weight
to take into account the systematic effects in the void properties
definition.

3.2 Selection cuts

A drawback in the void finding procedure is the effect of the
proximity of buffer particles positioned at the boundary of the survey.
Although these particles prevent us from finding voids in the vetoed
portions of the survey, their presence causes an increase in spurious
voids that cannot be distinguished from the ‘true’ underdensities in
the density field. As a result, we apply three specific selection cuts
to keep only those voids that we consider to be reliable in our final
samples.

Npart cut: Any voids defined by less than five galaxies are
excluded from the void catalogue, as they are considered to be poorly
defined voids.

Edge Flag cut: Any voids with a non null Edge flag
value are discarded from the void catalogue as their volume and
properties are inclined to be ill-defined through their proximity to
buffer particles.

NearestEdge cut: Any voids too close to the redshift bound-
aries are also removed. Since many buffer particles are created for
the needs of the void finding, their presence causes an increase of
the number of voids near the redshift boundaries. To mitigate this
effect, we discard all voids for which the position of the void centre
added to the effective radius r, of the void or added to the distance
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of the farthest galaxy belonging to the void exceeds the distance of
the nearest limit in redshift.

3.3 Final void catalogues
3.3.1 Statistics

The summary statistics of void catalogues for each sample of
synthetic EZMOCKS are presented in Table 1. The number of voids
before and after selection cuts are averaged over the 1000 realizations
of each tracer. It is mostly the LRG+CMASS sample that suffer
severe cuts with the set defined in Section 3.2.

Table 1 also shows the summary statistics of void catalogues for
the three eBOSS DR16 data samples. These quantities are subject to
small fluctuations due to the inherent procedure of the void finder.
Indeed, the number of buffer particles that are added to galaxy or
QSO catalogues to prevent the algorithm from finding voids outside
the survey boundary has an effect on the void finding process. Since
these particles are randomly positioned along the boundaries of
the veto mask, the calculation of the volume of the Voronoi cells
may be slightly modified from one realization of void finding to
another, which leads to some fluctuations in terms of void statistics,
the resulting catalogues being slightly different. To circumvent this
problem, we apply the REVOLVER algorithm 1000 times on each data
catalogue. The analysis described in Section 4 will be systematically
applied to all of these 1000 catalogues, for each data sample, unless
otherwise stated. Statistics presented in Table 1 are given in terms of
means over the 1000 void data catalogues generated with REVOLVER.
The related systematic uncertainty is estimated in Section 4.5.

In order to define the effective redshift of the void sample, we
perform the following weighted void-galaxy pair-count:

Zij wi(Zi + ZJ)/Z
2 wi 7

where z; is the redshift of the ith galaxy, Z; the redshift of the centre
of the jth void, and w; the total weight of the ith galaxy, as given
by equation (6). The computation is made over all void-galaxy pairs
used for the correlation function in the range [0 — 7max[, Where rpnax
corresponds to the maximal radial separation between the void centre
and the galaxy, rescaled by the void radius r, of the considered void.
The subsequent effective redshifts and their corresponding 7. are
given in Table 1 for each eBOSS sample.

an

Zeff =
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Figure 1. Redshift distribution of voids after selection cuts for
LRG+CMASS samples (red lines), ELG samples (blue lines), and QSO
samples (yellow lines). The solid and dashed lines correspond to the data and
the mean of the 1000 realizations of the EZMOCKS, respectively. The shaded
areas indicate the 1o regions evaluated from 1000 mock realizations.
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Figure 2. Number of voids after selection cuts as a function of their radius r,
for LRG+CMASS samples (red lines), ELG samples (blue lines), and QSO
samples (yellow lines). The solid and dashed lines correspond to the data
and the mean over the 1000 realizations of the EZMOCKS, respectively. The
shaded areas indicate the 1o regions evaluated from 1000 mock realizations.

3.3.2 Redshift distribution

Fig. 1 shows the redshift distribution for the three tracer populations
in eBOSS. The EZMOCKS (dashed lines) averaged over 1000 realiza-
tions within 1o dispersion (shaded areas) are compared to the data
samples (solid lines) for the LRG+CMASS, ELG, and QSO samples.
There is a good agreement between voids found in mock catalogues
and those from data. The asymmetric distribution of LRG+CMASS
voids with an excess towards low redshifts results from the population
of CMASS galaxies added to the eBOSS LRGs.
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3.3.3 Abundances

Fig. 2 displays the distribution of the number of voids as a function
of their radius r,, for the three types of eBOSS tracers. Voids are,
on average, larger in the QSO sample than in the galaxy samples,
with sizes up to 175 A~! Mpc, compared to 125 and 100 2~! Mpc for
LRGs and ELGs, respectively. Several authors have underlined that
the number counts of cosmic voids detected in galaxy surveys may
depend on the tracer bias (Pollina et al. 2019) and on the sparsity of
the survey (Jennings, Li & Hu 2013; Sutter et al. 2014a). Indeed,
as the algorithm tessellates the discrete distribution of galaxies, we
expect voids to be larger as the density of the survey decreases.
Although void abundance can be useful to provide constraints on
dark energy or modified gravity models (Pisani et al. 2015; Voivodic
et al. 2017; Verza et al. 2019), we only use them here to make
basic comparisons between the data and synthetic catalogues, in
order to validate mocks for void analysis. Fig. 2 also shows the
mean of the void count distribution over the 1000 mocks of each
sample of EZMOCKS, while the 1o dispersion is indicated by the
shaded area. The comparison between the data (solid lines) and the
synthetic EZMOCKS (dashed lines) shows a good agreement for the
LRG+CMASS, ELG, and QSO samples in terms of void counts.

4 METHODOLOGY

In this section, we describe the void-galaxy clustering estimation
and the modelling of RSDs (Section 4.1). We present the steps of
the fitting procedure (Section 4.2). Then, once we have validated the
clustering properties of the EZMOCKS against the data (Section 4.3),
we perform the fit procedure on the mocks in order to extract the
cosmological information by measuring the distortion parameter S
(Section 4.4). This value is used as a reference value for systematic
studies (Section 4.5).

4.1 The void-galaxy cross-correlation function

4.1.1 Cross-correlation function estimator

The void-galaxy cross-correlation function £°(r, u) describes the
density contrast around voids in redshift space, §(r) = p(r)/p(r) —
1, where r is the void-galaxy separation distance normalized to the
effective radius of the void r,.

For extracting the void-galaxy clustering information we can either
extend the Landy—Szalay estimator (LS; Landy & Szalay 1993) as

D,D, — D,R, — DR, + R,R,

LS , — 12
§7(r, ) RoR, (12)
or use the Davis—Peebles estimator (DP; Davis & Peebles 1983):

D,D

DP vlg
s ) = -1, 13
E50(r, ) DuR, (13)

where D refers to the data and R to the randoms, the subscript v refers
to the voids and the subscript g to the galaxies, and each pair XY refers
to the number of void-galaxy pairs at a distance r normalized to the
radius r, of the void.

Although the consensus estimator in galaxy clustering is usually
the LS-estimator, the choice of the estimator is more tricky in the case
of voids. Some authors adopt the LS-estimator to compute the void-
galaxy cross-correlation function (Achitouv 2019; Nadathur et al.
2019). The production of realistic random void catalogues is highly
non-trivial. Voids are extended objects that, following our definition,
are also mutually exclusive. One possible method to produce a
random catalogue of voids might be to run our void finder on the
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same random catalogue, with the same number density as our galaxy
catalogue. However, it is not clear if this would produce a random
void catalogue with the correct properties to use in equation (12). In
addition, Hamaus et al. (2017) point out that the contribution of the
terms involving R, is negligible in the multipole terms of the void-
galaxy cross-correlation function. We therefore choose to employ the
DP-estimator as in our previous work (Hawken et al. 2020).

4.1.2 Linear RSDs

Due to RSDs resulting from peculiar velocities of galaxies around
voids, the pattern of the voids is distorted, leading to an anisotropic
cross-correlation function. The void-galaxy cross-correlation func-
tion as estimated from equation (13) can therefore be decomposed
in terms of multipole moments &,(r) on the basis of Legendre
Polynomials L,(u):

Er ) = L), (14)
l

where p is the cosine of the angle between the separation vector
direction r and the line of sight, and &,(») the multipole defined as

1
E(r) =20+ 1)/ L) (r, wydu. (15)
0

‘We note that all odd multipoles cancel out.

In the case of voids, the modelling of the apparent distortions is
remarkably well described by linear theory (Hamaus et al. 2015). In
this paper, we consider the linear model of RSD as proposed by Cai
et al. (2016), in which voids are considered stationary, leading to
only monopole (£ = 0) and quadrupole (¢ = 2) non null terms.

The two-point correlation function thus reduces to

£ (r, ) = Lo(m&y(r) + L2()&; (), 16)

with first-order Legendre polynomials:

Lo(w) =1, 17
3u? -1
Lo = F5—. (18)
and the resulting multipoles can be written as
&) =1+ g) £(r), (19)
B 28 _
&(r) = 3 [E(r) =&, (20)

where S is the linear redshift distortion parameter defined as 8 = f/b,
with fthe linear growth rate of density perturbations and b the linear
galaxy bias, and

- 3 [
E(r) = 73/ E(ryrdr'. 1)
r=Jo

By combining equations (19) and (20), an estimate of the distortion
parameter is given by (Cai et al. 2016):

§(r)
GB)= ————— 22
PD=go-g0 ¢
28

= . 23
3+8 @3

In practice, we will minimize the residual:
€(B) = & — (&0 — &) 2 (24)

=& 0= %) 3 B
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This model is a first-order derivation of linear perturbation theory.
It has been found to be effective in measuring the growth rate
of structures in previous analyses (Hamaus et al. 2017; Achitouv
2019; Hawken et al. 2020) and requires almost no knowledge of
the true correlation function between void and galaxy, which has no
theoretical formulation yet (except for fitting functions) nor specific
modelling of peculiar velocities such as the Gaussian Streaming
Model (Hamaus et al. 2015).

4.2 The fitting procedure

The linear growth rate estimation is performed by means of x?
minimization, where the x? is defined as

xP=€" We, (25)

where € is the residual given by equation (24) and W is the
precision matrix. An unbiased estimate of the precision matrix, which
compensates for the bias present when inverting a noisy covariance
matrix, is given by (Hartlap, Simon & Schneider 2007; Taylor,
Joachimi & Kitching 2013)
S (26)
Ny, —1

where N, is the number of bins and N; is the number of mocks
used to estimate the covariance matrix C. For a covariance matrix
derived from N; = 1000 EZMOCKS realizations, and with around 20
measurement bins for each sample, the correction factor is less than
2 per cent in our uncertainty estimates.

The covariance matrix C is estimated for each tracer with their
1000 EZMOCKS realizations presented in Section 2.3. The covariance
is computed as follows:

I

Cyj= N1 D (e =) (€ = (e)) @7

k=1

where N; is the number of independent mocks, e{‘ is the residual of
the mock k in the bin i, and (¢;) is the mean value of e{‘ in the bin i
such as

1 &
(€)= D€l (28)

S k=1

The best-fitting parameter is found by minimizing the x2 using
the MINUIT algorithm (James & Roos 1975). The uncertainty in
the covariance matrix estimate is propagated in the fitted parameter
errors following prescriptions described in Percival et al. (2014) and
Dodelson (2013).

4.3 Comparing void clustering in data and mocks

Fig. 3 displays the void-galaxy cross-correlation function for one
realization of the DR16 data samples and the mean of the 1000
EZMOCKS realizations. The subpanels 3a, 3b, and 3c show the
LRG+CMASS, ELG, and QSO samples, respectively. The left-
hand panels display the monopole &, and the right-hand panels the
quadrupole &, of the correlation function.

The monopole of the cross-correlation is indicative of the mass—
density profile in voids (Hamaus et al. 2014a). It exhibits a deep
underdense core near the centre of the void at r < 0.5r, and an
overdense compensation wall close to the edge of the void at r =
ry. At sufficiently large distances from the void centre (r > 2r,), the
density tends towards the mean background density. The shape of
the density profile of voids was shown to be universal and can be
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Figure 3. Multipoles of the DR16 void-galaxy cross-correlation functions of data compared to the mock catalogues. The left-hand panels show the monopole
component and the right-hand panels show the quadrupole component, as a function of the separation distance r normalized to the effective void radius r,. The
LRG+CMASS, ELG and QSO DR16 samples are displayed in the top (a), middle (b), and bottom (c) panels, respectively, for the data (circle symbol) and the
mean of 1000 EZMOCKS realizations (solid line). The shaded region shows the standard deviation of the 1000 mock realizations, and error bars on data are the
square-root of the diagonal elements of the covariance matrix.
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parametrized by an empirical function (Hamaus, Sutter & Wandelt
2014b; Ricciardelli, Quilis & Varela 2014; Nadathur et al. 2015).
However, given the fitting parametrization in equation (24) where
all quantities are measured from data, there is no need to assume a
density profile.

The comparison of the void-galaxy cross-correlation function be-
tween the data and the average of the EZMOCKS seems to match nicely
for both the monopole and the quadrupole. This good agreement
confirms that we can use EZMOCKS to test our fitting procedure
before applying it in a blinded way to our data.

4.4 Fitting mock catalogues

In this section, we present tests on our distortion parameter fitting
methodology applied to mocks. We will investigate the results from
the mean of the EZMOCKS and perform an optimization of the
procedure using these results.

Multipoles of the void-galaxy cross-correlation function are com-
puted for the 1000 realizations of each eBOSS DR16 sample. Each
mock realization is handled as a set of independent data, and the
x> minimization is performed on the residual €(8) as defined by
equation (24). The covariance for the mock is computed with the N;
— 1 = 999 remaining mocks. The measurement of the correlation
function is performed over the range r/r, = [0; 3.6] with a number
of 22 bins, 18 bins, and 22 bins for LRG+CMASS, ELG, and QSO
samples, respectively (see Section 4.5.1 for a detailed description of
the optimization). The fitting procedure as described in Section 4.2
is illustrated in Fig. 4 for one EZMOCKS catalogue of each eBOSS
sample.

In Fig. 5, we display the recovered B values from the 1000
EZMOCKS realizations as well as the associated error. The RMS of
the g distribution from the 1000 EZMOCKS (950 mocks for the ELG
sample) is similar to the mean value of the o4 distribution, showing
that the full distribution for B follows a Gaussian distribution. The
mean values of 8, 0 4, and x? are reported in Table 2 for each eBOSS
tracer.

4.5 Systematic tests

In this section, we aim to run our fitting procedure on EZMOCKS and
N-Body mocks in order to check potential systematic errors. For each
test, we estimate the bias on the value of the distortion parameter 8
relative to the expected value S,.s. We set the systematic value to the
maximum contribution between the bias and the 1o error on the bias
measurement. As systematics can differ between each eBOSS tracer,
we use as notation:

_ LRG ELG QSO
Usyst - (Usyst ’ Gsyst ’ 0'syst ) (29)

4.5.1 Optimal number of bins

We first study the optimal number of bins used for the measurement
of the correlation function and the fitting procedure to extract the
redshift distortion parameter §. It is worth noting that the optimal
number of bins is not necessarily the same for the three eBOSS DR16
samples, as the number of galaxies and the sky coverage are not the
same. The fitting range goes from r/r, = 0 to 3.6. Increasing the
number of bins helps to better shape the monopole, but at the cost of
a reduced signal-to-noise ratio.

In order to determine the optimal number of bins for each sample,
we conducted the full pipeline analysis using different binning
schemes, as summarized in Table 3. The final number of bins selected
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Figure 4. Quadrupole (£;) and the best fit of the 28/(3 + B)(&o — &o) from
one EZMOCKS catalogue of the LRG+CMASS, ELG, and QSO sample
displayed in the top (a), middle (b), and bottom (c) panels, respectively. Error
bars are the diagonal of the covariance matrix from the Ny — 1 remaining
mocks.

is a compromise between minimizing the relative error on 8 and
minimizing the x2 of the fit. The selected number of bins is 22, 18,
and 22 for LRGH+CMASS, ELG, and QSO samples, respectively.
The impact of the choice of the binning size on the § parameter is
also given in Table 3, where the error reported for (8) is the rms
divided by +/1000. The deviation is about 4.8 per cent for the LRG
sample, 2.3 per cent for the ELG sample, and 1.4 per cent for the
QSO sample. To be conservative, we quote the highest shift as the
systematic uncertainty due to the binning scheme in each sample:

Osyst.bin = (0.020, 0.012, 0.004). (30)
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Figure 5. Best-fitting parameters for the 1000 realizations (950 for the
ELG sample) of the EZMOCKS catalogues. The left-hand panels display the
distribution of the distortion parameter 8 and the right-hand panels display the
distribution of the errors of . The LRG+CMASS, ELG, and QSO EZMOCKS
samples are displayed in the top (a), middle (b), and bottom (c) panels,
respectively.

Table 2. Statistics on the distortion parameter fit on the 1000 EZMOCKS (950
for the ELG sample) realizations for each eBOSS tracer. The error (o) is
the mean value of the individual fitting errors. The x2 is normalized to the
number of degrees of freedom. The quoted S value is used as the reference
value for systematic tests performed in Section 4.5.

EZMOCKS (Bref) (0p) (x*
LRG+CMASS 0.414 0.072 1.39
ELG 0.521 0.101 1.14
QSO 0.294 0.049 1.76

4.5.2 FKP weight

Various weights are applied to galaxies in order to correct for
observational systematics of the survey. In contrast, the FKP weight
is introduced to compensate for the non-uniform radial distribution of
the galaxies with the aim of minimizing the variance at the BAO scale.
In the case of voids, we are not concerned with the BAO constraint,
and it seems legitimate to ask whether this weight should be used in
our analysis, in particular in the calculation of the cross-correlation
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Table 3. Performance of the number of bins N, used for the fitting procedure.
We display the relative error on 8, the reduced 2, and the shift of distortion
parameter with respect to the S reference values quoted in Table 2. The
reported values between () are the means of best-fitting parameters from each
1000 EZMOCKS realizations of each eBOSS tracer. The error on means is the
rms divided by +/1000. The final number of bins is a compromise between
minimizing the relative error on A and minimizing the average 2. The final
number of bins is indicated in bold.

EZmocks Np (op)/(B) (x* (B) — (Brer)
LRG+CMASS 16 0.177 1.57 0.020 £ 0.004
LRG+CMASS 18 0.178 1.51 0.018 £ 0.004
LRG+CMASS 20 0.178 1.48 0.016 £ 0.004
LRG+CMASS 22 0.180 1.39 -
LRG+CMASS 25 0.179 1.40 0.012 £ 0.004
ELG 14 0.214 1.57 0.011 £ 0.005
ELG 16 0.215 1.53 0.001 +£ 0.005
ELG 18 0.214 1.48 -

ELG 20 0.217 1.45 —0.007 £ 0.005
ELG 22 0.219 1.42 —0.012 £ 0.005
QSO 16 0.169 2.04 0.004 £ 0.002
QSO 18 0.170 1.98 0.001 £ 0.002
QSO 20 0.169 1.89 —0.001 £ 0.002
QSO 22 0.169 1.76 -

QSO 25 0.170 1.66 —0.002 £ 0.002

Table 4. Performance of the FKP weight and correlation function estimator
in the B parameter. We report the shift of distortion parameter with respect to
the S reference value quoted in Table 2. The difference is computed between
the means of best-fitting parameters from each 1000 EZMOCKS realizations
of each eBOSS tracer. The error on means is rms divided by +/1000.

EZMOCKS syst (B) — (Bref)

LRG+CMASS no FKP weight 0.006 + 0.005
LRG+CMASS LS estimator —0.009 £ 0.004
ELG no FKP weight 0.012 + 0.005
ELG LS estimator 0.017 + 0.005
QSO no FKP weight 0.001 + 0.002
QSO LS estimator 0.003 + 0.002

function. We have therefore studied the impact of using the FKP
weight or not when recovering the distortion parameter . The
difference of the mean 8 values calculated from the 1000 EZMOCKS
realizations with and without the wgkp are given in Table 4 under
the label ‘no FKP weight’ for each tracer. The resulting systematic
uncertainty from FKP correction is

Oeystrkp = (0.006, 0.012, 0.002), 31)

giving a relative uncertainty about 1.4 per cent, 2.3 per cent, and
0.7 per cent for the LRG, ELG, and QSO sample, respectively.

4.5.3 Estimator

The reasons why we use the DP-estimator (equation 13) and not
the LS-estimator (equation 12) for the calculation of the void-
galaxy cross-correlation function are given in Section 4.1. Nev-
ertheless, these estimators have different properties of bias and
variance (Vargas-Magafia et al. 2013). In this section, we investigate
a simplified LS-estimator that does not use the term R,, as defined
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Table 5. Performance of the RSD modelling. We display results on the
distortion parameter fit for the NSERIES LRG (N; = 84 realizations), the
OUTERRIM ELG (N = 30 realizations), and the OUTERRIM QSO (N, = 100
realizations) simulations. The error (0 g) is the mean value of the individual
fitting errors. Fiducial values 74 for these N-body simulations are defined
as the ratio f/b, where f is derived from the fiducial cosmology as given in
Section 4.4 and the galaxy bias b is given by the DR16 companion papers (Gil-
Marin et al. 2020; Neveux et al. 2020; Tamone et al. 2020; Bautista et al. 2021;
de Mattia et al. 2021; Hou et al. 2021). The last column gives an estimate
of the measured bias due to the RSD modelling, where the error is the rms

divided by the squared root of the number of mocks (%) .

(BRE) £ (0p) phd (8) — g
NSERIES LRG 0.447 £ 0.063 0.41 0.037 £ 0.007
OUTERRIM ELG 0.629 £+ 0.027 0.686 0.057 £ 0.005
OUTERRIM QSO 0.241 4+ 0.037 0.401 0.160 £ 0.004
in Hamaus et al. (2017):
£5(r, W) ~ DyDy — DyRy. (32)

The comparison on the  mean value calculated from the 1000 EZ-
MOCKS realizations between the LS-estimator and the DP-estimator
is shown in Table 4 under the label ‘LS estimator’. The effect is about
2.2 per cent for LRG+CMASS, 3.3 per cent for ELG, and 1 per cent
for QSO. The resulting systematic error associated with the choice
of estimator is

Osyst,Ls = (0.009, 0.017, 0.003). (33)

4.5.4 RSD linear modelling

In order to validate the RSD modelling, we performed the full
analysis using N-body simulations that are supposed to predict as
accurately as possible the expected RSD in the signal.

We use the Ny = 84 NSERIES mocks, the Ny = 30 OUTERRIM
ELG mocks, and the N; = 100 OUTERRIM QSO mocks for the LRG,
ELG, and QSO samples, respectively, as described in Section 4.4.
For each realization, we compute the cross-correlation function and
its multipoles and fit the distortion parameter § using the covariance
matrix from the N, realizations. The best-fitting values for 8 and o g
are summarized in Table 5 for each eBOSS tracer.

In order to validate our RSD model, we compare the recovered
value of the distortion parameter SN® with the fiducial 8¢ value of
each set of simulations. The fiducial 8¢ values are defined as the
ratio f/b, where fis derived from the fiducial cosmology as given in
Section 4.4 and where the galaxy bias b is provided by the DR16
companion papers for the LRGs (Gil-Marin et al. 2020; Bautista
et al. 2021), ELGs (Tamone et al. 2020; de Mattia et al. 2021),
and QSOs (Neveux et al. 2020; Hou et al. 2021). Our results show
that deviations are larger than 1o error as quoted in the last column
of the Table 5, where the 1o error is the rms divided by JN;.
The relative difference is about 9 per cent, 8 per cent, and almost
40 per cent compared to the fiducial values. The discrepancy for the
QSO sample is surprisingly large, and not well understood at this
stage. However, we adopt a conservative approach, and consider this
discrepancy to be a systematic error.

4.5.5 Fiducial cosmology

The void finding algorithm needs to convert galaxy redshifts into
distance in order to perform tesselation and define voids. It therefore
requires a fiducial cosmology parametrized by the value ¢ as input.
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Table 6. Performance of the fiducial cosmology and definition of the void
centre on the NSERIES mocks. We report the shift of distortion parameter with
respect to the S reference value quoted in Table 5 and which refers to the
first row (our baseline). The difference is computed between the means of
best-fitting parameters over the 84 NSERIES realizations. The error on means
is rms divided by +/84.

fid NB
NSERIES Q) (B) — (Brer)
Barycentre 0.286 -
Barycentre 0.31 0.003 £ 0.010
Circumcentre 0.286 0.018 £ 0.010
Circumcentre 0.31 0.079 £ 0.010

In this section, we study the systematic error introduced by this
choice.

For this study, we used the NSERIES mocks whose the true
cosmology is Q"¢ = 0.286. We conducted our study using two
different fiducial cosmologies, the first with Qfi¢ = Qtrue = (0.286,
and the second with QfiY = 0.31. These fiducial cosmologies are
used both in the void finder and in the calculation of the correlation
function. Table 6 displays results on the recovered B parameter
using both cosmologies, under the label ‘barycentre’ which is our
baseline for the void centre definition (see discussions about void
centre definition in Section 4.5.6). The reference SNP value is taken
from Table 5. We find that the bias on the recovered parameter is
negligible, of the order of 0.7 per cent, and is dominated by its error,
which is quite large due to the low number of mock used. We take
the 1o error on the deviation measurement to be the systematic error

associated with the choice of fiducial cosmology
Osyst fid = 00107 (34)

corresponding to a 2.2 per cent effect.

4.5.6 Void centre definition

When calculating the void-galaxy cross-correlation function defined
by equation (13), the separation distance is measured from the centre
of the considered void. Now, in the REVOLVER void finder, we can use
two different definitions of the void centre: the barycentre, defined
as the arithmetic mean of the coordinates of galaxies weighted by
their Voronoi volume (see Section 3.1), and the circumcentre, which
is computed from the four lowest density Voronoi cells. We justify
here our choice of the void centre definition.

Table 6 displays results on the distortion parameter f using the
barycentre (our default) or the circumcentre definition. The values
of the recovered g parameter are given for both fiducial cosmologies
studied in Section 4.5.5. If we only consider the bias induced by
the choice of the void centre definition in the case of Qfid = Qfrue,
then the effect is of the order of 4 per cent. However, we report a
significant deviation in the case of Qfi £ Q"® meaning that the
definition of barycentre is more robust to fiducial cosmology than
that of the circumcentre of the voids. This gives us confidence in
the choice of the barycentre for our baseline, and as such, we do
not attribute any systematic error to the choice of the voidcentre
definition.

4.5.7 Buffer density ratio

As mentioned in Section 3.3, the REVOLVER algorithm was run
1000 times on the data catalogues, in order to minimize the inherent
dispersion due to the random positioning of buffer particles that can
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Table 7. Summary of systematic relative errors on the g parameter obtained
from tests with mock catalogues for each of the eBOSS tracer. The total
systematic error is the quadratic sum of each contribution.

Type Systematics in (o/B) (%) LRG ELG QSO
Correlation Binning 4.8 2.3 1.4
function FKP weight 1.4 2.3 0.7
Estimator 22 33 1.0
Void
finder Fiducial cosmology 2.2 2.2 22
Model RSD modelling 9.0 8.3 39.9
Total (per 10.8 9.76 40.0
cent)

impact the positions and properties of voids. Here, we evaluate the
systematic error related to this procedure.

For this purpose, we apply 1000 times the void finder on the same
EZMOCKS catalogue. This catalogue is arbitrarily chosen among the
1000 available. The associated systematic error is not the bias on the
measurement, but the error on the average value of the B recovered
from fitting each individual mock. The rms of the g distribution
rounds up to 0.015. With 1000 realizations of the void catalogue,
the error becomes negligible, less than §8 = 5.107*. We also check
that we recover these values when fitting the data (see Section 5).
Therefore, we consider this effect to have a negligible contribution
to the total systematic error budget.

4.5.8 Systematic error budget

In this section, we summarize the error budget. As the errors are
dependent on the mocks used, we summarize in Table 7 the list
of relative systematic contributions, which will allow us to rescale
them to the value of the f measured in the data. Contributions can be
classified into three categories, the dominant effect coming from the
validation of the RSD modelling. Finally, the total relative systematic
error is the quadratic sum of each contribution is

Osyst.tot = (10.8 per cent, 9.8 per cent, 40 per cent). (35)

5 RESULTS

In this section, we apply the fitting procedure optimized with
EZMOCKS on the final release of eBOSS, the DR16 data set. We
present our measurements in terms of the distortion parameter
B (Section 5.1). Then, in order to compare our results with the
literature, we explain how we convert our 8 measurements in terms
of constraints on the growth rate of structure (Section 5.2).

5.1 Measurements of the distortion parameter g

Fig. 6 displays the multipoles of the cross-correlation function and
the best fit of the distortion parameter 8 for one void catalogue of
each eBOSS DR16 data sample. The covariance is computed from
the 1000 EZMOCKS realizations. The recovered f values from the
1000 void catalogues are presented in Fig. 7 for each eBOSS tracer.
We note that the dispersion of § is very small in comparison to that
obtained from the 1000 EZMOCKS, since the latter are dominated by
the dispersion due to cosmic variance. The error on the mean value
of B is indeed the mean of the individual fit errors.

Final results on the distortion parameter g are presented in Table 8
for the three eBOSS DR16 data sets. The displayed statistical error
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Figure 6. Quadrupole (£,) and the best fit of the 28/(3 + B)(&) — &o) from
one DR16 data catalogue of the LRG+CMASS, ELG, and QSO sample
displayed in the top (a), middle (b), and bottom (c) panels, respectively.
Error bars are the diagonal of the covariance matrix from the 1000 EZMOCKS
realizations.
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Figure 7. Best-fitting parameters for the 1000 DR16 data catalogues re-
spective to each tracer. The left-hand panels display the distribution of the
distortion parameter B and the right-hand panels display the distribution of
the errors of 8. The LRG, ELG, and QSO data samples are displayed in full
colour in the top (a), middle (b), and bottom (c) panels, respectively. For
comparison the distribution of 8 and o g from EZMOCKS is drawn in dashed
regions.

is the mean value of the error o 4 and the displayed systematic error
is the relative error from Table 7 renormalized to the measured (S)
value. The total error oy, is the quadratic sum of statistical and
systematic errors.

5.2 Estimate of the growth rate fog

The final growth rate measurement is obtained by combining 8 and
the linear bias b; according to: f(z) = Bb(z). However, as the galaxy
bias is measured with a fixed normalization of og, where oy is the
rms mass fluctuation in spheres with radius 84! Mpc, the measured
value of b, is degenerate with og. One way to be independent of this
problem is to present our results in terms of f(z)og(z) as proposed by
Song & Percival (2009), following:

fog = Bbyos. (36)

The measurement of b(z)og(z) is provided from galaxy clustering
measurement through the estimate of the galaxy autocorrelation
function. Because the underlying galaxy data are the same, we take
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Table 8. Final results on the distortion parameter from the eBOSS DR16
void data sets. Mean values are recovered from the 1000 void catalogues
generated from each eBOSS tracer. The quoted statistical error is the mean
value of the error in the distortion parameter fit and the quoted systematic
error is the total error given in Table 7. The total error is a quadratic sum of
statistical and systematic errors.

Data samples (B) Ostat Osyst Otot

LRG 0.415 0.075 0.045 0.087
ELG 0.665 0.107 0.065 0.125
QSO 0.313 0.049 0.125 0.134

Table 9. Final results on the growth rate estimate from the eBOSS DR16
void data sets. Mean values and errors on § are taken from Table 8. The
presented errors include the systematic component. The reported value of
bjog are taken from clustering analysis in the DR16 companion papers, for
the LRG4+CMASS sample (Gil-Marin et al. 2020; Bautista et al. 2021), the
ELG sample (Tamone et al. 2020; de Mattia et al. 2021), and the QSO sample
(Neveux et al. 2020; Hou et al. 2021). The growth rate constraint results from
applying equation (36) to these values. The total error quoted for fo'g includes
the galaxy bias error contribution.

Data samples Zeff B biog fos

LRG+CMASS 0.740  0.415 £+ 0.087 1.20 £ 0.05 0.50 £0.11
ELG 0.847  0.665 £ 0.125 0.78 £ 0.05 0.52 £0.10
QSO 1.478 0313 £0.134 0.96 £+ 0.04 0.30 £0.13

here the measured values from the DR16 data set with the clustering
analyses conducted by companion papers: for the LRG+CMASS
sample, BAO and RSD analyses were performed in configuration
space (Bautista et al. 2021) and Fourier space (Gil-Marin et al. 2020);
for the ELG sample, the galaxy clustering analyses in configuration
space and in Fourier space are discussed in Tamone et al. (2020)
and de Mattia et al. (2021), respectively; for the QSO sample, the
QSO clustering is measured from the autocorrelation function (Hou
et al. 2021) and the power spectrum (Neveux et al. 2020). The
corresponding b, 0§ values are presented in Table 9. We also report 8
values from our analysis using voids, with the total error as quoted in
Table 8. The resulting constraint on fog is given in the last column of
Table 9, where the error includes the galaxy bias error contribution.
We checked that g and b o are slightly (anti-)correlated, meaning
that we overestimated our error.

Next, we compare our fo g results to those from the literature. The
top panel of Fig. 8 shows the comparison with work done within
the SDSS Collaboration. Results from our work (red circles) are
compared to the final consensus fog results from eBOSS DR16
using conventional clustering techniques (orange squares) for the
LRG+CMASS sample (Gil-Marin et al. 2020; Bautista et al. 2021),
ELG sample (Tamone et al. 2020; de Mattia et al. 2021), and QSO
sample (Neveux et al. 2020; Hou et al. 2021) and using voids (orange
open circle) in the LRGH+CMASS sample (Nadathur et al. 2020). We
can note a slight shift in the effective redshift of the LRG+CMASS
samples: This offset was caused by the selection cuts applied in
our void catalogue, which mostly removed voids close to z = 0.6.
The error contribution resulting from the RSD modelling uncertainty
in our measurement is highlighted by the outer error bars between
caps. The agreement between galaxy clustering and void clustering is
good, at the level of 1 o for the three LRG, ELG, and QSO samples.

We also display in Fig. 8 the fog results at lower redshift
from BOSS DRI12. These results include direct measurements from
conventional galaxy clustering (Alam et al. 2017), as well as fog
constraints using voids (Hamaus et al. 2017, 2020; Achitouv 2019;
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Figure 8. Comparison of fo'g(z) results to other measurements. The top panel shows the comparison with other estimates from SDSS data. The fog results from
this work (red circles) are compared to constraints using voids (open circles) and conventional clustering techniques (filled squares) from eBOSS DR16 and
BOSS DR12. For our measurements, we display the error contribution resulting from the RSD modelling uncertainty only by the outer error bars between caps.
For DR16 data sets, we display the final consensus results (orange squares) from the LRG+CMASS sample (Gil-Marin et al. 2020; Bautista et al. 2021), the
ELG sample (Tamone et al. 2020; de Mattia et al. 2021), and the QSO sample (Neveux et al. 2020; Hou et al. 2021) to be compared to LRG voids, ELG voids,
and QSO voids, respectively. The constraint from a complementary void analysis performed on the eBOSS DR16 LRG+CMASS (Nadathur et al. 2020) is also
displayed. For DR12 data sets, we report fo'g measurements from galaxy clustering in BOSS (brown squares: Alam et al. 2017) with results from voids (open
green and turquoise circles: Hamaus et al. 2017; Achitouv 2019; Nadathur et al. 2019; Hamaus et al. 2020). The bottom panel shows the comparison of fo'g
results from this work (red circles) with other measurements using voids, in 6dFGS (open magenta circle: Achitouv et al. 2017), in VIPERS (open dark blue
circle: Hawken et al. 2017), and in BOSS DR12 (open green and turquoise circles: Hamaus et al. 2017, 2020; Achitouv 2019; Nadathur et al. 2019). We also
compare with conventional clustering measurements in the 6dFGS (Beutler et al. 2012), the WiggleZ (Blake et al. 2011), the BOSS DR12 (Alam et al. 2017), the
VIPERS (Pezzotta et al. 2017), and the FastSound (Okumura et al. 2016) surveys. We report results from the eBOSS DR16 companion papers (orange squares,
see references above). We overplot predictions for flat ACDM cosmological model assuming 2, = 0.31 and og = 0.81.
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Nadathur et al. 2019). In Nadathur et al. (2019, 2020), the authors
performed a joint fit for RSDs produced by peculiar velocities and
the Alcock—Paczynski effect using a theoretical modelling from
Nadathur & Percival (2019). The bias is treated as a nuisance
parameter and the growth rate measurement is given in terms of fo'g.
In Hamaus et al. (2017), Achitouv (2019), and Hamaus et al. (2020),
the analysis performed on the void-galaxy cross-correlation provides
ameasurement in terms of 8, using the RSD modelling from Cai et al.
(2016). In order to convert their measurements to a constraint on fog,
we take the fiducial value by = 1.85 (Alam et al. 2017) and compute
og values for the Planck ACDM cosmology (Planck Collaboration
VI 2020), giving og(z = 0.32) = 0.684 and os(z = 0.54) = 0.612.
The corresponding fog constraints are fog(z = 0.32) = 0.757 £ 0.17
and fog(z = 0.54) = 0.517 £ 0.063 for Hamaus et al. (2017), fos(z
= 0.32) = 0.418 £ 0.76 and fog(z = 0.54) = 0.407 £ 0.057 for
Achitouv (2019), and fog(z = 0.51) = 0.621 4+ 0.104 for Hamaus
et al. (2020).

The bottom panel of Fig. 8 extends the comparison to other
galaxy surveys: 6dFGS (Beutler et al. 2012), WiggleZ (Blake et al.
2011), VIPERS (Pezzotta et al. 2017), and FastSound (Okumura
et al. 2016). It is also interesting to compare our results to other
measurements using voids, as in 6dFGS (Achitouv et al. 2017) and
in VIPERS (Hawken et al. 2017). We find a good consistency among
all these measurements.

5.3 Discussion

The modelling of the RSDs is undoubtedly our most important sys-
tematics (see Table 7 and top panel of Fig. 8). This systematic effect is
about the same order in the case of the ELGs and the LRGs, although
the treatment of those mocks was different, NSERIES being cut sky
mocks and OUTERRIM ELGs periodic boxes. For both LRGs and
ELGs, systematic errors represent about 60 per cent of the statistical
errors, and are therefore not the dominant errors in this analysis.

The most puzzling systematic appears in the analysis of the QSO
sample for which we report a 40 per cent effect, more than twice the
statistical uncertainty, dominated by the RSD modelling test. This
effect is unexpected as RSDs are supposed to be more compliant to
linear theory at these epochs. However, it had already been reported
that sampling density could have an impact on void properties, in
particular for lower tracer density (Sutter et al. 2014a). For example,
the sparsity of the QSO sample could lead to a dilution effect of
the growth signal in the void-QSO cross-correlation function (see
Cousinou et al. 2019). Two clues allow us to probe the role of sample
density: first, systematics are well handled for denser samples such
as LRGs and ELGs; secondly, we conducted a complementary study
by subdividing the QSO EZMOCKS sample according to the redshift,
as described in Appendix A. The comparison between recovered
and fiducial B values shows that the lower the QSO sample density,
the higher the systematic error. This error becomes dominant for
low void densities, at redshifts higher than z = 1.9. There is a
difference in the effect of the systematic bias between the EZMOCKS
QSO (27 per cent) and the OUTERRIM QSO (40 per cent). It might
be attributed to additional degenerate effects such as the geometry
(EZMOCKS) or volume and statistics (OUTERRIM) of the samples.
The quoted systematic effect represents a conservative approach on
the confidence of our measurement and accounts for the biases found
in simulated data.

Nevertheless, our growth rate measurement in the DR16 QSO
sample is found compatible at 1o level with QSO clustering mea-
surements and remains the first statistically significant measurement
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of the growth rate of structures at high redshift with voids found in
this type of tracers.

It is to be noted that the NSERIES redshift range is not the same
as that of the LRG sample, but we consider that the mocks remain
relevant to estimate the systematic effects of our modelling as they
mimic the same tracer type. Future surveys and their preparatory
phase (simulations and forecast) will enable us to investigate further
these aspects.

Finally, such a systematic leads us to consider the RSD model
itself. Our modelling, and subsequent analysis, relies on a ratio
between the multipoles’ contributions to measure the distortion
parameter §, thus removing the dependence on the real-space cor-
relation function. Such an implementation of the model might incur
additional statistical fluctuations in the parameter determination.
This kind of systematics could probably be mitigated with added
considerations such as the inclusion of velocity dispersion in the
modelling or reconstruction of the real-space profile with additional
nuisance parameters in the model as proposed in Hamaus et al.
(2020).

Recent papers (Nadathur & Percival 2019; Nadathur et al. 2019)
have also extended the modelling of the void-galaxy cross-correlation
function further than the linear derivation of Cai et al. (2016). This
extended linear model is explicitly dependent on the real-space void-
galaxy cross-correlation function and the real-space density profile
of the void and their derivatives. But, as of today, the real-space
density profile and the real-space correlation function of the void-
galaxy are unknown theoretically and cannot therefore be predicted.
This means that in order to obtain a constraint with the extended
model, it is necessary to infer the real-space density profile from
voids found in reconstructed galaxy samples or through empirical
modelling. This requires an altogether different analysis than that
presented in this paper as it correlates voids found in reconstructed
galaxy samples with redshift-space galaxies. The extended model
is very tuned to such an analysis and its main visible feature is a
very different quadrupole behaviour from the model applied here.
Said behaviour is not so noticeable in our analysis, which correlates
redshift-space void and redshift-space galaxies, for several reasons:
void centre definition, void finding, methodology choices, or data
noise. This model was applied to the DR16 LRG sample in Nadathur
et al. (2020) and achieved tighter constraints by combining with
galaxy clustering measurements as well as calibrating the true void
density profile on simulations.

These models have also been applied to the same data set in the
past, in Hamaus et al. (2017) and Achitouv (2019) for the simple
linear model, in Hamaus et al. (2020) for the modified linear model,
and in Nadathur et al. (2019) for the extended model. These analyses
obtained similar consistent constraints on the growth rate. For the
sole purpose of constraining the growth rate of structure in the void-
galaxy cross-correlation function in redshift space, we consider our
modelling to be appropriate.

Future galaxy surveys such as the Dark Energy Spectroscopic
Instrument (DESI, DESI Collaboration et al. 2016a,b) and Eu-
clid (Amendola et al. 2018) will tremendously increase the number
of cosmic voids detected in the LSS and the statistical errors on their
summary statistics. To fully benefit from this high statistical power,
the systematic effects pertaining to void analysis, as shown in this
work, need to be identified and thoroughly investigated.

6 SUMMARY AND CONCLUSIONS

In this paper, we present the final void catalogues from the eBOSS
DR16 data sets. We performed a multipole analysis in configuration
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space by computing the void-galaxy cross-correlation function for
the three eBOSS tracers, the LRG, the ELG, and the QSO samples,
spanning a wide redshift range from z = 0.6 to z = 2.2. We
have applied linear RSD modelling (Cai et al. 2016) to extract the
distortion parameter and we have tested the validity of our approach
using realistic N-body simulations. We measured f(z = 0.74) =
0.415 4+ 0.087, B(z = 0.85) = 0.665 + 0.125, and B(z = 1.48) =
0.313 £ 0.134, for the CMASS+eBOSS LRG, the eBOSS ELG, and
the eBOSS QSO sample, respectively.

In order to convert our measurements to a measurement of the
growth rate fog, we used consensus values of linear bias from the
eBOSS DR16 companion papers (Alam et al. 2021a), giving the
following constraints: fog(z = 0.74) = 0.50 &+ 0.11, fos(z = 0.85)
=0.52 £0.10, and fog(z = 1.48) = 0.30 £ 0.13.

Voids have been predicted to be promising probes to constrain
dark energy and modified gravity models. With the final data release
DR16 of eBOSS, we have demonstrated that voids can be used
as a competitive probe to constrain the growth rate of structure
compared to that achieved with standard galaxy clustering. The
clear improvement over our previous analysis using eBOSS DR14
data (Hawken et al. 2020) is due to the better statistics, since we
have 2800 voids and 4300 voids in the DR16 catalogue as compared
to 500 and 1000 in the DR14 catalogue, for LRG and QSO sample,
respectively. In addition, we were able to create and use the ELG
tracer catalogue, which contains almost 1900 voids.

Future spectroscopic galaxy surveys, such as DESI and Euclid,
will observe between 35 and 50 million galaxies, and the consequent
number of voids is expected to be more than 100 000, thrice that of the
eBOSS sample. The large amount of data will dramatically reduce
statistical errors, both for conventional galaxy clustering analyses
and for voids, and the challenge will be to keep systematic errors
at the percent level. A new era of precision cosmology is emerging,
which promises severe constraints on dark energy or modified gravity
models.
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APPENDIX A: SYSTEMATICS IN EZmocks QSO

To investigate the systematic effect identified in the OUTERRIM QSO,
we focused on reproducing the analysis on the 1000 QSO EZMOCKS.
First, we revisited the baseline analysis of the QSOs EZMOCKS (see
Section 4.4) to estimate the shift of (8) from the expected S,
The latter is estimated from the expected growth rate and the bias
measured in the standard galaxy clustering analyses (Neveux et al.
2020; Hou et al. 2021). The measured (), the fiducial value, as well
as the resulting deviation, are reported in Table Al. The systematic
measured in the QSO EZMOCKS sample reduces to a 27 per cent
effect.

In a second study, we considered the impact of the number density
of objects on the recovery of the § value. To this end, the QSO
EZMOCKS were separated into four equal volume redshifts bins. We
then reproduced the analysis outlined in Section 4.1 and compared the
recovered S in each bin to the fiducial one Bgq. Brg Was determined
from the expected growth rate of the mocks and a fiducial bias
inferred from the fitting function of the QSO bias given in du Mas

Table Al. Recovered () from the 1000 EZMOCKS QSO quoted with its
associated error (o g ), the mean of the individual fitting errors. Bgq is estimated
from the expected fiducial growth rate and the bias recovered from the
standard galaxy clustering analysis of Hou et al. (2021) and Neveux et al.
(2020). The last column quantifies the bias from the expected Bq along with
its statistical error (%).

EZMOCKS

(B) £ {op) e
Qso 0.294 + 0.049 0.403

(B) — Bria
—0.109 £ 0.002
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Table A2. Resulting systematic bias for each equal volume redshift bin
from the 1000 EZMOCKs QSO. (B) and (o g) are the mean of the individual
fitting values and errors, respectively. zefr is the effective redshift in each
bin at which the fiducial B4 was evaluated. The latter is estimated from the
expected fiducial growth rate and the empirical QSO bias given in du Mas
des Bourboux et al. (2020). 71, and 71, are the average number density of
voids and QSOs, respectively. The last column quantifies the bias from the

expected Brq along with its statistical error (%).

z-Bin Zeff fglity (B) £ (op) Biia (B) — Bra

x 1073] x 1077
[0.8, 1.24] 1.06 1.478)2.077 0.356 £0.111 0.49 —0.134 £ 0.004
[1.24,1.58] 1.41 1.556(2.477 0.353 £0.093 0.41 —0.057 + 0.003
[1.58,1.9] 1.74 1.386(2.244 0.280 £ 0.098 0.35 —0.070 + 0.003
[1.9,2.2] 2.00 1.047|1.386 0.113 £ 0.152 0.31 —0.197 £ 0.005

des Bourboux et al. (2020) at the effective redshift of each bin as per
equation (11). Table A2 lists, for each redshift range considered, the
corresponding number density of both QSO and voids, both measured
B and expected Bgq value and the resulting deviation. The quantified
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systematic biases translate to the following relative effects, in order
of increasing redshift bins:

Osyst,zbins = (—27.3 per cent, —13.5 per cent,
— 19.7 per cent, —63.4 per cent). (A1)

The less biased bins are the most central ones, where the number
density of both voids and galaxies is greater. The outer bins are more
affected by systematic effects, especially the higher redshift one. The
latter is significantly sparse in comparison, leading to a 63 per cent
effect. We can therefore conclude that there is a correlation between
the systematic bias on the measured () and the number density of
the objects.
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