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Variability and reproducibility 
in deep learning for medical image 
segmentation
félix Renard1,2*, Soulaimane Guedria1,2, Noel De Palma1 & nicolas Vuillerme2,3

Medical image segmentation is an important tool for current clinical applications. it is the backbone 
of numerous clinical diagnosis methods, oncological treatments and computer-integrated surgeries. 
A new class of machine learning algorithm, deep learning algorithms, outperforms the results of 
classical segmentation in terms of accuracy. However, these techniques are complex and can have 
a high range of variability, calling the reproducibility of the results into question. In this article, 
through a literature review, we propose an original overview of the sources of variability to better 
understand the challenges and issues of reproducibility related to deep learning for medical image 
segmentation. Finally, we propose 3 main recommendations to address these potential issues: (1) 
an adequate description of the framework of deep learning, (2) a suitable analysis of the different 
sources of variability in the framework of deep learning, and (3) an efficient system for evaluating the 
segmentation results.

Medical imaging plays a central role in medicine today because it can reveal the anatomy of the patient. However, 
to leverage the full potential of medical images, it is necessary to analyze them via image processing. One of the 
main clinical tools is image  segmentation1, 2. Medical image segmentation can be defined as an automatic (or 
semiautomatic) process to detect boundaries within a 2D or 3D image. It is based on information such as pixel 
intensity, texture and anatomical knowledge.The result of segmentation can then be used in further applications 
and in gaining  insights2; examples include the quantification of tissue  volumes3, 4,  diagnosis5, 6, the localization 
of  pathology7, 8, the study of anatomical  structure9, 10, treatment  planning11, and computer-integrated  surgery12.

Manual medical image segmentation leads to two main issues: much time is needed for delineation, and 
reproducibility is called into question. First, the time needed to segment is incompressible, and it is correlated 
with the number and the size of images. Since the size of these two parameters is increasing due to the ease of 
facility access to medical imaging and the improvement of acquisition technologies, manual segmentation is 
becoming intractable. Second, reproducibility corresponds to the agreement between the results of multiple 
measurements of the data (here, the segmentation results) under the same methodology. In medical image seg-
mentation, it is well known that there is inter- and intraoperator variability. The former relates to the observed 
differences in the segmentation results obtained by two different operators, while the latter relates to the observed 
differences between two results of segmentation tasks performed by the same operator at two different times. 
Due to the crucial role of segmentation in medical diagnostics and treatments, the reproducibility of the method 
is fundamentally important.

These two issues lead one to consider automatic segmentation. Automatic segmentation consists in determin-
ing a prediction model and its inherent parameters relative to a given class of problems (for example, the kind of 
imaging performed or organs imaged). These parameters can be divided into two classes: the hyperparameters 
associated with the model and the parameters estimated from the dataset. The aim of automatic segmentation 
is to estimate the best parameters to obtain highly accurate results over the training dataset while maintaining 
good generalization for other datasets of the same class of problem, also called “test datasets”. In other words, 
the algorithm must avoid perfectly fitting the training set with poor accuracy results on the testing set. This 
problematic phenomenon is also called “overfitting” (see page 108 of the  book13).

The rapid development of new automatic segmentation algorithms since the 2000s is strongly connected to 
the rise of machine  learning2. During the last decade, a specific field of machine learning and artificial neural 
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networks, called “deep learning” (DL)13, 14, has outperformed classical segmentation  methods15. A neural network 
with several hidden layers is considered a ‘deep’ neural network, hence the term ‘deep learning’14. This is the case 
for several reasons, for example, nonsupervised feature extraction via convolutional layers and the possibility 
of dealing with a very large dataset via efficient optimization methods such as backpropagation of the gradient 
(see chapter 6.5 of the book by Goodfellow et al.13). Several DL architectures have been applied to medical image 
segmentation, including fully convolutional networks (FCNs)16 and U-Net17 (see Litjens et al.15 for a recent 
review).  FCNs16 are built from locally connected layers, such as convolution, pooling and upsampling layers. An 
FCN is composed of two main parts: the downsampling and upsampling paths. The downsampling path captures 
contextual information, whereas the upsampling path recovers spatial information. Moreover, skip connections 
between layers are performed to recover fine-grained spatial information that is potentially lost in the pooling 
and downsampling layers. U-Net17 is built upon FCNs. The main difference is that each downsampling scale 
is linked to the corresponding upsampling scale with a concatenation operator. In this way, each upsampling 
scale has the information of the corresponding downsampling scale and the lower upsampling scale, leading to 
better segmentation.

However, although DL algorithms perform well, they are complex. A number of factors may explain the vari-
ability in the obtained results: the intrinsic variability of the dataset, the stochastic process during optimization, 
the choice of the hyperparameters relative to the optimization and regularization processes, and the choice of 
the DL architecture itself. This variability in the different parts of the framework leads to some difficulties in 
analyzing the reproducibility and making comparisons between frameworks. In addition, this variability leads 
to numerous parameters and hyperparameters being set. Furthermore, as highlighted in Joelle Pineau’s repro-
ducibility  checklist18, provided during NeurIPS 2019, describing the DL methods becomes its own challenge 
for reproducibility. Moreover, the strategy for evaluating the segmentation results, and thereby the variability 
of the method, is complex. There are a plethora of  metrics19 to analyze segmentations, leading to various ways 
of comparing the methods.

Along these lines, three main questions, at least, about variability and reproducibility can be formulated.

• Question 1: Is there enough information in published articles in the field of medical image segmentation 
with DL to correctly reproduce the results?

• Question 2: If the information is provided, has the variability in the several steps of the DL framework been 
considered?

• Question 3: Does the evaluation system for the segmentation results correctly reflect this variability?

These three questions are crucial for the application and potentially the evaluation of the segmentation algo-
rithms. After focusing on the concept of reproducibility in medical image segmentation and on how to consider 
the different sources of variability in DL, we will review the literature to provide an overview of the practice of 
reproducibility in the fields of medical image segmentation in DL, based on three main topics: (1) the descrip-
tion of the methods, (2) the analysis of variability and (3) the evaluation system. On the basis of this synthesis, 
we will propose recommendations to appreciate the results of new DL strategies.

Related work
In this section, we will broadly address the issues of the reproducibility and evaluation of segmentation in medi-
cal imaging. Then, we will outline several sources of variability in the DL framework that can lead to difficulties 
for reproducibility.

Reproducibility and evaluation of segmentation in medical imaging. Reproducibility is a popular 
topic in  science20. Hence, numerous  articles21, 22 reveal a potential crisis of reproducibility in the different fields 
of science. Thus, most scientists have experienced a failure to reproduce  results21 (more than 50% in the case 
of their own works in medicine, physics and engineering and more than 75% in the case of works by another 
person in the same fields).

In the rest of the article, we will follow the definition of the report of the National Academies of Science, 
Engineering, and  Medicine20: reproducibility means obtaining consistent results using the same input data, compu-
tational steps, methods, and conditions of analysis; it is synonymous with computational reproducibility. Moreover, 
this  report20 (recommendation 5-1, page 7) recommends that researchers should provide an accurate and appro-
priate characterization of relevant uncertainties when they report or publish their research. These uncertainties 
include stochastic uncertainties.

Reproducibility can be assessed with different procedures. First, reproducibility can be analyzed by intraclass 
correlation (ICC), proposed by Shrout and  Fleiss23. The score obtained, which is between 0 and 1, indicating poor 
and perfect reproducibility, respectively, enables a comparison between intra-individual and inter-individual 
variabilities. Another statistical tool generalizing the ICC is analysis of the  variance24 (ANOVA). It provides a 
collection of tools focusing on the variability of the means among groups. One interesting point is that ANOVA 
can deal with multiple factors.

One of the main sources of variability in machine learning originates from the difference between the 
observed samples of the dataset and the real distribution of the dataset. The fact that the learning step of the 
algorithm is performed on only a part of the distribution can affect the reproducibility and particularly the rep-
lication of the results. A class of tools, called “cross-validation” (CV)25, is available in studying this variability. A 
special focus on these methods is made in the next section, concerning variability in a dataset.

Moreover, segmentation in the specific field of medical imaging is complex in terms of reproducibility for 
several reasons. First, the available datasets are generally limited: the number of samples is generally less than 100 
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items. Then, each segmentation task must be considered with regard to the image modality (for example, whether 
it was obtained by MRI, scanner, or echography) and the organ  studied26. Furthermore, the masks in segmenta-
tion are usually generated manually. This leads to some intra- and inter-rater variability. Consequently, there is 
no certain truth but only a gold standard. Additionally, there are also several metrics to evaluate segmentation, 
such as the dice coefficient (DC) and the modified Hausdorff distance. Each metric focuses on a specific aspect 
of the  segmentation19. For example, a metric can correctly reflect the good overlap between a segmentation mask 
and a gold standard, but it cannot highlight the smoothness of the contour. To correctly describe the quality of 
a segmentation, several metrics are  necessary19, 26. An adequate system of evaluation will permit accurate con-
sideration of the variability in DL frameworks.

Variability in DL frameworks. In the next sections, five different kinds of variability are presented. The 
DL framework and its related sources of variability are displayed in Fig. 1.

Variability in the dataset. To infer a segmentation with a DL model (and more globally, a supervised machine 
learning model), the classic method consists in splitting the data sets into three parts. The first part corresponds 
to the “training set” for estimating the parameters of the model: it is composed of the raw data and correspond-
ing labels. Based on the raw data, the DL algorithm infers some results that are compared to the labels. The 
DL parameters are then optimized to minimize the error between the results and labels. The second part is 
the “validation set”. It is more specific to the DL community. It estimates the unbiased error of the trained DL 
model. It permits the training of the DL to be stopped to avoid overfitting. It is not mandatory and is usually 
used in practice when the dataset has enough samples. Finally, the last part, called the “testing dataset”, provides 
an unbiased evaluation of the final model of the DL algorithm. The proportions of the different parts depend on 
the initial number of samples and can significantly affect the expected degree of generalization. Let us consider 
a trivial example, where only one sample is chosen for the testing set; the evaluation of the DL depends greatly 
on the selected sample. In the same way, selecting few samples for the training set leads the model to perfectly 
learn the training data.

To avoid bias in the data selection, strategies called “cross-validation” are performed. These strategies consist 
in dividing the dataset into several folds, then assigning these folds to the training, validation and testing sets. 

Figure 1.  The different steps of a DL framework are displayed in solid-line boxes: the steps related to the 
dataset (the data augmentation and cross-validation strategies, DL architecture design, training step (with 
the optimization procedure), and estimation of the hyperparameters of the optimization) and the evaluation 
system. The different sources of variability are highlighted in dashed-line boxes: the variability linked to (A) the 
dataset, (B) the DL architecture, (C) the optimization procedure, (D) the hyper parameter estimation for the 
optimization and (E) the implementation and infrastructure.



4

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13724  | https://doi.org/10.1038/s41598-020-69920-0

www.nature.com/scientificreports/

At the end of the DL model estimation and evaluation processes, the folds are reassigned for novel estimations 
and so on. The cross-validation strategies permit one to address variability in the data.

The number of parameters to estimate in a DL model is often larger than the number of images in the datasets. 
Moreover, in medical imaging segmentation, the heterogeneous appearance of the target organ (anatomical vari-
ability) or of the lesions (size, shape or position) poses a great challenge. One solution, called “data augmenta-
tion”27, generates new samples by applying different transformations to the dataset (e.g., rotation or flipping). 
In this way, unseen target organs or lesions can potentially be approximated. However, this also adds sources of 
variability in the general framework, since there is no consensus on which transformation to perform and the 
parameters of the transformation are generally randomly chosen.

Variability in the optimization. This section focuses specifically on the variability of optimization with an 
already estimated and constant set of hyperparameters. One of the main factors of complexity is the very large 
number of parameters of the model to be estimated. Training these parameters in DL models is very challeng-
ing. Solving the optimization problem of estimating these weights is generally an extremely difficult task with a 
stochastic process.

Each weight in the DL algorithm corresponds to another parameter (which can be seen as another dimension) 
of the cost function of the optimization. DL models often have millions of parameters, making the search space 
to be evaluated by the algorithm extremely high dimensional, in contrast to classic machine learning algorithms. 
Moreover, the addition of each new dimension dramatically increases the distance between points in this high-
dimensional space. Consequently, the search space is drastically increased. More precisely, the number of possible 
distinct configurations of a set of parameters increases exponentially as the number of parameters increases. This 
is often referred to as the “curse of dimensionality” (see page 155 of Goodfellow et al.13).

In addition, the cost function is generally nonconvex (see page 282 of Goodfellow et al.13). These facts lead to 
several issues: the presence of local minima and flat regions with the constraint of the high-dimensionality of the 
search space. The best general algorithm known for solving this problem is stochastic gradient descent (SGD) (see 
chapter 5.9 of the  book13), where the model weights are updated at each iteration using the backpropagation-of-
error algorithm. However, there is no guarantee that the DL estimation will converge to a good solution (or even 
a good local optimum), that the convergence will be fast, or that convergence will even occur at  all28.

Nevertheless, recent work may suggest that local minima and flat regions may be less challenging than 
previously  believed29–31. From Choromanska et al.29, it appears that almost all local minima have very similar 
function values to the global optimum, and hence, finding a local minimum is sufficient. These last results have 
been obtained for classification tasks. Furthermore, the important convolutional step of segmentation is not 
considered in Choromanska et al.29 or Dauphin et al.30.

To the best of our knowledge, only one conference  article32 addresses this issue of stochastic optimization 
uncertainties in medical imaging segmentation with DL. The authors show that DL models estimated several 
times with the same data show differences, but the results obtained on the evaluated metrics are not significantly 
different.

Variability in the hyperparameters. The hyperparameters correspond to the global settings of an algorithm. 
In machine learning, each parameter impacts the results  differently33. Several hyperparameters must be fitted 
before the training of the DL model, for example, the learning rate for optimization and the dropout percentage 
for  regularization13.

There are different ways to set them. First, manual configuration is considered. This strategy limits the explora-
tion space, but the computation time is relatively short compared to those of other methods since only a rough 
approximation of the best hyperparameters is expected. The second kind of strategy is based on automatic space 
exploration. The classic method, called “grid search”, tests every combination of hyperparameters. It will find the 
best set of hyperparameters, but the computational cost increases greatly with the number of hyperparameters. 
Another strategy, called “random search”, randomly samples the set of hyperparameters to be evaluated. This 
method generally cannot reach the optimum values, but approximates them in fewer iterations than grid search.

A new  strategy34, called “Bayesian optimization”, automatically infers a new combination of hyperparameters 
based on previous evaluations. In this case, the space exploration is intermediate and is driven by experience. 
The cost of exploration is lower than that in a grid or random search.

Variability in the DL architecture. Here, only the number of nodes, the number of layers, the kinds of layers (for 
example, convolutional, pooling, or dense) and the connections among the layers are considered in the architec-
ture. Even with these four parameters, the number of available architectures is infinite.

In practice, only three strategies are chosen for the selection of the architecture. The first one consists in 
selecting a well-known DL model that has already proved its performance in previous  work15, such as U-Net17 
for image segmentation. This method is considered more often in clinical application fields. This method is not 
expected to provide the best architecture for a specific problem.

Another strategy consists in manually handcrafting the DL architecture. This leads to a plethora of 
 architectures15. However, it does not guarantee the best architecture, and modifications of the tested architec-
ture are generally not considered. The final strategy, also called “network architecture search”, is to automatically 
create a DL architecture through optimization for a specific  task35. The drawback of approximating the best 
architecture is a very high cost in time and resources. For instance, the network architecture search proposed 
 in36 tested 20,000 architectures in 4 days with 500 graphics processing units (GPUs).
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The estimation of the minimal network architecture needed to achieve a certain segmentation accuracy on a 
given dataset can enable variability in the DL architecture to be avoided. However, as discussed in the  review37, 
this topic remains a challenge.

Variability in the middleware and the infrastructure. The last section focuses on algorithms relevant to DL. 
In this section, the possible variability due to the middleware and the infrastructure is considered. There are 
many toolboxes to implement a DL framework. To the best of our knowledge, no publication has addressed the 
problem of reproducibility in DL with regard to the middleware. Different implementations are compared, for 
example, by programming language, in terms of their capacity to use a GPU. A review of different implementa-
tions and their characteristics can be found  in38.

The learning phase in DL can be a very long process, considering the complexity of the architecture of the 
DL and the dataset size. As previously explained, the search for hyperparameters can also be prohibitive. To 
improve the processing time, several solutions based on the infrastructure are considered. Different kinds of 
 infrastructures39 can be used, such as a central processing unit (CPU), GPU, or tensor processing unit (TPU). 
However, some technical characteristics such as memory precision for different memory sizes can affect the 
accuracy of the  results40. Another example, the numerical operations performed on the GPU, can be nondeter-
ministic, leading to nonreproducibility in the  results41.

Another possibility for accelerating the processing time is choosing a parallel or distributed DL model. These 
techniques come with their own different methods that potentially impact the reproducibility of the outcome. For 
an overview of the parallel and distributed models and their own challenges, the interested reader can refer  to42, 43.

Methods
In this section, we first introduce how the literature review was performed, and then, we briefly describe the 
different metrics.

Literature review. There is no standard for the reproducibility or evaluation of DL in medical image seg-
mentation. The aim of this review is to reflect common practices for DL in medical image segmentation. To fulfill 
this expectation, this review focuses on three goals: (1) to inspect how the methods are described to enable work 
to be reproduced, (2) to present the variety of methodology and highlight the variability among DL frameworks 
and (3) to outline the kinds of evaluations used in DL.

To observe the variability of the methodology and evaluations in the literature, we focus on the 23 articles 
presented in the review  article15 in the specific section “Tissue/anatomy/lesion/tumor segmentation”. This review 
article was chosen because it was the most relevant found on Google Scholar (with the mandatory keywords 
’medical image segmentation neural network’ and at least one keyword in ’review survey’) among more than 
2300 hits on Google Scholar (in December 2019). All the considered articles propose recent strategies: the oldest 
one was published in  201444 and the mean year of publication is 2016. Moreover, the mean number of citations 
on Google Scholar (in December 2019) is 232.3± 308.2 (median = 97, min = 20, max = 1074).

To obtain a more recent overview, we select 3 reviews of medical image segmentation  methods37, 45, 46. We 
focus specifically on how the problem of variability and reproducibility is addressed in the scientific literature.

We focus on the possible variability introduced by the data itself, by the optimization strategy and associ-
ated hyperparameters, by the middleware and the infrastructure, and by the evaluation measure. For all the 
inspected parameters or evaluations, we determine the presence of the terms and their potential values. This 
consideration is important for being able to reproduce the different works. When a framework is described, we 
determine whether the correct terms are used appropriately. To highlight this phenomenon, we consider the 
kind of algorithm used in the optimization strategy.

For the data variability, we consider whether the DL algorithm is tested on several datasets, whether they 
are public or private, the number of datapoints available, whether data augmentation has been performed, the 
proportion of training, validation and testing sets and the possible application of a cross-validation method. For 
the optimization, we examine whether different parameters are recorded (the optimization strategy, learning 
rate, batch size, and presence of dropout regularization). We also investigate whether the hyperparameters of 
the optimization are hand-crafted or automatically optimized (and whether this information is available). For 
the middleware and infrastructure considerations, we report whether these details are provided. Special atten-
tion is also paid to the implementation of the DL model and the processing unit considered. We also determine 
whether the calculations are performed on a distributed system, which can be a large source of variability itself. 
For the evaluation, we consider the number and kinds of measures, and whether the variability of the results is 
described (the presence of standard deviations).

Metric evaluation. The evaluation of the different estimations of DL models is assessed with the DC, the 
true positive rate (TPR), also called the sensitivity (Sens.), the true negative rate (TNR), also called the speci-
ficity (Spef.), and the average volume distance (AVD) (linked with the Hausdorff distance). We chose these 
metrics because they often appeared in the articles of the literature review. The different metrics are described 
in Table 119. We consider various metrics, since each metric has its drawbacks, and evaluate only a part of the 
segmentation  problem19, 26. Readers interested in additional metrics and the interactions among them can read 
the study of Taha et al.19.
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Synthesis of the literature review
The main results are displayed in Tables 2, 3, 4 and 5. Table 2 focuses on the data variability. Table 3 focuses on 
the evaluation procedure. Table 4 presents the optimization strategies. Table 5 considers the middleware and 
the infrastructure. We are interested in the following three main points: (1) whether the DL strategy is correctly 
described as enabling the work to be reproduced, (2) whether the variability of the different parts of the DL 
framework are considered, and (3) how the evaluation is performed and the results are reported.

Description of the DL strategy. In this section, we focus not on the fact that some methods are per-
formed and some are not, but on whether the methods are clearly described. It can be seen that a method may 
have been applied without any mention in the text.

The main findings are as follows: only two  articles47, 48 (9% of the articles) sufficiently describe the hyperpa-
rameters and the dataset to enable the work to be reproduced. One  study49 has just one hyperparameter missing 
(the batch size) in the text, but the source code is available with this information included. Here, we focus on 
descriptions relative to the dataset and to the optimization stage. These results are detailed in Fig. 2. The left 
side of the figure is relevant to the description of the dataset (the training proportion, the data augmentation 
and the validation set) and the right side to the description of the optimization (the optimization procedure, the 
learning rate, the dropout procedure and the batch size). Some criteria are described well, such as the training 
proportion (83% of the considered articles) or the optimization procedure (83% of the selected articles). However, 
some characteristics are less available, such as the procedure of data augmentation (only 35% of the articles). To 
obtain a reproducible study, all these characteristics must be described. Only 9% of the selected articles provide 
sufficient information to be reproducible.

In Table 2, the dataset management method is described. All the selected articles correctly present the data-
set and the number of samples. 17% of the articles do not explain the training proportion used to estimate the 
parameters. Only 57% of the selected articles clearly state whether they used a validation set, and 35% whether 
they performed data augmentation.

Table 4 focuses on the hyperparameters of the optimization process. 17% do not explain the optimization 
procedure at all.  One44 cites a generic name (GDM, for gradient-based method) without any explanation. The 
learning rate parameter is generally present with its initial values (or range of values). Four articles do not men-
tion the values of the parameters. For the specific AdaDelta optimization used  in50–52, there is no learning rate. 
However, some coefficients need to be specified, such as the sensitivity ratio. Only one  article52 of the three 
mentions this coefficient. More than half of the selected studies (52%) do not mention the batch size, and only 
35% of all the articles specify its value. The dropout method, which is more relevant to regularization, is present 
in 61% of the selected articles (only 43% specify the dropout ratio). 43% of the selected articles state that they 
perform stochastic gradient descent (SGD). However, in a strict sense, SGD is a generic term, and 90% of the 
selected articles use SGD with momentum. Moreover, SGD is generally confused with mini-batch  GDMs53 which 
is the case for 70% of the selected articles, which use the term batch size simultaneously with the term SGD.

In Table 5, it can be seen that 35% of the selected articles do not describe the toolbox for the implementation 
of the DL models. 26% of the selected articles do not provide the kind of infrastructure. Supposing that a correct 
description of a GPU needs at least the name of the constructor, the class and the memory size, only 30% have 
this information. It can also be observed in Table 5 that there is no convention for reporting the infrastructure.

The best way to reproduce an algorithm and to explore the hyperparameters or the architecture of a DL 
model is to have access to the source code. In Table 5, we observe that only 17% of the articles release the source 
code. These  articles47–49 are the same as those that provide an exhaustive description of the framework for 
reproducibility.

Variability in DL frameworks. In the selected published articles, we are interested in the variability in 
the dataset, the optimization, the hyperparameters, the architecture of the DL framework, the implementation 
and the infrastructure. The main results in the next section are illustrated in Fig. 3. The figure is separated into 
four parts describing the variability of the dataset size, cross-validation strategies, optimization algorithms and 

Table 1.  Segmentation metrics Mask segmentation mask, Ground Truth ground-truth mask, TP true positives, 
voxels that are correctly segmented as the region of interest, TN true negatives, voxels that are correctly 
segmented as the background, FP false positives, voxels that are incorrectly segmented as the region of interest, 
FN false negatives, voxels that are incorrectly segmented as the background. dH corresponds to the directed 
average Hausdorff metric, defined as dH (A,B) = 1

N

∑

a∈A
minb∈B ||a− b|| , where N is the number of pixels or 

voxels considered.

Metric Equation Range Meaning

Dice coefficient (DC) 2×|Mask ∩ Ground Truth|

|Mask|+| Ground Truth|
0–1 Spatial overlap between masks

True positive rate (TPR) TP

TP+FN
0–1 Sensitivity

True negative rate (TNR) TN

TN+FP
0–1 Specificity

Average volume distance (AVD) max

(

dH (Mask,Ground Truth), dH (Ground Truth,Mask)

)

≥ 0 Precision
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implementation. The main conclusion is that there is no consensus on these topics. The rest of the results are 
discussed in detail in the subsequent section.

Variability in the dataset. In Table 3, the results are focused on data variability. More than half of the methods 
are evaluated on more than one dataset and with publicly available datasets (in general, provided by data chal-
lenges such as  BRATS54.

30% of the articles only test their algorithms on private datasets.
Only 6 datasets have more than 100 samples, and in these 6 datasets, 4 come from the same public source, 

BRATS. This highlights the difficulty of obtaining large datasets. Consequently, data augmentation is important 
for medical image segmentation. Since the segmentation of a voxel can be performed locally, data augmenta-
tion based on patches can be considered. However, 13% of the articles do not clearly describe whether there is 
data augmentation or whether the patch strategy is considered, or how many patches are selected. The training 
proportion and the CV strategies permit avoiding or limiting bias relative to the chosen dataset. 52% of the 
articles do not use any CV strategies.

Variability in the optimization. One  article47 presents an original strategy for managing the intrinsic variability 
in the optimization stage of the DL: the results of 3 DL models are merged, leading to better results than one 
alone. The other 22 articles do not discuss this notion.

Variability in the hyperparameters. We can observe in Table 4 that only one article,55, clearly explains the tuning 
of the hyperparameters with a grid search strategy. Another article,56, claims to automatically tune the hyper-
parameters without any explanation. In the articles considered in Table 4, there are three main strategies: SGD 
with momentum, RMS-prop and AdaDelta. One of the main hyperparameters is the learning rate, which varies 
greatly, from 10−2 to 10−4 . Two  articles48, 57 consider a range of values. At shown in Table 2, the training pro-
portion, which can be viewed as a hyperparameter, has a wide variability (from 20% to 95% of the dataset). It 
is generally selected according to the size of the dataset. These results highlight the variability in the choice of 
hyperparameters for data management and optimization.

Variability in the architecture of DL frameworks. In Table 2, we can see that the main strategy is to use a convo-
lutional neural network (CNN) or recurrent neural network (RNN) architecture (91% of the methods) for seg-

Figure 2.  The left side, resp. the right, of the figure is relevant to the description of the dataset, resp. the 
optimization. The description of the training proportion is present in 83% of the selected articles. The terms of 
data augmentation, resp. the validation set, are described in 35%, respectively 57%, of the selected articles. For 
the optimization procedure, the name of the optimization algorithm is missing in 17% of the selected articles. 
Regarding the hyperparameter learning rate, dropout and batch size, their values are available in only 57%, 52% 
and 35% of the articles, respectively. These coefficients are mentioned in the text without any values in 19%, 9% 
and 13% of the articles, respectively. In the end, only 9% of the evaluated articles have enough information to be 
reproducible.
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mentation (these architectures are types of DL  models14). Two  articles51, 58 test several different DL architectures 
in their frameworks (5  for51 and 2  for58).

Only one  article55 performed a grid search algorithm to determine the structure of the architecture (based 
on the kernel and max-pooling size for each layer and on the number of layers).

Variability in middleware and infrastructure. In Table 5, we can see that several implementations are consid-
ered. More precisely, four different toolboxes  (Theano59, Mat-ConvNet60,  Caffe61 and  Pylearn262) are referenced 
in the articles. Only one in-house implementation was  used52.

In 13% of all the articles, a high-level API  (Keras63 or  Lasagne64) is deployed in addition to these toolboxes.
All the articles describing the infrastructure performed their algorithms on a GPU. No articles referred to a 

distributed system for the implementation of the DL algorithm.

evaluation of the variability. Almost half of the articles consider fewer than 3 metrics, which is the num-
ber recommended by Udupa et al.26 (see Table 3 and Fig. 4). In a quarter of the articles, no variability relative 
to the metrics (such as the standard deviation) is provided. In some of the cases, this can be explained by the 
context of the data challenge platform for evaluation. In most articles, the variability is displayed with a boxplot. 
Only two articles report the complete results for each  participant65, 66.

For the evaluation metrics, the DC is considered in all articles. There is a large variability in the other metrics, 
since 22 different names of metrics can be found. Some of them are the same even if the names are different, such 
as the true positive rate, recall and sensitivity.

Reproducibility in the literature reviews. To evaluate the impact of reproducibility in DL for image 
segmentation after 2017, we consider the 3  reviews37, 45, 46. All the reviews highlight the problem of correctly 
comparing different methods. To address this issue, the reviews suggest testing the DL frameworks on public 
datasets through challenges and providing the code publicly. Moreover, the  study45 suggests that the difficulty 
of comparing the frameworks comes from the numerous available metrics used to evaluate segmentation. Fur-
thermore, the  study37 highlights the problem of reproducibility due to the lack of a correct description of the 
frameworks. Finally, all the reviews consider reproducibility as a challenge.

However, none of them raises the question of the intrinsic variability of DL frameworks. They do not refer 
to multiple metrics to correctly evaluate segmentation or discuss the cross-validation aspect. For the reported 
results in these  reviews37, 45, no variability measure is provided, such as the standard deviation.

Figure 3.  Four different sources of variability. (A) There is a large variability in the dataset size. 68.5% of the 
numbers of samples in the dataset are less than or equal to 50. (B) In general, no cross-validation strategy is 
considered (more than 50% of the articles). (C) There are 5 different optimization algorithms introduced in the 
different articles. The main one is SGD based on momentum (SGM(M)). The gradient-based method (GBM) 
and stochastic gradient descent (SGD) are only general terms. (D) There are 5 different implementations of 
DL frameworks. Even the Theano implementation is used in 42.9% of the considered articles, and there is no 
consensus among the implementations.
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proposals for practices conducive to reproducibility in medical image segmentation 
with DL
On the basis of the literature review, our recommendations focus on three main points: (1) an adequate descrip-
tion of the DL framework, (2) a suitable analysis of the different sources of variability in the DL framework, and 
(3) an efficient evaluation system for the segmentation results.

The flowchart of the different proposals is displayed in Fig. 5. Even if each part is independent, there is a 
natural order that we follow in our recommendations.

Figure 4.  The number of evaluation measures used in each article. Note that the number of measures required 
to correctly evaluate a segmentation result is 3.

Table 2.  The training size, the kind of data augmentation (DA), the presence of the DA term and the 
validation set (VS) term, the training size proportion and the cross-validation (CV) strategy in each article. The 
CV method can be leave one out (LOO) or k fold out (k FO). For example, the article by Kamnitsas et al.,47, 
presents 3 datasets with training sizes ≤ 100 , ≥ 100 and ≤ 50 . The data augmentation is based on a patch 
strategy (the authors referred to it in the article). They also explicitly described whether they used a validation 
set. The training proportions of the 3 datasets are 80%, 72% and 44%. Finally, the authors used 5 fold out for 
the CV strategy.

Article Training size DA DA term VS term Training proportion CV strategy

Guo (2014)44
≤ 50 Patches No No Not clearly detailed LOO

de Brebisson (2015)67
≤ 50 Patches No Yes 43% No

Choi (2016)68
≤ 50 Patches No Yes 75% No

Stollenga (2015)69
≤ 50 Patches Yes No 50%, 25% No

Zhang (2015)65
≤ 10 Patches No Yes 87.50% LOO

Andermatt (2016)50
≤ 10 Yes Yes No 25% No

Bao (2016)70
≤ 10 , ≤ 50 Patches No No 50%, 50% No

Birenbaum (2016)51
≤ 10 Patches Yes Yes 80% LOO

Brosch (2016)52
≤ 50 , ≤ 50 , ≥ 100 Not described No Yes 46%, 95%, 80% No/LOO/No

Chen (2016a)12
≤ 10 Not described No No 25% LOO

Ghafoorian (2016b) ≥ 100 Patches No Yes 90% No

Ghafoorian (2016a) ≥ 100 Patches No Yes 89% No

Havaei (2016b)71
≤ 50 , ≥ 100 , ≥ 100 Not described No Yes 70% No

Havaei (2016a)55
≤ 50 , ≥ 100 Patches Yes Yes 46%, 84% No/7 FO

Kamnitsas (2017)47
≤ 100 , ≥ 100 , ≤ 50 Patches Yes Yes 80%, 72%, 44% 5 FO

Kleesiek (2016)72
≥ 100,≤ 100 Patches Yes No 50%, 50% 2 FO/3 FO

Mansoor (2016)58
≥ 100 Patches No No Not clearly detailed Not clearly detailed

Milletari (2016a)57
≤ 100 , ≤ 50 Patches No Yes 82%, 33% No

Moeskops (2016a)56
≤ 50 , ≤ 50 , ≤ 50 Patches No No 20%; 25% ; 33% LOO/No/No

Nie (2016b)66
≤ 10 Patches No No Not clearly detailed LOO

Pereira (2016)48
≤ 50 Patches Yes Yes 46%, 84% No

Shakeri (2016)49
≤ 50 , ≤ 50 Patches Yes Yes 66% , 50% 3 FO/2 FO

Zhao (2016)73
≤ 50 Patches No No Not clearly detailed Not clearly detailed
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Recommendations for the description of the framework. First, to perform reproducible research, it 
is mandatory to correctly describe all the aspects of the framework, from the DL model and its related hyperpa-
rameters to the evaluation system. The initial step consists in clearly describing the algorithm and/or the model 
of the DL architecture. A schema of the DL architecture should be provided since the architecture is generally 
complex.

For the data part, several steps are mandatory:

• A complete description of the dataset is required, with the kind of acquisition (i.e., MRI or scanner), the size 
of the images and the total sample size. If the dataset is publicly available, a download link should be provided.

• For the preprocessing stage, the authors should explain whether some data are excluded. In the case of data 
augmentation, the different kinds of transformation must be described and the final number of samples 
should be included. For the special case of images, if the data augmentation consists in the selection of mul-
tiple patches, the characteristics and the final number of patches should be described.

• The allocation of the dataset samples into training, validation, and testing sets should be clearly described. 
If no validation set is created, this must be clearly stated and the choice should be explained.

• The cross-validation strategy should be described along with the number of folds considered.

For the optimization step, the chosen algorithm should be clearly referenced with its name and its correspond-
ing publication, and the final hyperparameters, such as the learning rate or the batch size, should be provided. 
If several evaluations are performed, the number of trials should be given.

For the selection of the hyperparameters of the optimization process or the design of the DL architecture, 
the method should be explained, even if it is handcrafted. More precisely, the method and the search space of 
the different hyperparameters should be provided.

A description of the computing infrastructure should be given with technical specifications: at least the name 
of the constructor, the class of the architecture and the memory size should be provided. For the middleware, 

Table 3.  The different DL models, kinds of datasets (number of datasets, denoted as Nb DS, the kind of 
dataset (public or private) and the kind of evaluation (type, number and variability of the measures). For 
the types of measures, DC Dice Coefficient, P Prediction, R Recall, MHD modified Hausdorff distance, AVD 
average volume distance, TPR true positive rate, FPR false positive rate, AUC  area under the curve, Sens. 
Sensitivity, and Spe. Specificity. The variability of a measure corresponds to the presence of the standard 
deviation value or a display in a graph. The (*) means that the values for all subjects are reported. For example, 
the article by Kamnitsas et al.,47, is based on a CNN. Their models are evaluated on 3 datasets, where one is 
private and two public. To evaluate their segmentations, they used the DC, P., Sens., ASSD and HD metrics 
(5 different metrics). The variability of the measures is displayed in a graph, and the corresponding values are 
reported in the text.

Article DL architecture Nb DS Dataset type Type of Meas. Nb of Meas. Var. of Meas.

Guo (2014)44 SAE 1 Private DC 1 Values

de Brebisson (2015)67 CNN 1 Public DC 1 No

Choi (2016)68 CNN 2 Public DC, P, R 3 Values, graph

Stollenga (2015)69 RNN 2 Public DC, MHD, AVD 3 No

Zhang (2015)65 CNN 1 Private DC, MHD 2 Values, graph *

Andermatt (2016)50 RNN 1 Public DC, MHD, AVD 3 No

Bao (2016)70 CNN 2 Public DC, VD, SD, TPR, FPR 1 No

Birenbaum (2016)51 CNN 1 Public DC,Score 2 No

Brosch (2016)52 CNN 3 2 Public & private DC, AVD, LTPR, LFPR 4 Graph

Chen (2016a)12 CNN 1 Public DC, MHD, AVD 3 No

Ghafoorian (2016b) CNN 1 Private DC, AUC 2 Graph

Ghafoorian (2016a) CNN 1 Private DC, AUC 2 Graph

Havaei (2016b)71 CNN 3 Public DC,VD,SD,TPR,FPR 5 No

Havaei (2016a)55 CNN 2 Public DC,Sens.,Spe 3 Graph

Kamnitsas (2017)47 CNN 3 Private & 2 public DC, P, Sens, ASSD, HD 5 Values, graph

Kleesiek (2016)72 CNN 4 3 Public & 1 private DC,Sens.,Spe 3 Values, graph

Mansoor (2016)58 SAE 1 Private DC, ALSD 2 Values, graph

Milletari (2016a)57 CNN 2 Private DC, MDEC, FR 3 Graph

Moeskops (2016a)56 CNN 3 Public DC, MSD 2 Values, graph

Nie (2016b)66 CNN 1 Private DC 1 Values *

Pereira (2016)48 CNN 2 Public DC, PPV, Sens 3 Graph

Shakeri (2016)49 CNN 2 Public & private DC, HD, CMD 3 Graph

Zhao (2016)73 CNN 1 Public DC 1 Graph
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the kind of implementation should be described (an available toolbox or in-house code, and the build version). 
If the toolbox is public, the link to the toolbox should be available. In general, the best solution is to provide a 
link to the downloadable source code with all included dependencies.

Finally, for the evaluation, a clear description of the results should be given with the average metrics and their 
variations. If a figure is displayed, such as a boxplot, the values of the error bars should be provided.

All these recommendations have been proposed in the Machine Learning Reproducibility Checklist18. There 
are two main differences between their recommendations and ours. First we merge the different points by the 
source of variability, whereas they merge by the section of the article (Methods and Results). The second differ-
ence consists in the particular focus on the image segmentation proposed here.

Recommendations for the analysis of variability. As shown by the literature review, sources of vari-
ability occur in each part of a DL framework: the dataset, the optimization procedure, the selection of the hyper-
parameters, the DL architecture, and the computational infrastructure. Each kind of variability is different and 
should be considered with its own tools.

Variability of the dataset. In practice, the available data are always a subset (or sampling) of the true distribu-
tion. This sampling effect typically introduces a bias which, in turn, results in variability in the final results.

This fact is important in medical image processing, where the number of samples is limited. A DL network 
learning from a particular sampling of the data can lead to overfitting. The recommended common tool is 
cross-validation. It must be noted that the purpose of cross-validation is different from the use of batches in 
optimization. The choice of the cross-validation method (the number of samples left out) should be considered 
with regard to the sample size (i.e., as in the leave one out or k fold out strategy). The choice of the samples to be 
analyzed (patches or 2D images from 3D images) can lead to strong correlations between samples.

To obtain a better sampling of the true distribution of the training dataset, data augmentation must be con-
sidered. The different transformations for the augmentation must be chosen carefully with regard to the organs 
studied. Furthermore, this data augmentation can enhance the accuracy by correcting a very poor diversity of 
the training dataset with respect to the testing dataset.

Table 4.  The kind of optimization, whether the hyperparameters (HPs) are handcrafted, the learning rate (the 
value (V.) and the presence (P.) of the term), the batch size (the value (V.) and the presence (P.) of the term), the 
dropout regularization (the value (V.) and the presence (P.) of the term) and whether the code is open source. 
The (M) in the optimization column signifies that the momentum algorithm is performed. The ** in the HP 
handcrafted column means that several DL architectures are tested. For example, the article by Kamnitsas 
et al.,47, used an RMS-prop strategy for optimization. The different hyperparameters are handcrafted. The 
learning rate, the batch size and the dropout are mentioned in the text, and their corresponding values are 
given.

Article Optimization HP handcrafted Learning rate (V./P.) Batch size (V./P.) Dropout (V./P.)

Guo (2014)44 GBM Yes No/no No No

de Brebisson (2015)67 SGD (M) Yes Yes (0.05)/yes Yes/yes No

Choi (2016)68 SGD (M) Yes Yes (0.001)/yes No/yes Yes/yes

Stollenga (2015)69 RMS-prop Yes Yes (0.01)/yes No Yes/yes

Zhang (2015)65 SGD (M) Yes Yes (0.0001)/yes No Yes/yes

Andermatt (2016)50 AdaDelta Yes omit No Yes/yes

Bao (2016)70 Not described Yes No No No

Birenbaum (2016)51 AdaDelta Yes ** omit No Yes/yes

Brosch (2016)52 AdaDelta Yes Sensitivity ratio Yes/yes No No

Chen (2016a)12 Not described Yes No No No

Ghafoorian (2016b) RMS-prop Yes No/yes Yes/yes Yes/yes

Ghafoorian (2016a) RMS-prop Yes No/yes Yes/yes Yes/yes

Havaei (2016b)71 SGD (M) Yes Yes (0.001)/yes No No/yes

Havaei (2016a)55 SGD (M) No (Grid Search) Yes(0.005)/yes No/yes Yes/yes

Kamnitsas (2017)47 RMS-prop Yes Yes(0.0001)/yes Yes/yes Yes/yes

Kleesiek (2016)72 SGD Yes Yes(0.00001)/yes Yes/yes No

Mansoor (2016)58 SGD (M) Yes ** No Yes/yes No

Milletari (2016a)57 SGD (M) Yes Yes (range values)/yes Yes/yes Yes/yes

Moeskops (2016a)56 RMS-prop No (not explained) No/yes No/yes No/yes

Nie (2016b)66 Not described Yes No/yes No No

Pereira (2016)48 SGD (M) Yes Yes (range values)/yes Yes/yes Yes/yes

Shakeri (2016)49 SGD (M) Yes Yes(0.01)/yes No Yes/yes

Zhao (2016)73 Not described Yes No No No



12

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13724  | https://doi.org/10.1038/s41598-020-69920-0

www.nature.com/scientificreports/

Variability of the optimization. For the optimization, the analysis of variability is often studied for classification 
 purposes29–31. Our recommendation to manage the variability of the optimization is to perform at least several 
trials with the same hyperparameters on the same datasets. The observed variability should be recorded in the 
average score and its corresponding standard deviation.

For a deeper analysis taking account of the dataset variability, the optimization should be produced several 
times in a cross-validation strategy for the dataset. All the results for each fold of the dataset should be grouped. 
A one-way ANOVA statistical test should be performed on the different groups to test whether there is a differ-
ence or interaction over the dataset considering the optimization. If the assumptions of ANOVA are violated, a 
strategy to perform a nonparametric test over cross-validation has already been  proposed74 to better estimate 
the residual error and to analyze the interaction between the algorithm and the learning dataset.

Variability of the hyperparameters. Our recommendation for the selection of the hyperparameters is to avoid 
handcrafted selection. Even if this selection is fast, the set of hyperparameters obtained can have a high vari-
ability since the hyperparameters can lie in a range of large  variability33. Automatic selection by a grid search, 
random search or Bayesian optimization algorithm enables optimum values to be obtained that are potentially 
more robust. It should be noted that a Network Architecture Search Best Practices Checklist75 was written in Sep-
tember 2019 on this specific subject.

Variability of DL architectures. The main problem addressed by the evaluated articles is: how should different 
DL architectures be compared? The comparison should consider the variability in the dataset, the optimiza-
tion and the hyperparameter selection. Our recommendation is to perform, for each evaluated DL architecture, 
several trials of optimization on each fold of the dataset provided by a cross-validation strategy. A two-way 
ANOVA can be considered to evaluate the variability of the metrics with regard to the different folds of the cross-
validation and the different DL architectures. If the assumptions of the ANOVA are violated, a nonparametric 
test can be  proposed76.

Table 5.  In the second column, the different implementations are described (Theano 1 , Mat-ConvNet 2 , 
Caffe 3 , Keras 4 , Pylearn2 5 and Lasagne 6). 1http://deepl earni ng.net/softw are/thean o/. 2http://www.vlfea 
t.org/matco nvnet /. 3https ://caffe .berke leyvi sion.org/. 4https ://keras .io/. 5http://deepl earni ng.net/softw are/
pylea rn2/. 6https ://lasag ne.readt hedoc s.io/en/lates t/. For the infrastructure details, the materials are described 
as they are referenced in the articles. If the global memory is reported in the article, it is noted. The last 
column, ’Open Source’, shows whether the source code is available. The (*) indicates that the code source is 
not available but a detailed prototype of the algorithm is provided. The (**) indicates that the infrastructure 
is detailed in the Acknowledgements section. For example, the article by Kamnitsas et al.,47, used the Theano 
implementation on an infrastructure based on an NVIDIA GTX Titan X GPU-12GB. Their code is released as 
open source.

Articles Implementation Infrastructure Open source

Guo (2014)44 Not described Not described No

de Brebisson (2015)67 Theano NVIDIA Tesla K40 GPU-12GB No

Choi (2016)68 Mat-ConvNet GPU (GTX TITAN) No

Stollenga (2015)69 Not described NVIDIA GTX TITAN X GPU-12GB No

Zhang (2015)65 Not described Tesla K20c GPU No

Andermatt (2016)50 Caffe NVIDIA GTX Titan X GPU-12GB No

Bao (2016)70 Not described Not described No

Birenbaum (2016)51 Keras + Theano NVIDIA GeForce GTX 980 Ti GPU No

Brosch (2016)52 Own implementation GeForce GTX 780 No

Chen (2016a)12 Caffe NVIDIA TITAN X GPU Yes (*)

Ghafoorian (2016b)7 Theano Not described No

Ghafoorian (2016a)7 Not described Titan X card No

Havaei (2016b)71 Keras Nvidia TitanX GPU No

Havaei (2016a)55 Pylearn2 NVIDIA Titan black card. No

Kamnitsas (2017)47 Theano NVIDIA GTX Titan X GPU-12GB Yes

Kleesiek (2016)72 Theano NVIDIA Titan-3GB No

Mansoor (2016)58 Not described Not described No

Milletari (2016a)57 Caffe
NVIDIA “‘Tesla k40” or “Titan X”-12GB No

Tested on Nvidia GTX 980-4GB No

Moeskops (2016a)56 Not described NVIDIA Tesla K40 GPU (**) No

Nie (2016b)66 Caffe Not described No

Pereira (2016)48 Theano + Lasagne GPU NVIDIA GeForce GTX 980 Yes

Shakeri (2016)49 Mat-ConvNet Described on github Yes

Zhao (2016)73 Not described Not described No

http://deeplearning.net/software/theano/
http://www.vlfeat.org/matconvnet/
http://www.vlfeat.org/matconvnet/
https://caffe.berkeleyvision.org/
https://keras.io/
http://deeplearning.net/software/pylearn2/
http://deeplearning.net/software/pylearn2/
https://lasagne.readthedocs.io/en/latest/
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Variability of the infrastructure. In general, it is difficult to test the variability of infrastructures since their costs 
can be high. Our recommendations are to correctly capture the specificity of the infrastructure to avoid side 
effects for the reproducibility. Two important factors are the number of processing units and their characteristics 
(the kind of calculus unit used and the available random access memory (RAM)). The number of processor 
units will deeply impact the framework (distributed or non-distributed system). The RAM can affect the size of 
the batch during optimization. The kind of calculus unit used can lead to quantization and problematic noise 
calculations in the optimization.

Regarding the middleware, an automatic deployment of the operating system and the toolbox associated with 
the DL framework are recommended. This should be based on a complete description of the system.

In addition, distributed systems can be considered to achieve simulations in a reasonable time. To mitigate the 
reproducibility problem, some recommendations for the network should be made, such as the use of Infiniband 
(to avoid latency) or the use of a compartmentalized network (to avoid interactions with other users).

Recommendations for the analysis of the evaluation system. In the context of image segmenta-
tion, at least three metrics should be  considered19. Because some of them are  correlated19, it is important to care-
fully choose which metric suits the scenario at  hand26.

Even if several metrics are  defined19 and, to the best of our knowledge, no consensus exists, we propose to at 
least evaluate the segmentation methods with the next three most common metrics: the DC, the TPR and the 
FNR. These metrics are described in the Methods section. Readers interested in image segmentation metrics can 
see more complex evaluations based on the recommendations of some  studies19, 26.

Discussion
The complexity and heterogeneity of DL frameworks are responsible for multiple kinds of variability. Because 
of the reproducibility  crisis21, 22, researchers have highlighted multiple factors that induce variability in the 
results obtained, as well as important guidelines that must be respected in order to minimize—or at least quan-
tify—these effects: (i) for other researchers to be able to replicate the obtained results, it is necessary to precisely 
describe the DL framework in use as well as its optimization procedure; (ii) potential sources of variability must 
be acknowledged and, when possible, evaluated in order to determine their importance. Last, it is crucial to 
consider the specifics of the field being researched: already-existing data processing methodologies and evalu-
ation procedures must be properly incorporated within the DL framework—see for  instance19, 26 for medical 
image segmentation. In practice, however, assessing reproducibility and variability is a rather difficult task in 
the context of DL frameworks.

Figure 5.  The proposals are separated into three main parts: (A) an adequate and complete description of the 
DL framework for reproducibility purposes, (B) an analysis of the different sources of variability, and (C) an 
efficient evaluation system for image segmentation.
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Key factors are generally interdependent For instance, the variability due to the optimization procedure not 
only depends on the choice of hyperparameters but also on the input data provided, i.e., the datasets. Facing 
such an issue, there is a need for new mathematical tools: (i) to de-correlate the overall variability and capture 
the individual effects associated with given parameter subsets; and (ii) to better compare the results obtained 
with different DL solutions.
Heterogeneous nature of the variability This effect often makes it difficult to relate different sources of vari-
ability. For instance, let us consider the variability in the input data distribution on the one hand, and the 
variability in the optimization stochastic process on the other hand: these cannot be addressed in the same 
way, which in turn leads to different mathematical tools being needed to evaluate this variability.
Hardware/software perturbations Typically, variability is estimated from a large number of repeated simula-
tions, which requires powerful and/or distributed systems. These systems also induce variability, as they may 
differ slightly (in terms of architecture, data quantization, rounding strategies, implementation constraints, 
etc.).

Conversely, variability may also be seen as a blessing. For instance, merging different optimization solutions or 
different DL frameworks improves the  segmentation47 and, more generally, the robustness.

Finally, there is no clear consensus on the meaning of reproducibility, robustness and  generalizability77. The 
notion of reproducibility should be driven mainly by the kind of application.
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