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[1] The Holocene variability in sea surface and thermocline
water temperatures (SST and TWT) in the Indo-Pacific
Warm Pool (IPWP) has been reconstructed by planktonic
foraminiferal Mg/Ca from sediments of the western tropical
Philippine Sea. Afterward the Younger Dryas interval
(YD), SST warmed gradually till �10 ka and remained
approximately constant afterwards, but TWT rose more
rapidly to a peak between �12 and �10 ka and then
declined by �1.5°C through the Holocene. The trend of
TWT closely followed the boreal summer insolation and
could be correlated to tropical climate changes represented
by southward movement of the Inter-tropical Convergence
Zone (ITCZ) and related changes in East Asian monsoons.
Citation: Dang, H., Z. Jian, F. Bassinot, P. Qiao, and X. Cheng
(2012), Decoupled Holocene variability in surface and thermocline
water temperatures of the Indo-Pacific Warm Pool, Geophys. Res.
Lett., 39, L01701, doi:10.1029/2011GL050154.

1. Introduction

[2] Knowledge of Holocene climate variability is of
essential importance for our understanding of the Earth’s
internal climatic feedbacks since the response of the climate
system to solar forcing can be examined under relatively stable
climate backgrounds (i.e., ice volume, vegetation cover, green-
house gas levels, etc.). Previous studies have demonstrated a
general scenario for the Northern Hemisphere that includes
an Early Holocene Optimum and gradual changes afterwards
which generally followed the boreal summer insolation [e.g.,
Haug et al., 2001; Wang et al., 2005].
[3] An understanding of Holocene climatic changes in the

IPWP would appear to be critical due to the substantial
export of heat and water vapor from this region to the rest of
the globe. However, previous SST reconstructions in the
IPWP revealed a very weak cooling that could hardly linearly
match the fundamental decrease in boreal summer insolation
[e.g., Stott et al., 2004; Linsley et al., 2010]. Such a dis-
crepancy indicates that additional processes besides SSTmay
be involved into the climatic mechanism of the IPWP. In this
regard, an understanding of processes operative within the
tropical thermocline may be important, not only because of
its role in basin-scale water mass exchange and thereby
potential to convey remote climate signals [e.g., Luyten et al.,
1983; Liu et al., 1994; Qu et al., 1999; Harper, 2000], but
also due to its capacity to modulate SST and climate by

changing the storage and distribution of heat in the mixed
layer [e.g., Chen et al., 1994; Seager and Murtugudde,
1997].
[4] Here, the Holocene SST and TWT of the western

tropical Pacific are reconstructed using planktonic forami-
nifera proxies. Our results allow examinations of past thermal
conditions in the IPWP thermocline and assessments of the
role these conditions played in Holocene climate changes.

2. Oceanographic Setting

[5] The western Philippine Sea is a water mass crossroad in
the tropical Pacific. Relatively saline North Pacific Tropical
Water (NPTW, salinity typically >34.75 psu, [Qu et al.,
1999]) (Figures 1a and 1b) is mainly found at depths
around 50�300 m and is thought to be brought in by the
North Equatorial Current (NEC) from where it is formed in
the central Pacific (10°–25°N, 140°E–160°W) by evapora-
tion and subduction of mid-latitude surface waters [Fine
et al., 1994, 2001]. Above that level, the warm Tropical
Surface Water (TSW, typically warmer than 26°C) from
the IPWP largely controls the near-surface (<50 m) in the
study region [Qu et al., 1999] (Figure 1b).
[6] In the tropical Pacific, ventilation of the thermocline,

which is mainly driven by the subduction of warm and saline
sub-tropical waters in the mid-latitude basin center and occurs
on a decadal travel time, is crucial for connecting the tropical
and subtropical circulations [e.g., Fine et al., 1994, 2001;
Huang and Liu, 1999;Harper, 2000]. It was suggested that “a
potential vorticity barrier that inhibits the direct flow of lower-
layer water from the subtropical north Pacific to the equator”
could be created by ITCZ [Lu and McCreary, 1995].
[7] At the site of our study, the upper ocean circulation is

greatly affected by the shift of the NEC’s bifurcation latitude
(NECB). Thanks to the local wind curl, the NECB is shifted
northward (�15°N) by the East Asian winter monsoon
(EAWM) and southward (�12°N) by the summer monsoon
(EASM), and can be shifted to higher latitudes by El Niño
[e.g., Qu and Lukas, 2003; Kim et al., 2004].

3. Material and Methods

3.1. Core MD98-2188

[8] A large-diameter CALYPSO core, MD98-2188
(14.82°N; 123.49°E; 730 m water depth, see Figure 1a for
core location) was recovered offshore Luzon during the
IMAGES IV cruise (see Data Set S1 in the auxiliary
material).1 The upper 3.94 m of the core (total length:
16.3 m) revealed undisturbed light brownish clay. The age
model for this upper section was established based on a series
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of 5 planktonic foraminifera AMS 14C dates [Lin et al., 2006]
that were converted to calendar ages using CALIB 5.0
[Stuiver and Reimer, 1993] and a 400-year reservoir correc-
tion. The average sedimentation rate of core MD98-2188 is
30.3 cm/kyr (18.7�57.2 cm/kyr), equivalent to an average
time resolution of �66 yrs (35�110 yrs) for the 2 cm sam-
pling interval (Figure 2g).

3.2. Oxygen Isotope and Mg/Ca Measurements

[9] Specimens of the surface-dwelling Globigerinoides
ruber s.s. (white) and the deeper, thermocline-dwelling
Pulleniatina obliquiloculata (depth habitats discussed in
section 3.3) were hand-picked from 300�360 mm and
360�440 mm size fractions, respectively, for the isotopic
analysis. The oxygen isotope analysis followed the method
described by Cheng et al. [2005], with a standard deviation
of 0.07‰ PDB (1s) [Cheng et al., 2005].
[10] For the Mg/Ca analysis, G. ruber and P. obliquilo-

culata were hand-picked from 250�350 mm and 360�
440 mm size fractions, respectively. Specimens were pre-
treated and cleaned with a reductive step [Martin and Lea,
2002] and were measured on an ICP-AES. For the Mg/
Ca-temperature calculations, equations given by Anand
et al. [2003] (SST = ln (Mg/CaG. ruber ÷ 0.38)/0.09, TWT =
ln (Mg/CaP. obliquiloculata ÷ 0.328)/0.09, non-reductive clean-
ing protocol) were utilized since they give more comparable
core top results to modern atlas than other calibrations using a
reductive step [e.g., Lea et al., 2000], in spite of the probable

underestimation of temperature results as suggested by some
inter-calibration studies [e.g. Rosenthal et al., 2004; Xu et al.,
2008]. The overestimated temperatures when using the
equations of Lea et al. [2000] may have resulted from less
dissolution at the shallower water depth of MD98-2188 than
accounted for in the Lea et al. [2000] calibration. Hence,
although potential bias might exist in the absolute value of
the estimated temperature, our Mg/Ca results are expected to
be valid representations of thermal conditions in the region,
especially with regard to past variability. The average
reproducibilities of Mg/Ca for G. ruber (13 replicates) and
P. obliquiloculata (21 replicates) were 1.8% and 5.2% (1s),
equivalent to �0.2°C and �0.5°C (1s), respectively.
[11] The difference between parallel-measured SST and

TWT (DTG-P) is taken as a proxy for upper-ocean thermal-
gradient. The d18O of seawater (d18Osw) is calculated from
d18O of G. ruber [Bemis et al., 1998] subtracting the
Mg/Ca-SST and mean sea level [Waelbroeck et al., 2002].

3.3. Core-Top Examination on the Depth Habitats
of G. ruber and P. obliquiloculata

[12] G. ruber and P. obliquiloculata are usually consid-
ered to be typical tropical species that live within and

Figure 1. Map-view and cross-section of the Pacific show-
ing subsurface temperature-salinity structures. (a) Tempera-
ture (color shading) and salinity (contours) at 150 m water
depth, color scale for temperature is shown at the right,
dashed contours denote 34.75, 35 and 36 psu isohalines,
respectively. (b) 15°N cross-section of temperature (shading)
and salinity (contours) down to 400 m water depth, color
scale for the 2°C contour interval temperature shading is
shown at the right, dotted lines are isohalines with 0.25 psu
contour interval. Data from WOA09 [Locarnini et al.,
2010; Antonov et al., 2010]. The location of MD98-2188 is
marked as a blue hexagram, and the locations of Chinese sta-
lagmite records from Hulu, Sanbao and Dongge caves [Wang
et al., 2001, 2005, 2008] and marine sediment core MD01-
2378 [Xu et al., 2006, 2008] in IPWP are marked by grey dots
in Figure 1a.

Figure 2. Reconstructed planktonic foraminiferal proxy
records for core MD98-2188: (a and c) d18O and Mg/Ca
temperature for G. ruber (blue) and (b and d) P. obliquilocu-
lata (green). (e) Sea water d18O (d18Osw, pink). (f ) The dif-
ference between SST and TWT (DTG-P, grey). The thicker
lines in these time-series represent the five point average of
the original data (thin lines). (g) AMS 14C dates (crosses)
and mean sedimentation rates (solid line). The five stages
mentioned in text are divided by vertical dashed lines.
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beneath the mixed layer, respectively [e.g., Xu et al., 2006].
In the top 10 cm of core MD98-2188 (5 samples, none older
than 200 yr), the average d18O and Mg/Ca for G. ruber yield
values of �3.00‰ � 0.17‰ and 5.11 � 0.18 mmol/mol,
and for P. obliquiloculata of �1.54‰ � 0.12‰ and 2.91 �
0.17 mmol/mol. These values agree well with estimates by
sediment traps in IPWP of 0–50 m (d18O = �2.5��3.5‰,
Mg/Ca = 4�6 mmol/mol) and 100–150 m water depth
(d18O = �1.5�–2.5‰, Mg/Ca = 2.4�3.4 mmol/mol)
[Kawahata et al., 2002; Mohtadi et al., 2009].

4. Results

[13] The measured d18O variations span a range of �2‰
for both G. ruber (�1��3‰PDB) and P. obliquiloculata
(0��2‰PDB) and show a consistent decrease between
�13 and �9 ka (Figures 2a and 2b). The overall amplitudes
of estimated change, �3°C, were also similar for both SST
(26�29°C) and TWT (23�26°C) (Figures 2c and 2d). The
calculated d18Osw displays a long-term decrease by �0.4‰
through the Holocene (Figure 2e).
[14] Based mainly on variations in TWT, records in MD98-

2188 (Figure 2) can be characterized by five distinct stages:

(I) 13�12 ka, SST and TWT were respectively �1.7°C and
�1.0°C lower than their Holocene mean value; (II) 12�
10 ka, TWT increased quickly within no more than 400 yrs
to a distinct peak (�1.5°C higher than the late Holocene)
around �11.5 ka that lasted for �1500 yrs, while SST
increased gradually and DTG-P was at a minimum
(Figure 2f); (III) 10�6 ka, both SST and TWT maintained
roughly constant while TWT was �0.6°C lower than the
previous stage; (IV) 6�3 ka, TWT reached another minor
peak around 5.6 ka and then decreased by �0.7°C to 3 ka;
(V) 3�0 ka, all proxies remained roughly constant except for
some superimposed sub-millennial fluctuations.

5. Discussion

[15] The reconstructed Holocene SST (Figure 3a) and
d18Osw (Figure 2e) variations in MD98-2188 are in good
agreement with other records from the IPWP (Figure 3b)
[e.g., Lea et al., 2000; Stott et al., 2004; Linsley et al.,
2010]; while the TWT variability in MD98-2188 (Figure 3f)
is also in accordance with another P. obliquiloculata Mg/Ca
reconstruction (Figure 3g) from the southwest IPWP (core
MD2378, see Figure 1a for its location [Xu et al., 2008])
despite a �2°C difference between the two throughout the
Holocene. Thus, it may be inferred that the Holocene SST
and TWT records in MD98-2188 were coherent with and
could characterize the observed changes over the IPWP.
[16] Obviously, there were prominent differences between

the SST and TWT changes. After the interval of YD, a dis-
tinct peak was reached in TWT between �12 and �10 ka
(�1.5°C warmer than the late Holocene average; Figures 3f
and 3g). This early Holocene TWT peak agrees well with the
timing of the Holocene maximum in boreal summer insola-
tion between �13 and �9 ka (Figure 3h). During the
remainder of the Holocene, the subsequent decline in IPWP
TWT at both sites MD98-2188 and MD01-2378 was larger
than 1°C. In contrast, the SST in the IPWP appears to show
an Early Holocene Optimum between 10�7 ka with tem-
peratures no more than 0.5°C higher than the late Holocene
[Stott et al., 2004; Linsley et al., 2010] (Figures 3a and 3b).
Reconstructed SSTs in these studies lag the boreal summer
insolation maximum by �3 ka and show a much smaller
Holocene decrease. Accordingly, we argue that, rather than
SST, the response of the IPWP to the solar insolation forcing
in the Holocene could be characterized by subsurface tem-
perature changes and resultant upper-ocean heat content
modulations.
[17] Xu et al. [2008] had interpreted the Holocene TWT

cooling in MD01-2378 to represent intensifications of “cool
thermocline-dominated Indonesian Throughflow (ITF)” and
attribute the initiation of such changes to the continuous sea
level rise around �9 ka. Given the similar TWT variability
in MD98-2188, circulation reformations may occur not only
within ITF, but throughout the IPWP, for acquiring the
coherent TWT changes within this region. Accordingly,
more processes may have been involved besides sea level
change.
[18] Though one might expect either changes in the ther-

mocline water or/and motions of the depth of thermocline
(DOT) as causes for the Holocene TWT (Figures 3f and 3g)
and the subsequent DTG-P (Figure 2f) variability, the esti-
mated DOT for core MD98-2188 using the transfer function
of Andreasen and Ravelo [1997] barely changed in its trend

Figure 3. Comparison of Holocene climate changes in
IPWP and East Asia. (a) MD98-2188 SST (in red, this study),
and (b) the stacked Holocene SST variability in IPWP
(orange and carmine) [Linsley et al., 2010]. (c) Sanbao
(navy), (d) Dongge (blue), and (e) Hulu (indigo) stalagmite
d18O records from Southeast China [Wang et al., 2001,
2005, 2008]. TWT from (f) MD98-2188 (green, this study)
and (g) MD01-2378 (aqua) [Xu et al., 2008]. (h) The summer
(JJA) insolation at 15°N (grey) computed by La2004 [Laskar
et al., 2004]. (i) DOT estimated from planktonic foraminifera
transfer function (cyan, data from Lin et al. [2006] using the
method of Andreasen and Ravelo, [1997]). The time interval
of the Younger Dryas event (YD) is denoted by the grey bar.
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from Early to Late Holocene (Figure 3i, planktonic assem-
blage data courtesy of Lin et al. [2006]). Therefore, without
further evidence, one would tend to take changes within
the IPWP thermocline water as a major cause for the
TWT variability, which implied lateral heat/water advec-
tion within the subsurface.
[19] In terms of the subsurface lateral advection, a first

approximation of the plausible mechanisms for a boreal
summer insolation driving on the IPWP TWT could lie in
that the flux and temperature of the NPTW flowing to the
low-latitude western Pacific are mediated by the evapora-
tion-induced subduction of near-surface water in the central
Subtropical Pacific [e.g., Fine et al., 1994], which could be
controlled effectively by radiation heating.
[20] At the regional point of view, the TWT changes in

IPWP could be connected to the southward movement of the
ITCZ in the Holocene [e.g., Haug et al., 2001; Wang et al.,
2005] (Figures 3c–3e), potentially through the modulation
effect of the ITCZ-generated basin-interior barrier on the
flux of the thermocline ventilation to the western boundary
[e.g., Lu and McCreary, 1995] besides the commonly shared
insolation forcing. While ITCZ were moving more southerly
through the Holocene, the basin-interior barrier could be less
energized, thereby less NPTW would be transported to the
western boundary, favoring the cooling in IPWP’s TWT.
[21] From a local point of view, the NECB may have

moved in the past due to changes in the regional winds, thus
influenced TWT near site MD98-2188 and downstream the
Mindanao Current and ITF. During the TWT warming that
marked the end of YD, the NECB may have relocated
southward because of the strengthening of EASM [e.g.,
Wang et al., 2001] (Figure 3e), the weakening of EAWM
[e.g., Huang et al., 2011], and the weakening of the trade
winds owing to the northward return of ITCZ [e.g., Haug
et al., 2001; Wang et al., 2001]. This could have favored
the early Holocene TWT peak by strengthening the input
of warmer NPTW. The opposite processes, i.e. slow
weakening of the EASM and southward moving of the
ITCZ [Wang et al., 2005; Haug et al., 2001], may have
occurred through the Holocene and benefit the TWT
cooling by weakening the input of NPTW. Furthermore,
the minor TWT spike around �6 ka and the following
cooling till 3 ka might be linked to the weakening and re-
strengthening of El Niño and Southern Oscillation in the
Mid-Holocene [e.g. Rein et al., 2005] through the alter-
ation of the tropical trade-wind intensity [e.g., Qu and
Lukas, 2003; Kim et al., 2004].

6. Concluding Remarks

[22] Planktonic foraminiferal Mg/Ca-derived SST and TWT
in the western tropical Pacific behavior differently through
the Holocene and suggest differences in their response to
insolation forcing and correlations to low-latitude climate
changes. The thermocline in the IPWP is shown to be a
vigorous component of the climate system for its feedback to
boreal summer insolation and its interactions with tropical
climate.
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