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ON THE ENERGY OF CRITICAL SOLUTIONS

OF THE BINORMAL FLOW

VALERIA BANICA AND LUIS VEGA

Abstract. The binormal flow is a model for the dynamics of a vortex filament in a 3-D
inviscid incompressible fluid. The flow is also related with the classical continuous Heisen-
berg model in ferromagnetism, and the 1-D cubic Schrödinger equation. We consider a
class of solutions at the critical level of regularity that generate singularities in finite
time. One of our main results is to prove the existence of a natural energy associated to
these solutions. This energy remains constant except at the time of the formation of the
singularity when it has a jump discontinuity. When interpreting this conservation law in
the framework of fluid mechanics, it involves the amplitude of the Fourier modes of the
variation of the direction of the vorticity.

1. Introduction

In this paper we focus on qualitative and quantitative properties of singular solutions of
the binormal flow. This geometric flow describes the evolution in time of a curve χ(t, x) in
R3 that is parametrized by arclength x, via the equation

(1) χt = χx ∧ χxx.
If in a 3-D fluid the vorticity is concentrated initially along a curve, it is expected that
at least in some situations the vorticity at later times is still concentrated along another
curve, whose evolution is dictated by the binormal flow. This was formally derived by Da
Rios in [11] after truncating the integral given by Biot-Savart’s law (see also [27], [1],[5]). A
more rigorous argument, but still under some strong assumptions, has been recently given
by Jerrard and Seis in [20].

The binormal flow is linked to the 1-D cubic Schrödinger equation (NLS) in the following
way. Taking the derivative in x of χ we obtain that the tangent vector T (t, x) ∈ S2 satisfies
the classical continuous Heisenberg model used in ferromagnetism

(2) Tt = T ∧ Txx.
Next, by considering the curvature and torsion of χ(t, x), Hasimoto constructed, in the
spirit of the Madelung transform, a complex valued function that satisfies the focusing 1-D
cubic NLS ([19]). Conversely, given a real function of time a(t), a solution u of

(3) iut + uxx +
1

2
(|u|2 − a(t))u = 0,

Date: July 10, 2020.
1



2 V. BANICA AND L. VEGA

a point P ∈ R3, and an R3-orthonormal basis (v1, v2, v3), one can construct a solution of
(1) as follows. First define parallel frames (T, e1, e2)(t, x) as the solutions of

(4)


Tx = <(uN), Nx = −uT,

Tt = =(uxN), Nt = −iuxT +
i

2
(|u|2 − a(t))N,

with N = e1 + ie2 and initial data (T, e1, e2)(t0, x0) = (v1, v2, v3). It follows that T
constructed this way satisfies the Schrödinger map (2). Finally, setting

χ(t, x) = P +

∫ t

t0

(T ∧ Tx)(τ, x0)dτ +

∫ x

x0

T (t, s)ds,

we obtain that χ(t, x) satisfies the binormal flow (1). Note that the construction of χ(t)
is not obvious if the solution u of (3) is not too regular. This is precisely the scenario
considered in this paper.

Regarding (3) note that since a(t) is real, the corresponding term can be easily removed
from the equation by a change of function. From the gauge invariance in (4) this will lead
to the construction of the same curve. In this way we obtain the cubic NLS

(5) iut + uxx +
1

2
|u|2u = 0,

that is invariant under the scaling

(6) uλ(t, x) = λu(λ2t, λx).

At this respect we shall say that the solutions of (1) are critical if they are constructed
from NLS solutions in a functional setting that is invariant by scaling.

Let us recall here that (5) is well-posed in Hs, for any s ≥ 0 ([12],[7]), and that for
s < 0 the Cauchy problem is ill-posed ([22],[10],[6],[24],[28],[23],[26]). We recall also that
well-posedness holds for data with Fourier transform in Lp spaces, p < +∞ ([29],[18],[8]).

It is well known that equation (5) is also invariant under Galilean transformations

(7) uη(t, x) = e−iη
2t+iηxu(t, x− 2ηt).

One of the problems with the Sobolev class is that it is not invariant under translation
in Fourier space, except of course L2 that is not invariant under (6). As a consequence
the Sobolev class is not well suited with respect to Galilean transformations. This is the
reason why in our previous work [4] we consider initial data whose Fourier transforms are
L2 periodic, possibly smooth, functions. Another possibility is to measure the Fourier
transform in the L∞ norm because this topology is critical for cubic NLS with respect to
both symmetries (6) and (7). One of the issues that we address in this paper is the possible
growth in this latter topology.

The binormal flow is known to develop singularities in finite time. An important class
of singular solutions is the family of self-similar solutions {χα}α>0, that are determined for
t > 0 by the values of their curvature and torsion, α√

t
and x

2t respectively. The curve χα(t)
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is smooth for t > 0 and, as proved in [16], it has a trace at t = 0 given by a polygonal line
with just one corner of angle θ, such that

(8) sin
θ

2
= e−π

α2

2 .

The corresponding 1-D cubic NLS solution is uα(t, x) = α e
i x

2

4t√
t

, taking a(t) = α2

t in (3).

Recently, we constructed in [4] a class of smooth solutions of the binormal flow that
generate several corners in finite time. More precisely, take a polygonal line with corners
located at x = j ∈ Z and angles θj , and choose {αj} using the relation (8). Then, under the
assumption that some moments of the sequence {αj} are squared integrable, we construct
a strong smooth solution of the binormal flow for t 6= 0, that is a weak solution for all
t. This solution has the given polygonal line as trace at t = 0. For this purpose we first

construct for t 6= 0 and a(t) =
∑
j |αj |2
t := M

t a unique solution of (3) of the form

(9) u(t, x) =
∑
j

e−i(|αj |
2−M) log

√
tÃj(t)

ei
(x−j)2

4t

√
t

:=
∑
j

Aj(t)
ei

(x−j)2
4t

√
t

,

such that lim
t→0

Ãj(t) = αj , and Rj(t) := Ãj(t)− αj satisfies

(10) sup
0<t<1

t−γ‖{Rj(t)}‖l2,s + t ‖{∂tRj(t)}‖l2,s < C({αj}),

for 0 < γ < 1 (see also [25] for the subcubic case). Here s ≥ 3, ‖(βj)‖l2,s := (
∑

j(1 +

|j|)2s |βj |2)1/2, and the coefficients

e−i|αj |
2 log

√
tÃj(t)

solve the non-autonomous Hamiltonian system:

(11) i∂tAk(t) =
1

4πt

∑
k−j1+j2−j3=0

e−i
k2−j21+j22−j

3
3

4t Aj1(t)Aj2(t)Aj3(t)−
∑

j |αj |2

2πt
Ak(t).

Moreover, the solution satisfies the mass conservation law:

(12) M =
∑
j

|αj |2 =
∑
j

|Aj(t)|2.

Then, given this unique solution of (3) we construct the solution of the binormal flow as
explained above. This solution has as initial data the given polygonal line. We refer the
reader to Theorem 1.1 and Theorem 1.4 in [4] for the precise statements.

Our main result in this paper is to see if there are quantities as (12) associated to (1)
and (2) that are also conserved. Recall that for smooth solutions of (2) the energy density
is given by

c2 dx = |Tx|2 dx,
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where c stands for the curvature. As a consequence, those solutions of (2) that are con-
structed from solutions of (3) which have finite L2 norm will have energy that is also finite.
But this is not the case for the solutions considered in this article.

It turns out that the right way of interpreting (12) is to look at the Fourier transform
in space of Tx. Then, the energy appears as a scattering energy that is preserved as long
as t 6= 0, while it has a jump at t = 0. More concretely, we have the following result.

Theorem 1.1. Let χ be a binormal flow solution with initial data a polygonal line, as
introduced above, and T its tangent vector. We define

(13) Ξ(T (t)) := lim
k→∞

∫ k+1

k
|T̂x(t, ξ)|2dξ.

For t > 0 we have the following conservation law:

(14) Ξ(T (t)) = 4π
∑
j

|αj |2.

At t = 0 when singularities are created for the binormal flow solution χ we have

(15)

∫ k+1

k
|T̂x(0, ξ)|2dξ = 4

∑
j

(1− e−π|αj |2) ∀k ∈ Z.

Therefore there is a jump discontinuity of Ξ(T (t)) at time t = 0, showing an instantaneous
growth for positive times at large frequencies:

(16) Ξ(T (0)) = 4
∑
j

(1− e−π|αj |2) < 4π
∑
j

|αj |2 = Ξ(T (t)).

The proof of the theorem is based on a careful decomposition of T̂x(t, ξ) in principal
terms that eventually give Ξ(T (t)) and terms for which we get either a constant type
upper-bound or a logarithmic type upper-bound depending on d(4πξ, Zt ), and that become
negligible in the computation of Ξ(T (t)).

Remark 1.2. Observe that on the one hand that the quantity Ξ(T (t)) involves T̂x(t, ξ) for
large ξ, and therefore it measures the size of the amplitude of the large frequency waves of
the variation of T . On the other hand T , when interpreted at the level of fluid mechanics,
gives the direction of the vorticity. At this respect Constantin-Fefferman-Majda’s criterion
[9] states that the growth in the variation of the direction of the vorticity is necessary to
produce singularities in Euler equations in three dimensions.

Remark 1.3. A similar statement holds for the normal vector, namely for t > 0

(17) Ξ(N(t)) := lim
k→∞

∫ k+1

k
|N̂x(t, ξ)|2dξ = 4π

∑
j

|αj |2,

but

(18) Ξ(Ñ(0)) = 4
∑
j

(1− e−π|αj |2),
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where Ñ(0, x) is the limit at t = 0 of 1

Ñ(t, x) = e
i
∑
r∈Z,r 6=x |αr|2 log

|x−r|√
t N(t, x).

Remark 1.4. Theorem 1.1 applies in particular to the case of self-similar solutions of the
binormal flow that are generated by polygonal lines with only one corner. Moreover, using a
perturbation argument, we constructed in [2] solutions of the binormal flow that are smooth
except at one time when they generate a corner. For these perturbed solutions we managed
to show in [3] that

lim
ξ→∞
|T̂x(t, ξ)|2 = 4π|α0|2,

and that there exists ε > 0, depending on the perturbation of the initial data with respect
to the self-similar case, such that for any ξ ∈ R

|T̂x(0, ξ)|2 < 4(1− e−π|α0|2) + ε.

In particular for small perturbations we obtain for any t > 0

Ξ(T (0)) < 4π|α0|2 = Ξ(T (t)).

A similar statement holds for the normal vector N(t).

Our final result is an observation that uses Theorem 1.1 to reinforce the conjecture done
in [13] about the evolution of a regular planar polygon according to the binormal flow (see
also [17], [21], [15]). In that paper, and after some theoretical arguments, it is conjectured
that the evolution of a regular polygon is periodic in time, and that at rational multiples
of the time period the curve is a skew polygon with the same angle between consecutive
sides. In [13] the size of this angle is guessed from the data obtained in the numerical
simulations, while in this paper we obtain it from the energy Ξ(T (t)).

The paper is organized as follows. In the next section we prove the asymptotic behavior
in space of the tangent and modulated normal vectors, and see that this behavior is inde-
pendent of time. This information allows us to prove Theorem 1.1 in §3. Finally, in the
last section we make the observation about planar regular polygons mentioned above.

2. Asymptotic behavior in space of the orthonormal frame

Lemma 2.1. There exist T±∞ with |T±∞| = 1 such that for all t > 0

(19) T±∞ = lim
x→±∞

T (t, x).

Moreover,

|T (t, x)− T±∞| ≤ C(t, {αj})
〈x〉

,∀x ∈ R∗,±x > 0,

where 〈x〉 = 1 + |x|.

1the existence of Ñ(0, x) is proved in Lemmas 4.5 in [4].
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Proof. We shall first prove that for fixed t > 0 there exists a unit vector T∞(t) which is
the limit of T (t, x) as x goes to ∞ ; the asymptotic behavior at −∞ can be treated in the
same way.

As Tx = <(uN) we get for 0 < x1 < x2:

T (t, x2)− T (t, x1) = <
∫ x2

x1

∑
j

Aj(t)
e−i

(x−j)2
4t

√
t

N(t, x)dx.

We perform an integration by parts using the quadratic oscillatory phase to get 1
x decay

in space:

T (t, x2)− T (t, x1) =

<∑
j

Aj(t)e
−ix

2

4t
4t

−i2x
ei
xj
2t
−i j

2

4t

√
t

N(t, x)

x2
x1

−=2
√
t
∑
j

Aj(t)e
−i j

2

4t

∫ x2

x1

e−i
x2

4t

(
ei
xj
2t

x
N(t, x)

)
x

dx.

Since Nx = −uT ,∣∣∣∣∣∣T (t, x2)− T (t, x1)−= i√
t

∑
j

jAj(t)e
−i j

2

4t

∫ x2

x1

e−i
x2

4t
ei
xj
2t

x
N(t, x)dx

−=2
√
t
∑
j

Aj(t)e
−i j

2

4t

∫ x2

x1

e−i
x2

4t
ei
xj
2t

x

∑
k

Ak(t)
ei

(x−k)2
4t

√
t

T (t, x)dx

∣∣∣∣∣∣ ≤ C
√
t‖{Aj(t)}‖l1

x1
.

In the first integral we perform again an integration by parts using the quadratic phase to
obtain integrability in space:∣∣∣∣∣∣T (t, x2)− T (t, x1)− 2=

∑
j 6=k

Aj(t)Ak(t)e
i k

2−j2
4t

∫ x2

x1

ei
x(j−k)

2t
T (t, x)

x
dx

∣∣∣∣∣∣
≤ C

(√
t‖{Aj(t)}‖l1

x1
+

√
t‖{jAj(t)}‖l1

x2
1

+
‖{j2Aj(t)}‖l1

x1

√
t

+
‖{jAj(t)}‖l1‖{Aj(t)}‖l1

x1

)
.

Above we have used that the term j = k cancels. Now we perform an integration by parts
using the linear phase, even though we don’t improve the decay in x:∣∣∣∣∣∣T (t, x2)− T (t, x1) + 2=

∑
j 6=k

Aj(t)Ak(t)e
i k

2−j2
4t

∫ x2

x1

ei
x(j−k)

2t
2t

i(j − k)

(
T (t, x)

x

)
x

dx

∣∣∣∣∣∣
≤ C

(√
t‖{Aj(t)}‖l1

x1
+

√
t‖{jAj(t)}‖l1

x2
1

+
‖{j2Aj(t)}‖l1

x1

√
t

+
‖{jAj(t)}‖l1‖{Aj(t)}‖l1

x1

)
.

In this way we can use that Tx = <(uN), so that a new oscillatory term with a quadratic
phase appears:

|T (t, x2)− T (t, x1)
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+2
√
t=
∑
j 6=k;r

Aj(t)Ak(t)Ar(t)
ei
−r2+k2−j2

4t

i(j − k)

∫ x2

x1

e−i
x2

4t
ei
x(j−k+r)

2t

x
N(t, x)dx

+2
√
t=
∑
j 6=k;r

Aj(t)Ak(t)Ar(t)
ei
r2+k2−j2

4t

i(j − k)

∫ x2

x1

ei
x2

4t
ei
x(j−k−r)

2t

x
N(t, x)dx

∣∣∣∣∣∣
≤ C

(√
t‖{Aj(t)}‖l1

x1
+

√
t‖{jAj(t)}‖l1

x2
1

+
‖{j2Aj(t)}‖l1

x1

√
t

+
‖{jAj(t)}‖l1‖{Aj(t)}‖l1

x1

)
.

Hence, we can perform again an integration by parts to get decay in space:

|T (t, x2)− T (t, x1)

−4t
√
t<
∑
j 6=k;r

Aj(t)Ak(t)Ar(t)
ei
−r2+k2−j2

4t

i(j − k)

∫ x2

x1

e−i
x2

4t

(
ei
x(j−k+r)

2t

x2
N(t, x)

)
x

dx

+4t
√
t<
∑
j 6=k;r

Aj(t)Ak(t)Ar(t)
ei
r2+k2−j2

4t

i(j − k)

∫ x2

x1

ei
x2

4t

(
ei
x(j−k−r)

2t

x2
N(t, x)

)
x

dx

∣∣∣∣∣∣
≤ C

(√
t‖{Aj(t)}‖l1

x1
+

√
t‖{jAj(t)}‖l1

x2
1

+
‖{j2Aj(t)}‖l1

x1

√
t

+
‖{jAj(t)}‖l1‖{Aj(t)}‖l1

x1
+

√
t‖{Aj(t)}‖3l1

x2
1

)
.

As Nx = −uT and as |T (t, x2)− T (t, x1)| ≤ 2 we have obtained for 0 < x1 < x2:

|T (t, x2)− T (t, x1)| ≤ C(t, {αj})
〈x1〉

,

with

(20) C(t, {αj}) = C

(
1 +
√
t‖{jAj(t)}‖l1 +

‖{j2Aj(t)}‖l1√
t

+ ‖{jAj(t)}‖l1‖{Aj(t)}‖l1

+
√
t‖{Aj(t)}‖3l1 +

‖{Aj(t)}‖3l1√
t

+ t‖{Aj(t)}‖4l1
)
.

By making x1, x2 →∞ we thus obtain the existence of

(21) T∞(t) := lim
x→∞

T (t, x),

with the desired rate of convergence of the statement.
Now we shall prove that this vector limit is independent of t > 0. Let 0 < t1 < t2 and

ε > 0. In view of (21) we can choose x0 such that for all x ≥ x0 we have

|T (t1, x)− T∞(t1)|+ |T (t2, x)− T∞(t2)| ≤ ε.
Thus in order to get the conclusion (19) of the Lemma, it will be enough to find x ≥ x0

such that

(22) |T (t2, x)− T (t1, x)| ≤ ε.
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To this purpose we use that Tt = =(uxN), Nt = −iuxT+i
(
|u|2

2 −
M
2t

)
N . These expressions

involve a loss of x. However, if a quadratic oscillatory phase e−i
x2

4t is present, integrating it
in time yields 1

x2
decay, so eventually we gain 1

x decay with each such integration by parts:

T (t2, x)− T (t1, x) = =
∫ t2

t1

∑
j

ei(|αj |
2−M) log

√
tÃj(t)

e−i
(x−j)2

4t

√
t

(−i)x− j
2t

N(t, x)dt

= O(
1

x
)− 2=

∫ t2

t1

∑
j

e−i
x2

4t
x− j
x2

(
ei(|αj |

2−M) log
√
tÃj(t)e

ixj
2t
−i j

2

4t

√
tN(t, x)

)
t

dt

= O(
1

x
) + <

∫ t2

t1

∑
j

e−i
x2

4t
x− j
x

ei(|αj |
2−M) log

√
tjÃj(t)

ei
xj
2t
−i j

2

4t

t
√
t

N(t, x)dt

−2=
∫ t2

t1

∑
j

e−i
x2

4t
x− j
x2

ei(|αj |
2−M) log

√
tÃj(t)e

ixj
2t
−i j

2

4t

√
tNt(t, x)dt.

In the first integral we perform again an integration by parts from the quadratic case to
get the desired 1

x decay, while for the second integral we have to treat only the iuxT part
of Nt:

T (t2, x)− T (t1, x) = O(
1

x
)

+2=
∫ t2

t1

∑
j 6=k

(x− j)(x− k)

x2
ei(|αj |

2−|αk|2) log
√
tÃj(t)Ãk(t)e

i
x(j−k)

2t
−i j

2−k2
4t

T (t, x)

t
dt.

Now we perform an integration by parts using the linear phase in x to get:

T (t2, x)− T (t1, x) = O(
1

x
)

+4<
∫ t2

t1

∑
j 6=k

(x− j)(x− k)

x3(j − k)
ei
x(j−k)

2t

(
ei(|αj |

2−|αk|2) log
√
tÃj(t)Ãk(t)e

−i j
2−k2
4t tT (t, x)

)
t

dt

= O(
1

x
)

+4<
∫ t2

t1

∑
j 6=k

(x− j)(x− k)

x3(j − k)
ei
x(j−k)

2t ei(|αj |
2−|αk|2) log

√
tÃj(t)Ãk(t)e

−i j
2−k2
4t t×

×=

∑
r

ei(|αr|
2−M) log

√
tÃr(t)

e−i
(x−r)2

4t

√
t

(−i)x− r
2t

N(t, x)

 dt.

Although we still do not get enough decay in x we have got a quadratic phase in x. Hence,
we perform another integration by parts using it to get an extra 1

x decay:

T (t2, x)− T (t1, x) = O(
1

x
).
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Therefore we can find x depending on x0, t1, t2 and {αj} such that (22) holds, and the
Lemma follows.

�

Lemma 2.2. There exist N±∞ ∈ S2 + iS2, S2 denoting the unit sphere in R3, such that
for all t > 0

(23) N±∞ = lim
x→±∞

NM (t, x),

where for x 6= 0

NM (t, x) = e
iM log

|x|√
tN(t, x).

As a consequence we also have

N±∞ = lim
x→±∞

e
iM log

〈x〉√
tN(t, x).

Moreover, we have the following rate of convergence

|eiM log
〈x〉√
tN(t, x)−N±∞| ≤ C(t, {αj})

〈x〉
, ∀x ∈ R∗±.

Proof. As done for the tangent vector, we shall first prove that for fixed t > 0 there exists
a limit vector N∞(t) for NM (t, x) as x goes to ∞ ; the asymptotic at −∞ can be treated
in the same way.

As for x > 0

(NM )x = (−uT + i
M

x
N)e

iM log x√
t , Tx = <(uN),

we get for 0 < x1 < x2 by integrating by parts:

NM (t, x2)−NM (t, x1)

=

∫ x2

x1

−∑
j

Aj(t)
ei

(x−j)2
4t

√
t

T (t, x) + i
M

x
N(t, x)

 e
iM log x√

tdx

=

−∑
j

Aj(t)e
ix

2

4t
2t

ix

e−i
xj
2t

+i j
2

4t

√
t

T (t, x)e
iM log x√

t

x2
x1

−
∫ x2

x1

2i
√
t
∑
j

ei
j2

4tAj(t)e
ix

2

4t

(
e−i

xj
2t T (t, x)

e
iM log x√

t

x

)
x

dx

+

∫ x2

x1

i
M

x
N(t, x)e

iM log x√
tdx.

Thus ∣∣∣∣∣∣NM (t, x2)−NM (t, x1) +

∫ x2

x1

1√
t

∑
j

ei
j2

4t jAj(t)e
ix

2

4t e−i
xj
2t T (t, x)

e
iM log x√

t

x
dx
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+

∫ x2

x1

2i
∑
j

Aj(t)e
i
(x−j)2

4t <

(∑
k

Ak(t)e
−i (x−k)

2

4t N(t, x)

)
e
iM log x√

t

x
dx

−
∫ x2

x1

i
M

x
N(t, x)e

iM log x√
tdx

∣∣∣∣ ≤ C√t‖{Aj(t)}‖l1x1
.

In the first integral we perform again an integration by parts using the quadratic phase
x2, and get integrability with a 1

x1
decay. In the second integral we develop the real part.

The diagonal k = j terms of its non-conjugated part cancel with the third integral, as we
have the conservation law M =

∑
j |αj |2 =

∑
j |Aj(t)|2. We are left with:∣∣∣∣∣∣NM (t, x2)−NM (t, x1) + i

∑
j 6=k

Aj(t)Ak(t)e
i j

2−k2
4t

∫ x2

x1

e−i
x(j−k)

2t N(t, x)
e
iM log x√

t

x
dx

+i
∑
j,k

Aj(t)Ak(t)e
i j

2+k2

4t

∫ x2

x1

ei
x2

2t e−i
x(j+k)

2t N(t, x)
e
iM log x√

t

x
dx

∣∣∣∣∣∣ .
≤ C

(√
t‖{Aj(t)}‖l1

x1
+

√
t‖{jAj(t)}‖l1

x2
1

+
‖{j2Aj(t)}‖l1

x1

√
t

+
‖{jAj(t)}‖l1‖{Aj(t)}‖l1

x1

)
In the second integral, a new integration by parts using the quadratic phase x2 yields
integrability with a 1

x1
decay. In the first integral we integrate by parts using the linear

phase x(j − k):∣∣∣∣∣∣NM (t, x2)−NM (t, x1) + 2t
∑
j 6=k

Aj(t)Ak(t)

j − k
ei
j2−k2

4t

∫ x2

x1

e−i
x(j−k)

2t Nx(t, x)
e
iM log x√

t

x
dx

∣∣∣∣∣∣
≤ C

(√
t‖{Aj(t)}‖l1

x1
+

√
t‖{jAj(t)}‖l1

x2
1

+
‖{j2Aj(t)}‖l1

x1

√
t

+
‖{jAj(t)}‖l1‖{Aj(t)}‖l1

x1
+

√
t‖{Aj(t)}‖3l1

x2
1

)
.

As Nx(t, x) = −uT (t, x) contains ei
x2

4t , we perform a last integration by parts using this
quadratic phase to get for all 0 < x1 < x2:

|NM (t, x2)−NM (t, x1)| ≤ C(t, {αj})
〈x1〉

,

with the same constant C(t, {αj}) as in (20):

C(t, {αj}) = C

(
1 +
√
t‖{jAj(t)}‖l1 +

‖{j2Aj(t)}‖l1√
t

+ ‖{jAj(t)}‖l1‖{Aj(t)}‖l1

+
√
t‖{Aj(t)}‖3l1 +

‖{Aj(t)}‖3l1√
t

+ t‖{Aj(t)}‖4l1
)
.

It follows that we have a limit

(24) N∞(t) := lim
x→∞

NM (t, x),
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with a rate of convergence in space as in the statement of the lemma.
We are thus left to show the independence on time of N∞(t). We fix 0 < t1 < t2 and

ε > 0, choose x0 such that

|NM (t1, x)−N∞(t1)|+ |NM (t2, x)−N∞(t2)| ≤ ε.
To finish the proof of the lemma, it will be enough to find x ≥ x0 such that

(25) |NM (t2, x)−NM (t1, x)| ≤ ε.
As the evolution in time laws are

Tt = =(uxN), (NM )t =

(
−iuxT + i

(
|u|2

2
− M

2t

)
N − iM

2t
N

)
e
iM log x√

t ,

we can write

NM (t2, x)−NM (t1, x) =

∫ t2

t1

−i∑
j

e−i(|αj |
2−M) log

√
tÃj(t)

ei
(x−j)2

4t

√
t

i
x− j

2t
T (t, x)

+i
∑
j 6=k

e−i(|αj |
2−|αk|2) log

√
tÃj(t)Ãk(t)

ei
j2−k2

4t
−ix(j−k)

2t

2t
N − iM

2t
N

 e
iM log x√

tdt.

In the first integral we perform an integration by parts using the quadratic phase, while in
the second we use the linear one:

NM (t2, x)−NM (t1, x) =

∑
j

e−i(|αj |
2−M) log

√
tÃj(t)

ei
(x−j)2

4t

√
t

(−4t2

ix2
)
x− j

2t
T (t, x)e

iM log x√
t

t2
t1

−2i

∫ t2

t1

∑
j

x− j
x2

ei
x2

4t

(
e−i(|αj |

2−M) log
√
tÃj(t)e

−ixj
2t

+i j
2

4t

√
t T (t, x)e

iM log x√
t

)
t

dt

+

i∑
j 6=k

e−i(|αj |
2−|αk|2) log

√
tÃj(t)Ãk(t)

ei
j2−k2

4t
−ix(j−k)

2t

2t

2t2

ix(j − k)
Ne

iM log x√
t

t2
t1

−
∫ t2

t1

i
∑
j 6=k

1

x(j − k)
e−i

x(j−k)
2t

(
e−i(|αj |

2−|αk|2) log
√
tÃj(t)Ãk(t)e

i j
2−k2
4t tNe

iM log x√
t

)
t

dt

−
∫ t2

t1

i
M

2t
Ne

iM log x√
tdt

= O(
1

x
) +

∫ t2

t1

∑
j

x− j
x

ei
x2

4t e−i(|αj |
2−M) log

√
tjÃj(t)e

−ixj
2t

+i j
2

4t
1

t
√
t
T (t, x)e

iM log x√
tdt

−2i

∫ t2

t1

∑
j

x− j
x2

ei
x2

4t e−i(|αj |
2−M) log

√
tÃj(t)e

−ixj
2t

+i j
2

4t

√
t Tt(t, x)e

iM log x√
tdt
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−
∫ t2

t1

i
∑
j 6=k

1

x(j − k)
e−i

x(j−k)
2t e−i(|αj |

2−|αk|2) log
√
tÃj(t)Ãk(t)e

i j
2−k2
4t tNte

iM log x√
tdt

−
∫ t2

t1

i
M

2t
Ne

iM log x√
tdt := O(

1

x
) + I1 + I2 + I3 + I4.

In the first integral I1 an integration by p arts using the quadratic phase gives us the 1
x

decay. The second integral can be rewritten as

I2 = O(
1

x
)− 2i

x

∫ t2

t1

∑
j

ei
x2

4t e−i(|αj |
2−M) log

√
tÃj(t)e

−ixj
2t

+i j
2

4t

√
t=(uxN(t, x))e

iM log x√
tdt

= O(
1

x
) + i

∫ t2

t1

∑
j,k

ei
(x−j)2−(x−k)2

4t e−i(|αj |
2−|αk|2) log

√
tÃj(t)Ãk(t)

1

2t
N(t, x)e

iM log x√
tdt

−i
∫ t2

t1

∑
j,k

ei
(x−j)2+(x−k)2

4t e−i(|αj |
2+|αk|2−2M) log

√
tÃj(t)Ãk(t)

1

2t
N(t, x)e

iM log x√
tdt

= O(
1

x
)− I4 + i

∫ t2

t1

∑
j 6=k

ei
x(j−k)

2t
−i j

2−k2
4t e−i(|αj |

2−|αk|2) log
√
tÃj(t)Ãk(t)

1

2t
N(t, x)e

iM log x√
tdt

−i
∫ t2

t1

∑
j,k

ei
x2

2t ei
−x(j+k)

2t
+i j

2+k2

4t e−i(|αj |
2+|αk|2−2M) log

√
tÃj(t)Ãk(t)

1

2t
N(t, x)e

iM log x√
tdt,

where we used the conservation law M =
∑

j |αj |2 =
∑

j |Ãj(t)|2. In the first integral we

integrate by parts using the linear phase in x, that gives the decay 1
x except when the

derivative in time falls on N . This term involves a power of x but also an oscillatory term
with a quadratic phase in x. Another integration by parts gives eventually the decay 1

x . In
the last integral a new integration by parts using the quadratic phase gives immediately
the decay 1

x . Therefore

I2 + I4 = O(
1

x
).

Finally, in I3 there is a factor 1
x and from Nt we loose a power of x just for the term −uxT .

However, this term introduces back the quadratic phase in x, and a new integration by
parts yields the 1

x decay. Therefore

NM (t2, x)−NM (t1, x) = O(
1

x
),

so (25) follows. The proof of the lemma is over.
�
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3. Proof of Theorem 1.1

3.1. The result on the tangent vector. We start with the proof of the results at time
t = 0, namely (15). We will rely from section 4.6 in [4] that at t = 0 the curve is a polygonal
line so that T (0, x) is piecewise constant with jumps at the integers j ∈ Z and that

Tx(0) =
∑
j

(T (0, j+)− T (0, j−))δj =
∑
j

Θj(A
+
|αj | −A

−
|αj |)δj .

Here Θj denotes an appropriate rotation (see [4]) and A±|αj | are the two unit vectors rep-

resenting the limits at ±∞ of the tangent of the self-similar solution χ|αj |. Then, we
have

T̂x(0, ξ) =
∑
j

Θj(A
+
|αj | −A

−
|αj |)e

i2πjξ.

In particular T̂x(0, ξ) is periodic in ξ and we get by Plancherel’s theorem that for any k∫ k+1

k
|T̂x(0, ξ)|2dξ =

∑
j

|Θj(A
+
|αj | −A

−
|αj |)|

2 =
∑
j

|A+
|αj | −A

−
|αj ||

2.

Therefore calling θj the angle between A+
|αj | and A−|αj | and using (3) and (4) in [4] we have

|A+
|αj | −A

−
|αj ||

2 = 2(1− cos θj) = 4(1− e−π|αj |2),

so that we obtain (15), and implicitly (16).

Now we fix t > 0 and our purpose it to compute Ξ(t) and to obtain (14). Let 0 < ε < 1.
In view of (10) we choose jε depending on ε, t and {αj} such that

(26)
∑
|j|≥jε

|Aj(t)| ≤ ε.

In the following C will denote a generic constant dependent on t and {αj}, unless it is
specified othewise.

Since Tx(t, x) = <(uN)(t, x) we have

T̂x(t, ξ) =

∫ ∞
−∞

ei2πxξ <(uN)(t, x)dx

=

∫ ∞
−∞

ei2πxξ <(
∑
j

Aj(t)
e−i

(x−j)2
4t

√
t

N(t, x))dx.

We denote η+ a smooth function vanishing on x < −1
2 and valued 1 on x > 1

2 , and we
denote η− = 1− η+, so that

T̂x(t, ξ) =
∑
±

∫ ∞
−∞

ei2πxξ <(
∑
j

Aj(t)
e−i

(x−j)2
4t

√
t

N(t, x)) η±(x)dx.
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With the notations from Lemma 2.2, on the integral involving η± we split

N(t, x) = N±∞e
−iM log

〈x〉√
t + g±N (t, x),

where

g±N (t, x) := (N(t, x)−N±∞e−iM log
〈x〉√
t ).

We define

(27) T̂x(t, ξ) = I(t, ξ) + J(t, ξ),

where I(t, ξ) gathers the terms in T̂x(t, ξ) corresponding to N±∞ and J(t, ξ) the ones cor-
responding to g±N . We shall start by estimating the second term J(t, ξ).

First, we complete the squares of the phases:

J(t, ξ) =
1

2

∑
±

∫ ∞
−∞

ei2πxξ
∑
j

Aj(t)
e−i

(x−j)2
4t

√
t

g±N (t, x) η±(x)dx

+
1

2

∑
±

∫ ∞
−∞

ei2πxξ
∑
j

Aj(t)
ei

(x−j)2
4t

√
t

g±N (t, x) η±(x)dx

=
ei4π

2tξ2

2
√
t

∑
±,j

ei2πjξ Aj(t)

∫ ∞
−∞

e−i
(x−j−4πtξ)2

4t g±N (t, x) η±(x)dx

+
e−i4π

2tξ2

2
√
t

∑
±,j

ei2πjξ Aj(t)

∫ ∞
−∞

ei
(x−j+4πtξ)2

4t g±N (t, x) η±(x)dx.

We split now the summation into |j| < jε and |j| ≥ jε, and call the corresponding terms
J l(t, ξ) and Jh(t, ξ).

Lemma 3.1. There exists ξ(ε, t, {αj}) ∈ R such that for ξ ≥ ξ(ε, t, {αj}) and 4πtξ /∈ Z we
have the bounds

|J l(t, ξ)| ≤

{
Cε, if d(2πξ, Z

2t) ≥ 1,

Cε | log(d(2πξ, Z
2t))|, if d(2πξ, Z

2t) < 1.

Proof. In virtue of Lemma 2.2, g±N are bounded functions with

|g±N (t, x)| ≤ C

〈x〉
,∀x ∈ R∗±,

so g±N (t, x)η±(x) converge to zero at both −∞ and +∞. Therefore we can remove from

J l(t, ξ) =
ei4π

2tξ2

2
√
t

∑
±,|j|<jε

ei2πjξ Aj(t)

∫ ∞
−∞

e−i
(x−j−4πtξ)2

4t g±N (t, x)η±(x)dx
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+
e−i4π

2tξ2

2
√
t

∑
±,|j|<jε

ei2πjξ Aj(t)

∫ ∞
−∞

ei
(x−j+4πtξ)2

4t g±N (t, x)η±(x)dx,

bounded pieces of the integrals in x located around j ± 4πtξ. Indeed on these parts, since
|j| ≤ jε, we have convergence to zero as ξ goes to infinity. Therefore there exists ξ(ε, t, {αj})
such that for ξ ≥ ξ(ε, t, {αj}) we have

|J l(t, ξ)− J l1(t, ξ)| ≤ ε,
where

J l1(t, ξ) =
ei4π

2tξ2

2
√
t

∑
±,|j|<jε

ei2πjξ Aj(t)

∫ ∞
−∞

e−i
(x−j−4πtξ)2

4t g±N (t, x)η±(x)χ(x− j − 4πtξ)dx

+
e−i4π

2tξ2

2
√
t

∑
±,|j|<jε

ei2πjξ Aj(t)

∫ ∞
−∞

ei
(x−j+4πtξ)2

4t g±N (t, x)η±(x)χ(x− j + 4πtξ)dx,

and χ(s) is a smooth function vanishing on {x, |x| < 1
2}, and valued 1 on {x, |x| > 1}. In

particular the support of χ′ is bounded. Now we integrate by parts using the quadratic
phases. Again since g±N (t, x)η±(x) converge to zero at both −∞ and +∞ there are no
boundary terms and we get:

J l1(t, ξ) = −i
√
tei4π

2tξ2
∑
±,|j|<jε

ei2πjξ Aj(t)

∫ ∞
−∞

e−i
(x−j−4πtξ)2

4t

(
g±N (t, x)η±(x)χ(x− j − 4πtξ)

x− j − 4πtξ

)
x

dx

+i
√
te−i4π

2tξ2
∑
±,|j|<jε

ei2πjξ Aj(t)

∫ ∞
−∞

ei
(x−j+4πtξ)2

4t

(
g±N (t, x)η±(x)χ(x− j + 4πtξ)

x− j + 4πtξ

)
x

dx.

When the derivative falls on χ or on the denominator, we get again smallness by using
the dominated convergence theorem. We are left with the terms involving (g±N )x = −uT +

iM〈x〉N
±∞e

−iM log
〈x〉√
t . Now we note that we can discard also the last term of (g±N )x(t, x)

as for instance 2∣∣∣∣∣∣
∫ ∞
−∞

e∓i
(x−j∓4πtξ)2

4t
e
∓iM log

〈x〉√
t

(x− j ∓ 4πtξ)〈x〉
η+(x)χ(x− j ∓ 4πtξ)dx

∣∣∣∣∣∣ ≤ C

|j ± 4πtξ|
≤ ε,

for ξ > 0 far away from the finite set {j, |j| < jε} and choosing ξ(ε, t, {αj}) larger if needed.

Therefore, we are left with estimating the terms of J l1(t, ξ) involving the −uT part of (g±N )x:
there exists ξ(ε, t, {αj}) such that for ξ ≥ ξ(ε, t, {αj}) we have

|J l(t, ξ)− J l2(t, ξ)| ≤ Cε,

2Indeed, we can use for large a the fact that
∫
eis

2 eiM log〈a+s〉

s〈a+s〉 η±(a + s)χ(s)ds = O( 1
a

) +∫
eis

2
(
eiM log〈a+s〉

s2〈a+s〉 η±(a+ s)χ(s)
)
s
ds, and split the integral into regions 1

2
≤ |s| ≤ a

2
, a
2
≤ |s| ≤ 2a, 2a ≤ |s|

to get a 1
a

-bound.
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with

J l2(t, ξ) = i
∑
±,|j|<jε

Aj(t)

∫ ∞
−∞

∑
r Ar(t)e

i
x(j−r+4πtξ)

2t e−i
j2−r2

4t

x− j − 4πtξ
T (t, x)η±(x)χ(x− j − 4πtξ)dx

−i
∑
±,|j|<jε

Aj(t)

∫ ∞
−∞

∑
r Ar(t)e

i
x(r−j+4πtξ)

2t ei
j2−r2

4t

x− j + 4πtξ
T (t, x)η±(x)χ(x− j + 4πtξ)dx.

Note that the summation
∑
± and η± can be now removed as η+ + η− = 1.

We treat first the terms involving |r| < jε. If needed we choose ξ(ε, t, {αj}) larger such
that for |r| < jε and ξ ≥ ξ(ε, t, {αj}) we have:

1

±(j − r) + 4πtξ
≤ ε.

We perform in the corresponding integrals an integration by parts using the linear phase in
x. Then, we get the ε-smallness from the above constraint, and the integral that yields is
uniformly bounded. Indeed, when the derivative falls either on χ, η± or on the denominator

1
x−j∓4πtξ we get immediately an uniform bound on the integral. When the derivative falls

on T (t, x) it generates a quadratic phase. Hence we can first remove a bounded piece of
the integral centered where the phase vanishes, and then we can integrate by parts to get
again a uniform bound for the integral.

We are thus left with estimating the terms involving |r| ≥ jε, for which the linear phase
might approach zero: there exists ξ(ε, t, {αj}) such that for ξ ≥ ξ(ε, t, {αj}) we have

|J l(t, ξ)− J l3(t, ξ)| ≤ Cε,

with

(28) J l3(t, ξ) = i
∑

|j|<jε,|r|≥jε

Aj(t)Ar(t) I
+(t, ξ, j, r)− i

∑
|j|<jε,|r|≥jε

Aj(t)Ar(t) I
−(t, ξ, j, r),

where

(29) I±(t, ξ, j, r) := e∓i
j2−r2

4t

∫ ∞
−∞

eix(± j−r
2t

+2πξ)

x− j ∓ 4πtξ
T (t, x)χ(x− j ∓ 4πtξ) dx.

We first note that in view of (26) we have ε−smallness of
∑
|r|≥jε |Ar(t)|. For 4πtξ /∈ Z

we can integrate by parts in I±(t, ξ, j, r) using the linear phase to get the bound C
d(4πξ, Z

t
)
.

Therefore, we cannot control this way the L2(k, k+1) norm in ξ. To overcome this difficulty
we shall prove that for 4πtξ /∈ Z:

(30) |I±(t, ξ, j, r)| ≤

{
C, if | ± j−r

t + 4πξ| ≥ 1,

C| log(| ± j−r
t + 4πξ|)|, if | ± j−r

t + 4πξ| < 1.
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These bounds imply

|I+(t, ξ, j, r)|+ |I−(t, ξ, j, r)| ≤


C, if | j−rt + 4πξ| ≥ 1, | j−rt + 4πξ| ≥ 1,

C| log(| j−rt + 4πξ|)|, if | j−rt + 4πξ| < 1,

C| log(| − j−r
t + 4πξ|)|, if | − j−r

t + 4πξ| < 1.

Note that for 0 < t < 1 the last two regions intersect if and only if |2(j− r)| < 2t < 2, that
is when r = j and in that case the bound is the same, C log(4π|ξ|). Then, by summing in
j and r, and by using (26) we get for 4πtξ /∈ Z the bounds

|J l3(t, ξ)| ≤

{
Cε, if d(4πξ, Zt ) ≥ 1,

Cε | log(d(4πξ, Zt ))|, if d(4πξ, Zt ) < 1,

thus the lemma follows from (28).

We are thus left with proving (30). We split the integral in I+(t, ξ, j, r) into the regions
x < 0 and x > 0:

I±(t, ξ, j, r) = e∓i
j2−r2

4t

∫ ∞
0

eix(± j−r
2t

+2πξ)

x− j ∓ 4πtξ
T (t, x)χ(x− j ∓ 4πtξ) dx

+e∓i
j2−r2

4t

∫ 0

−∞

eix(± j−r
2t

+2πξ)

x− j ∓ 4πtξ
T (t, x)χ(x− j ∓ 4πtξ) dx.

By using the convergence rate in Lemma 2.1:

|(T (t, x)− T∞)I(0,∞)(x)|+ |(T (t, x)− T−∞)I(−∞,0)(x)| ≤ C

〈x〉
,∀x ∈ R,

and in view of the definition of χ we get

|I±(t, ξ, j, r)− Ĩ±(t, ξ, j, r)| ≤ C,

where

(31) Ĩ±(t, ξ, j, r) := T∞e∓i
j2−r2

4t

∫
x>0,|x−j∓4πtξ|>1

eix(± j−r
2t

+2πξ)

x− j ∓ 4πtξ
dx

+T−∞e∓i
j2−r2

4t

∫
x<0,|x−j∓4πtξ|>1

eix(± j−r
2t

+2πξ)

x− j ∓ 4πtξ
dx.

If | ± j−r
t + 4πξ| ≥ 1 we perform an integration by parts using the linear phase and get

the bound uniform in ξ, j, and r in (30).

If | ± j−r
t + 4πξ| < 1 we denote for simplicity a = −j ∓ 4πtξ and b = ± j−r

2t + 2πξ. We

change variables x+ a = y, yb = s to rewrite Ĩ±(t, ξ, j, r) as:

(32) e∓i
j2−r2

4t e−iab (T∞
∫
s
b
>a, |s|>|b|

eis

s
ds+ T−∞

∫
s
b
<a, |s|>|b|

eis

s
ds),
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On the region where |s| > 1, due to the oscillatory phase we get a bound uniform in
ξ, j, and r. Finally, on the region where |b| < |s| < 1, if such regions exist, the integra-

tion of e
is

s yields a log(|b|) bound. Therefore we have obtained (30) and the Lemma follows.

For further purposes we note that we have obtained for | ± j−r
t + 4πξ| < 1 the estimate

(33) |Ĩ±(t, ξ, j, r)− e∓i
j2−r2

4t e−i(−j∓4πtξ)(± j−r
2t

+2πξ) (T∞ − T−∞)

×
∫
s>(−j∓4πtξ)(± j−r

2t
+2πξ), 1>|s|>|± j−r

2t
+2πξ|

eis

s
ds| ≤ C,

with C an universal constant. �

Lemma 3.2. There exists ξ(ε, t, {αj}) such that for ξ ≥ ξ(ε, t, {αj}) and 4πtξ /∈ Z we have
the bounds

|Jh(t, ξ)| ≤

{
Cε, if d(4πξ, Zt ) ≥ 1,

Cε | log(d(4πξ, Zt ))|, if d(4πξ, Zt ) < 1,

Proof. Recall that

Jh(t, ξ) =
ei4π

2tξ2

2
√
t

∑
±,|j|≥jε

ei2πjξ Aj(t)

∫ ∞
−∞

e−i
(x−j−4πtξ)2

4t g±N (t, x)η±(x)dx

+
e−i4π

2tξ2

2
√
t

∑
±,|j|≥jε

ei2πjξ Aj(t)

∫ ∞
−∞

ei
(x−j+4πtξ)2

4t g±N (t, x)η±(x)dx.

In this case we will get the ε-decay from Aj(t) thanks to (26). We can remove the same
pieces of the integrals as in the proof of the Lemma 3.1 to end with

(34) i
∑
|j|≥jε;r

Aj(t)Ar(t) I
+(t, ξ, j, r)− i

∑
|j|≥jε;r

Aj(t)Ar(t) I
−(t, ξ, j, r),

where I±(t, ξ, j, r) were defined in (29). This can be handled the same way as was done
for J l3(t, ξ) in the proof of Lemma 3.1. �

Lemma 3.3. For any ξ ∈ R we have:

|I(t, ξ)| ≤ C‖{Aj(t)}‖l1 ,
with C an universal constant. Moreover, there exists ξ(ε, t, {αj}) such that for k ≥
ξ(ε, t, {αj}) ∣∣∣∣∣∣

∫ k+1

k
|I(t, ξ)|2dξ − 4π

∑
j

|αj |2
∣∣∣∣∣∣ ≤ C ε.

Proof. We start by performing some change of variables in the expression of I(t, ξ):

I(t, ξ) =
1

2

∑
±

∫ ∞
−∞

ei2πxξ
∑
j

Aj(t)
e−i

(x−j)2
4t

√
t

N±∞e
−iM log

〈x〉√
t η±(x)dx
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+
1

2

∑
±

∫ ∞
−∞

ei2πxξ
∑
j

Aj(t)
ei

(x−j)2
4t

√
t

N±∞e
iM log

〈x〉√
t η±(x)dx

= N±∞
ei4π

2tξ2

2
√
t

∑
±,j

ei2πjξ Aj(t)

∫ ∞
−∞

e−i
(x−j−4πtξ)2

4t e
−iM log

〈x〉√
t η±(x)dx

+N±∞
e−i4π

2tξ2

2
√
t

∑
±,j

ei2πjξ Aj(t)

∫ ∞
−∞

ei
(x−j+4πtξ)2

4t e
iM log

〈x〉√
t η±(x)dx.

= N±∞ei4π
2tξ2

∑
±,j

ei2πjξ Aj(t)

∫ ∞
−∞

e−iy
2
e
−iM log

〈2
√
ty+j+4πtξ〉√

t η±(2
√
ty + j + 4πtξ)dy

+N±∞e−i4π
2tξ2

∑
±,j

ei2πjξ Aj(t)

∫ ∞
−∞

eiy
2
e
iM log

〈2
√
ty+j−4πtξ〉√

t η±(2
√
ty + j − 4πtξ)dy.

We first note that the integrals are uniformly bounded in j and ξ: the contribution of
the bounded region |y| < 1 is bounded as the integrant is of modulus less than one, while
the contribution of the region |y| > 1 is bounded by doing integrations by parts using the
quadratic phase. Therefore, we get the first bound of the Lemma.

To estimate
∫ k+1
k |I(t, ξ)|2dξ we shall split I(t, ξ) into a function of size of order ε and a

function of L2(k, k+ 1)-norm equal to 4π
∑

j |αj |2. In view of the definition (26) of jε, the

terms in I(t, ξ) involving |j| > jε can be upper-bounded by Cε. We are left with the terms
involving |j| ≤ jε. Observe that3

lim
a→±∞

(∫ ∞
−∞

eiy
2
eiM log〈2y+a〉η±(2

√
ty +

√
ta)dy − eiM log〈a〉

∫ ∞
−∞

eiy
2
dy

)
= 0,

and

lim
a→±∞

∫ ∞
−∞

eiy
2
eiM log〈2y+a〉η∓(2

√
ty +

√
ta)dy = 0.

Hence, choosing ξ(ε, t, {αj}) larger if needed, for |j| ≤ jε and ξ ≥ ξ(ε, t, {αj}) we get:∣∣∣∣∫ ∞
−∞

e∓iy
2
e
∓iM log

〈2
√
ty+j±4πtξ〉√

t η±(2
√
ty + j ± 4πtξ)ds− e∓iM log

〈j±4πtξ〉√
t

∫ ∞
−∞

e∓is
2
ds

∣∣∣∣ ≤ ε,
and ∣∣∣∣∫ ∞

−∞
e∓iy

2
e
∓iM log

〈2
√
ty+j±4πtξ〉√

t η∓(2
√
ty + j ± 4πtξ)ds

∣∣∣∣ ≤ ε.
Therefore we have for ξ ≥ kε
(35) |I(t, ξ)− I1(t, ξ)− I2(t, ξ)| ≤ C ε,

3Indeed, the integral
∫∞
−∞ e

iy2(eiM log〈2y+a〉− eiM log〈a〉)η±(2
√
ty+

√
ta)dy can be upper-bounded by C

|a|
on |s| < 1, while on |s| > 1 by performing integration by parts from the quadratic phase and by using the
dominated convergence theorem we get decay to zero as |a| → ∞. Then by the same type of arguments we

have lim
a→±∞

(∫∞
−∞ e

iy2η±(2
√
ty +

√
ta)dy −

∫∞
−∞ e

iy2dy
)

= 0 and lim
a→±∞

∫∞
−∞ e

iy2η∓(2
√
ty +

√
ta)dy = 0.
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where

I1(t, ξ) = N∞ei4π
2tξ2√πei

π
4

∑
|j|≤jε

ei2πjξ e
−iM log

〈j+4πtξ〉√
t Aj(t),

and

I2(t, ξ) = N−∞e−i4π
2tξ2√πe−i

π
4

∑
|j|≤jε

ei2πjξ e
iM log

〈j−4πtξ〉√
t Aj(t).

Since I1
1 (t, ξ) and I2

1 (t, ξ) are uniformly bounded by 2
√
π
∑

j |Aj(t)|, we obtain from (35)∣∣∣∣∫ k+1

k
|I(t, ξ)|2dξ −

∫ k+1

k
|I1(t, ξ)|2dξ −

∫ k+1

k
|I2(t, ξ)|2dξ −

∫ k+1

k
I1(t, ξ)I2(t, ξ)dξ

∣∣∣∣ ≤ C ε.
Then, as |N±∞| = 2, Plancherel’s formula gives us for k ≥ kε∣∣∣∣∣∣

∫ k+1

k
|I(t, ξ)|2dξ − 4π

∑
|j|≤jε

|Aj(t)|2 −
∫ k+1

k
I1(t, ξ)I2(t, ξ)dξ

∣∣∣∣∣∣ ≤ C ε.
Now we see that the crossed terms are∫ k+1

k
I1(t, ξ)I2(t, ξ)dξ = N∞.N−∞ πei

π
2

∑
|j1|,|j2|≤jε

Aj1(t)Aj2(t)×

×
∫ k+1

k
ei8π

2tξ2ei2π(j1−j2)ξe
−iM log

〈j+4πtξ〉√
t e

−iM log
〈j−4πtξ〉√

t dξ.

One single integration by parts using the quadratic phase in ξ gives us decay in k, so
choosing ξ(ε, t, {αj}) larger if needed we obtain for k ≥ ξ(ε, t, {αj})∣∣∣∣∣∣

∫ k+1

k
|I(t, ξ)|2dξ − 4π

∑
|j|≤jε

|Aj(t)|2
∣∣∣∣∣∣ ≤ C ε.

Recalling the choice (26) of jε and the conservation law (12) we get for k ≥ ξ(ε, t, {αj})∣∣∣∣∣∣
∫ k+1

k
|I(t, ξ)|2dξ − 4π

∑
j

|αj |2
∣∣∣∣∣∣ ≤ C ε.

�

Summarizing we have decomposed

T̂x(t, ξ) =: I(t, ξ) + J(t, ξ),

and proved in Lemmas 3.1-3.2-3.3 that there exists ξ(ε, t, {αj}) ∈ R such that for ξ ≥
ξ(ε, t, {αj}) and 4πtξ /∈ Z we have the bounds:

|J(t, ξ)| ≤

{
Cε, if d(4πξ, Zt ) ≥ 1,

Cε | log(d(4πξ, Zt ))|, if d(4πξ, Zt ) < 1;

|I(t, ξ)| ≤ C,
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and for all k ≥ ξ(ε, t, {αj}):∣∣∣∣∣∣
∫ k+1

k
|I(t, ξ)|2dξ − 4π

∑
j

|αj |2
∣∣∣∣∣∣ ≤ C ε.

We note that for ξ in an interval of size one, there are only a finite number of possible
locations where d(4πξ, Zt ) < 1, depending only on t, and on these regions J(t, ξ) is square
integrable. Therefore∣∣∣∣∣∣

∫ k+1

k
|T̂x(t, ξ)|2dξ − 4π

∑
j

|αj |2
∣∣∣∣∣∣ ≤ C ε, ∀k ≥ ξ(ε, t, {αj}).

The value of 0 < ε < 1 was arbitrary, the constant C is independent of ε, so we obtain
the conservation law (14), and the proof of Theorem 1.1 is complete.

3.2. The result on the normal vectors. In this subsection we obtain the results (17)

and (18) from Remark 1.3. We recall from Lemmas 4.5-4.7 in [4] that we have a limit Ñ(0)
at t = 0 of

Ñ(t, x) = e
i
∑
r 6=x |αr|2 log

|x−r|√
t N(t, x),

that is piecewise constant

Ñ(0, x) = Ñ(0, x′),∀x, x′ ∈ (j, j + 1), ∀j ∈ Z,
and

Ñ(0, j±) = ei
∑
r 6=j |αr|2 log |r−j|eiArg(αj)Θj(B

±
|αj |).

Here B±|αj | ∈ S2 + iS2 are defined in [16] in terms of the asymptotics at ±∞ of the normal

vectors of the self-similar solution χ|αj |. It follows that at t = 0 we have

Ñx(0) =
∑
j

(Ñ(0, j+)− Ñ(0, j−))δj =
∑
j

ei
∑
r 6=j |αr|2 log |r−j|eiArg(αj)Θj(B

+
|αj | −B

−
|αj |)δj ,

so ̂̃Nx(0, ξ) =
∑
j

ei
∑
r 6=j |αr|2 log |r−j|eiArg(αj)Θj(B

+
|αj | −B

−
|αj |)e

i2πj .

As ̂̃Nx(0, ξ) is periodic in ξ, we get by Plancherel’s theorem that for any k∫ k+1

k
|̂̃Nx(0, ξ)|2dξ =

∑
j

|Θj(B
+
|αj | −B

−
|αj |)|

2 =
∑
j

|B+
|αj | −B

−
|αj ||

2.

Therefore, as we know from [16] that

|B+
|αj | −B

−
|αj ||

2 = 4|B+
|αj |,1|

2 = 4(1− (A+
|αj |,1)2) = 4(1− e−π|αj |2),

we obtain (18).
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For t > 0 we fix ε ∈ (0, 1). We split:

N̂x(t, ξ) = −
∑
±

∫ ∞
−∞

ei2πxξ u(t, x)(T±∞ + (T (t, x)− T±∞))η±(x)dx

= −
∫ ∞
−∞

ei2πxξ
∑
±,j

Aj(t)
ei

(x−j)2
4t

√
t

(T±∞ + (T (t, x)− T±∞))η±(x)dx =: Ĩ(t, ξ) + J̃(t, ξ).

Proceeding as above for J(t, ξ) we get the existence of ξ(ε, t, {αj}) such that

J̃(t, ξ) = −
∫ ∞
−∞

ei2πxξ
∑
±,j

Aj(t)
ei

(x−j)2
4t

√
t

g±T (t, x)η±(x)dx

= −e−i4π2tξ2
∑
±,j

ei2πjξ Aj(t)

∫ ∞
−∞

ei
(x−j+4πtξ)2

4t g±T (t, x)η±(x)dx

satisfies, for ξ ≥ ξ(ε, t, {αj}) and 4πtξ /∈ Z,

|J̃(t, ξ)| ≤

{
Cε, if d(4πξ, Zt ) ≥ 1,

Cε | log(d(4πξ, Zt ))|, if d(4πξ, Zt ) < 1.

For Ĩ(t, ξ) we make the changes of variable x = j + 2
√
ty and s = y − 2π

√
tξ:

Ĩ(t, ξ) = −2
∑
±,j

T±∞ei2πjξ e−i|αj |
2 log

√
tAj(t)e

−i j
2

4t

∫ ∞
−∞

eiy
2−i4π

√
tξyη±(j + 2

√
ty)dy

= −2
∑
±,j

T±∞ei2πjξ Aj(t)e
−i j

2

4t e−i4π
2tξ2

∫ ∞
−∞

eis
2
η±(j + 4πtξ + 2

√
ts)ds.

Since for |j| > jε we get ε−smallness from the Aj ’s, and in view of the definition of η±, we
have

|Ĩ(t, ξ) + 2T∞e−i4π
2tξ2

∑
j

ei2πjξ Aj(t)e
−i j

2

4t
√
πei

π
4 | ≤ Cε.

In particular, we note that all the terms are uniformly bounded, so that by Plancherel’s
theorem we have ∣∣∣∣∣∣

∫ k+1

k
|Ĩ(t, ξ)|2dξ − 4π

∑
j

|Aj(t)|2
∣∣∣∣∣∣ ≤ Cε.

Therefore, as in the case of the tangent vector T we get that for k ≥ ξ(ε, t, {αj})

|
∫ k+1

k
|N̂x(t, ξ)|2dξ − 4π

∑
j

|Aj(t)|2| ≤ Cε.

As ε ∈ (0, 1) was arbitrary we get (17) by the conservation of mass (12).
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Remark 3.4. In view of the estimates we have obtained on the J(t, ξ), it is natural to

look for a logarithmic growth of T̂x(t, ξ) in terms of the distance d(4πξ, Zt ). Moreover, the

numerical computations given in [14] suggest the unboundedness of ‖T̂x‖∞ in the case of a
regular planar polygon as initial data.

By doing similar computations to the ones in this section, and by using in particular
(33), we obtain for values of ξ such that there exists n ∈ N, d ∈ (0, 1) satisfying

4πξ =
n

t
+ d,

the estimate:

(36)

∣∣∣∣∣∣T̂x(t, ξ)− i
∑
j

Aj(t)Aj+n(t) e−i
j2−(j+n)2

4t (T∞ − T−∞)

×eij
d
2

(
ein

d
2

∫
s>(−j−n) d

2
, 1>|s|> d

2

eis

s
ds−

∫
s>−j d

2
, 1>|s|> d

2

eis

s
ds

)∣∣∣∣∣ ≤ K(t, {αj}).

For instance, in the case of initial data αn0 = αnn = δ and αnj = 0 for j /∈ {0, n}, that

corresponds to a polygonal line with two corners separated by a distance of size n, in (36)
the sum reduces to the case j = 0, and we get:

(37)

∣∣∣∣T̂x(t, ξ)− iA0(t)An(t) ei
n2

4t (T∞ − T−∞)
(
ein

d
2 − 1

)
ei
d
2 log

d

2

∣∣∣∣ ≤ K(t, {αnj }).

For d� 1
n the factor ein

d
2 − 1 ruins the log d growth. Instead, for d ≈ 1

n we could look for
a log n growth. Unfortunately, the results we have at hand about the IVP of (3) are not
good enough, and we get a constant K(t, {αnj }) in n that grows faster than log n. On the

other hand it seems rather natural to be able to solve (3) and the corresponding equation
(1) just under the condition that

∑
j |αj |2 is finite. This question will be studied elsewhere.

4. An observation about the dynamics of a regular polygon

In this section we give some evidence that supports the conjecture made in [13] about
the evolution of a regular planar polygon according to the binormal flow.

As recalled in the Introduction, the case when the initial curve in (1) is a broken line
with just one corner of angle θ located at x = 0 was considered in [16]. In that paper
the Hasimoto transformation is still used, and a solution is found considering as initial
condition for (3) αδ0, where

sin
θ

2
= e−π

α2

2 ,

uα(t, x) = α e
i x

2

4t√
t

, and a(t) = α2

t . As a consequence, and except in the trivial situation of

one straight line where θ = π, the filament function of the initial curve χα(0), i.e. θδ0,
is not the limit of the filament functions of χα(t). Nevertheless, it was proved in [2] that
this solution is unique and the corresponding initial value problem is well posed in an
appropriate sense.
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Similarly, if χ(0) is a broken line with several corners of angles θj located at the integers
x = j it was proved in [4] that one has to consider the sequence {αj} with modulus defined
by

sin
θj
2

= e−π
|αj |

2

2 .

The phases are determined in a more complicated way involving the curvature and torsion
angles of χ(0). Nevertheless, if χ(0) is a planar polygon {αj} can be taken real. Then we

construct a solution of (3) with a(t) =
∑
j |αj |2

t , and datum at time zero given by
∑

j αjδj .
It is then natural to expect that in the case of a planar regular polygon with N sides as

initial data of (1) one has to consider as initial data for (3)

(38)
∑
j

α δ j
N

with α > 0 defined by

sin(
π

N
) = e−π

α2

2 .

By using the Galilean invariance and assuming uniqueness, it was shown in [13] that the
corresponding solution of (3) has to be written as

ψ(t, x) = ψ̂(t, 0)
∑
j

eit(2πNj)
2+i(2πNj)x.

In view of (38) and the Poisson summation formula
∑

j e
i(2πNj)x = 1

N

∑
j δ j

N
, we have

ψ̂(t, 0) = αN,

which therefore does not depend on time.
So, on one hand we have a behavior of the linear evolution

ψ(t, x) =
∑
j

ψ̂(t, 0)eit∆δ j
N
,

and we can think that the conservation law (12) also holds in the periodic setting4.

4We recall that the sequence {Aj(t)}j∈N was found by doing a fixed point argument on Ãk(t) for the
equation (24) in [4]:

i∂tÃk(t) = fk(t)− 1

8πt
(|Ãk(t)|2 − |αk|2)Ãk(t),

where

fk(t) =
1

8πt

∑
(j1,j2,j3)∈NRk

e−i
k2−j21+j22−j

3
3

4t e−i
|αk|

2−|αj1 |
2+|αj2 |

2−|αj3 |
2

4π
log
√
tÃj1(t)Ãj2(t)Ãj3(t),

with initial data Ãk(0) = αk. In particular we remark that for N ∈ N, {Bj(t)}j∈R with Bj(t) := ÃN+j(t)
solves also the equation. Therefore if the initial data satisfies αk+N = αk for all k, and there is uniqueness
of the solution, then we conclude that Ãk+N (t) = Ãk(t) for all k and t, so the periodic setting is preserved.
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As a consequence we would get

N(αN)2 = N |ψ̂(t, 0)|2.
On the other hand, it was proved in [13] making use again of the Poisson summation
formula, that for rational times tp,q the Talbot effect holds: if q is odd

ψ(tp,q, x) =
ψ̂(tp,q, 0)

Nq

∑
l

q−1∑
m=0

G(p, q,m)δl+ m
Nq

(x) =:
∑
l

q−1∑
m=0

αl,mδl+ m
Nq

(x),

with

|αl,m| =
|ψ̂(tp,q, 0)|
N
√
q

.

Then

|αl,m|2 =
|ψ̂(tp,q, 0)|2

N2q
,

so

e−π
|αl,m|

2

2 = e
−π |ψ̂(tp,q,0)|2

2N2q = (e−π
α2

2 )
1
q ,

therefore the angles θp,q of the skew polygon at time tp,q satisfy

sin(
θp,q
2

) = sin(
π

N
)
1
q ,

that is precisely the value given in [13] and obtained from the numerical data. Similarly
one can repeat the argument if q is even.
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