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On the energy of critical solutions of the binormal flow

The binormal flow is a model for the dynamics of a vortex filament in a 3-D inviscid incompressible fluid. The flow is also related with the classical continuous Heisenberg model in ferromagnetism, and the 1-D cubic Schrödinger equation. We consider a class of solutions at the critical level of regularity that generate singularities in finite time. One of our main results is to prove the existence of a natural energy associated to these solutions. This energy remains constant except at the time of the formation of the singularity when it has a jump discontinuity. When interpreting this conservation law in the framework of fluid mechanics, it involves the amplitude of the Fourier modes of the variation of the direction of the vorticity.

Introduction

In this paper we focus on qualitative and quantitative properties of singular solutions of the binormal flow. This geometric flow describes the evolution in time of a curve χ(t, x) in R 3 that is parametrized by arclength x, via the equation [START_REF] Arms | Localized-induction concept on a curved vortex and motion of an elliptic vortex ring[END_REF] χ t = χ x ∧ χ xx .

If in a 3-D fluid the vorticity is concentrated initially along a curve, it is expected that at least in some situations the vorticity at later times is still concentrated along another curve, whose evolution is dictated by the binormal flow. This was formally derived by Da Rios in [START_REF] Da Rios | On the motion of an unbounded fluid with a vortex filament of any shape[END_REF] after truncating the integral given by Biot-Savart's law (see also [START_REF] Murakami | On the vibration of a vortex filament[END_REF], [START_REF] Arms | Localized-induction concept on a curved vortex and motion of an elliptic vortex ring[END_REF], [START_REF] Callegari | Motion of a curved vortex filament with decaying vertical core and axial velocity[END_REF]). A more rigorous argument, but still under some strong assumptions, has been recently given by Jerrard and Seis in [START_REF] Jerrard | On the vortex filament conjecture for Euler flows[END_REF].

The binormal flow is linked to the 1-D cubic Schrödinger equation (NLS) in the following way. Taking the derivative in x of χ we obtain that the tangent vector T (t, x) ∈ S 2 satisfies the classical continuous Heisenberg model used in ferromagnetism [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] T t = T ∧ T xx .

Next, by considering the curvature and torsion of χ(t, x), Hasimoto constructed, in the spirit of the Madelung transform, a complex valued function that satisfies the focusing 1-D cubic NLS ( [START_REF] Hasimoto | A soliton in a vortex filament[END_REF]). Conversely, given a real function of time a(t), a solution u of (3) iu t + u xx + 1 2 (|u| 2 -a(t))u = 0, a point P ∈ R 3 , and an R 3 -orthonormal basis (v 1 , v 2 , v 3 ), one can construct a solution of (1) as follows. First define parallel frames (T, e 1 , e 2 )(t, x) as the solutions of (4)

   T x = (u N ), N x = -u T, T t = (u x N ), N t = -iu x T + i 2 (|u| 2 -a(t))N,
with N = e 1 + ie 2 and initial data (T, e 1 , e 2 )(t 0 , x 0 ) = (v 1 , v 2 , v 3 ). It follows that T constructed this way satisfies the Schrödinger map [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF]. Finally, setting

χ(t, x) = P + t t 0 (T ∧ T x )(τ, x 0 )dτ + x x 0 T (t, s)ds,
we obtain that χ(t, x) satisfies the binormal flow [START_REF] Arms | Localized-induction concept on a curved vortex and motion of an elliptic vortex ring[END_REF]. Note that the construction of χ(t) is not obvious if the solution u of (3) is not too regular. This is precisely the scenario considered in this paper.

Regarding [START_REF] Banica | Singularity formation for the 1-D cubic NLS and the Schrödinger map on S 2[END_REF] note that since a(t) is real, the corresponding term can be easily removed from the equation by a change of function. From the gauge invariance in (4) this will lead to the construction of the same curve. In this way we obtain the cubic NLS [START_REF] Callegari | Motion of a curved vortex filament with decaying vertical core and axial velocity[END_REF] iu t + u xx + 1 2 |u| 2 u = 0, that is invariant under the scaling [START_REF] Carles | Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces[END_REF] u λ (t, x) = λu(λ 2 t, λx).

At this respect we shall say that the solutions of (1) are critical if they are constructed from NLS solutions in a functional setting that is invariant by scaling.

Let us recall here that ( 5) is well-posed in H s , for any s ≥ 0 ( [START_REF] Ginibre | On a class of Schrödinger equations. I. The Cauchy problem, general case[END_REF], [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Anal[END_REF]), and that for s < 0 the Cauchy problem is ill-posed ( [START_REF] Kenig | On the ill-posedness of some canonical non-linear dispersive equations[END_REF], [START_REF] Christ | Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations[END_REF], [START_REF] Carles | Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces[END_REF], [START_REF] Kishimoto | Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity[END_REF], [START_REF] Oh | A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces[END_REF], [START_REF] Killip | Low regularity conservation laws for integrable PDE[END_REF], [START_REF] Koch | Conserved energies for the cubic NLS in 1-d[END_REF]). We recall also that well-posedness holds for data with Fourier transform in L p spaces, p < +∞ ( [START_REF] Vargas | Global wellposedness of 1D cubic nonlinear Schrödinger equation for data with infinity L 2 norm[END_REF], [START_REF] Grünrock | Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS[END_REF], [START_REF] Christ | Power series solution of a nonlinear Schrödinger equation[END_REF]).

It is well known that equation ( 5) is also invariant under Galilean transformations [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Anal[END_REF] u η (t, x) = e -iη 2 t+iηx u(t, x -2ηt).

One of the problems with the Sobolev class is that it is not invariant under translation in Fourier space, except of course L 2 that is not invariant under [START_REF] Carles | Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces[END_REF]. As a consequence the Sobolev class is not well suited with respect to Galilean transformations. This is the reason why in our previous work [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] we consider initial data whose Fourier transforms are L 2 periodic, possibly smooth, functions. Another possibility is to measure the Fourier transform in the L ∞ norm because this topology is critical for cubic NLS with respect to both symmetries ( 6) and [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s , Nonlinear Anal[END_REF]. One of the issues that we address in this paper is the possible growth in this latter topology.

The binormal flow is known to develop singularities in finite time. An important class of singular solutions is the family of self-similar solutions {χ α } α>0 , that are determined for t > 0 by the values of their curvature and torsion, α √ t and x 2t respectively. The curve χ α (t) is smooth for t > 0 and, as proved in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF], it has a trace at t = 0 given by a polygonal line with just one corner of angle θ, such that

(8) sin θ 2 = e -π α 2 2 .
The corresponding 1-D cubic NLS solution is

u α (t, x) = α e i x 2 4t √ t , taking a(t) = α 2 t in (3).
Recently, we constructed in [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] a class of smooth solutions of the binormal flow that generate several corners in finite time. More precisely, take a polygonal line with corners located at x = j ∈ Z and angles θ j , and choose {α j } using the relation [START_REF] Christ | Power series solution of a nonlinear Schrödinger equation[END_REF]. Then, under the assumption that some moments of the sequence {α j } are squared integrable, we construct a strong smooth solution of the binormal flow for t = 0, that is a weak solution for all t. This solution has the given polygonal line as trace at t = 0. For this purpose we first construct for t = 0 and a(t) = j |α j | 2 t := M t a unique solution of (3) of the form

(9) u(t, x) = j e -i(|α j | 2 -M ) log √ t Ãj (t) e i (x-j) 2 4t √ t := j A j (t) e i (x-j) 2 4t √ t ,
such that lim t→0 Ãj (t) = α j , and R j (t) := Ãj (t) -α j satisfies [START_REF] Christ | Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations[END_REF] sup

0<t<1 t -γ {R j (t)} l 2,s + t {∂ t R j (t)} l 2,s < C({α j }),
for 0 < γ < 1 (see also [START_REF] Kita | Mode generating property of solutions to the nonlinear Schrödinger equations in one space dimension, Nonlinear dispersive equations[END_REF] for the subcubic case). Here s ≥ 3, (β j ) l 2,s := ( j (1 + |j|) 2s |β j | 2 ) 1/2 , and the coefficients

e -i|α j | 2 log √ t Ãj (t)
solve the non-autonomous Hamiltonian system:

(11) i∂ t A k (t) = 1 4πt k-j 1 +j 2 -j 3 =0 e -i k 2 -j 2 1 +j 2 2 -j 3 3 4t A j 1 (t)A j 2 (t)A j 3 (t) - j |α j | 2 2πt A k (t).
Moreover, the solution satisfies the mass conservation law:

(12) M = j |α j | 2 = j |A j (t)| 2 .
Then, given this unique solution of (3) we construct the solution of the binormal flow as explained above. This solution has as initial data the given polygonal line. We refer the reader to Theorem 1.1 and Theorem 1.4 in [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] for the precise statements.

Our main result in this paper is to see if there are quantities as [START_REF] Ginibre | On a class of Schrödinger equations. I. The Cauchy problem, general case[END_REF] associated to (1) and (2) that are also conserved. Recall that for smooth solutions of (2) the energy density is given by

c 2 dx = |T x | 2 dx,
where c stands for the curvature. As a consequence, those solutions of (2) that are constructed from solutions of (3) which have finite L 2 norm will have energy that is also finite. But this is not the case for the solutions considered in this article. It turns out that the right way of interpreting [START_REF] Ginibre | On a class of Schrödinger equations. I. The Cauchy problem, general case[END_REF] is to look at the Fourier transform in space of T x . Then, the energy appears as a scattering energy that is preserved as long as t = 0, while it has a jump at t = 0. More concretely, we have the following result.

Theorem 1.1. Let χ be a binormal flow solution with initial data a polygonal line, as introduced above, and T its tangent vector. We define

(13) Ξ(T (t)) := lim k→∞ k+1 k | T x (t, ξ)| 2 dξ.
For t > 0 we have the following conservation law:

(14) Ξ(T (t)) = 4π j |α j | 2 .
At t = 0 when singularities are created for the binormal flow solution χ we have

(15) k+1 k | T x (0, ξ)| 2 dξ = 4 j (1 -e -π|α j | 2 ) ∀k ∈ Z.
Therefore there is a jump discontinuity of Ξ(T (t)) at time t = 0, showing an instantaneous growth for positive times at large frequencies:

(16) Ξ(T (0)) = 4 j (1 -e -π|α j | 2 ) < 4π j |α j | 2 = Ξ(T (t)).
The proof of the theorem is based on a careful decomposition of T x (t, ξ) in principal terms that eventually give Ξ(T (t)) and terms for which we get either a constant type upper-bound or a logarithmic type upper-bound depending on d(4πξ, Z t ), and that become negligible in the computation of Ξ(T (t)).

Remark 1.2. Observe that on the one hand that the quantity Ξ(T (t)) involves Tx (t, ξ) for large ξ, and therefore it measures the size of the amplitude of the large frequency waves of the variation of T . On the other hand T , when interpreted at the level of fluid mechanics, gives the direction of the vorticity. At this respect Constantin-Fefferman-Majda's criterion [START_REF] Constantin | Geometric constraints on potentially singular solutions for the 3-D Euler equations[END_REF] states that the growth in the variation of the direction of the vorticity is necessary to produce singularities in Euler equations in three dimensions.

Remark 1.3. A similar statement holds for the normal vector, namely for t > 0

(17) Ξ(N (t)) := lim k→∞ k+1 k | N x (t, ξ)| 2 dξ = 4π j |α j | 2 , but (18) 
Ξ( Ñ (0)) = 4 j (1 -e -π|α j | 2 ),
where Ñ (0, x) is the limit at t = 0 of1 

Ñ (t, x) = e i r∈Z,r =x |αr| 2 log |x-r| √ t N (t, x).
Remark 1.4. Theorem 1.1 applies in particular to the case of self-similar solutions of the binormal flow that are generated by polygonal lines with only one corner. Moreover, using a perturbation argument, we constructed in [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] solutions of the binormal flow that are smooth except at one time when they generate a corner. For these perturbed solutions we managed to show in [START_REF] Banica | Singularity formation for the 1-D cubic NLS and the Schrödinger map on S 2[END_REF] that

lim ξ→∞ | T x (t, ξ)| 2 = 4π|α 0 | 2 ,
and that there exists > 0, depending on the perturbation of the initial data with respect to the self-similar case, such that for any ξ ∈ R

| T x (0, ξ)| 2 < 4(1 -e -π|α 0 | 2 ) + .
In particular for small perturbations we obtain for any t > 0

Ξ(T (0)) < 4π|α 0 | 2 = Ξ(T (t)).
A similar statement holds for the normal vector N (t).

Our final result is an observation that uses Theorem 1.1 to reinforce the conjecture done in [START_REF] De La Hoz | Vortex filament equation for a regular polygon[END_REF] about the evolution of a regular planar polygon according to the binormal flow (see also [START_REF] Grinstein | Dynamics of coherent structures and transition to turbulence in free square jets[END_REF], [START_REF] Jerrard | On the motion of a curve by its binormal curvature[END_REF], [START_REF] De La Hoz | On the evolution of the vortex filament equation for regular M-polygons with nonzero torsion[END_REF]). In that paper, and after some theoretical arguments, it is conjectured that the evolution of a regular polygon is periodic in time, and that at rational multiples of the time period the curve is a skew polygon with the same angle between consecutive sides. In [START_REF] De La Hoz | Vortex filament equation for a regular polygon[END_REF] the size of this angle is guessed from the data obtained in the numerical simulations, while in this paper we obtain it from the energy Ξ(T (t)).

The paper is organized as follows. In the next section we prove the asymptotic behavior in space of the tangent and modulated normal vectors, and see that this behavior is independent of time. This information allows us to prove Theorem 1.1 in §3. Finally, in the last section we make the observation about planar regular polygons mentioned above. 

Asymptotic behavior in space of the orthonormal frame

T ±∞ = lim x→±∞ T (t, x).
Moreover,

|T (t, x) -T ±∞ | ≤ C(t, {α j }) x , ∀x ∈ R * , ±x > 0,
where x = 1 + |x|.

Proof. We shall first prove that for fixed t > 0 there exists a unit vector T ∞ (t) which is the limit of T (t, x) as x goes to ∞ ; the asymptotic behavior at -∞ can be treated in the same way.

As T x = (uN ) we get for 0 < x 1 < x 2 :

T (t, x 2 ) -T (t, x 1 ) = x 2 x 1 j A j (t) e -i (x-j) 2 4t √ t N (t, x)dx.
We perform an integration by parts using the quadratic oscillatory phase to get 1 x decay in space:

T (t, x 2 ) -T (t, x 1 ) =   j A j (t)e -i x 2 4t 4t -i2x e i xj 2t -i j 2 4t √ t N (t, x)   x 2 x 1 -2 √ t j A j (t)e -i j 2 4t
x 2

x 1

e -i x 2 4t e i xj 2t
x N (t, x)

x dx.

Since N x = -uT ,

T (t, x 2 ) -T (t, x 1 ) - i √ t j jA j (t)e -i j 2 4t x 2 x 1 e -i x 2 4t e i xj 2t x N (t, x)dx -2 √ t j A j (t)e -i j 2 4t x 2 x 1 e -i x 2 4t e i xj 2t x k A k (t) e i (x-k) 2 4t √ t T (t, x)dx ≤ C √ t {A j (t)} l 1 x 1 .
In the first integral we perform again an integration by parts using the quadratic phase to obtain integrability in space:

T (t, x 2 ) -T (t, x 1 ) -2 j =k A j (t)A k (t)e i k 2 -j 2 4t x 2 x 1 e i x(j-k) 2t T (t, x) x dx ≤ C √ t {A j (t)} l 1 x 1 + √ t {jA j (t)} l 1 x 2 1 + {j 2 A j (t)} l 1 x 1 √ t + {jA j (t)} l 1 {A j (t)} l 1 x 1 .
Above we have used that the term j = k cancels. Now we perform an integration by parts using the linear phase, even though we don't improve the decay in x:

T (t, x 2 ) -T (t, x 1 ) + 2 j =k A j (t)A k (t)e i k 2 -j 2 4t x 2 x 1 e i x(j-k) 2t 2t i(j -k) T (t, x) x x dx ≤ C √ t {A j (t)} l 1 x 1 + √ t {jA j (t)} l 1 x 2 1 + {j 2 A j (t)} l 1 x 1 √ t + {jA j (t)} l 1 {A j (t)} l 1 x 1 .
In this way we can use that T x = (uN ), so that a new oscillatory term with a quadratic phase appears:

|T (t, x 2 ) -T (t, x 1 ) +2 √ t j =k;r A j (t)A k (t)A r (t) e i -r 2 +k 2 -j 2 4t i(j -k) x 2 x 1 e -i x 2 4t e i x(j-k+r) 2t x N (t, x)dx +2 √ t j =k;r A j (t)A k (t)A r (t) e i r 2 +k 2 -j 2 4t i(j -k) x 2 x 1 e i x 2 4t e i x(j-k-r) 2t x N (t, x)dx ≤ C √ t {A j (t)} l 1 x 1 + √ t {jA j (t)} l 1 x 2 1 + {j 2 A j (t)} l 1 x 1 √ t + {jA j (t)} l 1 {A j (t)} l 1 x 1 .
Hence, we can perform again an integration by parts to get decay in space:

|T (t, x 2 ) -T (t, x 1 ) -4t √ t j =k;r A j (t)A k (t)A r (t) e i -r 2 +k 2 -j 2 4t i(j -k) x 2 x 1 e -i x 2 4t e i x(j-k+r) 2t x 2 N (t, x) x dx +4t √ t j =k;r A j (t)A k (t)A r (t) e i r 2 +k 2 -j 2 4t i(j -k) x 2 x 1 e i x 2 4t e i x(j-k-r) 2t x 2 N (t, x) x dx ≤ C √ t {A j (t)} l 1 x 1 + √ t {jA j (t)} l 1 x 2 1 + {j 2 A j (t)} l 1 x 1 √ t + {jA j (t)} l 1 {A j (t)} l 1 x 1 + √ t {A j (t)} 3 l 1 x 2 1 .
As N x = -uT and as

|T (t, x 2 ) -T (t, x 1 )| ≤ 2 we have obtained for 0 < x 1 < x 2 : |T (t, x 2 ) -T (t, x 1 )| ≤ C(t, {α j }) x 1 , with (20) C(t, {α j }) = C 1 + √ t {jA j (t)} l 1 + {j 2 A j (t)} l 1 √ t + {jA j (t)} l 1 {A j (t)} l 1 + √ t {A j (t)} 3 l 1 + {A j (t)} 3 l 1 √ t + t {A j (t)} 4 l 1 .
By making x 1 , x 2 → ∞ we thus obtain the existence of ( 21)

T ∞ (t) := lim x→∞ T (t, x),
with the desired rate of convergence of the statement. Now we shall prove that this vector limit is independent of t > 0. Let 0 < t 1 < t 2 and > 0. In view of ( 21) we can choose x 0 such that for all x ≥ x 0 we have

|T (t 1 , x) -T ∞ (t 1 )| + |T (t 2 , x) -T ∞ (t 2 )| ≤ .
Thus in order to get the conclusion [START_REF] Hasimoto | A soliton in a vortex filament[END_REF] of the Lemma, it will be enough to find x ≥ x 0 such that ( 22)

|T (t 2 , x) -T (t 1 , x)| ≤ .
To this purpose we use that

T t = (u x N ), N t = -iu x T +i |u| 2 2 -M 2t N .
These expressions involve a loss of x. However, if a quadratic oscillatory phase e -i x 2 4t is present, integrating it in time yields 1

x 2 decay, so eventually we gain 1

x decay with each such integration by parts:

T (t 2 , x) -T (t 1 , x) = t 2 t 1 j e i(|α j | 2 -M ) log √ t Ãj (t) e -i (x-j) 2 4t √ t (-i) x -j 2t N (t, x)dt = O( 1 x ) -2 t 2 t 1 j e -i x 2 4t x -j x 2 e i(|α j | 2 -M ) log √ t Ãj (t)e i xj 2t -i j 2 4t √ tN (t, x) t dt = O( 1 x ) + t 2 t 1 j e -i x 2 4t x -j x e i(|α j | 2 -M ) log √ t j Ãj (t) e i xj 2t -i j 2 4t t √ t N (t, x)dt -2 t 2 t 1 j e -i x 2 4t x -j x 2 e i(|α j | 2 -M ) log √ t Ãj (t)e i xj 2t -i j 2 4t √ tN t (t, x)dt.
In the first integral we perform again an integration by parts from the quadratic case to get the desired 1 x decay, while for the second integral we have to treat only the iu x T part of N t :

T (t 2 , x) -T (t 1 , x) = O( 1 x ) +2 t 2 t 1 j =k (x -j)(x -k) x 2 e i(|α j | 2 -|α k | 2 ) log √ t Ãj (t) Ãk (t)e i x(j-k) 2t -i j 2 -k 2 4t T (t, x) t dt.
Now we perform an integration by parts using the linear phase in x to get:

T (t 2 , x) -T (t 1 , x) = O( 1 x ) +4 t 2 t 1 j =k (x -j)(x -k) x 3 (j -k) e i x(j-k) 2t e i(|α j | 2 -|α k | 2 ) log √ t Ãj (t) Ãk (t)e -i j 2 -k 2 4t tT (t, x) t dt = O( 1 x ) +4 t 2 t 1 j =k (x -j)(x -k) x 3 (j -k) e i x(j-k) 2t e i(|α j | 2 -|α k | 2 ) log √ t Ãj (t) Ãk (t)e -i j 2 -k 2 4t t× ×   r e i(|αr| 2 -M ) log √ t Ãr (t) e -i (x-r) 2 4t √ t (-i) x -r 2t N (t, x)   dt.
Although we still do not get enough decay in x we have got a quadratic phase in x. Hence, we perform another integration by parts using it to get an extra 1 x decay:

T (t 2 , x) -T (t 1 , x) = O( 1 x
).

Therefore we can find x depending on x 0 , t 1 , t 2 and {α j } such that ( 22) holds, and the Lemma follows.

Lemma 2.2. There exist N ±∞ ∈ S 2 + iS 2 , S 2 denoting the unit sphere in R 3 , such that for all t > 0 (23)

N ±∞ = lim x→±∞ N M (t, x),
where for x = 0

N M (t, x) = e iM log |x| √ t N (t, x).
As a consequence we also have

N ±∞ = lim x→±∞ e iM log x √ t N (t, x).
Moreover, we have the following rate of convergence

|e iM log x √ t N (t, x) -N ±∞ | ≤ C(t, {α j }) x , ∀x ∈ R * ± .
Proof. As done for the tangent vector, we shall first prove that for fixed t > 0 there exists a limit vector N ∞ (t) for N M (t, x) as x goes to ∞ ; the asymptotic at -∞ can be treated in the same way.

As for x > 0

(N M ) x = (-uT + i M x N )e iM log x √ t , T x = (uN ),
we get for 0 < x 1 < x 2 by integrating by parts:

N M (t, x 2 ) -N M (t, x 1 ) = x 2 x 1   - j A j (t) e i (x-j) 2 4t √ t T (t, x) + i M x N (t, x)   e iM log x √ t dx =   - j A j (t)e i x 2 4t 2t ix e -i xj 2t +i j 2 4t √ t T (t, x)e iM log x √ t   x 2 x 1 - x 2 x 1 2i √ t j e i j 2 4t A j (t)e i x 2 4t e -i xj 2t T (t, x) e iM log x √ t x x dx + x 2 x 1 i M x N (t, x)e iM log x √ t dx. Thus N M (t, x 2 ) -N M (t, x 1 ) + x 2 x 1 1 √ t j e i j 2 4t jA j (t)e i x 2 4t e -i xj 2t T (t, x) e iM log x √ t
x dx

+ x 2 x 1 2i j A j (t)e i (x-j) 2 4t k A k (t)e -i (x-k) 2 4t N (t, x) e iM log x √ t x dx - x 2 x 1 i M x N (t, x)e iM log x √ t dx ≤ C √ t {A j (t)} l 1 x 1 .
In the first integral we perform again an integration by parts using the quadratic phase x 2 , and get integrability with a 1 x 1 decay. In the second integral we develop the real part. The diagonal k = j terms of its non-conjugated part cancel with the third integral, as we have the conservation law M = j |α j | 2 = j |A j (t)| 2 . We are left with:

N M (t, x 2 ) -N M (t, x 1 ) + i j =k A j (t)A k (t)e i j 2 -k 2 4t x 2 x 1 e -i x(j-k) 2t N (t, x) e iM log x √ t x dx +i j,k A j (t)A k (t)e i j 2 +k 2 4t x 2 x 1 e i x 2 2t e -i x(j+k) 2t N (t, x) e iM log x √ t x dx . ≤ C √ t {A j (t)} l 1 x 1 + √ t {jA j (t)} l 1 x 2 1 + {j 2 A j (t)} l 1 x 1 √ t + {jA j (t)} l 1 {A j (t)} l 1
x 1 In the second integral, a new integration by parts using the quadratic phase x 2 yields integrability with a 1

x 1 decay. In the first integral we integrate by parts using the linear phase x(j -k):

N M (t, x 2 ) -N M (t, x 1 ) + 2t j =k A j (t)A k (t) j -k e i j 2 -k 2 4t
x 2

x 1

e -i x(j-k) 2t N x (t, x) e iM log x √ t x dx ≤ C √ t {A j (t)} l 1 x 1 + √ t {jA j (t)} l 1 x 2 1 + {j 2 A j (t)} l 1 x 1 √ t + {jA j (t)} l 1 {A j (t)} l 1 x 1 + √ t {A j (t)} 3 l 1 x 2 1 .
As N x (t, x) = -uT (t, x) contains e i x 2 4t , we perform a last integration by parts using this quadratic phase to get for all 0 < x 1 < x 2 :

|N M (t, x 2 ) -N M (t, x 1 )| ≤ C(t, {α j }) x 1 ,
with the same constant C(t, {α j }) as in [START_REF] Jerrard | On the vortex filament conjecture for Euler flows[END_REF]:

C(t, {α j }) = C 1 + √ t {jA j (t)} l 1 + {j 2 A j (t)} l 1 √ t + {jA j (t)} l 1 {A j (t)} l 1 + √ t {A j (t)} 3 l 1 + {A j (t)} 3 l 1 √ t + t {A j (t)} 4 l 1 .
It follows that we have a limit

(24) N ∞ (t) := lim x→∞ N M (t, x),
with a rate of convergence in space as in the statement of the lemma. We are thus left to show the independence on time of N ∞ (t). We fix 0 < t 1 < t 2 and > 0, choose x 0 such that

|N M (t 1 , x) -N ∞ (t 1 )| + |N M (t 2 , x) -N ∞ (t 2 )| ≤ .
To finish the proof of the lemma, it will be enough to find x ≥ x 0 such that

(25) |N M (t 2 , x) -N M (t 1 , x)| ≤ .
As the evolution in time laws are

T t = (u x N ), (N M ) t = -iu x T + i |u| 2 2 - M 2t N -i M 2t N e iM log x √ t ,
we can write

N M (t 2 , x) -N M (t 1 , x) = t 2 t 1   -i j e -i(|α j | 2 -M ) log √ t Ãj (t) e i (x-j) 2 4t √ t i x -j 2t T (t, x) +i j =k e -i(|α j | 2 -|α k | 2 ) log √ t Ãj (t) Ãk (t) e i j 2 -k 2 4t -i x(j-k) 2t 2t N -i M 2t N   e iM log x √ t dt.
In the first integral we perform an integration by parts using the quadratic phase, while in the second we use the linear one:

N M (t 2 , x)-N M (t 1 , x) =   j e -i(|α j | 2 -M ) log √ t Ãj (t) e i (x-j) 2 4t √ t (- 4t 2 ix 2 ) x -j 2t T (t, x)e iM log x √ t   t 2 t 1 -2i t 2 t 1 j x -j x 2 e i x 2 4t e -i(|α j | 2 -M ) log √ t Ãj (t)e -i xj 2t +i j 2 4t √ t T (t, x)e iM log x √ t t dt +   i j =k e -i(|α j | 2 -|α k | 2 ) log √ t Ãj (t) Ãk (t) e i j 2 -k 2 4t -i x(j-k) 2t 2t 2t 2 ix(j -k) N e iM log x √ t   t 2 t 1 - t 2 t 1 i j =k 1 x(j -k) e -i x(j-k) 2t e -i(|α j | 2 -|α k | 2 ) log √ t Ãj (t) Ãk (t)e i j 2 -k 2 4t t N e iM log x √ t t dt - t 2 t 1 i M 2t N e iM log x √ t dt = O( 1 x ) + t 2 t 1 j x -j x e i x 2 4t e -i(|α j | 2 -M ) log √ t j Ãj (t)e -i xj 2t +i j 2 4t 1 t √ t T (t, x)e iM log x √ t dt -2i t 2 t 1 j x -j x 2 e i x 2 4t e -i(|α j | 2 -M ) log √ t Ãj (t)e -i xj 2t +i j 2 4t √ t T t (t, x)e iM log x √ t dt - t 2 t 1 i j =k 1 x(j -k) e -i x(j-k) 2t e -i(|α j | 2 -|α k | 2 ) log √ t Ãj (t) Ãk (t)e i j 2 -k 2 4t t N t e iM log x √ t dt - t 2 t 1 i M 2t N e iM log x √ t dt := O( 1 x ) + I 1 + I 2 + I 3 + I 4 .
In the first integral I 1 an integration by p arts using the quadratic phase gives us the 1

x decay. The second integral can be rewritten as

I 2 = O( 1 x ) - 2i x t 2 t 1 j e i x 2 4t e -i(|α j | 2 -M ) log √ t Ãj (t)e -i xj 2t +i j 2 4t √ t (u x N (t, x))e iM log x √ t dt = O( 1 x ) + i t 2 t 1 j,k e i (x-j) 2 -(x-k) 2 4t e -i(|α j | 2 -|α k | 2 ) log √ t Ãj (t) Ãk (t) 1 2t N (t, x)e iM log x √ t dt -i t 2 t 1 j,k e i (x-j) 2 +(x-k) 2 4t e -i(|α j | 2 +|α k | 2 -2M ) log √ t Ãj (t) Ãk (t) 1 2t N (t, x)e iM log x √ t dt = O( 1 x ) -I 4 + i t 2 t 1 j =k e i x(j-k) 2t -i j 2 -k 2 4t e -i(|α j | 2 -|α k | 2 ) log √ t Ãj (t) Ãk (t) 1 2t N (t, x)e iM log x √ t dt -i t 2 t 1 j,k e i x 2 2t e i -x(j+k) 2t +i j 2 +k 2 4t e -i(|α j | 2 +|α k | 2 -2M ) log √ t Ãj (t) Ãk (t) 1 2t N (t, x)e iM log x √ t dt,
where we used the conservation law

M = j |α j | 2 = j | Ãj (t)| 2 .
In the first integral we integrate by parts using the linear phase in x, that gives the decay 1

x except when the derivative in time falls on N . This term involves a power of x but also an oscillatory term with a quadratic phase in x. Another integration by parts gives eventually the decay 1

x . In the last integral a new integration by parts using the quadratic phase gives immediately the decay 1

x . Therefore

I 2 + I 4 = O( 1 x ).
Finally, in I 3 there is a factor 1 x and from N t we loose a power of x just for the term -u x T . However, this term introduces back the quadratic phase in x, and a new integration by parts yields the 1

x decay. Therefore

N M (t 2 , x) -N M (t 1 , x) = O( 1 x
), so [START_REF] Kita | Mode generating property of solutions to the nonlinear Schrödinger equations in one space dimension, Nonlinear dispersive equations[END_REF] follows. The proof of the lemma is over.

3. Proof of Theorem 1.1

3.1. The result on the tangent vector. We start with the proof of the results at time t = 0, namely [START_REF] De La Hoz | On the evolution of the vortex filament equation for regular M-polygons with nonzero torsion[END_REF]. We will rely from section 4.6 in [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] that at t = 0 the curve is a polygonal line so that T (0, x) is piecewise constant with jumps at the integers j ∈ Z and that

T x (0) = j (T (0, j + ) -T (0, j -))δ j = j Θ j (A + |α j | -A - |α j | )δ j .
Here Θ j denotes an appropriate rotation (see [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF]) and A ± |α j | are the two unit vectors representing the limits at ±∞ of the tangent of the self-similar solution χ |α j | . Then, we have

T x (0, ξ) = j Θ j (A + |α j | -A - |α j | )e i2πjξ .
In particular T x (0, ξ) is periodic in ξ and we get by Plancherel's theorem that for any k

k+1 k | T x (0, ξ)| 2 dξ = j |Θ j (A + |α j | -A - |α j | )| 2 = j |A + |α j | -A - |α j | | 2 .
Therefore calling θ j the angle between A + |α j | and A - |α j | and using ( 3) and ( 4) in [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] we have

|A + |α j | -A - |α j | | 2 = 2(1 -cos θ j ) = 4(1 -e -π|α j | 2
), so that we obtain [START_REF] De La Hoz | On the evolution of the vortex filament equation for regular M-polygons with nonzero torsion[END_REF], and implicitly ( 16). Now we fix t > 0 and our purpose it to compute Ξ(t) and to obtain [START_REF] De La Hoz | On the relationship between the one-corner problem and the M -corner problem for the vortex filament equation[END_REF]. Let 0 < < 1. In view of [START_REF] Christ | Asymptotics, frequency modulation, and low regularity illposedness for canonical defocusing equations[END_REF] we choose j depending on , t and {α j } such that [START_REF] Koch | Conserved energies for the cubic NLS in 1-d[END_REF] 

|j|≥j |A j (t)| ≤ .
In the following C will denote a generic constant dependent on t and {α j }, unless it is specified othewise.

Since T x (t, x) = (uN )(t, x) we have

T x (t, ξ) = ∞ -∞ e i2πxξ (uN )(t, x)dx = ∞ -∞ e i2πxξ ( j A j (t) e -i (x-j) 2 4t √ t N (t, x))dx.
We denote η + a smooth function vanishing on x < -1 2 and valued 1 on x > 1 2 , and we denote η -= 1 -η + , so that

T x (t, ξ) = ± ∞ -∞ e i2πxξ ( j A j (t) e -i (x-j) 2 4t √ t N (t, x)) η ± (x)dx.
With the notations from Lemma 2.2, on the integral involving η ± we split

N (t, x) = N ±∞ e -iM log x √ t + g ± N (t, x), where g ± N (t, x) := (N (t, x) -N ±∞ e -iM log x √ t ).
We define [START_REF] Murakami | On the vibration of a vortex filament[END_REF] T x (t, ξ) = I(t, ξ) + J(t, ξ),

where I(t, ξ) gathers the terms in T x (t, ξ) corresponding to N ±∞ and J(t, ξ) the ones corresponding to g ± N . We shall start by estimating the second term J(t, ξ).

First, we complete the squares of the phases:

J(t, ξ) = 1 2 ± ∞ -∞ e i2πxξ j A j (t) e -i (x-j) 2 4t √ t g ± N (t, x) η ± (x)dx + 1 2 ± ∞ -∞ e i2πxξ j A j (t) e i (x-j) 2 4t √ t g ± N (t, x) η ± (x)dx = e i4π 2 tξ 2 2 √ t ±,j e i2πjξ A j (t) ∞ -∞ e -i (x-j-4πtξ) 2 4t g ± N (t, x) η ± (x)dx + e -i4π 2 tξ 2 2 √ t ±,j e i2πjξ A j (t) ∞ -∞ e i (x-j+4πtξ) 2 4t g ± N (t, x) η ± (x)dx.
We split now the summation into |j| < j and |j| ≥ j , and call the corresponding terms J l (t, ξ) and J h (t, ξ).

Lemma 3.1. There exists ξ( , t, {α j }) ∈ R such that for ξ ≥ ξ( , t, {α j }) and 4πtξ / ∈ Z we have the bounds

|J l (t, ξ)| ≤ C , if d(2πξ, Z 2t ) ≥ 1, C | log(d(2πξ, Z 2t ))|, if d(2πξ, Z 2t ) < 1. Proof. In virtue of Lemma 2.2, g ± N are bounded functions with |g ± N (t, x)| ≤ C x , ∀x ∈ R * ± , so g ± N (t,
x)η ± (x) converge to zero at both -∞ and +∞. Therefore we can remove from

J l (t, ξ) = e i4π 2 tξ 2 2 √ t ±,|j|<j e i2πjξ A j (t) ∞ -∞ e -i (x-j-4πtξ) 2 4t g ± N (t, x)η ± (x)dx + e -i4π 2 tξ 2 2 √ t ±,|j|<j e i2πjξ A j (t) ∞ -∞ e i (x-j+4πtξ) 2 4t g ± N (t, x)η ± (x)dx,
bounded pieces of the integrals in x located around j ± 4πtξ. Indeed on these parts, since |j| ≤ j , we have convergence to zero as ξ goes to infinity. Therefore there exists ξ( , t, {α j }) such that for ξ ≥ ξ( , t, {α j }) we have

|J l (t, ξ) -J l 1 (t, ξ)| ≤ , where J l 1 (t, ξ) = e i4π 2 tξ 2 2 √ t ±,|j|<j e i2πjξ A j (t) ∞ -∞ e -i (x-j-4πtξ) 2 4t g ± N (t, x)η ± (x)χ(x -j -4πtξ)dx + e -i4π 2 tξ 2 2 √ t ±,|j|<j e i2πjξ A j (t) ∞ -∞ e i (x-j+4πtξ) 2 4t g ± N (t, x)η ± (x)χ(x -j + 4πtξ)dx,
and χ(s) is a smooth function vanishing on {x, |x| < 1 2 }, and valued 1 on {x, |x| > 1}. In particular the support of χ is bounded. Now we integrate by parts using the quadratic phases. Again since g ± N (t, x)η ± (x) converge to zero at both -∞ and +∞ there are no boundary terms and we get:

J l 1 (t, ξ) = -i √ te i4π 2 tξ 2 ±,|j|<j e i2πjξ A j (t) ∞ -∞ e -i (x-j-4πtξ) 2 4t g ± N (t, x)η ± (x)χ(x -j -4πtξ) x -j -4πtξ x dx +i √ te -i4π 2 tξ 2 ±,|j|<j e i2πjξ A j (t) ∞ -∞ e i (x-j+4πtξ) 2 4t g ± N (t, x)η ± (x)χ(x -j + 4πtξ) x -j + 4πtξ x dx.
When the derivative falls on χ or on the denominator, we get again smallness by using the dominated convergence theorem. We are left with the terms involving (g

± N ) x = -uT + i M x N ±∞ e -iM log x √
t . Now we note that we can discard also the last term of (g

± N ) x (t, x) as for instance 2 ∞ -∞ e ∓i (x-j∓4πtξ) 2 4t e ∓iM log x √ t (x -j ∓ 4πtξ) x η + (x)χ(x -j ∓ 4πtξ)dx ≤ C |j ± 4πtξ| ≤ ,
for ξ > 0 far away from the finite set {j, |j| < j } and choosing ξ( , t, {α j }) larger if needed. Therefore, we are left with estimating the terms of J l 1 (t, ξ) involving the -uT part of (g ± N )

x : there exists ξ( , t, {α j }) such that for ξ ≥ ξ( , t, {α j }) we have with

|J l (t, ξ) -J l 2 (t, ξ)| ≤ C ,
J l 2 (t, ξ) = i ±,|j|<j A j (t) ∞ -∞ r A r (t)e i x(j-r+4πtξ) 2t e -i j 2 -r 2 4t x -j -4πtξ T (t, x)η ± (x)χ(x -j -4πtξ)dx -i ±,|j|<j A j (t) ∞ -∞ r A r (t)e i x(r-j+4πtξ) 2t e i j 2 -r 2 4t
x -j + 4πtξ T (t, x)η ± (x)χ(x -j + 4πtξ)dx.

Note that the summation ± and η ± can be now removed as η + + η -= 1.

We treat first the terms involving |r| < j . If needed we choose ξ( , t, {α j }) larger such that for |r| < j and ξ ≥ ξ( , t, {α j }) we have:

1 ±(j -r) + 4πtξ ≤ .
We perform in the corresponding integrals an integration by parts using the linear phase in x. Then, we get the -smallness from the above constraint, and the integral that yields is uniformly bounded. Indeed, when the derivative falls either on χ, η ± or on the denominator 1

x-j∓4πtξ we get immediately an uniform bound on the integral. When the derivative falls on T (t, x) it generates a quadratic phase. Hence we can first remove a bounded piece of the integral centered where the phase vanishes, and then we can integrate by parts to get again a uniform bound for the integral. We are thus left with estimating the terms involving |r| ≥ j , for which the linear phase might approach zero: there exists ξ( , t, {α j }) such that for ξ ≥ ξ( , t, {α j }) we have

|J l (t, ξ) -J l 3 (t, ξ)| ≤ C , with (28) J l 3 (t, ξ) = i |j|<j ,|r|≥j A j (t)A r (t) I + (t, ξ, j, r) -i |j|<j ,|r|≥j A j (t)A r (t) I -(t, ξ, j, r), where (29) 
I ± (t, ξ, j, r) := e ∓i j 2 -r 2 4t ∞ -∞ e ix(± j-r 2t +2πξ) x -j ∓ 4πtξ T (t, x) χ(x -j ∓ 4πtξ) dx.
We first note that in view of ( 26) we have -smallness of |r|≥j |A r (t)|. For 4πtξ / ∈ Z we can integrate by parts in I ± (t, ξ, j, r) using the linear phase to get the bound

C d(4πξ, Z t ) .
Therefore, we cannot control this way the L 2 (k, k+1) norm in ξ. To overcome this difficulty we shall prove that for 4πtξ / ∈ Z:

(30) |I ± (t, ξ, j, r)| ≤ C, if | ± j-r t + 4πξ| ≥ 1, C| log(| ± j-r t + 4πξ|)|, if | ± j-r t + 4πξ| < 1.
These bounds imply

|I + (t, ξ, j, r)| + |I -(t, ξ, j, r)| ≤        C, if | j-r t + 4πξ| ≥ 1, | j-r t + 4πξ| ≥ 1, C| log(| j-r t + 4πξ|)|, if | j-r t + 4πξ| < 1, C| log(| -j-r t + 4πξ|)|, if | -j-r t + 4πξ| < 1.
Note that for 0 < t < 1 the last two regions intersect if and only if |2(j -r)| < 2t < 2, that is when r = j and in that case the bound is the same, C log(4π|ξ|). Then, by summing in j and r, and by using [START_REF] Koch | Conserved energies for the cubic NLS in 1-d[END_REF] we get for 4πtξ / ∈ Z the bounds

|J l 3 (t, ξ)| ≤ C , if d(4πξ, Z t ) ≥ 1, C | log(d(4πξ, Z t ))|, if d(4πξ, Z t ) < 1
, thus the lemma follows from [START_REF] Oh | A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces[END_REF].

We are thus left with proving (30). We split the integral in I + (t, ξ, j, r) into the regions x < 0 and x > 0:

I ± (t, ξ, j, r) = e ∓i j 2 -r 2 4t ∞ 0 e ix(± j-r 2t +2πξ) x -j ∓ 4πtξ T (t, x) χ(x -j ∓ 4πtξ) dx +e ∓i j 2 -r 2 4t 0 -∞ e ix(± j-r 2t +2πξ) x -j ∓ 4πtξ T (t, x) χ(x -j ∓ 4πtξ) dx.
By using the convergence rate in Lemma 2.1:

|(T (t, x) -T ∞ )I (0,∞) (x)| + |(T (t, x) -T -∞ )I (-∞,0) (x)| ≤ C x , ∀x ∈ R,
and in view of the definition of χ we get

|I ± (t, ξ, j, r) -Ĩ± (t, ξ, j, r)| ≤ C, where (31) 
Ĩ± (t, ξ, j, r) := T ∞ e ∓i j 2 -r 2 4t x>0,|x-j∓4πtξ|>1 e ix(± j-r 2t +2πξ) x -j ∓ 4πtξ dx +T -∞ e ∓i j 2 -r 2 4t x<0,|x-j∓4πtξ|>1
e ix(± j-r 2t +2πξ)

x -j ∓ 4πtξ dx.

If | ± j-r t + 4πξ| ≥ 1 we perform an integration by parts using the linear phase and get the bound uniform in ξ, j, and r in (30).

If | ± j-r t + 4πξ| < 1 we denote for simplicity a = -j ∓ 4πtξ and b = ± j-r 2t + 2πξ. We change variables x + a = y, yb = s to rewrite Ĩ± (t, ξ, j, r) as:

(32) e ∓i j 2 -r 2 4t e -iab (T ∞ s b >a, |s|>|b| e is s ds + T -∞ s b <a, |s|>|b| e is s ds),
On the region where |s| > 1, due to the oscillatory phase we get a bound uniform in ξ, j, and r. Finally, on the region where |b| < |s| < 1, if such regions exist, the integration of e is s yields a log(|b|) bound. Therefore we have obtained (30) and the Lemma follows.

For further purposes we note that we have obtained for | ± j-r t + 4πξ| < 1 the estimate

(33) | Ĩ± (t, ξ, j, r) -e ∓i j 2 -r 2 4t e -i(-j∓4πtξ)(± j-r 2t +2πξ) (T ∞ -T -∞ ) × s>(-j∓4πtξ)(± j-r 2t +2πξ), 1>|s|>|± j-r 2t +2πξ| e is s ds| ≤ C,
with C an universal constant.

Lemma 3.2. There exists ξ( , t, {α j }) such that for ξ ≥ ξ( , t, {α j }) and 4πtξ / ∈ Z we have the bounds

|J h (t, ξ)| ≤ C , if d(4πξ, Z t ) ≥ 1, C | log(d(4πξ, Z t ))|, if d(4πξ, Z t ) < 1, Proof. Recall that J h (t, ξ) = e i4π 2 tξ 2 2 √ t ±,|j|≥j e i2πjξ A j (t) ∞ -∞ e -i (x-j-4πtξ) 2 4t g ± N (t, x)η ± (x)dx + e -i4π 2 tξ 2 2 √ t ±,|j|≥j e i2πjξ A j (t) ∞ -∞ e i (x-j+4πtξ) 2 4t g ± N (t, x)η ± (x)dx.
In this case we will get the -decay from A j (t) thanks to [START_REF] Koch | Conserved energies for the cubic NLS in 1-d[END_REF]. We can remove the same pieces of the integrals as in the proof of the Lemma 3.1 to end with (34)

i |j|≥j ;r A j (t)A r (t) I + (t, ξ, j, r) -i |j|≥j ;r A j (t)A r (t) I -(t, ξ, j, r),
where I ± (t, ξ, j, r) were defined in [START_REF] Vargas | Global wellposedness of 1D cubic nonlinear Schrödinger equation for data with infinity L 2 norm[END_REF]. This can be handled the same way as was done for J l 3 (t, ξ) in the proof of Lemma 3.1. Lemma 3.3. For any ξ ∈ R we have:

|I(t, ξ)| ≤ C {A j (t)} l 1 ,
with C an universal constant. Moreover, there exists ξ( , t, {α j }) such that for k ≥ ξ( , t, {α j })

k+1 k |I(t, ξ)| 2 dξ -4π j |α j | 2 ≤ C .
Proof. We start by performing some change of variables in the expression of I(t, ξ):

I(t, ξ) = 1 2 ± ∞ -∞ e i2πxξ j A j (t) e -i (x-j) 2 4t √ t N ±∞ e -iM log x √ t η ± (x)dx + 1 2 ± ∞ -∞ e i2πxξ j A j (t) e i (x-j) 2 4t √ t N ±∞ e iM log x √ t η ± (x)dx = N ±∞ e i4π 2 tξ 2 2 √ t ±,j e i2πjξ A j (t) ∞ -∞ e -i (x-j-4πtξ) 2 4t e -iM log x √ t η ± (x)dx +N ±∞ e -i4π 2 tξ 2 2 √ t ±,j e i2πjξ A j (t) ∞ -∞ e i (x-j+4πtξ) 2 4t e iM log x √ t η ± (x)dx. = N ±∞ e i4π 2 tξ 2 ±,j e i2πjξ A j (t) ∞ -∞ e -iy 2 e -iM log 2 √ ty+j+4πtξ √ t η ± (2 √ ty + j + 4πtξ)dy +N ±∞ e -i4π 2 tξ 2 ±,j e i2πjξ A j (t) ∞ -∞ e iy 2 e iM log 2 √ ty+j-4πtξ √ t η ± (2 √ ty + j -4πtξ)dy.
We first note that the integrals are uniformly bounded in j and ξ: the contribution of the bounded region |y| < 1 is bounded as the integrant is of modulus less than one, while the contribution of the region |y| > 1 is bounded by doing integrations by parts using the quadratic phase. Therefore, we get the first bound of the Lemma.

To estimate 

I 1 (t, ξ)I 2 (t, ξ)dξ = N ∞ .N -∞ πe i π 2 |j 1 |,|j 2 |≤j A j 1 (t)A j 2 (t)× × k+1 k e i8π 2 tξ 2 e i2π(j 1 -j 2 )ξ e -iM log j+4πtξ √ t e -iM log j-4πtξ √ t dξ.
One single integration by parts using the quadratic phase in ξ gives us decay in k, so choosing ξ( , t, {α j }) larger if needed we obtain for k ≥ ξ( , t, {α j })

k+1 k |I(t, ξ)| 2 dξ -4π |j|≤j |A j (t)| 2 ≤ C .
Recalling the choice (26) of j and the conservation law [START_REF] Ginibre | On a class of Schrödinger equations. I. The Cauchy problem, general case[END_REF] we get for k ≥ ξ( , t, {α j })

k+1 k |I(t, ξ)| 2 dξ -4π j |α j | 2 ≤ C .
Summarizing we have decomposed

T x (t, ξ) =: I(t, ξ) + J(t, ξ),
and proved in Lemmas 3.1-3.2-3.3 that there exists ξ( , t, {α j }) ∈ R such that for ξ ≥ ξ( , t, {α j }) and 4πtξ / ∈ Z we have the bounds:

|J(t, ξ)| ≤ C , if d(4πξ, Z t ) ≥ 1, C | log(d(4πξ, Z t ))|, if d(4πξ, Z t ) < 1; |I(t, ξ)| ≤ C,
and for all k ≥ ξ( , t, {α j }):

k+1 k |I(t, ξ)| 2 dξ -4π j |α j | 2 ≤ C .
We note that for ξ in an interval of size one, there are only a finite number of possible locations where d(4πξ, Z t ) < 1, depending only on t, and on these regions J(t, ξ) is square integrable. Therefore

k+1 k | T x (t, ξ)| 2 dξ -4π j |α j | 2 ≤ C , ∀k ≥ ξ( , t, {α j }).
The value of 0 < < 1 was arbitrary, the constant C is independent of , so we obtain the conservation law [START_REF] De La Hoz | On the relationship between the one-corner problem and the M -corner problem for the vortex filament equation[END_REF], and the proof of Theorem 1.1 is complete.

3.2.

The result on the normal vectors. In this subsection we obtain the results ( 17) and ( 18) from Remark 1.3. We recall from Lemmas 4.5-4.7 in [4] that we have a limit Ñ (0)

at t = 0 of Ñ (t, x) = e i r =x |αr| 2 log |x-r| √ t N (t, x), that is piecewise constant Ñ (0, x) = Ñ (0, x ), ∀x, x ∈ (j, j + 1), ∀j ∈ Z,
and Ñ (0, j ± ) = e i r =j |αr| 2 log |r-j| e iArg(α j ) Θ j (B ± |α j | ). Here B ± |α j | ∈ S 2 + iS 2 are defined in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF] in terms of the asymptotics at ±∞ of the normal vectors of the self-similar solution χ |α j | . It follows that at t = 0 we have Ñx (0) = j ( Ñ (0, j + ) -Ñ (0, j -))δ j = j e i r =j |αr| 2 log |r-j| e iArg(α j ) Θ j (B

+ |α j | -B - |α j | )δ j , so Ñx (0, ξ) = j e i r =j |αr| 2 log |r-j| e iArg(α j ) Θ j (B + |α j | -B - |α j | )e i2πj .
As Ñx (0, ξ) is periodic in ξ, we get by Plancherel's theorem that for any k

k+1 k | Ñx (0, ξ)| 2 dξ = j |Θ j (B + |α j | -B - |α j | )| 2 = j |B + |α j | -B - |α j | | 2 .
Therefore, as we know from [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF] that

|B + |α j | -B - |α j | | 2 = 4|B + |α j |,1 | 2 = 4(1 -(A + |α j |,1 ) 2 ) = 4(1 -e -π|α j | 2 )
, we obtain [START_REF] Grünrock | Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS[END_REF].

For t > 0 we fix ∈ (0, 1). We split:

N x (t, ξ) = - ± ∞ -∞ e i2πxξ u(t, x)(T ±∞ + (T (t, x) -T ±∞ ))η ± (x)dx = - ∞ -∞ e i2πxξ ±,j A j (t) e i (x-j) 2 4t √ t (T ±∞ + (T (t, x) -T ±∞ ))η ± (x)dx =: Ĩ(t, ξ) + J(t, ξ).
Proceeding as above for J(t, ξ) we get the existence of ξ( , t, {α j }) such that

J(t, ξ) = - ∞ -∞ e i2πxξ ±,j A j (t) e i (x-j) 2 4t √ t g ± T (t, x)η ± (x)dx = -e -i4π 2 tξ 2 ±,j e i2πjξ A j (t) ∞ -∞ e i (x-j+4πtξ) 2 4t g ± T (t, x)η ± (x)dx satisfies, for ξ ≥ ξ( , t, {α j }) and 4πtξ / ∈ Z, | J(t, ξ)| ≤ C , if d(4πξ, Z t ) ≥ 1, C | log(d(4πξ, Z t ))|, if d(4πξ, Z t ) < 1.
For Ĩ(t, ξ) we make the changes of variable x = j + 2 √ ty and s = y -2π √ tξ:

Ĩ(t, ξ) = -2 ±,j T ±∞ e i2πjξ e -i|α j | 2 log √ t A j (t)e -i j 2 4t ∞ -∞ e iy 2 -i4π √ tξy η ± (j + 2 √ ty)dy = -2 ±,j
T ±∞ e i2πjξ A j (t)e -i j 2 4t e -i4π 2 tξ 2 ∞ -∞ e is 2 η ± (j + 4πtξ + 2 √ ts)ds.

Since for |j| > j we get -smallness from the A j 's, and in view of the definition of η ± , we have

| Ĩ(t, ξ) + 2T ∞ e -i4π 2 tξ 2 j e i2πjξ A j (t)e -i j 2 4t √ πe i π 4 | ≤ C .
In particular, we note that all the terms are uniformly bounded, so that by Plancherel's theorem we have

k+1 k | Ĩ(t, ξ)| 2 dξ -4π j |A j (t)| 2 ≤ C .
Therefore, as in the case of the tangent vector T we get that for k ≥ ξ( , t, {α j })

| k+1 k | N x (t, ξ)| 2 dξ -4π j |A j (t)| 2 | ≤ C .
As ∈ (0, 1) was arbitrary we get [START_REF] Grinstein | Dynamics of coherent structures and transition to turbulence in free square jets[END_REF] by the conservation of mass [START_REF] Ginibre | On a class of Schrödinger equations. I. The Cauchy problem, general case[END_REF].

Remark 3.4. In view of the estimates we have obtained on the J(t, ξ), it is natural to look for a logarithmic growth of Tx (t, ξ) in terms of the distance d(4πξ, Z t ). Moreover, the numerical computations given in [START_REF] De La Hoz | On the relationship between the one-corner problem and the M -corner problem for the vortex filament equation[END_REF] suggest the unboundedness of T x ∞ in the case of a regular planar polygon as initial data.

By doing similar computations to the ones in this section, and by using in particular (33), we obtain for values of ξ such that there exists n ∈ N, d ∈ (0, 1) satisfying 4πξ = n t + d, the estimate: For instance, in the case of initial data α n 0 = α n n = δ and α n j = 0 for j / ∈ {0, n}, that corresponds to a polygonal line with two corners separated by a distance of size n, in (36) the sum reduces to the case j = 0, and we get: n we could look for a log n growth. Unfortunately, the results we have at hand about the IVP of (3) are not good enough, and we get a constant K(t, {α n j }) in n that grows faster than log n. On the other hand it seems rather natural to be able to solve (3) and the corresponding equation (1) just under the condition that j |α j | 2 is finite. This question will be studied elsewhere.

(36) Tx (t, ξ) -i j A j (t)A j+n (t) e -i j 2 -(j+n) 2 4t (T ∞ -T -∞ ) ×e ij d 2 e in d 2 s>(-j-n) d 2 ,

An observation about the dynamics of a regular polygon

In this section we give some evidence that supports the conjecture made in [START_REF] De La Hoz | Vortex filament equation for a regular polygon[END_REF] about the evolution of a regular planar polygon according to the binormal flow.

As recalled in the Introduction, the case when the initial curve in (1) is a broken line with just one corner of angle θ located at x = 0 was considered in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF]. In that paper the Hasimoto transformation is still used, and a solution is found considering as initial condition for (3) αδ 0 , where sin θ 2 = e -π α 2 2 , u α (t, x) = α e i x 2 4t √ t , and a(t) = α 2 t . As a consequence, and except in the trivial situation of one straight line where θ = π, the filament function of the initial curve χ α (0), i.e. θδ 0 , is not the limit of the filament functions of χ α (t). Nevertheless, it was proved in [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] that this solution is unique and the corresponding initial value problem is well posed in an appropriate sense.

Similarly, if χ(0) is a broken line with several corners of angles θ j located at the integers x = j it was proved in [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF] that one has to consider the sequence {α j } with modulus defined by sin θ j 2 = e -π

|α j | 2 2 .
The phases are determined in a more complicated way involving the curvature and torsion angles of χ(0). Nevertheless, if χ(0) is a planar polygon {α j } can be taken real. Then we construct a solution of (3) with a(t) = j |α j | 2 t

, and datum at time zero given by j α j δ j . It is then natural to expect that in the case of a planar regular polygon with N sides as initial data of (1) one has to consider as initial data for (3) By using the Galilean invariance and assuming uniqueness, it was shown in [START_REF] De La Hoz | Vortex filament equation for a regular polygon[END_REF] that the corresponding solution of (3) has to be written as ψ(t, x) = ψ(t, 0) j e it(2πN j) 2 +i(2πN j)x .

In view of (38) and the Poisson summation formula j e i(2πN j)x = 1 and we can think that the conservation law (12) also holds in the periodic setting 4 . 4 We recall that the sequence {Aj(t)} j∈N was found by doing a fixed point argument on Ãk (t) for the equation ( 24) in [START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF]:

i∂t Ãk (t) = f k (t) - 1 8πt (| Ãk (t)| 2 -|α k | 2 ) Ãk (t),
where

f k (t) = 1 8πt (j 1 ,j 2 ,j 3 )∈N R k e -i k 2 -j 2 1 +j 2 2 -j 3 3 4t e -i |α k | 2 -|α j 1 | 2 +|α j 2 | 2 -|α j 3 | 2 4π log √ t Ãj 1 (t) Ãj 2 (t) Ãj 3 (t),
with initial data Ãk (0) = α k . In particular we remark that for N ∈ N, {Bj(t)} j∈R with Bj(t) := ÃN+j(t) solves also the equation. Therefore if the initial data satisfies α k+N = α k for all k, and there is uniqueness of the solution, then we conclude that Ãk+N (t) = Ãk (t) for all k and t, so the periodic setting is preserved.

Lemma 2 . 1 .

 21 There exist T ±∞ with |T ±∞ | = 1 such that for all t > 0[START_REF] Hasimoto | A soliton in a vortex filament[END_REF] 

ee iy 2 e

 2 ξ)| 2 dξ we shall split I(t, ξ) into a function of size of order and a function of L 2 (k, k + 1)-norm equal to 4π j |α j | 2 . In view of the definition (26) of j , the terms in I(t, ξ) involving |j| > j can be upper-bounded by C . We are left with the terms involving |j| ≤ j . Observe that 3 iy 2 e iM log 2y+a η ± (2 √ ty + √ ta)dy -e iM log a iM log 2y+a

2 -1 e i d 2 log d 2 ≤For d 1 n the factor e in d 2 - 1

 22121 ξ) -iA 0 (t)A n (t) e i n 2 4t (T ∞ -T -∞ ) e in d K(t, {α n j }). ruins the log d growth. Instead, for d ≈ 1

  , 0) = αN, which therefore does not depend on time.So, on one hand we have a behavior of the linear evolution ψ(t, x) = j ψ(t, 0)e it∆ δ j N ,

2

  Indeed, we can use for large a the fact that e is 2 e iM log a+s

				s a+s	η ± (a + s)χ(s)ds = O( 1 a ) +
	e is 2 e iM log a+s s 2 a+s to get a 1 a -bound.	η ± (a + s)χ(s)	s	ds, and split the integral into regions 1 2 ≤ |s| ≤ a 2 , a 2 ≤ |s| ≤ 2a, 2a ≤ |s|

  {α j }) larger if needed, for |j| ≤ j and ξ ≥ ξ( , t, {α j }) we get:

	where		I 1 (t, ξ) = N ∞ e i4π 2 tξ 2 √	πe i π 4	e i2πjξ e -iM log	j+4πtξ √ t	A j (t),
								|j|≤j
	and		I 2 (t, ξ) = N -∞ e -i4π 2 tξ 2 √	πe -i π 4	e i2πjξ e iM log	j-4πtξ √ t	A j (t).
	|j|≤j 1 (t, ξ) are uniformly bounded by 2 1 (t, ξ) and I 2 Since I 1	√	π j |A j (t)|, we obtain from (35)
	k+1				k+1			k+1	k+1
		|I(t, ξ)| 2 dξ -		|I 1 (t, ξ)| 2 dξ -	|I 2 (t, ξ)| 2 dξ -	I 1 (t, ξ)I 2 (t, ξ)dξ ≤ C .
	k			k				k	k
	Then, as |N ±∞ | = 2, Plancherel's formula gives us for k ≥ k
			k+1					k+1
			|I(t, ξ)| 2 dξ -4π	|A j (t)| 2 -	I 1 (t, ξ)I 2 (t, ξ)dξ ≤ C .
		k					|j|≤j	k
	Now we see that the crossed terms are
			k+1				
			k				
								η ∓ (2 √	ty +	√	ta)dy = 0.
	Hence, choosing ξ( , t, ∞ e ∓iy 2 e ∓iM log 2 √ ty+j±4πtξ √ t	η ± (2 √	ty + j ± 4πtξ)ds -e	∓iM log	j±4πtξ √ t	∞	e ∓is 2 ds ≤ ,
	-∞							-∞
	and	∞	e ∓iy 2 e ∓iM log	2 √	ty+j±4πtξ √ t	η ∓ (2 √	ty + j ± 4πtξ)ds ≤ .
		-∞					
	Therefore we have for ξ ≥ k			
	(35)			|I(t, ξ) -I 1 (t, ξ) -I 2 (t, ξ)| ≤ C ,
	3 Indeed, the integral	∞ -∞ e iy 2	(e iM log 2y+a -e iM log a )η ± (2 √	ty +	√ ta)dy can be upper-bounded by C |a|
	on |s| < 1, while on |s| > 1 by performing integration by parts from the quadratic phase and by using the
	dominated convergence theorem we get decay to zero as |a| → ∞. Then by the same type of arguments we have lim a→±∞ ∞ -∞ e iy 2 η ± (2 √ ty + √ ta)dy -∞ -∞ e iy 2 dy = 0 and lim a→±∞ ∞ -∞ e iy 2 η ∓ (2 √ ty + √ ta)dy = 0.

  1>|s|> d

	2	e is s	ds -	s>-j d 2 , 1>|s|> d 2	e is s	ds ≤ K(t, {α

j }).

the existence of Ñ (0, x) is proved in Lemmas 4.5 in[START_REF] Banica | Evolution of polygonal lines by the binormal flow[END_REF].
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As a consequence we would get

On the other hand, it was proved in [START_REF] De La Hoz | Vortex filament equation for a regular polygon[END_REF] making use again of the Poisson summation formula, that for rational times t p,q the Talbot effect holds: if q is odd ψ(t p,q , x) = ψ(t p,q , 0)

1 q , therefore the angles θ p,q of the skew polygon at time t p,q satisfy sin(

that is precisely the value given in [START_REF] De La Hoz | Vortex filament equation for a regular polygon[END_REF] and obtained from the numerical data. Similarly one can repeat the argument if q is even.