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SINGULARITY FORMATION FOR THE 1-D CUBIC NLS AND THE SCHR ÖDINGER MAP ON S 2

In this note we consider the 1-D cubic Schrödinger equation with data given as small perturbations of a Dirac-δ function and some other related equations. We first recall that although the problem for this type of data is ill-posed one can use the geometric framework of the Schrödinger map to define the solution beyond the singularity time. Then, we find some natural and well defined geometric quantities that are not regular at time zero. Finally, we make a link between these results and some known phenomena in fluid mechanics that inspired this note.

1. Introduction 1.1. Low regularity issues for the 1-D cubic Schrödinger equation. We consider the 1-D cubic Schrödinger equation [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF] iψ t + ψ xx ± |ψ| 2 ψ = 0, ψ(0) = ψ 0 .

The regularity threshold in Sobolev spaces for the Cauchy problem is L 2 . More precisely, the equation is known to be well-posed in H s , for s ≥ 0 [START_REF] Ginibre | On a class of nonlinear Schrödinger equations. II Scattering theory, general case[END_REF][START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrdinger equation[END_REF] and if s < 0 the equation is illposed in H s [START_REF] Kenig | On the ill-posedness of some canonical non-linear dispersive equations[END_REF][START_REF] Christ | Ill-posedness for nonlinear Schrödinger and wave equations[END_REF]. Note however that the threshold obtained by the rescaled λψ(λ 2 t, λx) solutions is Ḣ- 1 2 . Well-posedness was then proved to hold in [START_REF] Vargas | Global well-posedness for 1d non-linear Schrödinger equation for data with an infinite L 2 norm[END_REF][START_REF] Grünrock | Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS[END_REF] for data whose Fourier transform is in some L p spaces with p < ∞. From this point of view a natural space would be to consider initial data with Fourier transform in L ∞ , [START_REF] Banica | Scattering for 1D cubic NLS and singular vortex dynamics[END_REF] ψ 0 ∈ L ∞ , as this space is scaling invariant. In [START_REF] Christ | Power series solution of a nonlinear Schrdinger equation[END_REF] a result about the existence of a solution that belongs to almost this class is proved. More recently, several papers have appeared on uniform estimates in the Sobolev class, see [START_REF] Kappeler | On the wellposedness of the defocusing mKdV equation below L2[END_REF] and [START_REF] Koch | Conserved energies for the cubic NLS in 1-d[END_REF] (and also [START_REF] Killip | Talk Bonn[END_REF]). These results miss the case δ x=0 , critical for the scaling, which is an important example for several reasons. One of them is that is also invariant under Galilean transformations, property that turns out to be crucial when [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF] is obtained from the equation of the binormal flow (see [START_REF] Grünrock | Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS[END_REF]) thanks to the so-called Hasimoto transformation. By doing so, the gauge invariance of the geometric PDE has to be considered in [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF]. This amounts to study the more general equation [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] iψ t + ψ xx ± (|ψ| 2 -A(t))ψ = 0, A(t) ∈ R, ψ(0) = ψ 0 .

At the level of Dirac measures as initial condition, we have an explicit ill-posedness result of (3) obtained first in [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF] and then improved in [START_REF] Banica | Scattering for 1D cubic NLS and singular vortex dynamics[END_REF] as follows. Let a > 0 be small and let 0 < γ < 1 4 , 0 < δ, s ∈ N. Consider the cubic Schrödinger equation ( 4)

iψ t + ψ xx ± (|ψ| 2 - a 2 t ) ψ 2 = 0.
First notice that the function

ψ a (t, x) = a e i x 2 4t
√ t is a solution with aδ 0 as initial data at time zero. We consider at time t = 1 a perturbation u(1) of ψ a (1), with ∂ k

x u(1) small in the space (5)

X γ = {f, f L 2 + |ξ| 2γ f (ξ) L ∞ (ξ 2 ≤1) < +∞},
for all 0 ≤ k ≤ s. Then, it is proved that (4) with ψ a (1) + u(1) as initial data at t = 1 has a unique solution on (0, 1] that writes ( 6)

ψ(t, x) = e i x 2 4t √ t (a + u) 1 t , x t , with ∂ k x u(1) small in the space (7) Y γ,δ = g, sup t≥1 g(t) L 2 + 1 t δ |ξ| 2γ ĝ(t, ξ) L ∞ (ξ 2 ≤1) < +∞ ∩ L 4 ((1, ∞)L ∞ ),
for all 0 ≤ k ≤ s. Moreover, u(t) scatters, in the sense that there exists a final state f + ∈ H s such that u(t) behaves for large time as e ±ia 2 log √ t e i(t-1)∂ 2 x f + in L ∞ ((t, ∞)H s ) norm. In particular we obtain, imposing moreover that u(1) belongs to weighted spaces, that

ψ(t, x) -a e i x 2 4t √ t - e ±ia 2 log √ t √ 4πi f + - x 2 L 2 ≤ Ct 1 4 .
This shows that as t goes to zero the perturbative solution ψ(t) behaves like a e i x 2 4t √ t , that goes to aδ as t approaches zero, and moreover that there is no limit in L 2 for ψ(t) -a e i x 2 4t √ t .

1.2. Continuation after the singularity is formed using the geometric structure.

While at the Schrödinger level things are out of control at time zero as we have just seen, there is a way of having a new insight thanks to the geometric structure of the equation. In fact, the instability phenomena have been removed at the level of the Schrödinger map in [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] and in the following sense.

Starting from ψ the solution of (4) obtained above with the focusing non-linearity (i.e. take the + sign in (4)), we construct a map T : (0, 1] × R → S 2 , together with N : (0, 1] × R → S 2 + iS 2 by imposing (T, N, N )(1, 0) to be an orthonormal basis of R 3 , and the space and time evolution laws to be (8)

       T x (t, x) = ψN (t, x), N x (t, x) = -ψT (t, x), T t = ψ x N, N t = -iψ x T -i a 2 -t|ψ| 2 2t N.
Then, it turns out that T satisfies for t ∈ (0, 1] the equation of the Schrödinger map onto S 2 : (9)

T t = T ∧ T xx .
Moreover, as t goes to zero the vector T (t, x) has a pointwise limit:

∃T (0, x) = lim t→0 T (t, x), ∀x = 0.
In the same way the modulated normal vector

(10) Ñ (t, x) = N (t, x)e iΦ(t,x) , Φ(t, x) = a 2 log |x| √ t ,
also has a pointwise limit as t goes to zero

∃ Ñ (0, x) = lim t→0 Ñ (t, x), ∀x = 0.
So that at t = 0 the limits T (0) and Ñ (0) satisfy the following systems:

(11)

     T x (0, x) = f + x 2 e -ia 2 log |x| Ñ (0, x) , Ñx (0, x) = -f +
x 2 e -ia 2 log |x| T (0, x), for x ∈ (0, ±∞), with the values of x = 0 ± given by a couple of vectors that depend on a in a precise way .

Finally, we proved in [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] that there is a unique (in the sense that at the level of (4) the perturbations u live in the Y γ,δ spaces) nontrivial way of continuing the solution T of (9) after time t = 0. More precisely, having in mind the time invariance of the Schrödinger map [START_REF] Da Rios | On the motion of an unbounded fluid with a vortex filament of any shape[END_REF], it is enough to construct solutions T * of (9) for positive times, with initial data T * (0, x) = -T (0, -x). It turns out that T (0, 0 + ) = T (0, 0 -), so that T * (0) is not a standard initial data for the Schrödinger map [START_REF] Da Rios | On the motion of an unbounded fluid with a vortex filament of any shape[END_REF]. The first step to overcome this difficulty is to construct (T * , Ñ * ) at time t = 0 as solutions of [START_REF] Ginibre | On a class of nonlinear Schrödinger equations. II Scattering theory, general case[END_REF]. Then, from the function appearing in this system to construct a new final state f * + , and thanks to the existence of the wave operators for the equation that u given in (6) satisfies, to construct a new function u * (t) on (1, ∞) with this final state, yielding for t ∈ (0, 1] a new solution ψ * (t). Finally, via (8) a frame (T * , Ñ * ) is obtained for t ∈ (0, 1], with T * solution of (9), a trace of it is obtained at time zero, which by a rigidity argument it is shown to be exactly T * (0). 1.3. Lack of smoothness of some natural quantities associated to the geometric solution. In this section we will exhibit some natural quantities associated to the solution of the Schrödinger map, whose construction we sketched in the previous section, that are non-smooth in time. More precisely, using the previous notations, we prove the following result.

Theorem 1.1. In view of the equations (8) and the natural space (2) we consider the quantities T x (t) and N x (t). The following strict inequalities hold:

(12) inf 0<t≤1 T x (t) L ∞ > T x (0) L ∞ , and (13) 
inf 0<t≤1 N x (t) L ∞ > Ñx (0) L ∞ .
1.4. Link with fluid mechanics phenomena. The present note was inspired from the following problem. We consider the binormal flow equation ( 14)

χ t = χ x ∧ χ xx ,
where χ(t) is a curve in R 3 parametrized by the arclength parameter x varying in R and in [0, 2π] for closed curves. This equation was derived by Da Rios in 1905 as a model for the evolution of a vortex filament in a 3-D fluid governed by Euler equations ( [START_REF] Da Rios | On the motion of an unbounded fluid with a vortex filament of any shape[END_REF]). It is the simplest and the most used model for this kind of dynamics. We refer to the recent article [START_REF] Jerrard | On the vortex filament conjecture for Euler flows[END_REF] about the validity of this approximation.

Recent numerical simulations ( [START_REF] De La Hoz | Vortex filament equation for a regular polygon[END_REF], [START_REF] Jerrard | On the motion of a curve by its binormal curvature[END_REF]) done for the evolution ( 14) taking polygons as initial condition, suggest some striking similarities with some phenomena observed for noncircular jets (see for instance Figure 6 of [START_REF] Grinstein | Flow control with noncircular jets[END_REF] and Figure 10 of [START_REF] Grinstein | Near field dynamics of subsonic free square jets[END_REF]). At the qualitative level two relevant facts are observed:

• axis switching phenomena occurs,

• symmetries that are a multiple of the starting symmetry appear. Furthermore, in [START_REF] De La Hoz | Vortex filament equation for a regular polygon[END_REF] the authors show that these phenomena also appear in [START_REF] Grünrock | Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS[END_REF]. More precisely, if the initial data χ(0) is a regular planar polygon with M sides, supposing that a unique solution χ(t) exists, and integrating the Frenet system, it is proved that χ(t) at times t p,q = (2π/M 2 )p/q, is a skew-polygon with a number of sides that is either M q or M q/2. In particular in half a period (i.e. t p,q = π/M 2 ) a regular planar M-polygon reappears with the axis switched by an angle 2π/M . This effect is a non-linear version of the so-called Talbot effect, (see [START_REF] Olver | Dispersive quantization[END_REF], [START_REF] Erdogan | Talbot effect for the cubic non-linear Schrdinger equation on the torus[END_REF], and [START_REF] Vega | The dynamics of vortex filaments with corners[END_REF] for the Talbot effect in non-linear settings ).

Some more recent numerical simulations [START_REF] De La Hoz | On the Relationship between the One-Corner Problem and the M -Corner Problem for the Vortex Filament Equation[END_REF] show that the dynamics at time 0 + of any of the corners of the initial regular polygon is the one of the self-similar solution of ( 14) that is determined by the angle and location of the corner. As a consequence, the dynamics at 0 + can be understood as the non-linear interaction of infinitely many filaments (as q goes to infinity), one for each corner, that for infinitesimal times each resembles the one of the self-similar solution of ( 14) studied in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF]. We recall that the self-similar solutions of the binormal flow ( 14) form a family of solutions (χ a ) a∈(0,∞) with a smooth profile at time t = 1, and a limit at time t = 0 that is precisely a corner described by χ(0, x) = xA ± a for x ∈ (0, ±∞), with A ± a unitary vectors determined in terms of the parameter a. Therefore, it seems rather natural to know up to what extent some quantities associated to the solutions of ( 14) behave in a non-linear way. In this paper we start this study in the more accessible situation of the real line and more concretely we look at the solutions, obtained in our previous work [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF], that are small perturbations of the self-similar solutions. We will mainly focus in the following aspects, related to fluid mechanics phenomena:

(i) Continuation after the singularity has been formed.

(ii) Behavior of some conservation laws.

(iii) Transfer of energy: Lack of continuity of some appropriate norm.

The first question was already answered in [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF], and the continuation process has been already described, at the level of the tangent vector, in §1.2.

For the second question we start making a remark on the so-called fluid impulse. We first recall, see [START_REF] Majda | Vorticity and Incompressible Flows[END_REF] p. 24, that for a 3-D fluid governed by Euler equations, of vorticity ω regular and decaying at infinity, the fluid impulse

R 3 x ∧ ω(t, x)dx
is conserved in time. In the case of the self-similar solutions χ a of ( 14), as the vorticity is supposed to be concentrated along the curve χ a (t), the corresponding quantity is the so-called linear momentum [START_REF] Ricca | Physical interpretation of certain invariants for vortex filament motion under LIA[END_REF] R χ a (t, x) ∧ (χ a ) x (t, x)dx.

It is worth noting that explicit computations (see the Appendix

) give R χ a (t, x) ∧ (χ a ) x (t, x)dx = |t|(A + a -A - a ).
In particular the linear momentum is not conserved, due of course to the behavior of the filament at infinite, so that its modulus decays and eventually vanishes at the singularity formation time, and then grows again instantaneously after passing t = 0. This means that close to a corner there is a neat transfer of linear momentum. This fact has been confirmed in the numerical experiments done in [START_REF] De La Hoz | On the Relationship between the One-Corner Problem and the M -Corner Problem for the Vortex Filament Equation[END_REF] for regular polygons. Also, and due to the fact that the number of corners depends on the rationality of the time, this local transfer of momentum has a characteristic intermittent behavior.

For treating question (iii) we have to establish the functional spaces that are appropriate for our purposes. Theorem 1.1 is an answer in this direction.

Proof of Theorem 1.1

Proof. We recall from §3.3 of [3] that the system (11) for x ∈ (0, ±∞), has initial data [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF] T (0, 0

± ) = RA ± a , Ñ (0, 0 ± ) = RB ± a ,
for some rotation R and A ± a , B ± a are determined by the self-similar profiles of the binormal flow [START_REF] Grünrock | Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS[END_REF]. Therefore

T x (0, x) = R(A - a -A + a )δ 0 + f+ ( x 2 )e -ia 2 log |x| Ñ (0, x) ,
and we have

T x (0, ξ) -R(A - a -A + a ) ≤ C | f+ ( x 2 )|dx ≤ C f + H 1 .
Since from Theorem 1 of [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF] we know that A ± a = (A ± 1,a , A ± 2,a , A ± 3,a ) are unitary vectors with

A + 1,a = A - 1,a = e -πa 2 2 , A + 2,a = -A - 2,a , A + 3,a = -A - 3,a , we obtain |A - a -A + a | 2 = 4(1 -(A + a,1 ) 2 ) = 4(1 -e -πa 2 ), we get | T x (0, ξ)| -2 1 -e -πa 2 ≤ C f + H 1 . As πa 2 > 1 -e -πa 2 , if f + H 1 is small enough, that in turn is obtained if u(1) is small enough, we obtain (16) 2 √ πa > T x (0) L ∞ .
We shall get the lower bound 2 √ πa for T x (t) L ∞ by looking at large frequencies. From (8) we have

T x (t, ξ) = ψN (t, ξ).
We recall now from [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF] that the modulated vectors defined in [START_REF] Erdogan | Talbot effect for the cubic non-linear Schrdinger equation on the torus[END_REF] have a limit at x large, independent of time:

∃ lim x→±∞ Ñ (t, x) = N ±∞ , N ±∞ , N ±∞ ∈ S 2 .
By using also the link (6) between ψ and u, we can then write [START_REF] Jerrard | On the motion of a curve by its binormal curvature[END_REF] T

x (t, ξ) = e -ixξ   e -i x 2 4t √ t (a + u) 1 t , x t e -iΦ(t,x) N +∞ -g N (t, x)   dx, with the function g N (t, x) defined by g N (t, x) := N +∞ -Ñ (t, x) satisfying (18) g N (t) ∈ L ∞ , g N (t, x) x→+∞ -→ 0.
The leading term in ( 17) is the same one as for the self-similar solutions, with N +∞ instead of B + a , so computations on it go the same. Indeed, from Lemma 2.1 iii) we prove below we get

lim |ξ|→∞ e -ixξ   e -i x 2 4t √ t ae -ia 2 log |x| √ t N +∞   dx -2 √ πa e iξ 2 t-ia 2 log 2|ξ| √ t-i π
Then we notice the following orthogonality relation. By construction N (t, x) ⊥ N (t, x), that writes Ñ (t, x)e -iΦ(t,x) ⊥ Ñ (t, x)e -iΦ(t,x) , and implies Ñ (t, x) ⊥ Ñ (t, x).

From this together with (18) it follows that ( 19)

N +∞ ⊥ N +∞ .
Using the orthogonality relation [START_REF] Kenig | On the ill-posedness of some canonical non-linear dispersive equations[END_REF] we have

e iξ 2 t-ia 2 log 2|ξ| √ t-i π 4 N +∞ = 1,
and therefore

lim |ξ|→∞ e -ixξ   e -i x 2 4t √ t ae -iφ(t,x) N +∞   dx -2 √ πa = 0.
The three terms remaining to estimate in ( 17) are

e -ixξ e -i x 2 4t √ t e -iφ(t,x) m(t, x)dx, m(t, x) ∈ {u 1 t , x t , g N (t, x), u 1 t , x t g N (t, x)}.
From Lemma 2.1 i)-ii) these integrals tend to zero as ξ goes to -∞. So we have obtained

1 lim ξ→-∞ | T x (t, ξ)| = 2 √ πa,
and in particular, in view of ( 16) we obtained the first inequality (12) of the Theorem:

T x (t) L ∞ > T x (0) L ∞ .
Concerning the normal vectors, similar computations can be done as follows. From system [START_REF] Ginibre | On a class of nonlinear Schrödinger equations. II Scattering theory, general case[END_REF] with initial data [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF] it yields that

Ñx (0, x) = R(B - a -B + a )δ 0 -f+ ( x 2 )e -ia 2 log |x| T (0, x), so we have Ñx (0, ξ) -R(B - a -B + a ) ≤ C | f+ ( x 2 )|dx ≤ C f + H 1 .
The intricate definition of the vectors B ± a was given in formula (55) of [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF]. However, here we shall only need an expression for |B ± a,1 | which is easy to obtain as we shall see. Recalling that by symmetry of the profile of the self-similar solutions of ( 14) the first coordinate of its normal and binormal vectors are odd, and that its second and third coordinates are even, we have

B + 1,a = -B - 1,a , B + 2,a = B - 2,a , B + 3,a = B - 3,a , so |B - a -B + a | = 2|B + a,1 |,
and we get

| Ñx (0, ξ)| -2|B + a,1 | ≤ C f + H 1 .
From the system (8) on the first coordinate we obtain the conservation law T 1 (t, x) 2 + |N 1 (t, x)| 2 = 1, so we also have T 1 (t, x) 2 + | Ñ1 (t, x)| 2 = 1, and letting x go to +∞ in the case of χ a we get that 4|B + a,1

| 2 = 4(1 -(A + a,1 ) 2 ) = 4(1 -e -πa 2 ). As 4πa 2 > 4(1 -e -πa 2 ), if f + H 1 is small enough we obtain (20) 2 √ πa > Ñx (0) L ∞ .
Again we shall get the lower bound 2 √ πa for N x (t) L ∞ by looking at large frequencies. From (8) we have

N x (t, ξ) = -ψT (t, ξ). Recall from [3] that ∃ lim x→±∞ T (t, x) = T ±∞ ∈ S 2 .
We can then write

(21) N x (t, ξ) = -e -ixξ e i x 2 4t √ t (a + u) 1 t , x t T +∞ -g T (t, x) dx,
with the function g T (t, x) defined by g T (t, x)

:= T +∞ -T (t, x) satisfying (22) g T (t) ∈ L ∞ , g T (t, x) x→+∞ -→ 0. Lemma 2.1 insures us that lim |ξ|→∞ e -ixξ e i x 2 4t √ t aT +∞ dx -2 √ πae iξ 2 t-i π 4 T +∞ = 0,
and that the three following terms tend to 0 as ξ goes to -∞:

e -ixξ e i x 2 4t √ t m(t, x)dx, m(t, x) ∈ {u 1 t , x t , g T (t, x), u 1 t , x t g T (t, x)}.
Therefore from ( 21) we obtain lim

ξ→-∞ | N x (t, ξ)| = 2 √ πa,
and in view of (20) the inequality (13) follows.

Summarizing, the proof of the theorem is achieved once Lemma 2.1 is proved.

Lemma 2.1. Let t ∈ (0, 1). We estimate the oscillatory integrals

I ξ = e -ixξ e -i x 2 4t √ t e -ia 2 log |x| √ t m(t, x)dx, Ĩξ = e -ixξ e -i x 2 4t √ t m(t, x)dx, in the following cases. i) If m(t) ∈ H 3 we have (23) lim ξ→-∞ I ξ = 0, (24) lim ξ→-∞ Ĩξ = 0,
Note that this assumption is satisfied by m(t, x) = u 1 t , x t if u ∈ H 3 . ii) The convergence [START_REF] Olver | Dispersive quantization[END_REF] is also valid for m(t, x) = g T (t, x) = Ñ (t, x) -N +∞ , that is not in H 1 , and also for m(t, x) = u 1 t , x t g T (t, x). The convergence [START_REF] Ricca | Physical interpretation of certain invariants for vortex filament motion under LIA[END_REF] is also valid for m(t, x) = g T (t, x) = T (t, x) -T +∞ , and for m(t, x) = u 1 t , x t g T (t, x). iii) If m(t, x) = 1, we have [START_REF] Vargas | Global well-posedness for 1d non-linear Schrödinger equation for data with an infinite L 2 norm[END_REF] lim

ξ→-∞ I ξ -2e iξ 2 t e -ia 2 log 2|ξ| √ t e -is 2 ds = 0, lim ξ→-∞ Ĩξ -2e iξ 2 t e -is 2 ds = 0.
Proof. Let us start with the integrals I ξ . We shall first treat i) in a manner that will turn out to be valid also to the cases ii), up to the estimate of a last oscillatory integral that will be treated case by case. Finally we shall point out how the case iii) can be treated similarly to the case i).

First we get rid of the time by a change of variable:

I ξ := e -ixξ e -i x 2 4t √ t e -ia 2 log |x| √ t m(t, x)dx = 2 e -i2
√ tyξ e -iy 2 e -ia 2 log 2|y| m(t, 2 √ ty)dy.

Now we notice that the part near the origin is negligible. More precisely, let χ be a smooth cuttoff such that χ(s) = 0 for |s| ≤ 1 and χ(s) = 1 for |s| ≥ 2. We split the integral into two corresponding pieces. We re-split the first one into two regions:

I ξ,1 := 2 |y|< 1 ξ e -i2
√ tyξ e -iy 2 e -ia 2 log 2|y| m(t, 2 √ ty)(1 -χ(y))dy

+2 1 ξ ≤|y|≤2 e -i2
√ tyξ e -iy 2 e -ia 2 log 2|y| m(t, 2 √ ty)(1 -χ(y))dy.

On the first region we get convergence to zero as |ξ| → ∞, with the rate of decay 1 |ξ| , just by using the fact that m(t) ∈ L ∞ . On the second region we integrate by parts from e -i2 √ tyξ and the worse term gives us a rate of convergence to zero by log |ξ| |ξ| , provided that

m(t), m (t) ∈ L ∞ .
We are left with We split the integral J η into two pieces, using again the localization χ:

I ξ,2 := 2e iξ 2 t e -i(y+ξ √ t) 2 e -ia 2 log 2|y| m(t, √ ty)χ(y)dy = 2e iξ 2 t e -is 2 e -ia 2 log 2|s-ξ √ t| m(t, 2 √ t(s -ξ √ t))χ(s -ξ √ t)ds,
J η = e -is 2 f (s + η)(1 -χ(s))ds + e -is 2 f (s + η)χ(s)ds := J η,1 + J η,2 .
The convergence of J η,1 is insured by ( 27) and by the fact that the support of 1 -χ is bounded. For the J η,2 we use integrations by parts:

J η,2 = e -is 2 f (s + η)χ(s)ds = -e -is 2 i 2s 2 f (s + η)χ(s)ds + e -is 2 i 2s f (s + η)χ (s)ds + e -is 2 i 2s f (s + η)χ(s)ds := J 1 η,2 + J 2 η,2 + J 3 η,2 .
The first integral J Note that until now all estimates, except the one on I ξ,1 that uses also m ∈ L ∞ , used only the properties m(t) ∈ L ∞ , m(t, x)

x→+∞ -→ 0.

These conditions are satisfied also for the cases m(t, x) = g N (t, x) = Ñ (t, x) -N ∞ , and for m(t, x) = u 1 t , x t g N (t, x). Estimating I ξ,1 with g N (t, x) or with u 1 t , x t g(t, x) can be done the same as above, and the same rate of convergence to zero by log |ξ| |ξ| is recovered by using the fact that g N (t) = Ñ (t) = (-ψ(t)T (t) + ia 2 s N )e iΦ is integrable on 1 ξ ≤ |s| ≤ 2.

In order to end the proof of i), we perform in K η an extra integration by parts, use |s + η| > 1 and get as an upper-bound

|K η | ≤ C |s|>1 |m (t, 2 √ t(s + η))| + |m (t, 2 √ t(s + η))| s 2
ds.

On The second term has been already treated. In the first term we perform an integration by parts and get an 1 |η| rate of convergence easily up to when the derivative falls on T , which leads, as from (8) we have T s = ψN , to

1 η e 2isη e -ia 2 log 2|s+η| (a + u) 1 t , 2(s+η) √ t ψN (t, 2 √ t(s + η))χ(s + η)χ(s) s ds = e -iη 2 2 √ tη e -is 2 e -ia 2 log 2|s+η| |a + u| 2 1 t , 2(s+η) √ t N (t, 2 √ t(s + η))χ(s + η)χ(s) s ds + e -i3η 2 2 √ tη e i(s+2η) 2 e -ia 2 log 2|s+η| (a + u) 1 t , 2(s+η) √ t N (t, 2 √ t(s + η))χ(s + η)χ(s) s ds.
For obtaining the convergence to zero in η for the first integral we redo an integration by parts from the quadratic phase. We do the same for the second integral, after removing first the region s + 2η ≈ 0 that gives a decay of type log η η .

Estimating K η in the case m(t, x) = u 1 t , x t g N (t, x) of ii) is a mix between the cases m(t, x) = u 1 t , x t and m(t, x) = g N (t, x) that do not cause new issues.

The proof of (25) of the case m = 1 in iii) goes the same as the proof of i) with J η replaced by e -is 2 (f (s + η) -f (η))ds, and with (27) replaced by:

|f (s + η) -f (η)| ≤ C |s| |η| .
Indeed, this last inequality is valid as for |s| < |η| 2 we have the existence of |s 0 | < |η| 2 such that, by taking |η| > 4,

|f (s + η) -f (η)| = |s|| -ia 2 2|s 0 + η| χ(s 0 + η) + χ (s 0 + η)| ≤ C |s| |s 0 + η| ≤ C |s| |η| .
Finally, the integrals Ĩξ can be treated similarly as I ξ .

Appendix: computations on the linear momentum

We consider here the family of self-similar solutions (χ a ) a∈(0,∞) of the binormal flow ( 14) described in [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF]. They are determined by their profiles G a in the sense that

χ a (t, x) = √ tG a ( x √ t ),
and their profiles satisfy the asymptotics

(28) lim x→±∞ G a (x) = A ± a ,
with A ± a unitary vectors determined in terms of the parameter a. From the binormal flow (14) the following ordinary equation is obtained for G a :

(29) G a (s) -sG a (s) = G a (s) ∧ G a (s).

Finally, this solution is extended to t < 0 as χ a (t, x) = χ a (-t, -x) t < 0. Now for t > 0 we compute:

χ a (t, x) ∧ (χ a ) x (t, x)dx = √ tG a ( x √ t ) ∧ G a ( x √ t )dx = t G a (s) ∧ G a (s)ds.
By using (29) we get χ a (t, x) ∧ (χ a ) x (t, x)dx = t (G a (s) ∧ G a (s)) ∧ G a (s)ds = t G a (s)ds, as G a is parametrized by arclength and G a (s) is orthogonal to G a (s). Therefore (28) allows us to conlude the identity (30) for t > 0:

χ a (t, x) ∧ (χ a ) x (t, x)dx = t(A + a -A - a ).

Moreover, since χ(0, x) = xA ± a for x ∈ (0, ±∞), we obtain this identity also at time t = 0: χ a (0, x) ∧ (χ a ) x (0, x)dx = 0.

As a consequence we get:

(30) χ a (t, x) ∧ (χ a ) x (t, x)dx = |t|(A + a -A - a ), t ∈ R.

Remark 3.1. If is not obvious whether or not an identity similar to (30) remains true for small perturbations of the self-similar solution χ a . Already some conditions have to be made for the initial datum in order the momentum χ(t, x) ∧ χ x (t, x)dx to be well-defined. For instance, at initial time t 0 we could impose as datum a solution χ(t 0 , x) of the equation

G(s) -sG (s) = (1 + (s))G (s) ∧ G (s),
to be solved on [0, ±∞) with same initial data G(0) ∈ R 3 and G (0) ∈ S 2 , for a small regular function decaying to 0 at ±∞. Note that by taking the exterior product with G we get G ∧ G = (1 + )G , so by taking the scalar product with G we get the conservation of |G (s)| 2 . Then, proceeding as for the self-similar profiles G a , see [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF], one can compute the curvature and torsion and to conclude that G (s) has limits G ± at ±∞. In particular we can compute as above χ(t 0 , x) ∧ χ x (t 0 , x)dx = G(x) ∧ G (x)dx = (1 + (x))(G (s) ∧ G (s)) ∧ G (x)dx

= (1 + (x))G (x)dx = G + -G -- (x)G (x)dx,
which is a finite quantity if for instance is integrable. Another question is to see if the momentum is still well-defined for t = t 0 and behaves as in (30). We plan to address these questions in the future.

  so we have to show by replacing -√ tξ by η that (26) lim η→+∞ J η := lim η→+∞ e -is 2 f (s + η)ds = 0, for f (r) = e -ia 2 log 2|r| m(t, 2 √ tr) χ(r). We shall use frequently the fact that for |s| < |η| 2 we have, as by hypothesis m(t, x) x→∞ -→ 0, the decay (27) lim η→+∞ f (s + η) = 0.

  1 η,2 restricted to 1 < |s| < |η| 2 satisfies the convergence to zero, by using again (27). On its remaining part |s| ≥ |η| 2 we get a 1 |η| decay just by using m(t) ∈ L ∞ and integrating 1For the first integral, on the region 1 < |s| < |η| -|η| we get a log |η| √

	s 2 . The second integral J 2 η,2 is restricted on 1 < |s| < 2, so it converges again thanks to (27).
	The third integral J 3 η,2 , which lives on |s| > 1, |s + η| > 1, can be upper-bounded by
	e -is 2 i 2s	f (s + η)χ(s)ds ≤ C	χ(s + η)χ(s) s(s + η)	ds + C	χ (s + η)χ(s) s	ds
	+C	e -is 2 e -ia 2 log 2|s+η| m (t, 2	√ s t(s + η))χ(s + η)χ(s)	ds .
							|η|	decay, on the
	region |η| -|η| < |s| < |η| + |η| we get a 1 √ |η|	decay by using |s + η| > 1, and on the
	region |η| + |η| < |s| we get a 1 |η| decay.			
	The second integral lives on 1 < |s + η| < 2 so in particular 1 |s| ≤ C |η| and we obtain a
	convergence with a 1 |η| rate of decay.			
	So we are left with showing the convergence to zero of the third integral
	K η = e -is 2 e -ia 2 log 2|s+η| m (t, 2	√ s t(s + η))χ(s + η)χ(s)	ds.

  1 < |s| < |η| 2 we use the decay hypothesis on m, and on |η| 2 < |s| we get a convergence of rate 1 |η| .For estimating K η in the case m(t, x) = g N (t, x) of ii), since g N (t) = Ñ (t) = (-ψ(t)T (t)+

	ia 2					
	e 2isη	(a + u) 1 t , 2(s+η) √ t	T (t, 2 s	√	t(s + η))χ(s + η)χ(s)	ds
	and					
		χ(s + η)χ(s) s(s + η)	ds.

s N )e iΦ , it is enough to estimate

N +∞ = 0.

the same is valid with ξ → +∞ by working with N -∞ in[START_REF] Jerrard | On the motion of a curve by its binormal curvature[END_REF] 

Acknowledgements: This research is supported by the ANR project "SchEq" ANR-12-JS01-0005-01, by ERCEA Advanced Grant 2014 669689 -HADE, by the MINECO projects MTM2014-53850-P and SEV-2013-0323. and by the Basque Government projects IT-641-13 and BERC 2014-2017. The authors would like to thank the referee for the careful reading of this paper.