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Abstract. In this note we consider the 1-D cubic Schrödinger equation with data given
as small perturbations of a Dirac-δ function and some other related equations. We first
recall that although the problem for this type of data is ill-posed one can use the geometric
framework of the Schrödinger map to define the solution beyond the singularity time.
Then, we find some natural and well defined geometric quantities that are not regular at
time zero. Finally, we make a link between these results and some known phenomena in
fluid mechanics that inspired this note.

1. Introduction

1.1. Low regularity issues for the 1-D cubic Schrödinger equation. We consider
the 1-D cubic Schrödinger equation

(1)

{
iψt + ψxx ± |ψ|2ψ = 0,

ψ(0) = ψ0.

The regularity threshold in Sobolev spaces for the Cauchy problem is L2. More precisely,
the equation is known to be well-posed in Hs, for s ≥ 0 [11, 4] and if s < 0 the equation is ill-
posed in Hs [19, 6]. Note however that the threshold obtained by the rescaled λψ(λ2t, λx)

solutions is Ḣ−
1
2 . Well-posedness was then proved to hold in [25, 14] for data whose Fourier

transform is in some Lp spaces with p <∞. From this point of view a natural space would
be to consider initial data with Fourier transform in L∞,

(2) ψ̂0 ∈ L∞,
as this space is scaling invariant. In [5] a result about the existence of a solution that
belongs to almost this class is proved. More recently, several papers have appeared on
uniform estimates in the Sobolev class, see [18] and [20] (and also [21]).

These results miss the case δx=0, critical for the scaling, which is an important example
for several reasons. One of them is that is also invariant under Galilean transformations,
property that turns out to be crucial when (1) is obtained from the equation of the binormal
flow (see (14)) thanks to the so-called Hasimoto transformation. By doing so, the gauge
invariance of the geometric PDE has to be considered in (1). This amounts to study the
more general equation

(3)

{
iψt + ψxx ± (|ψ|2 −A(t))ψ = 0, A(t) ∈ R,

ψ(0) = ψ0.
1
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At the level of Dirac measures as initial condition, we have an explicit ill-posedness result
of (3) obtained first in [1] and then improved in [2] as follows. Let a > 0 be small and let
0 < γ < 1

4 , 0 < δ, s ∈ N. Consider the cubic Schrödinger equation

(4) iψt + ψxx ± (|ψ|2 − a2

t
)
ψ

2
= 0.

First notice that the function

ψa(t, x) = a
ei
x2

4t

√
t

is a solution with aδ0 as initial data at time zero. We consider at time t = 1 a perturbation
u(1) of ψa(1), with ∂kxu(1) small in the space

(5) Xγ = {f, ‖f‖L2 + ‖|ξ|2γ f̂(ξ)‖L∞(ξ2≤1) < +∞},

for all 0 ≤ k ≤ s. Then, it is proved that (4) with ψa(1) + u(1) as initial data at t = 1 has
a unique solution on (0, 1] that writes

(6) ψ(t, x) =
ei
x2

4t

√
t

(a+ u)

(
1

t
,
x

t

)
,

with ∂kxu(1) small in the space

(7) Y γ,δ =

{
g, sup

t≥1

(
‖g(t)‖L2 +

1

tδ
‖|ξ|2γ ĝ(t, ξ)‖L∞(ξ2≤1)

)
< +∞

}
∩ L4((1,∞)L∞),

for all 0 ≤ k ≤ s. Moreover, u(t) scatters, in the sense that there exists a final state

f+ ∈ Hs such that u(t) behaves for large time as e±ia
2 log

√
tei(t−1)∂2xf+ in L∞((t,∞)Hs)

norm. In particular we obtain, imposing moreover that u(1) belongs to weighted spaces,
that ∥∥∥∥∥∥ψ(t, x)− ae

ix
2

4t

√
t
− e±ia

2 log
√
t

√
4πi

f̂+

(
−x

2

)∥∥∥∥∥∥
L2

≤ Ct
1
4 .

This shows that as t goes to zero the perturbative solution ψ(t) behaves like a e
i x

2

4t√
t

, that

goes to aδ as t approaches zero, and moreover that there is no limit in L2 for ψ(t)− a e
i x

2

4t√
t

.

1.2. Continuation after the singularity is formed using the geometric structure.
While at the Schrödinger level things are out of control at time zero as we have just seen,
there is a way of having a new insight thanks to the geometric structure of the equation.
In fact, the instability phenomena have been removed at the level of the Schrödinger map
in [3] and in the following sense.

Starting from ψ the solution of (4) obtained above with the focusing non-linearity (i.e.
take the + sign in (4)), we construct a map T : (0, 1] × R → S2, together with N :
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(0, 1]×R→ S2 + iS2 by imposing (T,<N,=N)(1, 0) to be an orthonormal basis of R3, and
the space and time evolution laws to be

(8)


Tx(t, x) = <ψN(t, x),
Nx(t, x) = −ψT (t, x),

Tt = =ψxN,
Nt = −iψxT − i a

2−t|ψ|2
2t N.

Then, it turns out that T satisfies for t ∈ (0, 1] the equation of the Schrödinger map onto
S2:

(9) Tt = T ∧ Txx.

Moreover, as t goes to zero the vector T (t, x) has a pointwise limit:

∃T (0, x) = lim
t→0

T (t, x), ∀x 6= 0.

In the same way the modulated normal vector

(10) Ñ(t, x) = N(t, x)eiΦ(t,x) , Φ(t, x) = a2 log
|x|√
t
,

also has a pointwise limit as t goes to zero

∃Ñ(0, x) = lim
t→0

Ñ(t, x),∀x 6= 0.

So that at t = 0 the limits T (0) and Ñ(0) satisfy the following systems:

(11)


Tx(0, x) = <

(
f̂+

(
x
2

)
e−ia

2 log |x| Ñ(0, x)
)
,

Ñx(0, x) = −f̂+

(
x
2

)
e−ia2 log |x| T (0, x),

for x ∈ (0,±∞), with the values of x = 0± given by a couple of vectors that depend on a
in a precise way .

Finally, we proved in [3] that there is a unique (in the sense that at the level of (4) the
perturbations u live in the Y γ,δ spaces) nontrivial way of continuing the solution T of (9)
after time t = 0. More precisely, having in mind the time invariance of the Schrödinger
map (9), it is enough to construct solutions T ∗ of (9) for positive times, with initial data
T ∗(0, x) = −T (0,−x). It turns out that T (0, 0+) 6= T (0, 0−), so that T ∗(0) is not a stan-
dard initial data for the Schrödinger map (9). The first step to overcome this difficulty is

to construct (T ∗, Ñ∗) at time t = 0 as solutions of (11). Then, from the function appearing
in this system to construct a new final state f∗+, and thanks to the existence of the wave
operators for the equation that u given in (6) satisfies, to construct a new function u∗(t)
on (1,∞) with this final state, yielding for t ∈ (0, 1] a new solution ψ∗(t). Finally, via (8)

a frame (T ∗, Ñ∗) is obtained for t ∈ (0, 1], with T ∗ solution of (9), a trace of it is obtained
at time zero, which by a rigidity argument it is shown to be exactly T ∗(0).
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1.3. Lack of smoothness of some natural quantities associated to the geometric
solution. In this section we will exhibit some natural quantities associated to the solution
of the Schrödinger map, whose construction we sketched in the previous section, that are
non-smooth in time. More precisely, using the previous notations, we prove the following
result.

Theorem 1.1. In view of the equations (8) and the natural space (2) we consider the

quantities T̂x(t) and N̂x(t). The following strict inequalities hold:

(12) inf
0<t≤1

‖T̂x(t)‖L∞ > ‖T̂x(0)‖L∞ ,

and

(13) inf
0<t≤1

‖N̂x(t)‖L∞ > ‖̂̃Nx(0)‖L∞ .

1.4. Link with fluid mechanics phenomena. The present note was inspired from the
following problem. We consider the binormal flow equation

(14) χt = χx ∧ χxx,
where χ(t) is a curve in R3 parametrized by the arclength parameter x varying in R and
in [0, 2π] for closed curves. This equation was derived by Da Rios in 1905 as a model for
the evolution of a vortex filament in a 3-D fluid governed by Euler equations ([9]). It is
the simplest and the most used model for this kind of dynamics. We refer to the recent
article [16] about the validity of this approximation.

Recent numerical simulations ([7],[17]) done for the evolution (14) taking polygons as
initial condition, suggest some striking similarities with some phenomena observed for non-
circular jets (see for instance Figure 6 of [12] and Figure 10 of [13]). At the qualitative
level two relevant facts are observed:

• axis switching phenomena occurs,
• symmetries that are a multiple of the starting symmetry appear.

Furthermore, in [7] the authors show that these phenomena also appear in (14). More
precisely, if the initial data χ(0) is a regular planar polygon with M sides, supposing that
a unique solution χ(t) exists, and integrating the Frenet system, it is proved that χ(t) at
times

tp,q = (2π/M2)p/q,

is a skew-polygon with a number of sides that is either Mq or Mq/2. In particular in half
a period (i.e. tp,q = π/M2) a regular planar M-polygon reappears with the axis switched
by an angle 2π/M . This effect is a non–linear version of the so-called Talbot effect, (see
[23], [10], and [26] for the Talbot effect in non-linear settings ).

Some more recent numerical simulations [8] show that the dynamics at time 0+ of any of
the corners of the initial regular polygon is the one of the self-similar solution of (14) that
is determined by the angle and location of the corner. As a consequence, the dynamics at
0+ can be understood as the non-linear interaction of infinitely many filaments (as q goes
to infinity), one for each corner, that for infinitesimal times each resembles the one of the
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self-similar solution of (14) studied in [15]. We recall that the self-similar solutions of the
binormal flow (14) form a family of solutions (χa)a∈(0,∞) with a smooth profile at time

t = 1, and a limit at time t = 0 that is precisely a corner described by χ(0, x) = xA±a for
x ∈ (0,±∞), with A±a unitary vectors determined in terms of the parameter a.

Therefore, it seems rather natural to know up to what extent some quantities associated
to the solutions of (14) behave in a non-linear way. In this paper we start this study in
the more accessible situation of the real line and more concretely we look at the solutions,
obtained in our previous work [3], that are small perturbations of the self-similar solutions.
We will mainly focus in the following aspects, related to fluid mechanics phenomena:

(i) Continuation after the singularity has been formed.
(ii) Behavior of some conservation laws.
(iii) Transfer of energy: Lack of continuity of some appropriate norm.

The first question was already answered in [3], and the continuation process has been
already described, at the level of the tangent vector, in §1.2.

For the second question we start making a remark on the so-called fluid impulse. We
first recall, see [22] p. 24, that for a 3-D fluid governed by Euler equations, of vorticity ω
regular and decaying at infinity, the fluid impulse∫

R3

x ∧ ω(t, x)dx

is conserved in time. In the case of the self-similar solutions χa of (14), as the vorticity
is supposed to be concentrated along the curve χa(t), the corresponding quantity is the
so-called linear momentum [24] ∫

R
χa(t, x) ∧ (χa)x(t, x)dx.

It is worth noting that explicit computations (see the Appendix) give∫
R
χa(t, x) ∧ (χa)x(t, x)dx = |t|(A+

a −A−a ).

In particular the linear momentum is not conserved, due of course to the behavior of the
filament at infinite, so that its modulus decays and eventually vanishes at the singularity
formation time, and then grows again instantaneously after passing t = 0. This means that
close to a corner there is a neat transfer of linear momentum. This fact has been confirmed
in the numerical experiments done in [8] for regular polygons. Also, and due to the fact
that the number of corners depends on the rationality of the time, this local transfer of
momentum has a characteristic intermittent behavior.

For treating question (iii) we have to establish the functional spaces that are appropriate
for our purposes. Theorem 1.1 is an answer in this direction.

2. Proof of Theorem 1.1

Proof. We recall from §3.3 of [3] that the system (11) for x ∈ (0,±∞), has initial data

(15) T (0, 0±) = RA±a , Ñ(0, 0±) = RB±a ,
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for some rotation R and A±a , B
±
a are determined by the self-similar profiles of the binormal

flow (14). Therefore

Tx(0, x) = R(A−a −A+
a )δ0 + <

(
f̂+(

x

2
)e−ia

2 log |x|Ñ(0, x)
)
,

and we have ∣∣∣T̂x(0, ξ)−R(A−a −A+
a )
∣∣∣ ≤ C ∫ |f̂+(

x

2
)|dx ≤ C‖f+‖H1 .

Since from Theorem 1 of [15] we know that A±a = (A±1,a, A
±
2,a, A

±
3,a) are unitary vectors with

A+
1,a = A−1,a = e−

πa2

2 , A+
2,a = −A−2,a, A

+
3,a = −A−3,a, we obtain

|A−a −A+
a |2 = 4(1− (A+

a,1)2) = 4(1− e−πa2),

we get ∣∣∣|T̂x(0, ξ)| − 2
√

1− e−πa2
∣∣∣ ≤ C‖f+‖H1 .

As πa2 > 1 − e−πa2 , if ‖f+‖H1 is small enough, that in turn is obtained if u(1) is small
enough, we obtain

(16) 2
√
πa > ‖T̂x(0)‖L∞ .

We shall get the lower bound 2
√
πa for ‖T̂x(t)‖L∞ by looking at large frequencies. From

(8) we have

T̂x(t, ξ) = <̂ψN(t, ξ).

We recall now from [3] that the modulated vectors defined in (10) have a limit at x large,
independent of time:

∃ lim
x→±∞

Ñ(t, x) = N±∞, <N±∞,=N±∞ ∈ S2.

By using also the link (6) between ψ and u, we can then write

(17) T̂x(t, ξ) =

∫
e−ixξ <

e−ix24t√
t

(a+ u)

(
1

t
,
x

t

)
e−iΦ(t,x)

(
N+∞ − gN (t, x)

) dx,

with the function gN (t, x) defined by gN (t, x) := N+∞ − Ñ(t, x) satisfying

(18) gN (t) ∈ L∞, gN (t, x)
x→+∞−→ 0.

The leading term in (17) is the same one as for the self-similar solutions, with N+∞

instead of B+
a , so computations on it go the same. Indeed, from Lemma 2.1 iii) we prove

below we get

lim
|ξ|→∞

∣∣∣∣∣∣
∫
e−ixξ <

e−ix24t√
t
ae
−ia2 log

|x|√
tN+∞

 dx− 2
√
πa<

(
eiξ

2t−ia2 log 2|ξ|
√
t−iπ

4N+∞
)∣∣∣∣∣∣ = 0.
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Then we notice the following orthogonality relation. By construction <N(t, x) ⊥ =N(t, x),
that writes

<Ñ(t, x)e−iΦ(t,x) ⊥ =Ñ(t, x)e−iΦ(t,x),

and implies

<Ñ(t, x) ⊥ =Ñ(t, x).

From this together with (18) it follows that

(19) <N+∞ ⊥ =N+∞.

Using the orthogonality relation (19) we have∣∣∣<(eiξ2t−ia2 log 2|ξ|
√
t−iπ

4N+∞
)∣∣∣ = 1,

and therefore

lim
|ξ|→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
∫
e−ixξ <

e−ix24t√
t
ae−iφ(t,x)N+∞

 dx

∣∣∣∣∣∣− 2
√
πa

∣∣∣∣∣∣ = 0.

The three terms remaining to estimate in (17) are∫
e−ixξ

e−i
x2

4t

√
t
e−iφ(t,x)m(t, x)dx, m(t, x) ∈ {u

(
1

t
,
x

t

)
, gN (t, x), u

(
1

t
,
x

t

)
gN (t, x)}.

From Lemma 2.1 i)-ii) these integrals tend to zero as ξ goes to −∞. So we have obtained1

lim
ξ→−∞

|T̂x(t, ξ)| = 2
√
πa,

and in particular, in view of (16) we obtained the first inequality (12) of the Theorem:

‖T̂x(t)‖L∞ > ‖T̂x(0)‖L∞ .
Concerning the normal vectors, similar computations can be done as follows. From

system (11) with initial data (15) it yields that

Ñx(0, x) = R(B−a −B+
a )δ0 − f̂+(

x

2
)e−ia2 log |x|T (0, x),

so we have ∣∣∣ ̂̃Nx(0, ξ)−R(B−a −B+
a )
∣∣∣ ≤ C ∫ |f̂+(

x

2
)|dx ≤ C‖f+‖H1 .

The intricate definition of the vectors B±a was given in formula (55) of [15]. However, here
we shall only need an expression for |B±a,1| which is easy to obtain as we shall see. Recalling

that by symmetry of the profile of the self-similar solutions of (14) the first coordinate of
its normal and binormal vectors are odd, and that its second and third coordinates are
even, we have B+

1,a = −B−1,a, B
+
2,a = B−2,a, B

+
3,a = B−3,a, so

|B−a −B+
a | = 2|B+

a,1|,

1the same is valid with ξ → +∞ by working with N−∞ in (17)
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and we get ∣∣∣|̂̃Nx(0, ξ)| − 2|B+
a,1|
∣∣∣ ≤ C‖f+‖H1 .

From the system (8) on the first coordinate we obtain the conservation law T1(t, x)2 +

|N1(t, x)|2 = 1, so we also have T1(t, x)2 + |Ñ1(t, x)|2 = 1, and letting x go to +∞ in the

case of χa we get that 4|B+
a,1|2 = 4(1− (A+

a,1)2) = 4(1− e−πa2). As 4πa2 > 4(1− e−πa2), if

‖f+‖H1 is small enough we obtain

(20) 2
√
πa > ‖̂̃Nx(0)‖L∞ .

Again we shall get the lower bound 2
√
πa for ‖N̂x(t)‖L∞ by looking at large frequencies.

From (8) we have

N̂x(t, ξ) = −ψ̂T (t, ξ).

Recall from [3] that

∃ lim
x→±∞

T (t, x) = T±∞ ∈ S2.

We can then write

(21) N̂x(t, ξ) = −
∫
e−ixξ

ei
x2

4t

√
t

(a+ u)

(
1

t
,
x

t

)(
T+∞ − gT (t, x)

)
dx,

with the function gT (t, x) defined by gT (t, x) := T+∞ − T (t, x) satisfying

(22) gT (t) ∈ L∞, gT (t, x)
x→+∞−→ 0.

Lemma 2.1 insures us that

lim
|ξ|→∞

∣∣∣∣∣∣
∫
e−ixξ

ei
x2

4t

√
t
aT+∞dx− 2

√
πaeiξ

2t−iπ
4 T+∞

∣∣∣∣∣∣ = 0,

and that the three following terms tend to 0 as ξ goes to −∞:∫
e−ixξ

ei
x2

4t

√
t
m(t, x)dx, m(t, x) ∈ {u

(
1

t
,
x

t

)
, gT (t, x), u

(
1

t
,
x

t

)
gT (t, x)}.

Therefore from (21) we obtain

lim
ξ→−∞

|N̂x(t, ξ)| = 2
√
πa,

and in view of (20) the inequality (13) follows.
Summarizing, the proof of the theorem is achieved once Lemma 2.1 is proved. �

Lemma 2.1. Let t ∈ (0, 1). We estimate the oscillatory integrals

Iξ =

∫
e−ixξ

e−i
x2

4t

√
t
e
−ia2 log

|x|√
tm(t, x)dx, Ĩξ =

∫
e−ixξ

e−i
x2

4t

√
t
m(t, x)dx,
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in the following cases.
i) If m(t) ∈ H3 we have

(23) lim
ξ→−∞

Iξ = 0,

(24) lim
ξ→−∞

Ĩξ = 0,

Note that this assumption is satisfied by m(t, x) = u
(

1
t ,
x
t

)
if u ∈ H3.

ii) The convergence (23) is also valid for m(t, x) = gT (t, x) = Ñ(t, x) − N+∞, that is
not in H1, and also for m(t, x) = u

(
1
t ,
x
t

)
gT (t, x). The convergence (24) is also valid for

m(t, x) = gT (t, x) = T̃ (t, x)− T+∞, and for m(t, x) = u
(

1
t ,
x
t

)
gT (t, x).

iii) If m(t, x) = 1, we have

(25) lim
ξ→−∞

∣∣∣∣Iξ − 2eiξ
2te−ia

2 log 2|ξ|
√
t

∫
e−is

2
ds

∣∣∣∣ = 0, lim
ξ→−∞

∣∣∣∣Ĩξ − 2eiξ
2t

∫
e−is

2
ds

∣∣∣∣ = 0.

Proof. Let us start with the integrals Iξ. We shall first treat i) in a manner that will turn
out to be valid also to the cases ii), up to the estimate of a last oscillatory integral that
will be treated case by case. Finally we shall point out how the case iii) can be treated
similarly to the case i).

First we get rid of the time by a change of variable:

Iξ :=

∫
e−ixξ

e−i
x2

4t

√
t
e
−ia2 log

|x|√
tm(t, x)dx = 2

∫
e−i2

√
tyξe−iy

2
e−ia

2 log 2|y|m(t, 2
√
ty)dy.

Now we notice that the part near the origin is negligible. More precisely, let χ be a
smooth cuttoff such that χ(s) = 0 for |s| ≤ 1 and χ(s) = 1 for |s| ≥ 2. We split the integral
into two corresponding pieces. We re-split the first one into two regions:

Iξ,1 := 2

∫
|y|< 1

ξ

e−i2
√
tyξe−iy

2
e−ia

2 log 2|y|m(t, 2
√
ty)(1− χ(y))dy

+2

∫
1
ξ
≤|y|≤2

e−i2
√
tyξe−iy

2
e−ia

2 log 2|y|m(t, 2
√
ty)(1− χ(y))dy.

On the first region we get convergence to zero as |ξ| → ∞, with the rate of decay 1
|ξ| ,

just by using the fact that m(t) ∈ L∞. On the second region we integrate by parts from

e−i2
√
tyξ and the worse term gives us a rate of convergence to zero by log |ξ|

|ξ| , provided that

m(t),m′(t) ∈ L∞.

We are left with

Iξ,2 := 2eiξ
2t

∫
e−i(y+ξ

√
t)2e−ia

2 log 2|y|m(t,
√
ty)χ(y)dy

= 2eiξ
2t

∫
e−is

2
e−ia

2 log 2|s−ξ
√
t|m(t, 2

√
t(s− ξ

√
t))χ(s− ξ

√
t)ds,
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so we have to show by replacing −
√
tξ by η that

(26) lim
η→+∞

Jη := lim
η→+∞

∫
e−is

2
f(s+ η)ds = 0,

for f(r) = e−ia
2 log 2|r|m(t, 2

√
tr)χ(r). We shall use frequently the fact that for |s| < |η|

2 we

have, as by hypothesis m(t, x)
x→∞−→ 0, the decay

(27) lim
η→+∞

f(s+ η) = 0.

We split the integral Jη into two pieces, using again the localization χ:

Jη =

∫
e−is

2
f(s+ η)(1− χ(s))ds+

∫
e−is

2
f(s+ η)χ(s)ds := Jη,1 + Jη,2.

The convergence of Jη,1 is insured by (27) and by the fact that the support of 1 − χ is
bounded. For the Jη,2 we use integrations by parts:

Jη,2 =

∫
e−is

2
f(s+ η)χ(s)ds = −

∫
e−is

2 i

2s2
f(s+ η)χ(s)ds

+

∫
e−is

2 i

2s
f(s+ η)χ′(s)ds+

∫
e−is

2 i

2s
f ′(s+ η)χ(s)ds := J1

η,2 + J2
η,2 + J3

η,2.

The first integral J1
η,2 restricted to 1 < |s| < |η|

2 satisfies the convergence to zero, by using

again (27). On its remaining part |s| ≥ |η|2 we get a 1
|η| decay just by using m(t) ∈ L∞ and

integrating 1
s2

.

The second integral J2
η,2 is restricted on 1 < |s| < 2, so it converges again thanks to (27).

The third integral J3
η,2, which lives on |s| > 1, |s+ η| > 1, can be upper-bounded by∣∣∣∣∫ e−is

2 i

2s
f ′(s+ η)χ(s)ds

∣∣∣∣ ≤ C ∫ ∣∣∣∣χ(s+ η)χ(s)

s(s+ η)

∣∣∣∣ ds+ C

∫ ∣∣∣∣χ′(s+ η)χ(s)

s

∣∣∣∣ ds
+C

∣∣∣∣∣
∫
e−is

2 e−ia
2 log 2|s+η|m′(t, 2

√
t(s+ η))χ(s+ η)χ(s)

s
ds

∣∣∣∣∣ .
For the first integral, on the region 1 < |s| < |η| −

√
|η| we get a log |η|√

|η|
decay, on the

region |η| −
√
|η| < |s| < |η| +

√
|η| we get a 1√

|η|
decay by using |s + η| > 1, and on the

region |η|+
√
|η| < |s| we get a 1

|η| decay.

The second integral lives on 1 < |s + η| < 2 so in particular 1
|s| ≤

C
|η| and we obtain a

convergence with a 1
|η| rate of decay.

So we are left with showing the convergence to zero of the third integral

Kη =

∫
e−is

2 e−ia
2 log 2|s+η|m′(t, 2

√
t(s+ η))χ(s+ η)χ(s)

s
ds.
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Note that until now all estimates, except the one on Iξ,1 that uses also m′ ∈ L∞, used
only the properties

m(t) ∈ L∞,m(t, x)
x→+∞−→ 0.

These conditions are satisfied also for the cases m(t, x) = gN (t, x) = Ñ(t, x) − N∞, and
for m(t, x) = u

(
1
t ,
x
t

)
gN (t, x). Estimating Iξ,1 with gN (t, x) or with u

(
1
t ,
x
t

)
g(t, x) can be

done the same as above, and the same rate of convergence to zero by log |ξ|
|ξ| is recovered by

using the fact that g′N (t) = Ñ ′(t) = (−ψ(t)T (t) + ia2

s N)eiΦ is integrable on 1
ξ ≤ |s| ≤ 2.

In order to end the proof of i), we perform in Kη an extra integration by parts, use
|s+ η| > 1 and get as an upper-bound

|Kη| ≤ C
∫
|s|>1

|m′(t, 2
√
t(s+ η))|+ |m′′(t, 2

√
t(s+ η))|

s2
ds.

On 1 < |s| < |η|
2 we use the decay hypothesis on m, and on |η|2 < |s| we get a convergence

of rate 1
|η| .

For estimatingKη in the casem(t, x) = gN (t, x) of ii), since g′N (t) = Ñ ′(t) = (−ψ(t)T (t)+
ia2

s N)eiΦ, it is enough to estimate∫
e2isη

(a+ u)
(

1
t ,

2(s+η)√
t

)
T (t, 2

√
t(s+ η))χ(s+ η)χ(s)

s
ds

and ∫ ∣∣∣∣χ(s+ η)χ(s)

s(s+ η)

∣∣∣∣ ds.
The second term has been already treated. In the first term we perform an integration by
parts and get an 1

|η| rate of convergence easily up to when the derivative falls on T , which

leads, as from (8) we have Ts = <ψN , to

1

η

∫
e2isη

e−ia
2 log 2|s+η|(a+ u)

(
1
t ,

2(s+η)√
t

)
<ψN(t, 2

√
t(s+ η))χ(s+ η)χ(s)

s
ds

=
e−iη

2

2
√
tη

∫
e−is

2
e−ia

2 log 2|s+η||a+ u|2
(

1
t ,

2(s+η)√
t

)
N(t, 2

√
t(s+ η))χ(s+ η)χ(s)

s
ds

+
e−i3η

2

2
√
tη

∫
ei(s+2η)2

e−ia
2 log 2|s+η|(a+ u)

(
1
t ,

2(s+η)√
t

)
N(t, 2

√
t(s+ η))χ(s+ η)χ(s)

s
ds.

For obtaining the convergence to zero in η for the first integral we redo an integration by
parts from the quadratic phase. We do the same for the second integral, after removing
first the region s+ 2η ≈ 0 that gives a decay of type log η

η .
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Estimating Kη in the case m(t, x) = u
(

1
t ,
x
t

)
gN (t, x) of ii) is a mix between the cases

m(t, x) = u
(

1
t ,
x
t

)
and m(t, x) = gN (t, x) that do not cause new issues.

The proof of (25) of the case m = 1 in iii) goes the same as the proof of i) with Jη
replaced by ∫

e−is
2
(f(s+ η)− f(η))ds,

and with (27) replaced by:

|f(s+ η)− f(η)| ≤ C |s|
|η|
.

Indeed, this last inequality is valid as for |s| < |η|
2 we have the existence of |s0| < |η|

2 such
that, by taking |η| > 4,

|f(s+ η)− f(η)| = |s|| −ia
2

2|s0 + η|
χ(s0 + η) + χ′(s0 + η)| ≤ C |s|

|s0 + η|
≤ C |s|
|η|
.

Finally, the integrals Ĩξ can be treated similarly as Iξ.
�

3. Appendix: computations on the linear momentum

We consider here the family of self-similar solutions (χa)a∈(0,∞) of the binormal flow (14)
described in [15]. They are determined by their profiles Ga in the sense that

χa(t, x) =
√
tGa(

x√
t
),

and their profiles satisfy the asymptotics

(28) lim
x→±∞

G′a(x) = A±a ,

with A±a unitary vectors determined in terms of the parameter a. From the binormal flow
(14) the following ordinary equation is obtained for Ga:

(29) Ga(s)− sG′a(s) = G′a(s) ∧G′′a(s).

Finally, this solution is extended to t < 0 as

χa(t, x) = χa(−t,−x) t < 0.

Now for t > 0 we compute:∫
χa(t, x) ∧ (χa)x(t, x)dx =

∫ √
tGa(

x√
t
) ∧G′a(

x√
t
)dx = t

∫
Ga(s) ∧G′a(s)ds.

By using (29) we get∫
χa(t, x) ∧ (χa)x(t, x)dx = t

∫
(G′a(s) ∧G′′a(s)) ∧G′a(s)ds = t

∫
G′′a(s)ds,
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as Ga is parametrized by arclength and G′a(s) is orthogonal to G′′a(s). Therefore (28) allows
us to conlude the identity (30) for t > 0:∫

χa(t, x) ∧ (χa)x(t, x)dx = t(A+
a −A−a ).

Moreover, since χ(0, x) = xA±a for x ∈ (0,±∞), we obtain this identity also at time t = 0:∫
χa(0, x) ∧ (χa)x(0, x)dx = 0.

As a consequence we get:

(30)

∫
χa(t, x) ∧ (χa)x(t, x)dx = |t|(A+

a −A−a ), t ∈ R.

Remark 3.1. If is not obvious whether or not an identity similar to (30) remains true
for small perturbations of the self-similar solution χa. Already some conditions have to be
made for the initial datum in order the momentum∫

χ(t, x) ∧ χx(t, x)dx

to be well-defined. For instance, at initial time t0 we could impose as datum a solution
χ(t0, x) of the equation

G(s)− sG′(s) = (1 + ε(s))G′(s) ∧G′′(s),

to be solved on [0,±∞) with same initial data G(0) ∈ R3 and G′(0) ∈ S2, for a small
regular function ε decaying to 0 at ±∞. Note that by taking the exterior product with G′

we get G∧G′ = (1 + ε)G′′, so by taking the scalar product with G′ we get the conservation
of |G′(s)|2. Then, proceeding as for the self-similar profiles Ga, see [15], one can compute
the curvature and torsion and to conclude that G′′(s) has limits G± at ±∞. In particular
we can compute as above∫

χ(t0, x) ∧ χx(t0, x)dx =

∫
G(x) ∧G′(x)dx =

∫
(1 + ε(x))(G′(s) ∧G′′(s)) ∧G′(x)dx

=

∫
(1 + ε(x))G′′(x)dx = G+ −G− −

∫
ε′(x)G′(x)dx,

which is a finite quantity if for instance ε′ is integrable. Another question is to see if the
momentum is still well-defined for t 6= t0 and behaves as in (30). We plan to address these
questions in the future.
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