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Chapter 20

A Multi-disciplinary Approach for Mechanical
Metamaterial Synthesis: A Hierarchical
Modular Multiscale Cellular Structure
Paradigm

Mustafa Erden Yildizdag, Chuong Anthony Tran, Mario Spagnuolo, Emilio
Barchiesi, Francesco dell’Isola, and Francois Hild

Abstract Recent advanced manufacturing techniques such as 3D printing have
prompted the need for designing new multiscale architectured materials for various
industrial applications. These multiscale architectures are designed to obtain the
desired macroscale behavior by activating interactions between different length
scales and coupling different physical mechanisms. Although promising results have
been recently obtained, the design of such systems still represents a challenge in
terms of mathematical modeling, experimentation, and manufacturing. In this paper,
some research perspectives are discussed aiming to determine the most efficient
methodology needed to design novel metamaterials. A multidisciplinary approach
based on Digital Image Correlation (DIC) techniques may be very effective. The
main feature of the described DIC-based approach consists of the integration of
different methodologies to create a synergistic relationship among the different steps
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from design to fabrication and validation. Experimental techniques and modeling
approaches are envisioned to be combined in feedback loops whose objective is to
determine the required multiscale architectures of newly designed metamaterials.
Moreover, it is necessary to develop appropriate mathematical models to estimate the
behavior of such metamaterials. Within this new design approach, the manufacturing
process can be effectively guided by a precise theoretical and experimental framework.
In order to show the applicability of the proposed approach, some preliminary results
are provided for a particular type of mechanical metamaterial, namely, pantographic
metamaterials. Lastly, the most relevant challenges are highlighted among those that
must be addressed for future applications.

Keywords: Synthesis of metamaterials - Generalized models - Analog circuits -
Pantographic structures - Digital image correlation - Homogenization

20.1 Introduction

It is possible to find natural materials that exhibit very exotic and unusual behavior
due to their microstructures organized with complex hierarchies (Lakes, 1993). These
hierarchical architectures consist of a combination of numerous structural patterns
at different length scales, and each pattern is made of architectured microstructures
characterized by lower length scales. Here, the overall response generated at the
macroscale is related not only to each of the lower-scale microstructures but also
to their interactions. The most common example of such natural materials is bone
tissues (Maggi et al, 2017; Giorgio et al, 2017; Chia and Wu, 2015; Cima et al,
1994). In Fig. 20.1, their structural hierarchy is illustrated from macro- to nano-scales.
The overall response of bone is obtained by the interactions of various features at
different length scales. As can be seen from Fig. 20.1, the microstructure of bone also
gives very inspirational ideas to design new metamaterials, namely, different parts
of a material may have various microstructural patterns depending on the desired
macroscale response. In this particular example, osseous tissues (i.e. cancellous
and cortical bones) have different structural patterns at the microscale, lamellae are
arranged in different manners to form trabeculae and ostea. Consequently, different
responses are obtained at particular locations.

Plant stems are another example of natural multiscale materials. They need to
resist both axial load from their own mass and bending moment from the wind. Fig.
20.2 shows an example of an internal microstructure enabling for such a strength.
A scanning electron micrograph of a hawthorn stem reveals its foam-like interior
structure. Gibson et al (1995) showed that this foam-like architecture improves the
buckling resistance of the plant.

It can be noted that multiscale natural materials have been inherently optimized by
natural selection through a very long process. For instance, bone tissues living now
on Earth are the result of a very long (many million year) selection and adaptation
process. During the so-called Cambrian explosion, the diversification of living species
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Fig. 20.1 Structural elements of bone at different length scales

Fig. 20.2 Microstructure (right and center) of hawthorn stem (left)

experienced an exponential growth, and in the most recent taxonomy list, it is possible
to find at least 69,276 different species. Therefore, many adaptations occurred in
the evolution of bone tissues, and different structures at various length scales are
observed nowadays. If enough time were given to natural selection, one would still
discover new multiscale materials!

With the newest manufacturing techniques, in particular with 3D printing, many
researchers are trying to design novel materials whose exotic macroscopic properties
are obtained with suitably designed multiscale microstructures (Liu et al, 2013;
Geers et al, 2003). Materials that do not exist in nature, and whose design is
based on multiscale modeling to exhibit desired performances, are sometimes called



metamaterials (Barchiesi et al, 2019; Gatt et al, 2015). The concept of metamaterials
is becoming more and more popular, and their applications are garnering considerable
academic and industrial interest (dell’Isola et al, 2019a,b). Therefore, the multiscale
structures observed in nature may inspire the design of such materials for technological
applications (Wegst et al, 2015). For instance, based on the multiscale structure of
bones (Fig. 20.1), artificial bio-resorbable materials have been invented and produced
for bone grafting processes (Fig. 20.3). Scaffolds used to favor bone reconstruction
and remodeling have more chances to be effective if their internal microstructures
have suitable bone-mimicking features. Further, trabecular metals are being used
in bone reconstruction (Fig. 20.3). Moreover, the structure of bone has been the
source of inspiration for light-weight structure applications such as aluminum foams
(Fig. 20.3, Andrews et al, 1999).

In addition to biomechanical applications, a lot of attempts have been made
to design multiscale architectured materials (e.g. metamaterials) inducing some
specific types of overall behavior that is not observed in existing natural materials.
In such designs, application-tailored responses are obtained by coupling different
physical phenomena, and the interactions between different length scales. In general,
metamaterials are categorized based on the main interaction phenomena occurring
in their microstructures. Although electromagnetic interactions were first used to
design optical metamaterials (Veselago, 1968), other important physical phenomena
are currently exploited in their design. For example, metamaterials that are designed
to control the propagation of acoustic (elastic) waves are referred to as acoustic
metamaterials (di Cosmo et al, 2018). In such materials, an elementary cell is
periodically repeated in the microstructure. In order to control wave propagation, the

Fig. 20.3 Some multiscale materials. Example of bone tissue (a) and a bio-resorbable artificial graft
(b) Giorgio et al (2016b). In (c) and (d) the multi-scale structure of bone is evident: from trabeculae
to osteons. In (e) trabecular metal Andreykiv et al (2005) and in (f) aluminum foam are shown



elementary cell is designed with a smaller length scale compared to that involved
in the targeted application. In the field of optical and acoustic metamaterials, many
novel products have been designed. Typical examples are materials with negative
index of refraction (Veselago, 1968, 1967), and those behaving like a low-density
plasma with an effective dielectric constant that becomes negative below the effective
plasma frequency (Pendry et al, 1996). Other important trends in metamaterial
design are images focusing below the diffraction limit (Deng et al, 2009; Zhang et al,
2009; Ambati et al, 2007; Ao and Chan, 2008; Jia et al, 2010; Liu et al, 2007) (e.g.
hyperlenses are able to transform evanescent waves into propagating waves, which
can be detected at large distance, and superlenses amplify these evanescent waves)
and metafluids (Norris, 2009).

This paper focuses on mechanical metamaterials, namely multiscale materials
whose behavior is only determined in terms of mechanical interactions among different
structures at different scales. Mechanical metamaterials have been investigated in
a large number of different studies (e.g. see Kadic et al, 2012; Lee et al, 2012;
dell’Isola et al, 2015c¢; Vangelatos et al, 2018, 2019; Barchiesi et al, 2018; Misra
et al, 2018; Laudato et al, 2018; Del Vescovo and Giorgio, 2014a; Carcaterra et al,
2015; Turco et al, 2017a; Barchiesi and Placidi, 2017; Placidi et al, 2017b)). Auxetic
structures (Lakes, 1987) (i.e. materials which have negative Poisson’s ratio) and
locally resonant microstructured materials (Liu et al, 2000) with negative refraction
index are typical examples. There are many interesting mathematical problems to
be solved in the design of such metamaterials. In reality, the long natural selection
process that did manage to optimize the functionality of many natural materials has
to be sped up because some applications cannot wait so long.

A main change in research paradigm is needed for the design of new metamaterials.
Usually, in mathematical physics, a model is built by conjecturing some postulates
assumed to be satisfied to model some specific aspects of the physical reality. For
instance, if one wants to model a deformable body in the elastic regime, a time-
dependent field of placement and an action functional (e.g. see Germain, 1973; Auffray
et al, 2014)) in the set of admissible motions is introduced to describe its evolving
shape. Once the postulated action functional is conjectured, the motions predicted
by means of the Principle of Least Action can be compared with experimental
evidence. If the material parameters appearing in the action functional are usually
determined with a small set of measurements, and allow for the description of many
more experiments, then one can say that the experimental evidence supports the
validity of conjectured models. In this way, the mathematical model for a given class
of phenomena is tailored to predict the overall performance of the given material
under different design conditions.

Conversely, in the design of metamaterials, an approach that reverses the above-
described conceptual order is followed (dell’Isola et al, 2016a). A mathematical
model that a priori describes the desired overall behavior is first proposed. Then, the
corresponding synthesis problem is solved, namely, finding a (possibly multiscale
and/or multiphysics) micro-architecture whose overall behavior is modeled with the
selected mathematical model. The synthesized multiscale structure is then fabricated,
and its behavior experimentally tested. The final steps of the described “reversed



order” process have been made possible with the recent developments in 3D printing
technologies. A specific example of such novel metamaterials is given by the so-called
pantographic sheets. In Alibert et al (2003); Seppecher etal (2011), a synthesis problem
was solved to model this type of structures. In these studies, to find microstructures
for one-dimensional and two-dimensional continua, the governing equations for the
described microstructures were obtained by a Lagrangian whose potential energy
depends on the second gradient of displacement fields at the macroscale in the case
of plane motions.

The current increasing interest in metamaterials is mainly due to the availability
of new advanced manufacturing techniques such as 3D printing (Rumpf et al,
2013), optical lithography (Madou, 2011), roll-to-roll processing (Ok et al, 2012),
electrospinning (Teo and Ramakrishna, 2006), dry and wet etching(Pearton et al, 1993),
micro-molding (Heckele and Schomburg, 2003), and micro-machining (Masuzawa
et al, 1985). With this spectacular progress obtained in advanced manufacturing
techniques in the past ten years, it is much easier to design and manufacture
multiscale architectures performing desired overall responses in different industrial
applications (Engheta and Ziolkowski, 2006). All these new manufacturing techniques
are seen as solutions in a more and more complex manufacturing environment,
specifically in terms of customization, multifunctionality, innovative design, and
geometry. These new manufacturing technologies not only enable for accurate
fabrication with characteristic lengths of the order of micrometers and even less but
they are also getting less expensive and more reliable. Thus, with these new techniques,
it is possible to manufacture multiscale materials obtained as a result of the solution
to the synthesis problem mentioned above. As an example, the relevant length scales
of a pantographic sheet that was designed and 3D printed for light-weight structural
applications are shown in Fig. 20.4.

Furthermore, the reassessment of the existing mathematical models for the
description of deformable bodies is unavoidable from theoretical points of view
as another consequence of this progress in material technology. Since materials
may have complex hierarchical architectures, the classical description of continuum
mechanics is no longer applicable to model exotic responses (dell’Isola et al, 2017).
Therefore, researchers have to develop and reformulate many well-known classical
concepts such as stress, strain, strain energy, constitutive laws, and balance equations
(Eugster and Glocker, 2017). The improvement of existing theoretical frameworks
can be achieved with variational approaches and suitable homogenization techniques,
which provide efficient micro-to-macro identification (Francfort and Murat, 1986;
Abdoul-Anziz and Seppecher, 2018; dell’Isola et al, 2016b).

Although many results have been presented in the literature (and they are really
promising), the design of new metamaterials still remains a formidable challenge.
The main issue to overcome corresponds to the “complexity” that is involved at
every stage of the process in terms of modeling, experimentation, and manufacturing.
The sought description requires a robust design approach that creates a synergistic
interplay among all involved highly complex design stages to provide an efficient
feedback loop in data analysis. This kind of approach may provide the expected
progress in the field of the design of novel metamaterials. In order to mitigate such
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Fig. 20.4 Relevant scales from macro to micro (a-d) for pantographic sheets

challenge, it is suggested to focus, as a first stage, on the design of mechanical
metamaterials. For such materials, the behavior at the macroscale is achieved with
mechanical interactions of structural networks arranged at different length scales.

The design strategies need to be improved. A systematic methodology, which
combines modeling, experimental and manufacturing points of view simultaneously,
is called for. Instead of conjecturing metamaterial microstructures without any the-
oretical guidance, and then trying to experimentally investigate their mechanical
properties, an a priori synthesis can precede any 3D printing activity, while the feed-
back from experiments allows for verifying the quality of the theoretical elaboration
and, possibly, guide new theoretical investigations. Furthermore, using Lagrangian
variational formalisms, one can carefully and efficiently study both static and dynamic
responses of every type of materials and design new metamaterials for different
industrial applications (Del Vescovo and Giorgio, 2014b; Placidi et al, 2014; Rosi
et al, 2013).

The organization of the remainder of the paper is as follows. In Sect. 20.2, more
details are given on the proposed synergistic design approach. Some conjectures
about the steps required in the design approach are detailed in Sect. 20.3, and
promising preliminary results are presented for an additively manufactured mechanical
metamaterial in Sect. 20.4.



20.2 Synergistic Approach for Metamaterial Synthesis and
Fabrication

The design and fabrication of new metamaterials is a challenging task. A new
approach can be followed as the usual logical order is reversed. First, one has to
start by characterizing, with suitable Lagrangians, the desired constitutive model.
Then, the microstructure of the material whose macroscopic behavior is described
by the a priori chosen Lagrangian is identified. Lastly, the designed metamaterial
is manufactured for the targeted applications. From modeling, experimental and
manufacturing standpoints, this procedure is challenging, namely, it consists of
designing, fabricating and validating suitable multiscale architectures. In order to be
successful, it is crucial to develop an efficient conceptual framework that integrates
all the involved design steps by creating a synergistic feedback loop among different
disciplines and techniques.

Among many different techniques, Digital Image Correlation (DIC) may have
a very prominent role (Sutton et al, 2009; Grédiac and Hild, 2012) to create the
envisioned synergistic approach. To check the validity of the design and synthesis of
multiscale structures, refined and detailed measurements of material deformations
is essential to guide the synthesis process and to validate its results. DIC is an
(automatic) image analysis method that measures the deformation of tested specimens
and generates displacement and strain fields at prescribed resolution. DIC is very
popular in experimental mechanics (Sutton, 2013). This non-contact technique is
carried out by using mathematical/numerical registration procedures to process digital
images of specimens recorded during the experiment. Sophisticated DIC methods
have been recently developed (Hild and Roux, 2012b; Sutton et al, 2009; Hild and
Roux, 2012a; Tomicevié et al, 2013), which are applicable to many mechanical
situations, in particular, in the case of large deformations (Chevalier et al, 2001;
Hild et al, 2002). The DIC techniques can efficiently enable the comparison between
experimental evidence and theoretical models (Leclerc et al, 2009).

To transform digital images into data, experimental and numerical tools have to
be used. The surface of the specimen has generally to be first prepared to make the
motion of material points distinguishable for the DIC process. During the experiment,
digital images are to be recorded with possibly high-definition cameras. At the
beginning of the experiment, a reference digital image is recorded, to represent
the reference configuration, and then the displacement field is calculated with a
correlation between the reference image and subsequent images of the deformed
configuration. The concepts at the basis of continuum mechanics, in particular, its
kinematics and “deformatics”, play a central role in DIC (Sutton et al, 2009; Hild
and Roux, 2012b).

The DIC techniques have proven to be effective in analyzing experimental results,
and they can provide a rapid feedback to guide numerical and theoretical applications
in metamaterial design (dell’Isola et al, 2019a,c). Due to the complexity of the
considered mechanical systems, no closed-form solutions for their deformation
problems are generally available. Hence, numerical simulations must be performed



to predict deformation patterns. In general, these simulations must consider large
deformation phenomena, and therefore sophisticated algorithms. By comparing the
DIC results with numerical results (e.g. finite element simulations, see for example
Niiranen et al (2017); Khakalo and Niiranen (2017); Niiranen et al (2016); Khakalo
and Niiranen (2018); Eugster et al (2014); Cazzani et al (2016d); Turco et al (2016b);
Cazzani et al (2016a,c,b); Grillanda et al (2019); Cazzani et al (2018b,a)), it is
possible to validate the results of theoretical and practical syntheses. The detailed
analysis of deformations made possible by DIC will point toward weak points in the
process. DIC can also be used to analyze the image sets by using displacement fields
generated via numerical simulations (i.e. via integrated frameworks (Leclerc et al,
2009; Mathieu et al, 2015)). Let us note that in some previous studies (Quiligotti
et al, 2002), the calibration of material parameters was based on the choice of few
geometrical properties of the specimen used in the experiments and in the analysis
of the difference between these measured quantities and their predicted values. DIC
analyses allow for more thorough and systematic comparisons between predicted and
measured displacement fields.

Further, DIC techniques are also capable of measuring displacement fields at
different length scales (Turco et al, 2018; dell’Isola et al, 2019a,b). This is another
essential feature of DIC that will have to be exploited in a more extensive way in the
present context as multiscale models are developed in the description and design of
metamaterials. By using multiscale DIC analyses, and considering both the desired
overall behavior and its microscopic features, the mathematical synthesis process and
its transformation into 3D printed specimens can be modified or developed again and
again based on the data provided by the DIC-based synergistic procedure.

The theoretical synthesis process of a specific metamaterial produces an architec-
tured microstructure that is represented by the CAD modeler (e.g. standard tessellation
language or STL file), and then used in the fabrication step. Within the described
design framework, this file can be used in both numerical simulations and 3D printing
processes. Among all the advanced manufacturing techniques, 3D printing is one
of the most promising technologies for the fabrication of complex materials and
geometries. It can be easily optimized to produce specimens made of multiscale
architectured materials. Among its main features, 3D printing has a very significant
advantage in comparison with conventional manufacturing techniques, namely, it
can easily make complex 3D objects with its layer-wise approach, by eliminating the
dependence on additional design constraints. One can easily deal with geometric
complexity and control the microstructure of fabricated parts in detail. The process
of 3D printing also enables for effective multimaterial fabrication. This feature will
increase its range of applications in the design of metamaterials.

A further step in the development of the proposed methodology will consist in the
formulation of a corrective algorithm, which must automatically modify the STL file
once the results of some experiments are analyzed with DIC techniques. A DIC-based
system, which couples DIC registration algorithms with synthesis and finite element
procedures, may expedite and make effective the feedback redesigning action. In this
way, one can automatically unify theoretical and experimental studies by integrating
the whole design and verification processes.



20.3 Digital Image Correlation-based Metamaterial Design
Process

In this section, the main steps of the DIC-based metamaterial design process is
discussed and its main features are delineated. In the first step of the process, the
required macroscopic behavior has to be identified carefully. At this step, it would
be ideal to find out possible design constraints due to the applied manufacturing
technology. One cannot 3D print any kind of designed microstructure because of the
limits related to geometry, material and resolution of the printing device.

Many interesting macroscopic responses may be sought for different applications.
For instance, one can

* require that the designed material remain elastic in large deformation regimes;

* demand the design of a material to exhibit wide frequency band gaps;

* look for an optimized bone scaffold, favoring the reconstruction and remodeling
of bone tissues.

A clear understanding of all involved phenomena is an unavoidable prerequisite for
this type of design processes, and a precise mathematical formulation is needed
for the description of designed metamaterials. For example, in the design of bio-
resorbable grafts (Madeo et al, 2011) for bone healing applications (Fig. 20.1), the
resorption mechanism must be understood as the material is expected to have a
successful and effective integration with the bone structure, biological activities and
healthy tissues (Giorgio et al, 2016a; Eugster and Glocker, 2013). Therefore, it is
important to understand the driving features of newly designed metamaterials and
their compatibility with existing systems. All these phenomenological aspects of the
designed metamaterial must be specified by means of Lagrangian action functionals
(and possibly Rayleigh dissipation functionals), which are assumed a priori to govern
the behavior of the designed metamaterials (dell’Isola and Placidi, 2011).

In the second step, the hierarchical architecture of the metamaterial is synthesized.
From the theoretical standpoint, a mathematical model, which describes the desired
behavior, has been already proposed at the previous step. Due to the hierarchical
complexity of the material, a multiscale modeling procedure must be followed in the
synthesis scheme. It has to be noted that only few materials (i.e. very restricted classes
of Lagrangian and Rayleigh functionals) can be synthesized by using a single scale
architecture. Instead of trying to implement ineffective trial and error computations
between microscopic and macroscopic scales, an extra intermediate step may be
included in the synthesis scheme. Different discrete mechanical systems at several
intermediate scales are to be introduced.

The proposed process is very similar to that used in the theory of synthesis of
analogue circuits (Giorgio et al, 2015). As every passive linear n-port circuit can be
synthesized by using an algorithmically produced graph and by linking any pair of
points of this graph with four specific circuital elements (i.e. resistances, inductances,
capacitors and transformers), it is expected that the most general microstructures for
mechanical metamaterials can be built by reproducing some basic microstructures at
different length scales. Moreover, by introducing only discrete mesoscopic models, the



numerical algorithms are implemented efficiently, and the micro-to-macro transition
process can be performed more easily (Turco et al, 2016a). As a further perspective,
deduced from the analogue circuits field, it would be interesting and useful to produce
piezoelectromechanical microstructures to be controlled by means of piezoelectric
actuators. Some relevant results already present in the literature about this perspective
can be found in Casadei et al (2012); Bergamini et al (2006, 2015).

In the third step, the synthesis scheme previously obtained must be transformed
into real-world specimens, for instance by means of 3D printing techniques. Every
basic microstructure must be built by supplying a suitable STL file to the selected 3D
printer. These files can efficiently be used as a basis for a posteriori finite elements
analyses and, at the same time, as guide for DIC data collection. This step requires
the development of innovative engineering solutions (Golaszewski et al, 2018; Turco
et al, 2017b; Gunenthiram et al, 2017; Haboudou et al, 2003; Andreau et al, 2019).

In the fourth step, the validation of the synthesis and construction steps must be
performed. This step requires the systematic use of DIC-based techniques. Due to
the multiscale nature of the considered microstructures, some computational meshes
must be generated at different length scales by using, for instance, the gray level
images of the tested specimens.

We give here an example already available in dell’Isola et al (2019b). In Fig. 20.5,
meshes at macroscopic and mesoscopic levels are shown in the case of a pantographic
sheet. These meshes overlap with the gray images of the test specimen. In the analysis,
a coarse discretization of the region of interest is first created with triangular elements
independent from its mesostructure or microstructure (Fig. 20.5 a). Then, the mesh
is successively refined to increase the accuracy of the results, and in this way, the
convergence of the analysis is expected. From the multiscale standpoint, this step
looks like the transitions from continuum to discrete models.

The final steps consist of going back, thanks to the experimental results as elaborated
by DIC, to the synthesis step and/or to the construction step. The discrepancies between
the desired and the measured responses, as revealed by multiscale DIC analyses,
redirect both the synthesis process and the scheme of specimens production. This
feedback loop is made easier by the fact that the DIC meshes are tailored for
micro-to-macro model identifications (Grédiac and Hild, 2012).

100 200 300 400 500 600 700
y, pixels y, pixels

a) b)

Fig. 20.5 Example of multiscale mesh applied to a pantographic structure



20.4 Preliminary Results

In this section, some preliminary results are presented to show the applicability
of the proposed approach for the design of mechanical metamaterials. For this
purpose, pantographic structures are considered. This is an example of a theoretical
problem formulated as the result of experimental observations via DIC analyses. This
multiscale design approach can be further utilized to develop more sophisticated DIC
techniques to design and fabricate metamaterials (dell’Isola et al, 2019a,b).

The studies related to the design of higher gradient continua (Mindlin, 1965;
dell’Isola et al, 2015a) would be addressed to show the potential of such a synergistic
approach. For classical continuum media, the Cauchy theory is applied in terms of
balance equations. This theory assumes that the strain energy is only a function of the
first gradient of the displacement field. However, with the design of new advanced
materials, it was shown that the strain energy can be a function of higher gradients of
displacement fields (Seppecher et al, 2011; Alibert et al, 2003). Thus, higher gradient
theories are developed to derive the macroscopic behavior of multiscale materials. In
Fig. 20.6, the design of a beam whose strain energy depends on higher gradients of
the displacement field in the axial direction is presented. A unit cell of the beam is
arranged as shown in Fig. 20.6a), and the different levels of the structure in Fig. 20.6c¢).
Then, by using appropriate homogenization techniques, it was proven that the strain
energy depends on the second gradient of the displacement field in both vertical
and horizontal directions (Seppecher et al, 2011). To simplify the micro-to-macro
upscaling, a discrete model consisting of a network of mass particles connected with
rotational and extensional springs was introduced (dell’Isola et al, 2016b). For the
fabrication of the designed metamaterials, the theoretical data are transformed into a
manufacturing process. For this particular structure, the following design has been
proposed. Two layers of beams are oriented orthogonally and connected with a set
of cylinders or joints allowing for the relative displacement of the beams (dell’Isola
et al, 2015b). The alternation of empty and filled spaces enables DIC analyses for the
resulting specimen (Turco et al, 2018). As seen from this example, one can extend

Fig. 20.6 Example of a multiscale scheme for higher gradient one-dimensional
material (Seppecher et al, 2011)



this model and fabricate higher order gradient systems by exploiting this multiscale
design approach (see Fig. 20.6b) for third gradient model).

The equilibrium shapes of the pantographic structures are shown in Fig. 20.7 for
different cases. In Fig. 20.7a)-b), the experimental results are presented for shear
and torsion loadings of a pantographic sheet. These pantographic sheets are made
of aluminum alloy, and they are 3D printed and designed based on composition of
elementary blocks. In Fig. 20.7c¢), the shear deformation is tracked by performing
local DIC registrations.

The displacement fields of the macro- and meso-scale meshes (Fig. 20.5) are
reported in Fig. 20.8. In this particular example, the results are presented for
longitudinal displacement fields measured during a tensile (i.e. bias) test.

Regarding the experimental study, three major challenges were observed. First,
the extension of this application to three dimensional problems might be difficult as
the fabrication of beam lattices deforming in 3D is a more complex procedure. It is
clearly more complicated to design a material exhibiting the desired overall behavior
in three dimensional applications. Using ball joint links would be helpful to make
this design possible. In Fig. 20.9, the design of a pivot/hinge link is illustrated. They
can be fabricated with 3D printing technologies. Second, a multiscale architecture
with nonlinear macroscale responses might be synthesized. This can be avoided by
exploiting the synergistic nature of the design framework. Third, possible instability
and buckling at the microscale may create a dramatic change in the macroscopic
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Fig. 20.8 Deformation of different DIC meshes in longitudinal direction



Fig. 20.9 Designed and printed pivot/hinge link dell’Isola et al (2019¢)

response of the material. Hence, different critical phenomena must be taken into
account to increase the reliability of the approach.

Moreover, from the manufacturing point of view, the structural pattern of the
material must be arranged regarding the technological limits of the selected 3D printing
technique. Some design rules must be standardized for 3D printing applications.
Although it seems that 3D printing can easily deal with any geometric complexity, some
important criteria have to be considered before fabricating the designed metamaterials.
In general, these rules are applied for the design of supported/unsupported walls,
overhangs, holes, connecting/moving parts, and engravings, and may vary for different
3D printing technologies. Further, in 3D printing applications, the overall quality of
printed parts is highly dependent on the processing parameters. The latter ones may
vary for different materials and applications. Therefore, it is crucial to investigate the
behavior of printed materials with different processing parameters and their feasibility
in metamaterial applications.

20.5 Conclusion

In this paper, in the process of synthesis and construction of novel metamaterials, it
is proposed to systematically use DIC-based methodologies. Based on DIC output,
the synthesis process of a specific metamaterial may be partially or totally automated
by using algorithms similar to those utilized in structural optimization. In the short
term, it is expected that by using DIC techniques to design, characterize and validate
the overall properties of newly designed metamaterials, many interesting novel
microstructures and useful exotic mechanisms may be invented. Another possible
field of application for this techniques consists in the family of micropolar materials
(Eremeyev and Pietraszkiewicz, 2016; Eremeyev and Lebedev, 2011) and elastic shells
(Eremeyev and Zubov, 2007; Altenbach et al, 2015; Eremeyev and Lebedev, 2016). If
one wants to address dynamical studies in the field of mechanical metamaterials, new
methods and new approaches must be introduced. Some results useful for a future
characterization of the dynamics in memamaterials can be found in Cazzani and



Ruge (2016, 2013); Piccardo et al (2014); Ferretti and Piccardo (2013); Luongo and
Zulli (2012); Luongo et al (2008).

To show the applicability of the introduced approach, some preliminary results
were presented, namely, those concerning so-called pantographic structures (see for
example Placidi et al, 2017a; Scerrato et al, 2016; Boutin et al, 2017). Possible issues
related to the design and manufacturing phases have been discussed and highlighted
for the future applications.

It is envisioned that the proposed synergistic approach can be extended to the
design of the following solutions:

1. metamaterials remaining in their elastic regime for large deformations,

2. metamaterials maintaining their mechanical properties under large temperature
changes and experiencing only very limited creep phenomena,

3. metamaterials for bone scaffolds that are optimized for being bio-resorbable and
bio-compatible with the host tissues.

Concerning this last class of metamaterials (e.g. see Madeo et al, 2012; Lekszycki and
dell’Isola, 2012), the DIC-based framework may design bone scaffolds with adaptive
optimal behavior. The latter is obtained when the metamaterial exhibits a proper
response to a vast variety of external stimuli. Further, the desired overall response of
biomechanical metamaterials can be achieved by enriching their microstructure with
other exotic materials such as shape memory alloys.
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