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Abstract

The paper presents the first implementation of the row-orthonormal hyperspherical coordinate

formalism for the computation of the vibrational spectrum of a tetratomic system. The wavefunc-

tion of Ne4 is expanded on a large basis set of hyperspherical harmonics generated numerically.

This method not only provides spectra with reasonable accuracy, but also gives physical insight

into the vibrational dynamics of the system. The characteristics of the spectra are related to the

symmetry and localization of the wavefunction in configuration space.
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I. INTRODUCTION

The hyperspherical coordinate method has been used extensively over the past decades

to study few-body problems. It relies on the parametrization of a N-body system with a

hyperradius ρ which gives to the global size of the system and a set of 3N-4 angles which

describe the shape of the system. Since the method has the capability to describe the

fragmentation channels of the system, it has been used extensively for collisional problems

which involve continuum states, like reactive scattering (for example, ref. 1, 2), ultracold

physics [3], high energy nuclear collisions [4], as well as for bound state computations, for

instance in atomic clusters [5] or nuclei [4]. It is surprising however that an overwhelming

majority of these works concerns 3-body problems. This is an indication that it remains

even today technically challenging to deal with 4 bodies without drastic approximations.

Yet, on rare occasions like the study of 4-body recombinations, the use of such methods

was an essential ingredient to achieve significant progress in our understanding of ultra-cold

fermionic [6] and bosonic [3, 7] physics.

In the field of rare gas clusters RgN also, almost all studies of (ro-)vibrational spectra

concern trimers (for a review, ref. 5). As an exception, a pioneering study [8, 9] of the

vibrational spectra for Rg=He, Ne, Ar was performed using hyperspherical coordinates for

N up to N=6, but within the frame of the drastic adiabatic approximation which restricts

the validity of the results at most to a very limited number of low lying states. However,

this study provided useful qualitative insight in the cluster dynamics. In fact, the only two

accurate computations of (ro-)vibrational spectra for rare gas clusters beyond trimers which

we are aware of were obtained using Jacobi coordinates and potential-optimized discrete

variable representation [10] functions. The first one is the vibrational spectrum computation

of Ar4 described in ref. 11, the second one the full rovibrational spectrum computation of

Ne4 described in ref. 12. The recent availability of these latter Ne4 spectra provides a good

opportunity to test for the first time the capability of the hyperspherical coordinate method

to obtain the vibrational spectrum of a tetratomic system beyond the drastic adiabatic

approximation.

The hyperspherical harmonics [13] are eigenfunctions of the fixed-hyperradius kinetic en-

ergy operator and form an orthogonal basis in which the complicated angular part of the

kinetic energy operator has a very simple diagonal matrix representation. They can be used
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in 2 ways in the expansion of the wavefunction of the system [14]. One way popular in nuclear

sciences [4] is to combine them with hyperradial functions in product functions on which

the total wavefunction of the system is expanded directly. Another way popular in chemical

physics is to use them to expand the eigenfunctions of the fixed ρ-Hamiltonian which are

called channel functions [6] or surface functions or, following ref. 15, local-hyperspherical-

surface-functions (LHSF). These LHSF form a compact basis set on which to expand the

total wavefunction of the system. This set of surface functions provides a hyperspherical adi-

abatic representation of the system containing useful physical information on its dynamical

properties. The hyperspherical adiabatic representation becomes a hyperspherical adiabatic

approximation [8, 9] when a single surface function is kept in the expansion of the full wave-

function. In the present paper, we will show how analysis of the surface functions and of

their ρ-dependent energies provides insight into the vibrational dynamics of the Ne4 cluster.

In particular, we will identify the pyramid, rhombus and trigonal geometries which play an

important role. For completeness, we note that correlated Gaussians have been used as a

successful alternative to hyperspherical harmonics in the expansion of LHSF [6, 14].

There are 2 types of hyperspherical coordinates and harmonics. The most standard one is

the Delves type [6, 16, 17] obtained from an extension of the vector spherical representation

to a set of several Jacobi vectors associated to a given clustering scheme of the particles.

The corresponding hyperspherical harmonics are known analytically [6, 13]. They may not

be always the optimum choice of coordinates in practical applications. Their angles are

defined with respect to a space fixed frame and do not take advantage of the isotropy of

space, as Euler angles would. Furthermore, an identical particle symmetrization operation

is difficult to implement in this coordinate system because it potentially changes all angular

coordinates [18]. Consequently, giving up implementing permutations on the wavefunction

may be preferred in some applications even if the price to pay is larger computations [19]. In

order to overcome these difficulties, symmetrized coordinates, which we call, following ref.

20, row-orthonormal-hyperspherical coordinates (ROHC), were developped in ref. 20, 21

following the pioneering work of ref. 22, 23. In this coordinate system, the 9 dimensional

parameter space can be considered as the superposition of 3 subspaces. One is generated by

the 3 Euler angles, which define the orientation in space of a body frame tied to the principal

axes of inertia of the molecular system. The second subspace is the 3-dimensional kinematic

invariant subspace [24] SKI . It contains the hyperradius ρ and 2 angles which provide a
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parametrization of the 3 moments of inertia of the system. Finally, the kinematic rotation

subspace SKR is defined by 3 angles which parametrize the shape of the system. This

coordinate system has distinctive advantages. The Euler angles allow to take full advantage

of the isotropy of space and when the total angular momentum of the system is 0, the

wavefunction becomes independent of them. The effects on coordinates of identical particle

permutations is confined to SKR, which makes their implementation in the wavefunction

easier. On the other hand, the hyperspherical harmonics are more difficult to express in

ROHC than in Delves’ coordinates. In early works, only a limited number of harmonics

could be obtained analytically [22–26]. A general recursion relation was implemented in a

mathematical formal calculation program to enlarge the set of harmonics known analytically

[15], at the price of practical difficulties. For instance, the recursion provides over-complete

sets of linearly-dependent harmonics which have to be culled to reduce them to linearly-

independent sets using a formal but computationally intensive algorithm. An alternative

generation approach entirely numerical was therefore proposed in [27], it relies on a selection

of simple trigonometric basis functions in which to expand the hyperspherical harmonics

according to their symmetry properties. However, the resulting harmonics have never been

used in physical applications.

Therefore, the present paper represents to our knowledge the first successful use of 4-body

ROHC harmonics to a molecular problem. It presents the results of the computation of the

vibrational spectrum of the Neon tetramer using these symmetrized hyperspherical coordi-

nates and harmonics. Section II presents the formalism, first the coordinates (subsection

II A), then the harmonics used to expand the LHSF (subsection II B) and the full wavefunc-

tion expansion on the LHSF (subsection II C). Subsection II D provides technical details

on our implementation of the Ne4 problem. In section III, we first present the obtained

vibrational spectra and we discuss their accuracy by comparison with the reference data of

ref. [12]. Then, we describe the physical insight provided by the hyperspherical method : we

present the LSHF energy curves as a function of ρ (subsection III B), the LHSF themselves

(subsection III C) and the bound states (subsection III D).
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II. METHOD

A. Coordinates and kinetic energy

The ROHC formalism used in the present paper have been described previously

[15, 20, 27]. We summarize here important information and refer the reader to these pa-

pers for further details. Let ρsf be the Jacobi matrix, whose columns are the three carte-

sian coordinates in an arbitrary space-fixed frame of the three mass-scaled Jacobi vectors

(r(1), r(2), r(3)) associated to a given clustering scheme of the 4 particles which we choose as

follows : attributing arbitrarily numbers 1-4 to the 4 identical neon atoms, r(1) connects

atoms 1 and 2, r(2) atom 3 to the center of mass of atoms 1 and 2, r(3) atom 4 to the center

of mass of the 3 others. The ROHC χ, ρ, a, δ associated to this clustering scheme are defined

implicitely by :

ρsf = (−1)χR̃(a)ρN(θ, φ)R̃(δ) (1)

χ is the chirality variable, a refers collectively to the three Euler angles (a, b, c) of the

principal axes of inertia frame and ρ is the hyperradius which, together with the angles

θ, φ, parametrizes the three principal moments of inertia of the system and defines the

kinematic invariant space SKI . Three additional angles (δ1, δ2, δ3) collectively denoted by

δ parametrize the kinematic rotation space SKR. The matrix R̃(a) is the transpose of the

rotation matrix defined by [28] :

R(a) = M1(c)M2(b)M1(a) (2)

where :

M1(ω) =


cosω sinω 0

− sinω cosω 0

0 0 1

 (3)

and :

M2(ω) =


cosω 0 − sinω

0 1 0

sinω 0 cosω

 (4)
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These definitions are also valid for R̃(δ1, δ2, δ3). The matrix N(θ, φ) is a diagonal matrix,

with diagonal elements :

N11(θ, φ) = sin θ cosφ, N22(θ, φ) = sin θ sinφ, N33(θ, φ) = cos θ (5)

Equation 1 is called the row-orthonormal form of the Jacobi matrix ρsf because matrix R̃(δ)

is row-orthonormal. In the present 4-particle case, the matrix R̃(δ) is square and thus also

column-orthonormal.

It was previously shown [20] that a one to one correspondence can be achieved between

physical configurations and coordinate space by restricting the hyperspherical angles to :

0 ≤ a, c < 2π, 0 ≤ b ≤ π (6)

0 ≤ δ1, δ3 < π, 0 ≤ δ2 ≤ π (7)

0 ≤ φ ≤ π/4, 0 ≤ θ ≤ θM = arcsin[1/(1 + cos2 φ)1/2] ≤ arcsin(2/3)1/2 ' 54.7o (8)

and χ = 0 or 1.

In terms of these ROHC, the kinetic energy operator associated to the motion of the 4

nuclei is given by [27] :

T̂ = − ~2

2µ

1

ρ8

∂

∂ρ
ρ8 ∂

∂ρ
+

Λ̂2(a, θ, φ, δ)

2µρ2
(9)

where µ = m/4
1
3 is the 4-body reduced mass (m : Ne mass) of the system and Λ̂ the grand-

canonical angular momentum operator. Its complicated expression in terms of the eight

internal hyperangles is given in ref. 27, eq. 17, 19-25. It involves the nuclear motion angular

momentum operator Ĵ as well as L̂, a δ-dependent internal angular momentum operating

in SKR.

B. Hyperspherical harmonics

Since the 6 operators Λ̂2, Ĵ2, Ĵz (the component of Ĵ on the space-fixed z axis), L̂2, L̂3

(the 3rd body-fixed type component of L̂) and Î (inversion of the Jacobi vectors r(1), r(2), r(3)

to their opposites, which, according to eq. 1, means that the chirality coordinate changes

according to : χ↔ χ± 1, while the other 9 coordinates are unchanged) commute with each
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other, we can find functions F nJ
MJ

L
ML

D
d , the hyperspherical harmonics, which are simultane-

ous eigenfunctions of those 6 operators :

Λ̂2F nJ
MJ

L
ML

D
d (χ,a, θ, φ, δ) = n(n+ 7)~2F nJ

MJ

L
ML

D
d (χ,a, θ, φ, δ) (10)

Ĵ2F nJ
MJ

L
ML

D
d (χ,a, θ, φ, δ) = J(J + 1)~2F nJ

MJ

L
ML

D
d (χ,a, θ, φ, δ) (11)

ĴzF
nJ
MJ

L
MLλ

D
d (χ,a, θ, φ, δ) = MJ~F nJ

MJ

L
MLλ

D
d (χ,a, θ, φ, δ) (12)

L̂2F nJ
MJ

L
MLλ

D
d (χ,a, θ, φ, δ) = L(L+ 1)~2F nJ

MJ

L
ML

D
d (χ,a, θ, φ, δ) (13)

L̂3F
nJ
MJ

L
ML

D
d (χ,a, θ, φ, δ) = ML~F nJ

MJ

L
ML

D
d (χ,a, θ, φ, δ) (14)

ÎF nJ
MJ

L
ML

D
d (χ,a, θ, φ, δ) = (−1)ΠF nJ

MJ

L
ML

D
d (χ,a, θ, φ, δ) (15)

The quantum numbers n, J , MJ , L, ML, Π appearing in these expressions are all integers,

satisfying the constraints :

n ≥ 0 0 ≤ J, L ≤ n (16)

−J ≤MJ ≤ J −L ≤ML ≤ L (17)

Π = 0 or 1 (18)

The inversion quantum number Π is implicitely contained in the principal quantum number

n through the relation : (−1)Π = (−1)n. The sub- and super-scripts d and D indicate that

the F functions can be degenerate, i.e. for a given set of quantum numbers n, J , MJ , L,

ML, there are D linearly independent F functions. The subscript d indicates which of those

degenerate functions is being considered.

These functions can be expanded on symmetrized Wigner functions defined by :

DJ,ηMJΩJ
(a) =

1√
2(1 + δΩJ0)

(
DJ
MJΩJ

(a) + ηDJ
MJ−ΩJ

(a)
)

(19)

DL,ηΩLML
(δ) =

1√
2(1 + δΩL0)

(
DL

ΩLML
(δ) + ηDL

−ΩLML
(δ)
)

(20)

where DJ
MJΩJ

(a) and DL
ΩLML

(δ) are the usual Wigner rotation matrices (ref. 29, p. 154-156)

and η = ±1. This expansion can be written as :

F nJ
MJ

L
ML

D
d (χ,a, θ, φ, δ) = (−1)Πχ

J∑
ΩJ=0

L∑
ΩL=0

∑
η=±1

DJ,ηJηMJΩJ
(a)DL,ηLηΩLML

(δ)GnJ
ΩJ

L
ΩL

D
d
η(θ, φ) (21)

with ηJ = (−1)J and ηL = (−1)L. The G(θ, φ) functions, which appear in the expansion

of the F functions, are two-angle principal-axes-of-inertia hyperspherical harmonics. In
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the present implementation, they are obtained by expansion on simple symmetry adapted

trigonometric primitive basis functions and by diagonalization of the Λ̂2 operator matrix

representation in this basis, as described in ref. [27].

These harmonics can be further symmetrized with respect to permutations of the nuclei.

This requires the knowledge of the effects of these permutations on the coordinates of the

system. These are given in ref. 20 (eq. 3.37-3.47) for the 6 elements of the permutation group

S3 of 3 particles. This group contains the identity operation, 3 permutations of 2 particles

(P̂12, P̂13 and P̂23 for the permutation of particles 1 and 2, 1 and 3, 2 and 3, respectively) and

2 cyclic permutations. It has 2 one-dimensional irreducible representations (IRREP) and

one two-dimensional one, which are labeled Γ = A
(3)
1 , A

(3)
2 and E(3). We add the unusual

superscript (3) to these labels to distinguish them from those of the permutation group S4

of 4 particles which are : 2 one-dimensional representations A
(4)
1 and A

(4)
2 , 1 two-dimensional

representation E(4) and 2 three-dimensional ones T
(4)
1 and T

(4)
2 . More information on S3 and

S4, and in particular expressions of the matrices of their IRREPs, is given in ref. [30], p.

224-226. S4 is the full permutation group of the Ne4 system and must be used to classify its

vibrational states. The effets of the permutations on the ROHC are known for the 6 elements

of S4 which also belong to S3, but not for its 18 remaining other elements. Hyperspherical

harmonics fully symmetrized with respect to S4 are thus not available. Instead, we expand

in the present work the Ne4 vibrational states on the harmonics symmetrized with respect

to S3 and we show how to classify the resulting bound states according to the IRREPs of

S4.

Using eq. 3.30, 3.37-3.47 of ref. 20 which give the effects of the permutations of S3 on

the coordinates of the system, we obtain :

P̂12 F
nJ
MJ

L
ML

D
d (χ,a, θ, φ, δ) = (−1)n(−1)L F nJ

MJ

L
−ML

D
d (χ,a, θ, φ, δ)

P̂13 F
nJ
MJ

L
ML

D
d (χ,a, θ, φ, δ) = (−1)n(−1)Lei4π

ML
3 F nJ

MJ

L
−ML

D
d (χ,a, θ, φ, δ) (22)

P̂23 F
nJ
MJ

L
ML

D
d (χ,a, θ, φ, δ) = (−1)n(−1)Lei2π

ML
3 F nJ

MJ

L
−ML

D
d (χ,a, θ, φ, δ)

The combinations :

F n
η
J
MJ

L
ML

D
d (χ,a, θ, φ, δ) = F nJ

MJ

L
ML

D
d (χ,a, θ, φ, δ) + ηF nJ

MJ

L
−ML

D
d (χ,a, θ, φ, δ) (23)

are even (η = (−1)n(−1)L) or odd (η = (−1)n(−1)L+1) with respect to P̂12. Furthermore,

when ML is a multiple of 3, they are similarly even and odd with respect to P̂13 and P̂23.
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Thus, the harmonics F n
η
J
MJ

L
ML

D
d belong to A

(3)
1 when η = (−1)n(−1)L or to A

(3)
2 when η =

(−1)n(−1)L+1. When ML is not a multiple of 3, the pair of harmonics F n
+1

J
MJ

L
ML

D
d and

F n
−1

J
MJ

L
ML

D
d form a basis for the 2 dimensional IRREP E(3). In the following, we consider

only the harmonics F n
η
J
MJ

L
ML

D
d with ML multiple of 3 and with η = (−1)L, consequently,

we compute bound states which belong exclusively to A
(3)
1 for even inversion symmetry

(Π = 0)and to A
(3)
2 for odd inversion (Π = 1).

C. Bound state computation

The method used here to obtain 4-body bound states is an extension of the 3-body row-

orthonormal hyperspherical harmonics expansion method already used to obtain Ar3[31],

H+
3 [32], He+

3 [33] and Ar+
3 [34] rovibrational spectra. The Hamiltonian of the system is

obtained by adding the 6 dimensional interaction potential of the system V (ρ, θ, φ, δ) to

the kinetic energy operator given by eq. 9. We wish to compute a set of Nb eigen-

states ΨJMJΠΓ
k (ρ, χ,a, θ, φ, δ) (k = 1 − Nb) of this Hamiltonian with appropriate symme-

try properties. These bound states are obtained by expansion on a basis of Ns LHSF

ΦJMJΠΓ
i (χ,a, θ, φ, δ; ρ) (i = 1 − Ns), which depend parametrically on ρ and which are de-

fined as eigenstates of a partial fixed-ρ Hamiltonian :(
Λ̂2

2µρ2
+ V (ρ, θ, φ, δ)

)
ΦJMJΠΓ
i (χ,a, θ, φ, δ; ρ) = εJΠΓ

i (ρ)ΦJMJΠΓ
i (χ,a, θ, φ, δ; ρ) (24)

The LHSF potential energy curves εJΠΓ
i (ρ) are a useful tool to gain insight on the physical

properties of the system [8, 9] (see section III B below).

We consider a regular hyperradial grid ρm of Nρ points and the associated dj(ρ)

(j = 1, Nρ) Discrete Variable Representation (DVR) functions [35, 36]. These are localized

functions obtained from a basis of sine functions such that : dj(ρm) ∝ δjm (δjm being here the

Kronecker symbol). We now form theNρ×Ns product functions dj(ρ)ΦJMΠΓ
i (χ,a, θ, φ, δ; ρj),

these are non-direct products since each LHSF is considered at the grid point ρj associated

to the DVR function dj(ρ). These product functions form a basis set on which to expand

the bound states :

ΨJMJΠΓ
k (ρ, χ,a, θ, φ, δ) =

1

ρ4

∑
i,j

ak JΠΓ
ij dj(ρ)ΦJMJΠΓ

i (χ,a, θ, φ, δ; ρj) (25)
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The coefficients ak JΠΓ
ij are obtained by diagonalizing the matrix representation of the Hamil-

tonian in this product basis. It is given after renormalization of the Hamiltonian by :

< dj(ρ)ΦJMJΠΓ
i (χ,a, θ, φ, δ; ρj)|ρ4Ĥρ−4|dj′(ρ)ΦJMJΠΓ

i′ (χ,a, θ, φ, δ; ρj′) >=

− ~2

2µ
< dj(ρ)| d

2

dρ2
|dj′(ρ) > OJMJΠΓ

ij,i′j′ +

(
6~2

µρ2
j

+ εJΠΓ
i (ρj)

)
δii′δjj′ (26)

δii′ and δjj′ are usual Kronecker symbols, < dj(ρ)| d2
dρ2
|dj′(ρ) > is the usual

DVR matrix representation of the second derivative operator, as given for in-

stance by appendix A of ref. 37. The overlap matrix elements are given by :

OJMJΠΓ
ij,i′j′ =< ΦJMJΠΓ

i (χ,a, θ, φ, δ; ρj)|ΦJMJΠΓ
i′ (χ,a, θ, φ, δ; ρj′) >. They replace the usual first

derivative couplings which would appear if an adiabatic basis (see eq. 29 below) had been

used to expand the wavefunction.

The surface functions ΦJMJΠΓ
i (χ,a, θ, φ, δ; ρ) are obtained from eq. 24 by expansion on

a basis of hyperspherical harmonics F n
η
J
MJ

L
ML

D
d (χ,a, θ, φ, δ) with quantum numbers selected

according to the symmetry JMJΠΓ considered. Numerical quadratures on a 5-dimensional

grid Nθ×Nφ×Nδ1×Nδ2×Nδ3 are performed for each hyperradial grid point ρj to obtain the

matrix elements of the potential in the harmonic basis. This task represents the most time

consuming part of the computation, but it can be performed fully in parallel on different

processors for different hyperradii. The matrix elements of the kinetic energy operator are

obtained analytically from eq. 10.

In summary, we compute the vibrational states of Ne4 with a basis expansion method

which involves 3 successive diagonalization-contraction steps : hyperspherical harmonics are

obtained from trigonometric functions, LHSF from harmonics, bound states from LHSF.

D. Implementation

We use the same interaction potential V (ρ, θ, φ, δ) as in ref. 12, this allows for a quanti-

tative comparison between both sets of results. It is a sum of Lennard-Jones pair potentials

v(r) which can be expressed as a function of the interatomic distance r by :

v(r) = 4ε

((σ
r

)12

−
(σ
r

)6
)

(27)

where ε=24.743 267 cm−1 is the 2 body binding potential energy and σ=5.195 au is a

parameter related to the interatomic equilibrium distance r0 by : r0 = 2
1
6σ. In the following,
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all data concerning energy will be given in units of ε. The 6 interatomic distances needed

in the Ne4 full potential expression are obtained from the Jacobi vectors, which are related

to the ROHC by eq. 1. The Neon mass is, as in ref. [12], 19.99244 u.

The hyperspherical harmonics belong to an IRREP Γ of the subgroup S3 of the full 4-body

permutation group in our present implementation. We will present in the following results

obtained for Γ = A
(3)
1 (Π = 0) and for Γ = A

(3)
2 (Π = 1). The total angular momentum is

restricted to J=0. An irreducible representation of the group S4 is a representation which

may be reducible for the subgroup S3 and we have the correlations :

A
(4)
1 = A

(3)
1 , A

(4)
2 = A

(3)
2 , T

(4)
1 = A

(3)
2 ⊕ E(3), T

(4)
2 = A

(3)
1 ⊕ E(3), (28)

For completeness, we recall the correlation : E(4) = E(3). S4 is isomorphic to Td and the

naming conventions of the Td IRREPs can be used for S4. T
(4)
1 and T

(4)
2 are defined such that

the character of the permutations of 2 particles i and j P̂ij (i, j = 1−4) is -1 for T
(4)
1 and +1

for T
(4)
2 . This convention is the one found in most textbooks (see for instance ref. 38, p. 329),

albeit opposite to that of ref. 12 following ref. 11. Eq. 28 implies that a Ne4 state computed

for Γ = A
(3)
1 (Γ = A

(3)
2 ) must belong to the A

(4)
1 or T

(4)
2 (A

(4)
2 or T

(4)
1 respectively) IRREPs of

S4. Indeed, the numerical diagonalization process generates automatically eigenstates which

belong to IRREPs of the full symmetry group of the operator which is diagonalized, even if

these states are expanded on a basis which belongs to a subgroup IRREP.

However, the full group IRREPs to which each eigenstate belongs automatically remains

to be found. Usually, it is obtained by repeating the bound state calculations for all the

subgroup IRREPs and by analyzing the degeneracies between the resulting bound states.

This method was used in ref. 12 to obtain the full group IRREPs which the Ne4 rovibrational

states belong to from Jacobi coordinate calculations done for the IRREPs of the S2 × S2

subgroup, which contains 4 elements. In the present case, we could have generated the bound

states for all S3 IRREPs, not only Γ = A
(3)
1 which contains the physically allowed states,

but also for Γ = A
(3)
2 and Γ = E(3). We would know from eq. 28 that A

(3)
1 (A

(3)
2 ) bound

states which are degenerate with E(3) states belong to the full group IRREP T
(4)
2 (T

(4)
1 ) and

that those which are not belong to A
(4)
1 (A

(4)
2 respectively). Such an IRREP identification

method thus usually requires the computation of extra bound states which are not of direct

interest.

A distinctive advantage of the hyperspherical method is that the full group IRREPs
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which each bound state belongs to can be identified without extra calculations. Because the

LHSF are obtained by diagonalization of the fixed ρ-Hamiltonian (eq. 24) which contains,

similarly to the full Hamiltonian, all symmetries of the system, they also belong automati-

cally to IRREPs of the full symmetry group, and not only of the subgroup associated to the

hyperspherical harmonics on which they are expanded. Due to the symmetry invariance of

the hyperradius ρ, a vibrational state belonging to a given (but at this time still unknown)

full group IRREP of S4 has non zero expansion coefficients ak JΠΓ
ij (eq. 25) on a subset

of the LHSF, the one which contains LHSF belonging to the same full group IRREP. By

inspection of the expansion coefficient values (0 or not), we can separate the set of LHSF

resulting from a single, say A
(3)
1 , calculation into 2 subsets, one for each full group IRREP,

say A
(4)
1 and T

(4)
2 . The subset which corresponds to A

(4)
1 is the one which contains the lowest

energy LHSF. The full group IRREP to which a given bound state belongs is now known :

it is the one of the LHSF subset on which it has non zero expansion coefficients. Neon is a

boson with zero nuclear spin and the only physically relevant bound states belong to the full

group IRREP A
(4)
1 and are obtained from a single Γ = A

(3)
1 calculation. Extra calculations

were performed for Γ = A
(3)
2 to gain physical insight and to allow for a larger comparison

with the results of ref. 12.

Our convergence goal is to obtain bound state energies within 1 % of the reference data

given by [12] and which turn out to be fully converged. This objective was achieved by

choosing a truncated harmonic basis set such that n ≤ nmax=50 and L ≤ Lmax=30 for

Π = 0, Γ = A
(3)
1 . A basis set of 20289 symmetry adapted harmonics was thus generated

on a grid having the following size : Nθ = 51, Nφ = 51, Nδ1 = Nδ2 = Nδ3 = 37. The

θ, φ, δ2 grids are of Gauss-Legendre type while the δ1, δ2 grids ones are regular Fourier type

ones. NS=100 surface functions are obtained by diagonalization of the fixed-ρ Hamiltonian

in the harmonic basis. A grid of Nρ = 36 DVR functions is used in the ρ interval [8.4,15]

au. Finally, the full Hamiltonian representation in the product basis (eq. 25) is a matrix

of size Nρ × NS=3600 which is diagonalized to provide the desired vibrational states and

energies. Similar convergence parameters were used for the other symmetry considered

Π = 1, Γ = A
(3)
2 .
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III. RESULTS

A. Energy spectra

The energy levels resulting from our computations are shown on Table I. Our spectra

are in good agreement with those of ref. 12, the relative difference being within 1 %. Our

results have been obtained using an harmonic basis without any grid optimization. The

harmonics which analytically regularize all the singularities of the kinetic energy operator

[27] are fully delocalized in the configuration space. When the potential-induced localization

of the LHSF in configuration space increases, the convergence rate of their expansion into

harmonics decreases. Convergence is thus slower in the large ρ domain and for excited states

which extend in this region. Grid optimization would be useful to speed up convergence and

limit the CPU time spent in potential quadratures in our present implementation.

The states are labeled on Table I with respect to the IRREPs of S4. These labels are

obtained by inspection of the weights ak JΠΓ
ij in the expansions of the vibrational states into

LHSF (eq. 25), according to the procedure described in subsection II D. Fig. 1 shows the

weights integrated over ρ :
∑

j |ak JΠΓ
ij |2, for different vibrational states (labelled by k), as a

function of the surface function number i. There is a striking oscillatory dependence of the

integrated weights as a function of i, for a given k. This is a symmetry effect : a weight

ak JΠΓ
ij is non zero only when the vibrational state ΨJMJΠΓ

k and the LHSF ΦJMJΠΓ
i belong to

the same full group IRREP. However, as the symmetry character of a given LHSF depends

on ρ (there are avoided crossings between LHSF of different S4 symmetries), it is somewhat

blurred by integration over ρ and the alternation seen on Fig. 1 for integrated weights is

not perfect. It is nevertheless sufficient to assign the vibrational state symmetries. Surface

functions and vibrational states can be separated into 2 groups, the group which contains

the surface function # 1 (ground state) is associated to the A
(4)
1 IRREP and the other

to T
(4)
2 . Alternatively, one may prefer to look at the expansion coefficients at a chosen ρ

instead integrating over ρ. Because the symmetry character of the surface function at fixed

ρ is unambiguous, the alternation equivalent to that of Fig. 1 would be in this case perfect.

However, according to the ρ value chosen, the weight of a given LHSF on vibrational states

may be very small, and the correlation between bound states and LHSF symmetries may be

more difficult to identify.
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The hyperspherical method has 2 other distinctive features which are useful to gain some

physical insight. One is to provide surface function energy diagrams εJΠΓ
i (ρ) (eq. 24) which

allow to follow the dynamics as a function of the hyperradius. The other is the separation

of the 6 dimensional configuration space into SKI and SKR. We now show how to take

advantage of these features to gain a better qualitative understanding of the Ne4 spectra.

B. Potential and surface function energy curves

Fig. 1 shows that the expansion of a given vibrational state given by eq. 25 converges

for a small number of surface functions. It can be seen on the figure that a single surface

function is enough to account for 90 % (80 %) of the ground state of A
(4)
1 (T

(4)
2 ) symmetry.

This justifies a posteriori the use of the hyperspherical adiabatic approximation to compute

low energy vibrational states of rare gas clusters, as for instance in ref. [9]. Using now the

LHSF basis as an adiabatic basis on which to expand the full wavefunction, eq. 25 turns

into :

ΨJMJΠΓ
k (ρ, χ,a, θ, φ, δ) =

1

ρ4

∑
i

hJMJΠΓ
i (ρ)ΦJMJΠΓ

i (χ,a, θ, φ, δ; ρ) (29)

where the hJMJΠΓ
i (ρ) functions are the coefficients of the expansion in the adiabatic represen-

tation. A single product hJMJΠΓ
i (ρ)ΦJMJΠΓ

i (χ,a, θ, φ, δ; ρ) is enough to represent the lowest

energy bound state of each symmetry and in this case the hyperradial function hJMJΠΓ
i (ρ) is

the one-dimensional bound state supported by the potential energy curve εJΠΓ
i (ρ) associated

to ΦJMJΠΓ
i . Fig. 2 shows a set of such energy curves εJΠΓ

i (ρ) as a function of the hyperradius,

as well as a few low-lying bound state energies.

Interestingly, the expansion of the excited vibrational states converges also with a small

number of surface functions. For instance, 2 surfaces functions are sufficient to account

for 90 % (85 %) of the first A
(4)
1 (T

(4)
2 ) excited state at -2.961 ε (-2.885 ε). The two-color

segments drawn on Fig. 2 are bounded by pairs of potentials εJΠΓ
i (ρ) of the same two colors.

These potentials are associated to the pair of surface functions involved in the expansions

of these vibrational states. Fig. 1 also shows that a few surface functions are sufficient to

converge each of the more excited vibrational states. This has the important implication

that most of the qualitative characteristics of a given vibrational state are embedded in a

few surface functions, those which are involved in the expansion of this vibrational state.
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This is why it is interesting to consider further the properties of the surface function energy

diagram shown on Fig. 2.

Asymptotically, the surface functions converge toward the Ne+Ne3 dissociation limit and

their energies are those of the trimer, -1.71 ε (Table II in ref. 39), which corresponds to 0.57

ε of binding energy for each the 3 identical Ne–Ne bonds. The system can also dissociate

into two dimers, Ne2+Ne2. This configuration corresponds however to a higher energy,

−1.13360ε [40], than for the trimer. At the largest ρ value shown on Fig. 2, ρ = 14.5

au, the energy of the lowest surface function is nearly -2.2 ε, which is significantly smaller

than the asymptote -1.71 ε, the difference being related to the attractive nature of the long

range part −r−6 of the Lennard-Jones potential. The range of ρ shown on Fig. 2 can be

separated in 3 domains defined by : P SF : ρ / 11, RSF : 11 / ρ / 13, T SF : 13 / ρ (in au).

The superscript SF refers to the fact that these domains are defined with respect to the

characteristics of the Surface Function energy curves εi. Similar domains were defined on the

ground surface function energy curve computed in ref. 9 and called ”plateau-like regions”.

The definition of these domains can be extended for higher energy surface function curves,

but their boundaries must be shifted to increasingly larger ρ.

In the P SF domain, Π = 0 and Π = 1 surface function energies are degenerate by pairs.

The potential curves have minima, near ρ = 9.6 au for the ground state, and near increasingly

larger ρ for excited states. States of the same parity Π are non degenerate in this domain.

On the contrary, in the RSF domain, the Π = 0 − Π = 1 degeneracy is not present, but

several states of the same parity are doubly degenerate. In this domain, energy curves have

no minima but are convex. In the T SF domain, the energy curves are also convex and some

are triply degenerate.

The P , R and T letters are chosen by reference to the Pyramid, Rhombus and Trigonal

geometries, as now discussed. These geometries are depicted schematically on Fig. 3. This

figure also shows the potential energy minimum curve. At fixed ρ, minimization of the

potential is performed over the 5 angles θ, φ, δ. Minima and curvature effects similar to

those associated to εi can be observed on this minimum potential energy curve, but the

bounds of the corresponding domains are shifted in ρ. We now have : Pmin : ρ / 10,

Rmin : 10 / ρ / 12, Tmin : 12 / ρ (in au). In each domain, the potential minimum

corresponds to a different geometry. Pmin is the domain where the potential minimum

corresponds to a tetrahedron (a triangular Pyramid) geometry. Its 6 edges are formed from
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similar Ne–Ne bonds and its 4 faces from similar equilateral Ne3 triangles. The potential

is minimum when the tetrahedron edge length is the Ne–Ne equilibrium distance r0, then

ρ =
√

3σ=8.998 au ∈ Pmin , and the potential is -6 ε (see Fig. 3). The size of the

tetraedron then increases with ρ, the 6 equivalent Ne–Ne bonds simultaneously weaken

gradually and the minimum potential increases. Near ρ ≈ 10 au, it becomes energetically

more advantageous to break one of these 6 bonds to continue increasing global size at

minimum energy cost. The minimum energy structure thus shifts abruptly from a Pyramid

to a Rhombus. For instance, by breaking the bond between atoms 1 and 2, the new minimum

energy structure becomes a rhombus which we label 1 − 34 − 2, which consists of the 2

equilateral triangles (134) and (234) joined by a common side formed by the bond between

atoms 3 and 4. The angles associated to vertices 1 and 2 are : α = π/3. There are of course

6 equivalent Rhombus listed on Table II which can be formed from the Pyramid. 5 bonds

provide the cohesion of the rhombus, its potential energy is minimum and is equal to nearly

-5 ε when its side length is r0, which occurs when ρ = 2σ=10.390 au ∈ Rmin (see Fig. 3).

As the hyperradius increases further, the rhombus size increases, its energy also, but this

increase is minimized by a slight distortion which consists in a decrease from π/3 of the vertex

angle α (see Fig. 3). At some point, however, a Trigonal structure becomes energetically

more favorable : 3 Ne atoms form an equilateral triangle from 3 identical bonds, a fourth

bond is formed between one of these 3 atoms (say atom 3) and the 4th one, such that the

(34) bond bisects bonds (13) and (23). We label this structure 4−3−12. There are 12 such

equivalent trigonal structures (see Table III). The energy of these structures is nearly -4 ε

when the common bond length is r0, which occurs when : ρ =
√

4 +
√

3σ=12.438 au ∈ Tmin

(see Fig. 3). At some larger ρ, a structure more stable than this symmetric trigonal one

can obtained by increasing the (34) bond length, but leaving the other 3 bonds unchanged,

leading eventually to the asymptotic structure Ne+Ne3.

The abrupt transitions in the geometries of these constrainted fixed-ρ minimum potential

energy structures as the hyperradius increases define 3 domains, Pmin, Rmin and Tmin, which

have different bounds from those, P SF , RSF and T SF , observed on the surface function

energy curves. We now analyze the surface functions themselves to understand how they

reflect these structural changes as a function of ρ. This will allow us to understand why

the ρ domain bounds are different for the surface function energies and for the minimum

potential energy.

16



C. Surface function analysis

Analyzing the LHSF themselves is obviously difficult because they belong to the 5-

dimensional configuration space spanned by the 5 angles (θ, φ, δ1, δ2, δ3). We can take ad-

vantage however of the separation of this space into the SKI and SKR subspaces.

1. In SKI

SKI contains θ and φ and its structure is depicted in ref. [15], Fig. 1. It contains a

point P given by θ = arcsin
√

2
3
≈ 55◦, φ = π

4
which corresponds to the same tetrahedral

configuration (symmetric top, Pyramid) for all δ1, δ2, δ3 values. The point θ = 0 (arbitrary

φ) corresponds to the collinear configurations, the point S (θ = π/4, φ = 0) to the coplanar

symmetric top configurations, different configurations of each type corresponding to different

δ1, δ2, δ3, i.e. different points in SKR. One example of such coplanar symmetric top is the

square formed by 4 Neon atoms, another one is the equilateral triangle formed by 3 of them,

with the 4th one placed at the center of mass of the triangle. The segment which connects P

to S and defined by : θ = arcsin 1√
1+cos2φ

contains all oblate symmetric top configurations,

like the triangular pyramids derived from the tetrahedron by approaching one apex Ne atom

perpendicularly to its equilateral triangular base.

Fig. 4 shows ground and excited LHSF in SKI for ρ=9.6 au. These functions are all

localized in SKI near the P point (tetrahedron), as expected since ρ=9.6 au ∈ P SF (and

incidentally also ∈ Pmin). The plots are performed somewhat arbitrarily for : δ1 = δ2 =

δ3 = π/2 since the wavefunction value is strictly independent of δ1, δ2, δ3 at the P point,

and weakly dependent in its vicinity. The localization of the wavefunctions near P results

from the presence of a potential barrier near coplanarity (φ = 0). This barrier prevents the

system from changing chirality during its vibration as it would if it could pass through the

coplanar geometry. As a result, Π = 0 wavefunctions are degenerate with those for Π = 1

and the plots for Π = 1 would be identical to those of Fig. 4. Fig. 4 also shows the nodal

lines associated to vibrational excitations. The PS line is an antinodal (nodal) line for

the A
(4)
1 (T

(4)
2 ) symmetry. A motion along the PS line corresponds to vibrations of the Ne

atoms which preserve the symmetric top character. The nodal lines which are approximately

perpendicular to the PS line in SKI (bottom row of Fig. 4 for both permutation symmetries)
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are other traces of vibrational excitation.

Fig. 5 and 6 show the changes of the ground LHSF characteristics as a function of ρ. The 3

ρ values are selected such that : ρ=10.6 au ∈ P SF , ρ=11.6 au ∈ RSF and ρ=13.6 au ∈ T SF ,

so that the gradual change in SKI (left column) from pyramid to rhombus and trigonal

configurations is visible on the figures. At ρ=10.6 au (Fig. 5 top left), the wavefunction

is still mainly localized in the vicinity of P , as for ρ=9.6 au (Fig. 4), however a transition

toward coplanarity starts to appear by an extension of the wavefunction with significant

amplitude in this direction (φ = 0). At ρ=11.6 au (Fig. 5 bottom left), the surface function

already has a significant amplitude in the coplanarity region and as a result, the degeneracy

between Π = 0 and Π = 1 pair of states disappears.

It is interesting to notice that the wavefunction at ρ = 10.6 au is not localized in the

minimum potential region (φ = 0 line = coplanar configurations), but in the low kinetic

energy region. In fact, the wavefunction remains localized far from coplanarity until the

potential near P becomes larger than the surface function energy. This is shown on Fig.

3 : the transition between P SF and RSFoccurs near ρ =11 au when the potential at P

(dashed line) becomes larger than the lowest surface function energy. The P point region

then becomes energetically unreachable for the wavefunction, which is pushed toward the

coplanar region by the potential as ρ increases. The fact that P SF extends up to 11.

au, as compared to Pmin which extends up to 10. au only, is thus related to the fact

that the wavefunction localization is governed by the turning point region, rather than by

the minimum potential region. A similar phenomenon occurs for the transition from RSF

to T SF , between rhombus and trigonal configurations. The transition occurs when the

potential associated to the rhombus configuration (dashed line, α=60◦) crosses the lowest

surface function energy curves near ρ=13. au (Fig. 3) so that the rhombus region becomes

energetically unreachable, and not near ρ=12. au (the boundary between Rmin and Tmin)

when the potential minimum switches from rhombus to trigonal geometries. Because ρ =

11.6 au ∈ RSF and simultaneously ∈ Rmin, the corresponding wavefunction (Fig. 5, left

column, bottom row) is localized near coplanarity, which is also the region of minimum

potential. A similar observation can be made in the trigonal region for the wavefunction

at ρ = 13.6 au ∈ T SF and simultaneously ∈ Tmin (Fig. 6, left column, bottom row). In

summary, we can say that the LHSF localization is dynamically (turning points driven)

rather than statically (potential driven) controlled.
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2. In SKR

Plots of the LHSF in SKR provides complementary useful information (Fig. 5, central

and right columns, Fig. 6, right and Fig. 7, right). Coplanar configurations of special

interest are the 6 rhombus and 12 trigonal ones already mentioned, their coordinates have

been obtained with the method described in appendix A and are listed in Tables II and III.

The plots are presented in specific planes of SKR selected such that they contain several of

these important configurations and such that the surface function amplitude is significant.

The ground surface function is shown on Fig. 5 and 6. The most striking feature is the

localization of the functions near the 6 points R1 − R6 at ρ = 11.6 au and near the 12

points T1 − T12 at ρ = 13.6 au. This localization was expected since ρ=11.6 au ∈ RSF and

ρ=13.6 au ∈ T SF . It is important to realize that this localization is the reason why surface

functions are degenerate in the RSF and T SF domains (Fig. 2 and 3). Indeed, let us call

ΦRm (m = 1 − 6) (ΦTm (m = 1 − 12)) wavefunctions which are localized exclusively in the

vicinity one of these 6 (12) points. The symmetrized LHSF shown on the figures are linear

combinations of these. Indeed, the 6 ΦRm are degenerate in RSF , the 12 ΦTm in T SF , and

each of these is, like the LHSF ΦJMJΠΓ, an eigenfunction of the fixed ρ-Hamiltonian, but

without the appropriate permutation symmetry properties. We show in appendix B how

to use group representation theory to form the appropriate linear combinations of these

localized functions which restore the LHSF with the expected permutation symmetries. We

also show that this SKR localization explains the appearance of degenerate pairs (triplets) in

the RSF (T SF ) domain. As surface function localization decreases as ρ decreases (compare

for instance the surface functions in SKR at ρ = 10.6 au, Fig. 5 top row, vs ρ =11.6 au, Fig.

5 bottom row), SKR-induced degeneracies disappear in the P SF domain (but SKI-induced

ones appear, see section III C 1). Fig. 7 also shows excited surface functions in SKR. Surface

functions at the same ρ may have different energies but similar shapes in SKR, as if they

had similar excitation in this subspace. For instance, the surface function # 3 at ρ =11.6

au (Fig. 7, top-right) is similar in SKR to function # 1 (Fig. 5, bottom right), as well as to

functions #2 and #4 (not shown). In this case, excitation is visible in SKI (similar to that

shown on Fig. 4 at ρ =9.6 au). In other cases, excitation also appears in SKR, as shown on

Fig. 7 (bottom right) for state # 5 which has a δ1 excitation. We show in appendix B that

the state of excitation has impact on the symmetry properties and on the degeneracies of the
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surface functions, for instance states #1-4 without excitation in SKR are doubly degenerate

in RSF whereas state # 5 with δ1-excitation is non degenerate.

D. Bound state analysis

As the bound states are linear combinations of the LHSF (eq. 29) which involve a few

termes only (Fig. 1), the properties of the bound states are directly related to those of

the surface functions. Moreover, at least for the low energy states, the coefficients of this

expansion are localized in ρ so that the properties of the bound state reflect those of the

surface functions in a limited number of domains. For instance, bound state # 1 (for both

parities) is localized in the P SF domain (see Fig. 2). As a result, the bound state wavefunc-

tion in localized near P in SKI (see Fig. 4) and is associated to the tetrahedral geometry.

States from #2 to #10 have energies below -2.55 ε (-2.50 ε) for Π = 0 (Π = 1), see Table

I. These states are localized in P SF + RSF , the corresponding motion is one of a pyramid

experiencing large amplitude rotations around its edges (say the one connecting atoms 1 and

2) so that the equilateral triangles (123) and (124) can explore the coplanar geometries and

in particular the rhombus one R1 = 3− 12− 4. The motion extends symmetrically (Π = 0)

or antisymmetrically (Π = 1) on the other side of the rhombus plane and the tetraedron

geometry with opposite chirality can be explored. This vibrational motion between tetra-

hedron and rhombus configurations corresponds to an oscillation motion in ρ between P SF

and RSF described by the hJMJΠΓ
i (ρ) functions (eq. 29). The same rotational motion can

occur around the 6 edges of the tetraedron, which corresponds to exploring the 6 rhombus

configurations R1−R6 (Table II) with identical, opposite or different amplitudes, according

to the possible symmetries of the wavefunction in SKR. As long as the bound states are

in P SF , they do not explore the coplanarity region and tunneling splitting is very small.

This splitting increases however for higher energy bound states which extend in the RSF

region which corresponds to coplanarity. At even higher energies (state #11 and above)

the motion can be even more delocalized in P SF + RSF + T SF , which corresponds to an

even larger amplitude motion in ρ. In this case, an in-plane motion, where the rhombus is

distorted into the trigonal geometry, adds to the out of plane motion between tetrahedron

and rhombus configurations. Tunneling splitting remains large.

A splitting of the Ne4 vibrational spectrum in 3 regions is proposed in ref. [12]. It is based
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on the analysis of the increase of the tunneling splittings and of the density of vibrational

states (DOS) with energy. The low energy region contains a few low lying states (states

# 1 of both parities on Table I) which are ”highly localized”. The intermediate energy

region corresponding approximately to the interval [-3.4 ε, -2.6 ε] (from states # 2 to #8

on Table I) is associated to an intermediate DOS of ”fluxional” states with intermediate

tunneling splittings. The high energy region (above -2.6 ε) corresponds to a high DOS of

completely delocalized vibrational states. The present hyperspherical analysis provides a

complementary view on this spectrum splitting. From inspection of Fig. 2 and 3 in relation

to the energy bounds of these 3 regions, it is clear that the low energy region corresponds to

the states which extend in P SF , the intermediate energy region to the states which extend in

P SF +RSF and finally the high energy region to the states which extend in P SF +RSF +T SF .

The increase with energy of the vibrational DOS mentioned in ref. [12] is thus related to

an increase of the configuration space volume occupied by vibrational states of increasing

energy. The increase of the tunneling splitting is related to the accessibility of the coplanar

region in RSF and T SF .

IV. SUMMARY AND CONCLUSIONS

We have presented in the present paper the first implementation of the row-orthonormal

hyperspherical coordinate formalism on a tetratomic system. The method provides not only

spectra with reasonable accuracy, but also physical insight into the vibrational dynamics of

the system. In particular, we have related features of the spectra, like permutation and in-

version symmetry degeneracies, inversion tunneling splittings and densities of states, to the

way the wavefunction is localized in configuration space. There is however an obvious short-

coming in our approach which should be remedied in the future. We have used the subgroup

S3 of the full permutation group S4 of the system. As a result, our computed spectra are

superpositions of spectra associated to different irreducible representations of S4. Although

we have shown how to disentangle simply mixed symmetries within the hyperspherical for-

malism, performing separate computations for the different irreducible representations of S4

would reduce the computational cost of the calculations. This requires first to identify the

effect of all the 24 elements of S4 on the coordinates of the system and to symmetrize accord-

ingly the Wigner rotation matrices on which the hyperspherical harmonics are expanded.

21



This is a natural continuation of the present work.
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Appendix A: The hyperspherical coordinates for rhombus and trigonal geometries

Finding the hyperspherical coordinates for a given geometry of the system requires solv-

ing non linear equations to obtain them from the mass-scaled Jacobi coordinates in the body

frame : ρbf = ρN(θ, φ)R̃(δ1, δ2, δ3). Solving these equations is in general a difficult task but

for specific geometries simple solutions exist. For the rhombus geometries, we first consider

the configurations where atoms 1 and 2 are located at opposite vertices, namely R1 : 3-12-4

and R6 : 1-34-2. In these cases, the Jacobi vectors r(2) and r(3) are collinear and both

perpendicular to r(1), this special geometries make the extraction of the hyperspherical co-

ordinates easier. The hyperspherical coordinates for all other rhombus configurations could

be obtained from a single one, say R1, if the effects on coordinates of all atom permutations

belonging to S4 were known. Unfortunately, simple expressions are available only for the

transformations which belong to the subgroup S3 of S4. The permutations of S3 must be

applied on 2 configurations, say R1 and R6, to cover all 6 configurations. The hyperspherical

coordinates for R2 are obtained from those for R1 by applying the coordinate transforma-

tion associated to the permutation of atoms 1 and 3 and given by eq. 3.40 of ref. [20].

Similarly, the hyperspherical coordinates for R3 are obtained from those for R1 by applying

the coordinate transformation associated to the permutation of atoms 2 and 3 and given by

eq. 3.38 of ref. [20]. A similar procedure can be used to obtain the coordinates associated

to R4 and R5 starting from R6. The results for the 6 rhombus configurations are collected

on Table II.

A similar procedure can be used to obtain the hyperspherical coordinates of the 12 trig-

onal configurations. T1, T4 and T12 are special configurations for which the hyperspherical

coordinates can be obtained easily from the Jacobi vectors. T2 and T3 coordinates are ob-

tained from T1 by permutations, T5 and T6 from T4 ; the 5 configurations T7 to T11 are

similarly obtained from T12. The results for the 12 trigonal configurations are collected on

Table III.
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Appendix B: Group theory, degeneracy and symmetry of surface functions

We discuss the degeneracies of the surface functions observed on Fig. 2 and 3 : double

degeneracies appear in the RSF domain (rhombus) and triple degeneracies in the T SF domain

(trigonal). We relate these degeneracies to the symmetry properties of the surface functions.

For instance, in the RSF domain near 11.6 au, the surface function with excitation number

# 1 (A
(4)
1 symmetry) is almost degenerate with surface function # 2 (T

(4)
2 ). Similarly, the

surface function # 3 (A
(4)
1 ) is almost degenerate with surface function # 4 (T

(4)
2 ). On the

other hand, surface function #5 (T
(4)
2 ) is non degenerate. See Fig. 3 which shows the surface

function numbers. The surface functions # 1 and # 3 (A
(4)
1 ) have similar amplitudes in the

vicinity of all rhombus points R1 −R6 (the surface function #1 is shown on Fig. 5, central

and right columns, for ρ=11.6 au), whereas the amplitude near R4 − R6 is opposite to the

one near R1 − R3 for surface functions # 2 and # 4 (T
(4)
2 symmetry, not shown). The non

degenerate surface function # 5 has a δ1 excitation (Fig. 7, bottom right).

In the T SF domain near ρ=13.6 au, the 3 lowest surface functions are degenerate (see

Fig. 3) and among them, 2 have the T
(4)
2 symmetry and the 3rd one is A

(4)
1 . The surface

function energy # 4 has T
(4)
2 symmetry and is non degenerate.

We now show how these degeneracy and symmetry properties can be accounted for using

group theory. We take advantage of the fact that the surface functions are linear combina-

tions of disconnected wavefunctions localized in the (δ1, δ2, δ3) subspace near the rhombus

R1 − R6 or trigonal T1 − T12 points (see for example Fig. 5, central and right columns,

Fig. 6, right column, as well as Fig. 7, right column). We call ΦRm (m = 1 − 6) and ΦTm

(m = 1 − 12) these localized wavefunctions. They are degenerate solutions of the fixed-ρ

Hamiltonian, but on the contrary of the surface functions ΦJMJΠΓ
i which are also solutions of

eq. 24, they are not basis functions of an IRREP of the permutation group S4. However, a

6-dimensional (12-dimensional) reducible representation of this group can be obtained from

the ΦRi (i = 1− 6) basis functions (ΦTi (i = 1− 12)) which we call ΓR (ΓT ) and which can

be decomposed into the IRREPs of S4 using the usual projection techniques ([38], p. 29-43).

We first assume that the ΦRm functions are nodeless in the (δ1, δ2, δ3) subspace. This is

the case for instance for the functions # 1 to # 4 at ρ=11.6 au (function # 1 is shown on

Fig. 5 and #3 on Fig. 7). In this case, applying P̂ij on ΦRm changes it into another ΦRm′
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without sign change of the amplitude. Using Table II, we obtain for instance:

P̂12ΦR1 = ΦR1 , P̂23ΦR1 = ΦR3 , P̂34ΦR1 = ΦR1 (B1)

and similarly for the other ΦRm functions. The effect of the other permutations of S4 can

be obtained by combination of these 3 generators of S4. We thus obtain the 6 dimensional

reducible representations of the 3 generators of S4 in the ΦRm basis :

ΓR(P̂12) =

( 1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

)
ΓR(P̂23) =

( 0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

)
ΓR(P̂34) =

( 1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

)

The IRREPs of S4, the 1-dimensional ones A
(4)
1 and A

(4)
2 , the 2-dimensional one E(4) and

the 3-dimensional ones T
(4)
1 and T

(4)
2 , are well known (ref. 30, p. 224-226). Using these and

the orthogonality relation for characters (eq. 3.20, p. 30 in ref. 38), we obtain the following

decomposition of ΓR : ΓR = A
(4)
1 ⊕ E(4) ⊕ T (4)

2 . Because of the known correlation between

S3 and S4 IRREPs, we know that only 1 of the 3 basis functions belonging to T
(4)
2 , as well as

the single one of A
(4)
1 , can also be basis functions for A

(3)
1 . These Φ

A
(4)
1

and Φ
T

(4)
2

functions

form the degenerate pairs (functions #1-2 and #3-4) observed on Fig. 3 in RSF . Using

the projector operator technique (eq. 3.36, p. 41, in ref. 38), these functions are expressed

in terms of the basis function of the reducible representation as : Φ
A

(4)
1

= 1√
6

∑
m=1−6 ΦRm

and Φ
T

(4)
2

= 1√
6

(∑
m=1−3 ΦRm −

∑
m=4−6 ΦRm

)
. This explains why the amplitude of the A

(4)
1

surface function of a degenerate pair in RSF is the same for all rhombus points R1 − R6,

while the amplitude near R4 −R6 is opposite to the one near R1 −R3 for the other surface

function of T
(4)
2 symmetry.

We now consider a function with a δ1 excitation, like the state # 5 shown on Fig. 7

(ρ = 11.6 au). Although it is like states # 2 and 4 a T
(4)
2 state, it has significant and

similar amplitudes only in the vicinity of R4 − R6 and negligible ones near R1 − R3. Also,

there is no corresponding A
(4)
1 state to form a degenerate pair with. These observations

can also be accounted for by group theory considerations. This surface function with δ1

excitation is obtained by linear combination of new Φ′Rm (m = 1− 6) basis functions, which

are localized similarly to the ΦRm ones but differ from them by a δ1 excitation similar to

that of the surface function. A function Φ′Rm associated to the rhombus m = i− jk− l (see

Table II) behave like ΦRm under the action of P̂12, P̂23 and P̂34, except for the central ones :

P̂12Φ′R1
= −Φ′R1

... We thus obtain the following new 6 dimensional reducible representations
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ΓR′
of the 3 generators of S4 in the Φ′Rm basis :

ΓR(P̂12) =

 −1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

 ΓR(P̂23) =

 0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 ΓR(P̂34) =

 1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 −1


We now have : ΓR′

= T
(4)
2 ⊕ T

(4)
1 . None of the T

(4)
1 basis functions and a single T

(4)
2 one can

belong to A
(3)
1 , this explains why state # 5 in RSF belongs to T

(4)
2 and is non degenerate.

In the T SF domain, the surface functions are localized in the vicinity of the trigonal

points T1 − T12 (see for example Fig. 6, right column) and they can be obtained as linear

combinations of the localized functions ΦTm (m = 1 − 12). These form a 12-dimensional

representation ΓT of S4 which can be reduced into its IRREPs using the same techniques as

in the RSF domain. We obtain : ΓT = A
(4)
1 ⊕E(4)⊕ 2T

(4)
2 ⊕ T

(4)
1 . As only A

(4)
1 and T

(4)
2 can

have basis functions belonging to A
(3)
1 , we expect a triple degeneracy for the lowest energy

states in the T SF , as observed on Fig. 3, which consists of a single A
(4)
1 state and a pair of

T
(4)
2 states. State #4 has a δ1 excitation in the T SF domain. We use localized functions Φ′Tm

(m = 1 − 12) with appropriate excitations such that they are unchanged by permutation

of 2 atoms except the pair of end atoms kl in the trigonal structure i − j − kl (Table III)

: P̂12Φ′T1 = −Φ′T1 ... The 12 dimensional reducible representation ΓT ′
of S4 in the Φ′Tm is

likewise reduced into its IRREPs : ΓT ′
= A

(4)
2 ⊕E(4)⊕ T (4)

2 ⊕ 2T
(4)
1 . A single basis function,

the one associated to T
(4)
2 , can also belong to A

(3)
1 . This is the reason why state # 4 belongs

to T
(4)
2 and is non degenerate in the T SF domain.

Notice finally that the degeneracies observed in the RSF and T SF domains result from

surface function localizations in SKR. In the P SF domain, surface functions are delocalized

in SKR and these degeneracies disappear. Instead, new degeneracies between Π = 0 and

Π = 1 surface functions appear in this domain and they are induced by localization of the

surface functions near P in SKI (see section III C 1).
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TABLE I: Ne4 energy levels in unit of ε for the Γ = A
(3)
1 , Π = 0 and Γ = A

(3)
2 , Π = 1 calculations.

The present results are compared with those of ref. [12] (Table VII). The IRREPs of S4 to which

each state belongs are also given. For each of the T
(4)
1 or T

(4)
2 states, 2 almost equal energies are

given in ref. [12] (Table VII), only the lowest of both is given in the present Table. The present

naming convention of the T
(4)
1 and T

(4)
2 IRREPs is different from the one used in ref. [12] (see

section II D).

A
(3)
1 , Π=0 A

(3)
2 , Π=1

IRREP E (present) Eref (ref. [12]) E − Eref IRREP E (present) Eref (ref. [12]) E − Eref

1 A
(4)
1 -3.454 -3.4494 -0.005 A

(4)
2 -3.454 -3.4494 -0.005

2 T
(4)
2 -2.984 -2.9844 0.000 T

(4)
1 -2.983 -2.9830 0.000

3 A
(4)
1 -2.961 -2.9638 0.003 A

(4)
2 -2.957 -2.9586 0.002

4 T
(4)
2 -2.885 -2.9073 0.022 T

(4)
1 -2.847 -2.8591 0.012

5 A
(4)
1 -2.867 -2.8890 0.022 A

(4)
2 -2.808 -2.8224 0.014

6 T
(4)
2 -2.778 -2.7913 0.013 T

(4)
1 -2.694 -2.7093 0.015

7 A
(4)
1 -2.733 -2.7450 0.012 A

(4)
2 -2.677 -2.6840 0.007

8 A
(4)
1 -2.652 -2.6573 0.005 A

(4)
2 -2.604 -2.6158 0.012

9 T
(4)
2 -2.605 -2.6171 0.012 T

(4)
1 -2.539 -2.5490 0.010

10 A
(4)
1 -2.571 -2.5836 0.012 A

(4)
2 -2.515 -2.5249 0.010

11 T
(4)
2 -2.529 -2.5459 0.016 T

(4)
1 -2.494 -2.5065 0.012

12 A
(4)
1 -2.510 -2.5243 0.014 T

(4)
1 -2.472 -2.4862 0.014

13 T
(4)
2 -2.494 -2.5162 0.022 T

(4)
1 -2.431 -2.4564 0.025

14 T
(4)
2 -2.472 -2.5090 0.037 A

(4)
2 -2.415 -2.4291 0.014

15 T
(4)
2 -2.458 -2.4794 0.021 A

(4)
2 -2.404 -2.4230 0.019

16 A
(4)
2 -2.425 -2.4473 0.022 T

(4)
1 -2.395 -2.4221 0.027
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TABLE II: Row orthonormal hyperspherical coordinates (δ1, δ2, δ3) for R1 to R6 rhombuses which

are labelled i− jk− l, where i, j, k, l are Ne atom numbers. Atoms i and l form the pair of opposite

vertices connected by the longest diagonal, j and k by the shortest one. The angle α at vertices

i and l is thus such that α ≤ π/2. Calling d the side of the rhombus, the hyperradius is given by

ρ = 2
5
6d and the kinematic invariant angles by : θR = α/2 and φR = 0 (coplanar configuration).

In the Table : δR = arcsin
(

1√
3

)
≈ 35◦. The 4 configurations i− jk − l, l − jk − i, i− kj − l and

l − kj − i correspond to the same set of coordinates (ρ, θ, φ, δ1, δ2, δ3). Appendix A explains how

these coordinates have been obtained.

Rhombus # Configuration δ1, δ2, δ3

R1 3− 12− 4 π
2 , π − δR,

π
2

R2 1− 23− 4 π
2 , δR,

5π
6

R3 2− 13− 4 π
2 , δR,

π
6

R4 2− 14− 3 π − δR, π2 ,
π
3

R5 1− 24− 3 δR,
π
2 ,

2π
3

R6 1− 34− 2 δR,
π
2 , 0
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TABLE III: Row orthonormal hyperspherical coordinates (δ1, δ2, δ3) for T1 – T12 trigonal geome-

tries. These configurations are labelled i− j − kl, where i, j, k, l are Ne atom numbers. Atoms jkl

form an equilateral configuration and atom i is bonded to the central atom j. Bond distances ji,

jk, jl and kl are the same (= d), however these trigonal configurations are not fully symmetric

as ji, jk and jl, ji bond angles are 150◦ whereas the jk, jl bond angle is 60◦. For all trigonal

configurations of the Table, the hyperradius is given by ρ = d
(4+
√

3)
1
2

2
1
6

and the kinematic invariant

angles θ and φ are given by : θT = arcsin

(
1√

4+
√

3

)
≈ 25◦ and φT = 0 (coplanar configuration).

The values of the angles used in the Table are:

δ1
T = π

4 −
δR
2 = arcsin

(√
1
2 −

1
2
√

3

)
≈ 27◦, δ2

T = 3δ1
T = arccos

(√
1
2 −

5
6
√

3

)
≈ 82◦,

δ3
T = arccos

(
−
√

30
37 + 2

√
3

37

)
≈ 162◦, δ4

T = arccos
(√

1
6 + 1

6
√

3

)
≈ 59◦,

δ5
T = arctan

(
−
(

1 + 1√
3

))
≈ 122◦.

δR is defined in the caption of Table II. The 2 configurations i− j − kl and i− j − lk correspond

to the same set of coordinates ρ, θ, φ, δ1, δ2, δ3. Appendix A explains how these coordinates have

been obtained.

Trigonal geom. # Configuration δ1, δ2, δ3

T1 4− 3− 12 π
2 , δ

1
T ,

π
2

T2 4− 2− 13 π
2 , π − δ

1
T ,

π
6

T3 4− 1− 23 π
2 , π − δ

1
T ,

5π
6

T4 3− 4− 12 π
2 , δ

2
T ,

π
2

T5 2− 4− 13 π
2 , π − δ

2
T ,

π
6

T6 1− 4− 23 π
2 , π − δ

2
T ,

5π
6

T7 3− 1− 24 π − δ3
T , π − δ4

T , δ
5
T −

π
3

T8 2− 1− 34 π − δ3
T , δ

4
T , π − δ5

T

T9 1− 3− 24 π − δ3
T , δ

4
T ,

5π
3 − δ

5
T

T10 3− 2− 14 δ3
T , π − δ4

T ,
4π
3 − δ

5
T

T11 2− 3− 14 δ3
T , δ

4
T , δ

5
T −

2π
3

T12 1− 2− 34 δ3
T , δ

4
T , δ

5
T
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FIG. 1: Integrated weight of the surface function #i (ΦJMJΠΓ
i ) in the vibrational state # k

(ΨJMJΠΓ
k , see eq. 25), as a function of i. Each vibrational state #k is associated to a symbol, see

the insets of the figures. Left : Π = 0 parity, A
(4)
1 permutation symmetry. Right : Π = 0,T

(4)
2 .
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FIG. 2: Surface function energies (unit : ε, the Ne2 pair-potential well depth) as a function of the

hyperradius (atomic unit). The 0-energy corresponds to 4-body dissociation. They result from

2 calculations, Γ = A
(3)
1 ,Π = 0 (full lines) and Γ = A

(3)
2 ,Π = 1 (symbols). S4 symmetry labels

are shown for the four lowest potentials. The 4 lowest bound state energies (Π = 0) are shown

as horizontal segments. The lowest energy bound state (for each A
(4)
1 and T

(4)
2 symmetry) is well

represented by the adiabatic approximation and is supported almost entirely by a single surface

function potential, the color of segment is the one of the corresponding potential. As at least 2

surface functions are necessary in the expansion of the first excited states (in each symmetry),

their energies are represented by segments with 2 colors identical to those of the corresponding

potentials.
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FIG. 3: Potential energy minimum (blue continuous line) as a function of ρ. The 0-energy corre-

sponds to 4-body dissociation. The dashed lines correspond to the potential energies for selected

geometries of the system : tetrahedron, rhombus (vertex angle fixed : α = π
3 or optimized to

minimize potential), trigonal (bond angles with respect to the central atom : 5π
6 ,

5π
6 ,

π
3 ). These

geometries correspond to the potential minimum in the vicinity of ρ = 8.998 au, ρ = 10.390 au

and ρ = 12.438 au, respectively. The lowest Π = 0 A
(4)
1 and T

(4)
2 surface function energies are also

shown as black continuous lines. The excitation numbers of the surface functions plotted on Fig.

4-7 are also indicated.
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FIG. 4: Surface function amplitude color plots for the ground and excited surface functions, Π = 0.

The point labelled P corresponds to the tetraedral (Pyramid) configuration, the point S to coplanar

symmetric top configurations and the line φ = 0 to all coplanar configurations. The color scale

gives the amplitude from blue (lowest amplitude, given by the value of m on the graph) to red

(max amplitude, given by the value of M on the graph). Results are shown in the (θ, φ) plane for

ρ = 9.6 au, δ1 = δ2 = δ3 = π
2 . The number shown in the upper left corner is the excitation number,

starting with # 1 for the ground state. States #1 an # 3 belong to the A
(4)
1 IRREP, states # 2

and # 4 to T
(4)
2 . The white lines are the contour plots of the potential -5.3, -4.5, -3.7 ε.
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FIG. 5: Surface function amplitude color plots for the ground state surface function, Π = 0 (A
(4)
1

permutation symmetry). The color scale gives the amplitude from blue (negligible amplitude) to

red (max amplitude, given by the value of M on the graph). The white lines are contour plots of

the potential with labels in units of ε. From top to bottom : ρ = 10.6, 11.6 au.

Left : plots in the (θ, φ) plane for fixed values of the other coordinates : δ1 = π
2 , δ2 = π − δR,

δ3 = π
2 . See the caption of Table II for the definition of δR. The point labelled P corresponds to

the tetraedral (Pyramid) configuration, the point S to coplanar symmetric top configurations and

the line φ = 0 to all coplanar configurations.

Center : plots in the (δ2, δ3) plane for δ1 = π
2 . For ρ = 10.6 au, θ = 0.73, φ = 0.62. For ρ = 11.6

au, θ = π
6 and φ = 0.

Right : plots in the (δ1, δ3) plane. For ρ = 10.6 au, δ2 = π
2 , θ = 0.73, φ = 0.62. For ρ = 11.6 au,

δ2 = π
2 , θ = π

6 and φ = 0.

A thick white bullet in a (θ, φ) plot (left frame) indicates the values of θ and φ chosen for the

plots in the (δ2, δ3) planes at the same ρ. Similarly, a thick white bullet in a (δ2, δ3) plot (middle

frame) indicates the values of δ2 and δ3 used in the corresponding (θ, φ) plot. The labels R1-R6

correspond to the coordinates listed in Table II.
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FIG. 6: Surface function amplitude color plots for the ground state surface function for Π = 0 (A
(4)
1

permutation symmetry) at ρ = 13.6 au. The color scale gives the amplitude from blue (negligible

amplitude) to red (max amplitude, given by the value of M on the graph). The white lines are

contour plots of the potential with labels in units of ε.

Left : plot in the (θ, φ) plane for fixed values of the other coordinates : δ1 = π
2 , δ2 = δ1

T , δ3 = π
2 .

The point labelled P corresponds to the tetraedral (Pyramid) configuration, the point S to coplanar

symmetric top configurations and the line φ = 0 to all coplanar configurations.

Right : plot in the (δ2, δ3) plane for δ1 = π
2 , θ = θT , φ = 0.

See the caption of Table III for the definitions of δ1
T and θT . A thick white bullet in the (θ, φ) plot

(left frame) indicates the values of θ and φ chosen for the plots in the (δ2, δ3) plane. Similarly, a

thick white bullet in the (δ2, δ3) plot (right frame) indicates the values of δ2 and δ3 used in the

corresponding (θ, φ) plot. The labels T1-T6 correspond to the coordinates listed in Table III.
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FIG. 7: Surface function amplitude color plots for excited states surface function for ρ = 11.6 au

Π = 0. The color scale gives the amplitude from blue (lowest amplitude, given by the value of m

on the graph) to red (max amplitude, given by the value of M on the graph). The number shown

in the upper left corner is the excitation number (see Fig. 3), starting with # 1 for the ground

state. The white lines are contour plots of the potential with labels in units of ε. Left : results

in the (θ, φ) plane, δ1 = π
2 , δ2 = π − δR, δ3 = π

2 . See the caption of Table II for the definition

of δR. The point labelled P corresponds to the tetraedral (Pyramid) configuration, the point S to

coplanar symmetric top configurations and the line φ = 0 to all coplanar configurations. Right :

results in the (δ1, δ3) plane, θ = π
6 , φ = 0, δ2 = π

2 .
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