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Chapter 6

Locating-Domination and Identification

Antoine Lobstein, Olivier Hudry, and Irène Charon

Abstract Locating-domination and identification are two particular, related, types of domination:
a set C of vertices in a graph G = (V,E) is a locating-dominating code if it is dominating and any
two vertices of V \ C are dominated by distinct sets of codewords; C is an identifying code if it is
dominating and any two vertices of V are dominated by distinct sets of codewords. This chapter
presents a survey of the major results on locating-domination and on identification.

6.1 Introduction

Locating-dominating codes were introduced by Slater in 1983 [168], but for more easily accessible
sources, see Rall & Slater [155], or Colbourn, Slater & Stewart [60]. The term “identifying code”
is used in the 1998 paper [134] by Karpovsky, Chakrabarty & Levitin, which certainly marks the
starting point for the blossoming of works on this topic, but the concept is already contained in [158]
(Rao, 1993). For both locating-dominating and identifying codes, see the ongoing bibliography
at [142].

The graphs G = (V,E) that we shall consider will usually be finite, undirected and con-
nected. Before we proceed, and since we consider domination at distance r, we extend the notion
of neighborhood: for any integer r > 1, the open r-neighborhood of a vertex v ∈ V is the set
Nr(v) = {u : 0 < d(u, v) 6 r}. The set Nr[v] = Nr(v)∪ {v} is called the closed r-neighborhood of v.
A code is simply a set of vertices, whose elements are called codewords.

Formally, an r-locating-dominating code C ⊆ V , abbreviated r-LD code, is a distance-r domi-
nating code such that:
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∀ v1 ∈ V \ C, ∀ v2 ∈ V \ C, v1 6= v2 : Nr(v1) ∩ C 6= Nr(v2) ∩C.

An r-locating-dominating code always exists (e.g., C = V , or |C| = |V | − 1 > 0 whenever |E| > 0).
An r-identifying code C ⊆ V , abbreviated r-Id code, is a distance-r dominating code such that:

∀ v1 ∈ V, ∀ v2 ∈ V, v1 6= v2 : Nr[v1] ∩ C 6= Nr[v2] ∩ C.

Identifying codes are sometimes called differentiating, mostly when r = 1. We can see that it is
possible to retrieve a vertex v simply by knowing which codewords r-dominate v. Thus, if each
codeword sends an alarm to a central controller whenever there is a malfunctioning vertex in
its closed neighborhood, then, only knowing which codewords gave the alarm, the controller can
unambiguously retrieve that vertex (if there is at most one). The same is true for a non-codeword
in the case of r-LD codes. See also [149] for an illustration with smoke detectors.

Two distinct vertices v1 ∈ V , v2 ∈ V , are said to be r-twins if Nr[v1] = Nr[v2]. It is easy to see
that a graph G admits an r-identifying code if and only if it has no r-twins, i.e.,

∀v1 ∈ V, ∀v2 ∈ V, v1 6= v2 : Nr[v1] 6= Nr[v2]. (6.1)

A graph satisfying (6.1) is usually called r-identifiable, r-twin-free or r-distinguishable, or also point-
distinguishing ([175], for r = 1). If three vertices x, y, z are such that z ∈ Nr[x] and z /∈ Nr[y], we
say that z r-separates x and y in G (note that z = x is possible). A set of vertices r-separates x and y
if at least one of its elements does. So we can rephrase the definitions: an r-LD code (respectively,
an r-Id code) r-dominates every vertex and r-separates every pair of non-codewords (respectively,
of vertices).

Usually, one is interested in finding the smallest possible size of a code, LD or Id, in a given graph.
Such codes are called optimal. Several notations exist; in this chapter, we denote by LDr(G) (re-
spectively, Idr(G)) the smallest possible cardinality of an r-locating-dominating code (respectively,
an r-identifying code when G is r-twin-free), and we call these numbers the r-locating-domination
number (respectively, the r-identification number) of G. They are abbreviated as r-LD and r-Id
numbers, respectively. We may drop r when r = 1 or when it is irrelevant.

Example
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Fig. 6.1 Different graphs and codes. Black vertices represent codewords.

r = 1: (a) {v1, v4} is locating-dominating, not identifying. (b) {v1, v3} is neither locating-
dominating nor identifying. (c) {v1, v2, v4} is both locating-dominating and identifying. We have:
LD(G1) = 2, Id(G1) = 3. (d) v1 and v3 are twins; {v1, v4} is locating-dominating, and LD(G2) = 2.

r = 4: (e) v4 and v5 are 4-twins; {v1, v3, v5, v7} is 4-locating-dominating, and LD4(G3) = 4.



6 Locating-Domination and Identification 3

The decision problems classically associated with the search of optimal r-LD and r-Id codes are
NP-complete for all r > 1, see Sect. 6.8 on complexity. The following inequalities hold for any r > 1:

γr(G) 6 LDr(G) 6 Idr(G). (6.2)

Almost all of this chapter is devoted to undirected graphs, but the above definitions can be ex-
tended to digraphs, by considering, e.g., insets instead of neighborhoods; see [39], [88], or [59] for
an illustration.

The following three theorems are probably as old as the definitions of r-dominating, r-locating-
dominating or r-identifying codes.

Theorem 1 Let r > 2 be any integer and G be any graph. A code is 1-dominating (respectively,
1-locating-dominating, 1-identifying) in Gr, the r-th power of G, if and only if it is r-dominating
(respectively, r-locating-dominating, r-identifying) in G.

Theorem 2 Let r > 1 be any integer. Any connected r-twin-free graph has order n = 1 or n > 2r+1.
The only connected r-twin-free graph with order n = 2r + 1 is the path P2r+1.

Any cycle with order n > 2r + 2 is r-twin-free.

Theorem 3 Let r > 1 be any integer. Every r-dominating code is (r + 1)-dominating. If C is
r-dominating (respectively, r-locating-dominating, r-identifying), then so is any superset C∗ ⊇ C.

6.2 Possible Values for LD and Id Numbers

Almost everyone’s first results on LD and Id numbers are the following two theorems, which give
three easy bounds, whereas Th. 6 is more difficult.

Theorem 4 (a) For any integer r > 1 and any graph G = (V,E) of order n, we have

LDr(G) > ⌈log2(n− LDr(G) + 1)⌉. (6.3)

(b) For any integer r > 1 and any r-twin-free graph G = (V,E) of order n, we have

Idr(G) > ⌈log2(n+ 1)⌉.

Proof. (a) Let C be any r-LD code in G. All the n− |C| non-codewords v ∈ V \ C must be given
nonempty and distinct sets Nr(v) ∩ C, constructed with the |C| codewords, so 2|C| − 1 > n− |C|,
from which (6.3) follows when C is optimal; (b) the argument is the same, but we have to consider
all the n vertices v ∈ V , so 2|C| − 1 > n. ✷

Theorem 5 For any r > 1 and connected graph G of order n > 2, we have LDr(G) 6 n− 1.

Theorem 6 ([15]) For any r > 1 and connected r-twin-free graph G of order n 6= 1, we have
Idr(G) 6 n− 1.

Proof. We give the short elegant proof by Gravier & Moncel [98] in 2007, six years after the first
proof in [15]. Using Th. 1, we can see that it is sufficient to prove the case r = 1. We assume that
G = (V,E) is a connected 1-twin-free graph, of order n > 3. Let C1 = V \ {a} for a ∈ V with
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maximum degree in G. If C1 is identifying, we are done, so we assume that it is not. Because G
is connected, C1 is a dominating code. If u and v belong to N [a] and because N [u] 6= N [v], we
have N [u] \ {a} 6= N [v] \ {a}, so C1 separates u and v, and the same is true for u /∈ N [a] and
v /∈ N [a]. Therefore, there must be u ∈ N [a] and v /∈ N [a] which are not separated by C1, i.e.,
N [u] ∩ C1 = N [v] ∩ C1, or N [u] \ {a} = N [v].

We claim that C2 = V \ {v} is an identifying code. By the previous discussion with a, which
did not use the maximum degree assumption yet, it is sufficient to check that every vertex in
N [v] is separated from every vertex not in N [v]. And indeed: (i) since N [u] = N [v] ∪ {a}, each
vertex in V \ (N [v] ∪ {a}) is separated from each vertex in N [v] by u; (ii) the vertex a is separated
from v by itself; (iii) the vertex a is separated from each vertex a′ ∈ N [v] \ {v}, for otherwise,
N [a′] = N [a] ∪ {v}, i.e., a′ has degree greater than a, a contradiction. ✷

The previous result actually holds for all graphs, finite or infinite, with bounded degree. There exist
(infinite) graphs (with unbounded degree) such that the only 1-identifying code is the whole vertex
set [15]: take two copies, G1 and G2, of the infinite complete graph with vertex set Z, and link
i ∈ V (G1) to j ∈ V (G2) if and only if i > j.

6.2.1 Reaching the Bounds

Graphs exist that meet the lower and upper bounds given previously. Theorem 9(a) even charac-
terizes the graphs G of order n such that LD(G) = n− 1, as will Th. 12 for 1-identifying codes.

Theorem 7 ([43]) Let r > 1 and n be integers such that n > 22r+1+2r+1. There exists a connected
graph of order n admitting an r-locating-dominating code achieving the lower bound (6.3).

Theorem 8 ([134, for r = 1]), ([64]), ([43]) Let r > 1 and n be integers such that n > 22r. There
exists a connected graph of order n admitting an r-identifying code of size ⌈log2(n+ 1)⌉.

For r = 1, Th. 8 holds for all n > 3; for r = 2, it holds if and only if n > 6.

Theorem 9 (a) ([169]), ([170]) A connected graph G of order n > 2 is such that LD(G) = n− 1 if
and only if G is the star K1,n−1 or the complete graph Kn.

(b) For all r > 1 and n > 2, we have LDr(Kn) = n− 1.

Theorem 10 For all n > 3, there exists a connected graph G of order n such that Id(G) achieves
the upper bound n− 1.

An easy example of such a graph is the star, see Fig. 6.2(a). We give two more examples, which
will be used for the construction of graphs G such that Idr(G) = n− 1 for all r.

In the following, a vertex is r-universal if it r-dominates all the vertices in the graph. Let p > 2.
(a) Take G∗

2p = (V ∗
2p, E

∗
2p), with V ∗

2p = {v0, v1, . . . , v2p−1}, E∗
2p = {vivj : vi ∈ V ∗

2p, vj ∈ V ∗
2p, i 6=

j, i 6= j + p mod 2p}: the graph G∗
2p has even order and is the complete graph K2p minus the edges

of a perfect matching.
(b) Take G∗

2p+1, obtained from G∗
2p simply by adding one 1-universal vertex; its order is odd.

In view of Sect. 6.3, the following theorem gives the domination, locating-domination and identifi-
cation numbers of these two classes of graphs, as well as for the star.
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Fig. 6.2 (a) The star K1,8, with an optimal identifying code (of size 8), which is also an optimal locating-
dominating code. (b) The graph Ak.

Theorem 11 Let p > 2 and n > 3. Then
(a) γ(G∗

2p) = 2, LD(G∗
2p) = p and Id(G∗

2p) = 2p− 1;
(b) γ(G∗

2p+1) = 1, LD(G∗
2p+1) = p and Id(G∗

2p+1) = 2p;
(c) γ(K1,n−1) = 1, LD(K1,n−1) = n− 1 and Id(K1,n−1) = n− 1.

It is an interesting fact, published in 2010 [82], that it is possible to characterize the graphs G
with Id(G) = n − 1. For two graphs G = (V,E) and G′ = (V ′, E′), let G ⊲⊳ G′ = (V ∪ V ′, E ∪
E′ ∪ {vv′ : v ∈ V, v′ ∈ V ′}) be their join graph. Let Ak = (Vk, Ek), with Vk = {x1, . . . , x2k} and
Ek = {xixj : |i− j| 6 k− 1}, see Fig. 6.2(b). Note that A1 consists of two isolated vertices, and for
k > 2, Ak is the (k− 1)-th power of the path P2k. Finally, let A be the closure of all the graphs Ai

for ⊲⊳.

Theorem 12 (Foucaud et al. [82]), (Foucaud et al. [83]) A connected graph G of order n > 3 is such
that Id(G) = n−1 if and only if G is the star or belongs to the set of graphs A∪{A ⊲⊳ K1 : A ∈ A}.
Note that G∗

4 ≃ A1 ⊲⊳ A1, G
∗
6 ≃ G∗

4 ⊲⊳ A1, . . ., G
∗
2p ≃ G∗

2p−2 ⊲⊳ A1, and that G∗
2p+1 ≃ G∗

2p ⊲⊳ K1.
We now turn to the case r > 2: are there graphs G such that Idr(G) = n− 1? (as we have already
seen, complete graphs give a trivial positive answer for r-LD codes). A crucial fact is that the two
graphs G∗

2p and G∗
2p+1 admit r-th roots for any r, if p is sufficiently large. More precisely:

Theorem 13 ([43]) Let r > 2 and p > 2 be integers.
(a) If 2p > 3r2, then there exists a graph G2p of order 2p such that (G2p)

r = G∗
2p.

(b) If 2p > 3r2, then there exists a graph G2p+1 of order 2p+ 1 such that (G2p+1)
r = G∗

2p+1.

Corollary 1 (a) For n > 3r2, there exists a graph Gn of even order n such that γr(Gn) = 2,
LDr(Gn) =

n
2 and Idr(Gn) = n− 1.

(b) For n > 3r2+1, there exists a graph Gn of odd order n such that γr(Gn) = 1, LDr(Gn) =
n−1
2

and Idr(Gn) = n− 1.

Proof. Use Ths. 11(a)–(b), 13 and 1. ✷

6.2.2 Reaching All Intermediate Values

As for the lower and upper bounds, constructions show how to achieve all intermediate values.

Theorem 14 ([42]) Let r > 1 and c > 5r2 +5r+1. For n between c+1 and 2c+ c− 1, there exists
a connected graph G of order n such that LDr(G) = c.
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For Id codes, the case r = 1 is easy and one can even address the special case of bipartite graphs.

Theorem 15 ([41]) For n > 3 and for any integer c between ⌈log2(n+ 1)⌉ and n− 1, there exists
a connected bipartite graph G with n vertices such that Id(G) = c.

Theorem 16 ([41]) Let r > 1 and c > 5r2 + 5r + 1. For n between c+ 1 and 2c − 1, there exists a
connected graph G of order n such that Idr(G) = c.

6.3 The Cost of Locating-Domination and Identification

The inequalities γr(G) 6 LDr(G) 6 Idr(G) in (6.2) express that locating-domination is more
“expensive” than domination, and identification is more expensive than locating-domination. In
this section, we compare the respective “costs” for these three notions. More precisely, denoting,
for graphs of order n,

Gr,n = {G : r-twin-free, connected, n > 2r + 1} and Gtw
r,n = {G : with r-twins, connected, n > 2},

we study the following maximum and minimum differences:
•FId,LD(r, n) = maxG∈Gr,n

{Idr(G)− LDr(G)}, fId,LD(r, n) = minG∈Gr,n
{Idr(G)− LDr(G)},

• FId,γ(r, n) = maxG∈Gr,n
{Idr(G)− γr(G)}, fId,γ(r, n) = minG∈Gr,n

{Idr(G) − γr(G)}.
In order to see the influence of the twin-free property on locating-domination and domination,

we distinguish, for dominating and locating-dominating codes, between two cases, and study the
following functions:
• FLD,γ(r, n) = maxG∈Gr,n

{LDr(G)− γr(G)}, fLD,γ(r, n) = minG∈Gr,n
{LDr(G)− γr(G)};

these two functions are considered on the same set of graphs (the twin-free graphs) as the four
functions involving identification, unlike the two functions below:
• F tw

LD,γ(r, n) = maxG∈Gtw
r,n

{LDr(G)− γr(G)}, f tw
LD,γ(r, n) = minG∈Gtw

r,n
{LDr(G)− γr(G)}.

Finally, if we want to consider all the connected graphs of order n, twin-free or not, the result is
obviously obtained by taking max{FLD,γ(r, n), F

tw
LD,γ(r, n)} and min{fLD,γ(r, n), f

tw
LD,γ(r, n)}.

Note that [20] characterizes the trees T such that LD1(T ) = γ1(T ) or Id1(T ) = γ1(T ). Most
results in this section on cost (namely, Ths. 19–26) are due to Hudry & Lobstein [124] in 2020.

6.3.1 Preliminary Results

Theorem 17 ([147]), ([102, p. 41]) If G has order n and no isolated vertices, then γ(G) 6 n
2 .

Theorem 18 ([96]) If G is 1-twin-free, then Id(G) 6 2LD(G).

Thanks to Th. 1 on the powers of graphs, the previous two results are true also for γr(G), Idr(G)
(for r-twin-free graphs) and LDr(G), for any r > 2.
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6.3.2 Identification vs Domination

First, we construct an infinite family of graphs G∗
n of order n satisfying Idr(G

∗
n) = γr(G

∗
n). These

graphs have order n = k(r + 1), k > 2r + 2, and are informally given by Fig. 6.3(a).
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Fig. 6.3 The k black vertices represent codewords. (a) The graph G∗
n. (b) The graph Gn+1.

Theorem 19 (a) For all r > 1, k > 2r + 2 and n = k(r + 1), we have γr(G
∗
n) = Idr(G

∗
n) = k.

(b) For all r > 1 and n > (2r + 2)(r + 1), we have fId,γ(r, n) = 0, and obviously fId,LD(r, n) =
fLD,γ(r, n) = 0.

Proof. (a) The k vertices vi,r must be r-dominated by at least one codeword, and no vertex can
r-dominate two such vertices, so γr(G

∗
n) > k. On the other hand, the code C = V0 represented

by the black vertices on Fig. 6.3(a) has cardinality k, and it is straightforward to check that it
is r-identifying. Note in particular that vertices in {v1,0, v2,0, . . . , vk,0} are r-dominated by exactly
2r + 1 codewords (this is where the assumption k > 2r + 2 is crucial), and more generally, vertices
vi,j ∈ {vi,1, vi,2, . . . , vi,r} are r-dominated by an odd number, namely 2r− 2j +1, of codewords, for
all i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , r}. So k 6 γr(G

∗
n) 6 Idr(G

∗
n) 6 k.

(b) Then it is easy to see that we can reach all intermediate values between k(r + 1) and
(k + 1)(r + 1) − 1. Figure 6.3(b) illustrates the case k(r + 1) + 1, with one additional vertex, w1,
which is r-dominated by an even number of codewords in Gn+1. ✷

For r = 1, Th. 19 starts at n = 8, for k = 4, but we can fill in the holes: fId,γ(1, n) = 1 for
n ∈ {3, 4, 5}, and for n ∈ {6, 7}, fId,γ(1, n) = 0 = fId,LD(1, n) = fLD,γ(1, n).

Now how large can the difference Idr(G)−γr(G) be? We know that it is at most n− 2, obtained
by graphs G with Idr(G) = n− 1 and γr(G) = 1.

Theorem 20 (a) For all n > 3, we have FId,γ(1, n) = n− 2.
(b) For all r > 2 and even n > 3r2, we have FId,γ(r, n) = n− 3.
(c) For all r > 2 and odd n > 3r2 + 1, we have FId,γ(r, n) = n− 2.

Proof. Use the star for (a), Cor. 1(b) for (c). For (b), observe that, among all the graphs G of even
order n such that Id(G) = n− 1 (see Th. 12), none of them, except the star, contains a 1-universal
vertex, i.e., is such that γ(G) = 1. But the star cannot be the power of any graph. Therefore, for
r > 2, there can exist no graph G with even order n such that Idr(G) = n− 1 and γr(G) = 1, since
the r-th power of this graph would contradict our previous observation; consequently the difference
Idr(G)− γr(G) is at most n− 3. On the other hand, Cor. 1(a) gives an example achieving n− 3. ✷

6.3.3 Identification vs Locating-Domination

Theorem 21 (a) (= Th. 19(b)) For all r > 1 and n > (2r + 2)(r + 1), we have fId,LD(r, n) = 0.
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(b) For all n > 3, we have fId,LD(1, n) = 0.

Theorem 22 (a) For all r > 1 and n > 3r2 + 1, we have FId,LD(r, n) = ⌈n
2 ⌉ − 1.

(b) We have FId,LD(1, 3) = 0.

Proof. We know (cf. Th. 18) that any (connected) r-twin-free graph G is such that Idr(G) 6

2LDr(G). Therefore, Idr(G) − LDr(G) 6 Idr(G) − Idr(G)
2 6 n−1

2 , leading to Idr(G) − LDr(G) 6
⌈n
2 ⌉ − 1. On the other hand, Cor. 1(a)–(b) provides graphs reaching ⌈n

2 ⌉ − 1. ✷

6.3.4 Domination vs Locating-Domination

The two cases, without and with twins, show quite a difference between FLD,γ and F tw
LD,γ .

6.3.4.1 Domination vs Locating-Domination in Twin-Free Graphs

Using Th. 19(b), the sentence following its proof, and the paths P4 and P5, we obtain the following.

Theorem 23 (a) For all n > 4, we have fLD,γ(1, n) = 0; fLD,γ(1, 3) = 1.
(b) For all r > 2 and n > (2r + 2)(r + 1), we have fLD,γ(r, n) = 0.

Theorem 24 (a) For all n > 3, we have FLD,γ(1, n) = n− 2.
(b) For all r > 2 and n > 3r2 + 1, we have FLD,γ(r, n) >

n
2 − 2.

(c) For all r > 2 and n > 2r + 1, we have FLD,γ(r, n) 6 n− 3.

Proof. (a) The star shows that FLD,γ(1, n) = n−2. (b) For any r, Cor. 1(a)–(b) immediately gives
examples proving that FLD,γ(r, n) > n

2 − 2. (c) The characterization of the graphs G of order n
such that Id(G) = n− 1 (Th. 12) gives graphs which, apart from the star which is not the power of
any graph, are such that LD(G) 6 n− 2. This allows to conclude that FLD,γ(r, n) 6 n− 3, using
the powers of graphs as in the proof of Th. 20. ✷

Improvements are possible on Th. 24(b) when r = 2.

Theorem 25 (a) Let n = 8t > 24. Then FLD,γ(2, n) > 5t− 3.
(b) Let n = 8t+ i > 24, with 1 6 i 6 7. Then FLD,γ(2, n) > 5t+ i− 6.

6.3.4.2 Domination vs Locating-Domination in Graphs with Twins

Theorem 26 (a) For r > 1 and n > 2, we have F tw
LD,γ(r, n) = n− 2.

(b) For n ∈ {2, 5} or n > 7, we have f tw
LD,γ(1, n) = 0; for n ∈ {3, 4, 6}, we have f tw

LD,γ(1, n) = 1.

(c) For all r > 2 and n > (2r + 2)(r + 1) + 1, we have f tw
LD,γ(r, n) = 0.

To conclude this section on compared costs, we can see that for r = 1, we have exact values for
all n and functions f and F . For r > 2, most results are exact but valid for n large. One open
problem is to establish results for all n, another to reduce the gap between lower and upper bounds
for FLD,γ(r, n), cf. Ths. 24(b)–(c) and 25. Note that all open problems and conjectures mentioned
throughout this chapter are gathered at its end.
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6.4 Specific Families of Graphs

We survey some well-known and some not so well-known families of graphs.

6.4.1 Infinite Grids and Strips

The four infinite 2-dimensional grids GS (square), GT (triangular), GK (king), and GH (hexagonal),
partially represented in Fig. 6.4, have been much studied in the literature, specially with respect
to identifying codes, and the densities ∂LD

r (Gπ) and ∂Id
r (Gπ) of optimal r-LD and r-Id codes

investigated for π ∈ {S, T,K,H}. One can also consider the infinite strips G
[k]
π of height k > 1 (the

case k = 1 gives the infinite path, see also below, Sect. 6.4.2). We remind that the density of a

code C in G
[k]
π can be defined for every k > 1 by ∂(C,G

[k]
π ) = lim supn→∞

|C∩Nn[v]|
|Nn[v]| , where v is an

arbitrary vertex.

brick wall

(d)(c)(a) (b)

honeycomb

Fig. 6.4 Partial representations of the four grids: (a) the square grid; (b) the triangular grid: black vertices
are codewords (cf. Th. 32); (c) the king grid; (d) the hexagonal grid (with two possible representations).

Some constructions of codes are obtained by heuristics searching for small subcodes inside tiles that
will be repeated periodically [38], see Fig. 6.5 for a first example.

Fig. 6.5 A periodic 5-
identifying code in the
square grid GS , of density
2/25. Codewords are in
black.

We give, as far as we know, the best lower and upper bounds, for grids and strips. Note how few
results there are for r-LD codes when r 6= 1.
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6.4.1.1 The Square Grid

The square grid, GS , has vertex set VS = Z × Z and edge set ES = {uv : u − v ∈ {(1, 0), (0, 1)}}.
Figure 6.6 will give constructions proving the upper bounds for Ths. 27(a) and 28, Fig. 6.7 for
Ths. 27(c) and 30(b).
• Locating-dominating codes

Theorem 27 ([171]), ([172]) (a) We have ∂LD
1 (GS) =

3
10 .

(b) We have ∂LD
1 (G

[1]
S ) = 2

5 .

(c) We have ∂LD
1 (G

[2]
S ) = 3

8 = 0.375, ∂LD
1 (G

[3]
S ) = 1

3 .

• Identifying codes

The following upper bound ∂Id
1 (GS) 6

7
20 is from [54] in 1999, the lower bound ∂Id

1 (GS) >
7
20 by

Ben-Haim & Litsyn [13] in 2005.

Theorem 28 We have ∂Id
1 (GS) =

7
20 .

(a) (b)

Fig. 6.6 Black vertices are the elements of a periodic code in GS , which is (a) 1-LD with density 3
10

, (b) 1-Id

with density 7
20

.

The following general lower bounds come from [33], the lower bound in (b) from [128], and all the
upper bounds from [117].

Theorem 29 (a) For every r > 1, we have 3
8r+4 6 ∂Id

r (GS) 6

{

2
5r : r even

2r
5r2−2r+1 : r odd

. When r

increases, these bounds are close to 3
8r = 0.375

r and 2
5r .

(b) We have 6
35 ≈ 0.17143 6 ∂Id

2 (GS) 6
5
29 ≈ 0.17241.

The previous upper bounds have been improved in [38], using heuristics, for r ∈ {3, 4, 5, 6}. The
strips of all heights have also been studied, for r = 1; in (d) below, the upper bound is from [22],
the lower bound from [126].

Theorem 30 (a) ([94]) We have ∂Id
1 (G

[1]
S ) = 1

2 .

(b) ([64]), ([65]) We have ∂Id
1 (G

[2]
S ) = 3

7 ≈ 0.42857.

(c) ([22]) We have ∂Id
1 (G

[3]
S ) = 7

18 ≈ 0.38889.

(d) We have ∂Id
1 (G

[4]
S ) = 11

28 ≈ 0.39286.

(e) ([126]) We have ∂Id
1 (G

[5]
S ) = 19

50 = 0.38.

(f) ([23]) For k > 6, we have 7
20 + 1

20k 6 ∂Id
1 (G

[k]
S ) 6 7

20 + 3
10k .
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Fig. 6.7 Black vertices are the elements of a periodic code which is (a) 1-LD with density 3
8
in G

[2]
S , (b) 1-LD

with density 1
3
in G

[3]
S , (c) 1-Id with density 3

7
in G

[2]
S .

6.4.1.2 The Triangular Grid

The triangular grid, or square grid with one diagonal, GT , has vertex set VT = Z× Z and edge set
ET = {uv : u − v ∈ {(1, 0), (0, 1), (1,−1)}}. Figure 6.8 will give constructions proving the upper

bounds in G
[3]
T for Ths. 31(b) and 34(a).

• Locating-dominating codes

Theorem 31 (a) ([107]) We have ∂LD
1 (GT ) =

13
57 ≈ 0.22807.

(b) ([22]) We have ∂LD
1 (G

[2]
T ) = 1

3 , ∂
LD
1 (G

[3]
T ) = 3

10 .

• Identifying codes

Theorem 32 (Karpovsky, Chakrabarty & Levitin [134]) We have ∂Id
1 (GT ) =

1
4 .

Proof. The upper bound is proved by the construction given in Fig. 6.4(b), which has the prop-
erty (P) that every codeword is dominated by exactly one codeword (itself) and every non-codeword
is dominated by exactly two codewords (either horizontally or vertically or diagonally). This proves
that the code is indeed 1-identifying, and moreover that it is best possible. ✷

Property (P) is at the root of Th. 70 when r = 1. Another example of a graph and a code having
this property is the cycle of length 2p > 6, with p pairwise nonadjacent vertices forming the code,
see Th. 44. Property (P) cannot be true for r > 1 [57].

Theorem 33 (a) ([33]) For every r > 1, we have 2
6r+3 6 ∂Id

r (GT ) 6

{ 1
2r+2 : r ∈ {1, 2, 3}mod 4
1

2r+4 : r = 0 mod 4
.

When r increases, these bounds are close to 1
3r and 1

2r .
(b) ([38]) We have ∂Id

3 (GT ) 6
2
17 ≈ 0.11765 and ∂Id

5 (GT ) 6
1
13 ≈ 0.07692.

Results on the different triangular strips are available when r = 1.

Theorem 34 ([66]) (a) We have ∂Id
1 (G

[2]
T ) = 1

2 , ∂
Id
1 (G

[3]
T ) = ∂Id

1 (G
[4]
T ) = 1

3 , ∂
Id
1 (G

[5]
T ) = 3

10 , and

∂Id
1 (G

[6]
T ) = 1

3 .

(b) For odd k > 7, we have ∂Id
1 (G

[k]
T ) = 1

4 + 1
4k .

(c) For even k > 8, we have 1
4 + 1

4k 6 ∂Id
1 (G

[k]
T ) 6 1

4 + 1
2k .

6.4.1.3 The King Grid

The king grid, or square grid with two diagonals, GK , has vertex set VK = Z × Z and edge set
EK = {uv : u− v ∈ {(1, 0), (0, 1), (1,−1), (1, 1)}}. Its name comes from the fact that, on an infinite
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Fig. 6.8 Black vertices are the elements of a periodic code in G
[3]
T which is (a) 1-LD with density 3

10
, (b) 1-Id

with density 1
3
.

chessboard, the r-neighborhood of a vertex v is the set of vertices that a king, starting from v, can
reach in at most r moves. Figure 6.9 will give constructions proving the upper bounds for Ths. 35, 37
and 38(b).
• Locating-dominating codes

Theorem 35 ([113]) We have ∂LD
1 (GK) = 1

5 .

For r > 1, there are good bounds on ∂LD
r (GK), and the first two strips are solved for r = 1.

Theorem 36 ([152]) For every r > 1, we have 1
4r+2 6 ∂LD

r (GK) 6

{ 1
4r : r even

r+1
4r(r+1)+2 : r odd

. When r

increases, these bounds are all equivalent to 1
4r .

Theorem 37 ([22]) We have ∂LD
1 (G

[2]
K ) = 1

2 , ∂
LD
1 (G

[3]
K ) = 4

15 ≈ 0.26667.

• Identifying codes

It is remarkable that the best density is known for all r > 1 for identification [34] (2004). In the
following theorem, the lower bound on ∂Id

1 (GK) comes from [58], the upper bound from [38].

Theorem 38 (a) (Charon et al. [34]) For every r > 1, we have ∂Id
r (GK) = 1

4r .
(b) We have ∂Id

1 (GK) = 2
9 ≈ 0.22222.

(a)

(b)

(c)

(d)

Fig. 6.9 Black vertices are the elements of a periodic code which is (a) 1-LD with density 1
5
in GK , (b) 1-LD

with density 1
2
in G

[2]
K , (c) 1-LD with density 4

15
in G

[3]
K , (d) 1-Id with density 2

9
in GK .

For r = 1, the strips have been investigated. Note that G
[2]
K is not 1-twin-free.

Theorem 39 ([67]) (a) We have ∂Id
1 (G

[3]
K ) = 1

3 ; ∂Id
1 (G

[4]
K ) = 5

16 = 0.3125; ∂Id
1 (G

[5]
K ) = 4

15 ≈
0.26667; ∂Id

1 (G
[6]
K ) = 5

18 ≈ 0.27778.

(b) For k > 7, we have 2
9 + 8

81k 6 ∂Id
1 (G

[k]
K ) 6











2
9 + 6

18k : k = 0 mod 3
2
9 + 8

18k : k = 1 mod 3
2
9 + 7

18k : k = 2 mod 3

.
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6.4.1.4 The Hexagonal Grid

The hexagonal grid, GH , has vertex set VH = Z × Z and edge set EH = {uv : u = (i, j) and
u − v ∈ {(0, (−1)i+j+1), (1, 0)}}. It is the grid for which one has the sparsest and weakest results.
Figure 6.10 will give constructions proving the upper bounds for Ths. 40 and 41.
• Locating-dominating codes

Theorem 40 ([113]) We have ∂LD
1 (GH) = 1

3 .

• Identifying codes

The following upper bound is from [56], the lower bound from [61].

Theorem 41 We have 5
12 ≈ 0.41667 6 ∂Id

1 (GH) 6 3
7 ≈ 0.42857.

(a) (b)

Fig. 6.10 Black vertices are the elements of a periodic code in GH , which is (a) 1-LD with density 1
3
, (b) 1-Id

with density 3
7
.

In the following theorem, the lower bounds in (a) and (b) come from [131] and [144], respectively,
and both upper bounds from [38]; the general lower bounds in (c) come from [33], and the upper
bounds from [174].

Theorem 42 (a) We have ∂Id
2 (GH) = 4

19 ≈ 0.21053.
(b) We have 3

25 = 0.12 6 ∂Id
3 (GH) 6 1

6 ≈ 0.16667.

(c) For r > 8, we have
2

5r+3 : r even
2

5r+2 : r odd

}

6 ∂Id
r (GH) 6

{

5r+3
6r(r+1) : r even
5r2+10r−3

(6r−2)(r+1)2 : r odd
. When r in-

creases, these bounds are close to 2
5r and 5

6r ≈ 0.83333
r .

There are many better upper bounds, obtained by the use of heuristics, in [38] for r 6 30.

6.4.2 Paths and Cycles

For r = 1, the values of LD(Pn), LD(Cn), Id(Pn) and Id(Cn) have been completely determined.

Theorem 43 ([169]), ([170]) For every path or cycle Gn of order n > 1, we have LD(Gn) =
⌈

2n
5

⌉

.

Proof. For the lower bound, we give an alternative by Bertrand et al. [16] in 2004 to the 1988 proof
by Slater. This proof uses the following counting argument, which can be applied to graphs other
than paths or cycles, and can be adapted to Id codes, cf. proof of Th. 32. Let C be a 1-LD code
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in Gn. Now n − |C| non-codewords must be dominated by C, at most |C| of these are dominated
by one codeword, and the remaining are dominated by at least two codewords. Therefore,

1× |C|+ 2× (n− 2|C|) 6
∑

c∈C

|N(c)|.

For paths and cycles, |N(c)| 6 2, which leads to |C| > ⌈2n/5⌉. This lower bound is met with
equality, see Fig. 6.11(a) for paths; for cycles, simply link the leftmost and rightmost vertices in the
same figure. ✷

s=2 s=4s=3s=1(a) (b)

Fig. 6.11 Black vertices in the path with n vertices are codewords. (a) n = 5k + s, 0 6 s < 5: repeat the
pattern between brackets k− 1 times to the left and paste the appropriate tail to the right, to obtain a 1-LD
code. (b) n = 6k + s, 0 < s 6 6: repeat the pattern k − 1 times to the left, then paste appropriate tails, not
given here, to the left and to the right, to obtain a 2-LD code.

Theorem 44 ([94]) For every path Pn of order n > 3, we have Id(Pn) = ⌈n+1
2 ⌉. For every cycle

Cn of length n > 6, we have Id(Cn) = 3⌈n
2 ⌉ − n, and Id(C4) = Id(C5) = 3.

It is then immediate that the best density in an infinite path is 2/5 for 1-LD codes and 1/2 for 1-Id
codes (cf. Ths. 27(b) and 30(a), respectively). For r > 1, it is not difficult to establish that these
densities do not depend on r and are 1/3 and 1/2 respectively [16]. But the general case r > 1 for
finite paths and cycles is surprisingly difficult and the problem is not settled yet for LD codes.

6.4.2.1 Paths with r > 1

• Locating-dominating codes

Theorem 45 ([16]) Let r > 2. For all n > 1, we have n+1
3 6 LDr(Pn); for all n > 2r+1, we have

LDr(Pn) 6 ⌈n+7r+6
3 ⌉.

For infinitely many values of n, the above upper bound can be improved to n+r+2
3 , see [16] and [108];

the latter also completely solves the case r = 2. Figure 6.11(b) gives the pattern for the upper bound
in the following result.

Theorem 46 ([108]) For all n > 1, we have LD2(Pn) = ⌈n+1
3 ⌉.

In [71], the exact values of LD3(Pn) and LD4(Pn) are given for n > 1, the exact value of LDr(Pn)
is given for r > 5, 1 6 n 6 7r + 3, and the following is proved.

Theorem 47 ([71]) For r > 5 and n > 3r+2+6r((r− 3)(2r+1)+ r), we have LDr(Pn) = ⌈n+1
3 ⌉.

• Identifying codes

Theorem 48 ([16]) Let r > 2. For all n > 2r + 1, we have n+1
2 6 Idr(Pn), and this bound can be

achieved for infinitely many values of n.
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The case r = 2 is completely settled in [160]. And in 2011–12, the complete results were given
independently by Chen, Lu & Miao [52] and by Junnila & Laihonen [130].

Theorem 49 ([52]), ([130]) Let r > 2 and n = (2r + 1)p+ q, p > 1, 0 6 q < 2r + 1.

(a) If q = 0, then Idr(Pn) =
(2r+1)p

2 + 1 if p is even; Idr(Pn) =
(2r+1)(p−1)

2 + 2r if p is odd.

(b) If 1 6 q 6 r+ 1, then Idr(Pn) =
(2r+1)p

2 + q if p is even; Idr(Pn) =
(2r+1)(p−1)

2 + 2r+ 1 if p
is odd.

(c) If r+2 6 q 6 2r, then Idr(Pn) =
(2r+1)p

2 + q− 1 if p is even; Idr(Pn) =
(2r+1)(p−1)

2 +2r+1
if p is odd.

This means that Idr(Pn) lies between
n+1
2 and n

2 + r, according to the values of p and q.

6.4.2.2 Cycles with r > 1

• Locating-dominating codes

Theorem 50 ([16]) Let r > 2. For all n > 1, we have n
3 6 LDr(Cn), and this bound can be achieved

for infinitely many values of n.

In [52], the exact value of LD2(Cn) is given for n > 1, and in [72], the same is done for LD3(Cn) and
LD4(Cn); furthermore, the exact values of LDr(Cn) are given for r > 5, n ∈ [3, 2r+3]∪{3r, 3r+3},
and the following is proved.

Theorem 51 ([72]) Let r > 5 and n > 12r + 5 + 6r((r − 3)(2r + 1) + r − 1). Then we have
LDr(Cn) = ⌈n

3 ⌉ if n 6= 3 mod 6, and n
3 6 LDr(Cn) 6

n
3 + 1 otherwise.

The previous result is improved in [70]: the bound on n becomes a polynomial in r2 instead of r3.
• Identifying codes

The crucial following lower bound is from [64] and solves the case n even.

Theorem 52 ([64]), ([65]) For all r > 2 and n > 2r + 2, we have Idr(Cn) > gcd(2r + 1, n) ×
⌈ n
2gcd(2r+1,n)⌉. If n > 2r + 4 is even, then Idr(Cn) =

n
2 , and Idr(C2r+2) = 2r + 1.

Then [99] provides cases when the exact value of Idr(Cn) is known. The case r = 2 is completely
settled in [160]. More cases giving the exact value for Idr(Cn) are given in [178], further results of
this type are given in [52], and finally in 2012, Junnila & Laihonen [130] closed the case: for all
r > 2 and n > 2r + 2, Idr(Cn) is known; but the many cases do not allow to give the results in a
compact way. Let us simply mention here that Idr(Cn) lies between

n+1
2 and n

2 + r.

6.4.3 Trees

The following upper bound comes from [20], the lower bound from [166].

Theorem 53 Let T be a tree of order n with ℓ leaves and s support vertices.

(a) We have n+2(ℓ−s)+1
3 6 LD1(T ) 6

n+ℓ−s
2 .

(b) ([153]) We have LD1(T ) 6
2n+3ℓ−2

5 .



16 Antoine Lobstein, Olivier Hudry, and Irène Charon

Moreover, the trees achieving the above bounds can be characterized. When ℓ = s, the lower bound
reads LD1(T ) > n/3. The star K1,n−1 has s = 1, ℓ = n − 1 and LD1(K1,n−1) = n − 1. All the
intermediate values between ⌈n+1

3 ⌉ and n− 1 can be reached [166].

Theorem 54 ([26]) For any tree T of order n, we have LD2(T ) >
n
4 , and LD3(T ) >

n
5 .

From this it is conjectured that for any tree T of order n, LDr(T ) >
n

r+2 ; if true, the conjecture is
sharp [26]. The following upper bound comes from [94], the lower bound from [20].

Theorem 55 For any tree T of order n with ℓ leaves and s support vertices, we have

(a) n+2ℓ−2
2 > Id1(T ) >

3(n+ℓ−s+1)
7 . Both bounds are sharp.

(b) ([154]) 3n+2ℓ−1
5 > Id1(T ) >

2n−s+3
4 .

The trees achieving the above bounds in (b) can be characterized. All the intermediate values

between ⌈ 3(n+1)
7 ⌉ and n− 1 can be reached [41].

The following result corrects and completes the study of complete (or balanced) q-ary trees for
1-Id codes in [134], and also settles the case of 1-LD codes. It is illustrated by Fig. 6.12.

Theorem 56 ([17]) Let h > 1, q > 2, CT q
h be the complete q-ary tree of depth h, and ξqh = qh−1

q−1 be
its order.

(a) We have LD(CT q
h) =

⌈

q2ξq
h

q2+q+1

⌉

.

(b) We have Id(CT 2
h ) =

⌈

20ξq
h

31

⌉

; if q > 2, then Id(CT q
h ) =

⌈

q2ξq
h

q2+q+1

⌉

.

  
(a) (b)

Fig. 6.12 Codewords are in black. (a) The complete binary tree of depth 4, with an optimal 1-LD code (of
size 9) which is not 1-Id. (b) The complete ternary tree of depth 3, with an optimal 1-Id code (of size 9). This
code is also an optimal 1-LD code.

Comparing (a) and (b) above, one can see that the complete nonbinary trees give yet another
example of graphs in which 1-identification costs the same as 1-locating-domination—see Th. 21(b).

Although the computing problems of finding optimal r-LD and r-Id codes are generally NP-hard,
even for some restricted classes of graphs (see Sect. 6.8 below), trees (and forests) form a class for
which polynomial and even linear algorithms exist that output an optimal 1-LD or 1-Id code: see
[169] for LD codes, [4] for Id codes, and [32] for Id codes in oriented trees.

6.4.4 The q-ary n-Cube

Here, the standard notation n is not for the order of the cube, but for its dimension: the q-ary n-cube
is denoted F

n
q , where Fq = {0, 1, . . . , q − 1}; it has qn q-ary vectors v1v2 . . . vn, and the distance

is usually the Hamming distance dH defined by dH(u, v) = |{i : ui 6= vi, 1 6 i 6 n}|. In this
setting, r-dominating codes are rather called r-covering codes, and constitute an important topic
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inside coding theory. Their strong algebraic structure makes them very particular: for instance, a
code may be a vector subspace of dimension k in F

n
q , in which case it has size qk and is said to be

linear. Since a generator matrix with k rows suffices to describe the code, this affects the size of an
instance when considering complexity issues, see, e.g., [143], [91], [118], [119]. See also [55] for an
overview of covering codes, with tables giving bounds on the sizes of optimal codes, linear or not,
for the first values of r and n. We shall restrict ourselves to the case q = 2, although there are some
works on the nonbinary cube, and denote Fn

2 simply F
n. Almost all the results given below concern

identification. There are strong links between Id codes and µ-fold coverings (where each vertex is
dominated by at least µ codewords), but we do not have enough space to discuss them here; see,
e.g., [76]. The following theorem connects the 1-LD number in F

n and the 2-domination number
in F

n−1.

Theorem 57 ([116]) For all n > 5, we have n22n+1

n3+2n2+3n−2 6 LD1(F
n) 6 (2n− 3)γ2(F

n−1).

The exact values of LD1(F
n) are known for 1 6 n 6 6; for instance, {u ∈ F

5 : dH(u, 00000) = 1
or 4} is an optimal 1-LD code (of size 10) [116]. See also [73], [133]. The following result gives the
complete answer for linear codes.

Theorem 58 ([116]) Let n = 3 × 2k − 5 + s, for k > 1 and 0 6 s < 3 × 2k. Then the size of an
optimal 1-LD linear code in F

n is 2n−k.

We now turn to Id codes. The following theorem links the r-Id and (2r)-domination numbers.

Theorem 59 ([134]) For n > 3, we have n 2n+1

n(n+1)+2 6 Id(Fn) and 2n+1/(1+
∑r

j=0

(

n
j

)

) 6 Idr(F
n).

If r < n/2, then Idr(F
n) 6

(

n
r

)

γ2r(F
n).

The above lower bound on Idr(F
n) is improved in [77] (but both bounds coincide for r fixed and n

large enough), then in [75]. The next result uses the direct sum construction (DSC) C⊕F
s = {c|u :

c ∈ C ⊆ F
n, u ∈ F

s}, where | stands for concatenation. This is a classical tool, often used in coding
theory, allowing to go from F

n to F
n+s, s > 1.

Theorem 60 ([18]) For n > 2, we have Id(Fn+2) 6 4Id(Fn). If C is an optimal 1-Id code in F
n

such that dH(c, C \ {c}) = 1 for every c ∈ C, then Id(Fn+1) 6 2Id(Fn).

Since F
s is a 0-Id code of size 2s, a generalization of the previous result would be the following

conjecture: Idr1+r2(F
n1+n2) 6 Idr1(F

n1)× Idr2(F
n2). The case r1 = r2 = 1 is proved in [76], which

by iteration leads to

Idr(F
∑

r
i=1 ni) 6

r
∏

i=1

Id1(F
ni).

Also, by refining the condition on C in Th. 60, one can widen the possibilities of the DSC, see, e.g.,
[76], [74], [31]. But Id(Fn+1) 6 2Id(Fn) remains a conjecture; to our knowledge, the closest result
obtained so far is the following.

Theorem 61 ([74]) For n > 2, we have Id(Fn+1) 6
(

2 + 1
n+1

)

Id(Fn).

There are also asymptotic results (with n going to infinity) in [134], [118], [74], or [125].
In 2010, Charon et al. [31] gave tables with bounds on Idr(F

n), 1 6 r 6 5, n 6 21; the same was
done for r ∈ {2, 3} and n 6 30 by Exoo et al. [75] in the same year; all sources are given. The lower
bounds stem from the bounds discussed above, and from more ad hoc methods using the topology
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of the cube and studying local situations, possibly with the help of a computer. The upper bounds
use widely the DSC, often enhanced by computer, or heuristics such as simulated annealing or the
noising method.

In the linear case, the complete answer is known for r = 1 (see [157] for r > 1), and is very
similar to Th. 58 for 1-LD codes. In particular, it uses the second part of Th. 60, which always
works with linear codes and allows to go from F

n to F
n+1 by doubling the size of the code.

Theorem 62 ([156]) Let n = 3 × 2k − 3 + s, for k > 1 and 0 6 s < 3 × 2k. Then the size of an
optimal 1-Id linear code in F

n is 2n−k.

In conclusion, we offer an open problem about the monotonicity of Idr(F
n). It is true that for

all n > 2, we have Id1(F
n) 6 Id1(F

n+1) (Moncel [145] in 2006), but this is not the case for
all r. For instance, Id5(F

6) = 63, Id5(F
7) ∈ {31, 32}, Id5(F8) ∈ [19, 21], Id5(F

9) ∈ [12, 17]. We
conjecture however that for a fixed r > 1, there exists n(r) such that for all n > n(r), we have
Idr(F

n) 6 Idr(F
n+1).

6.4.5 Bipartite Graphs and Discriminating Codes

There are scattered results regarding bipartite graphs (see Ths. 15 and 100(c), Sect. 6.6.2.3, and
the second sentence after Th. 107), but these graphs are also of interest to us because they lend
themselves to the natural definition of discriminating codes : consider a bipartite graph G = (I ∪
A,E) where I represents individuals and A their attributes (hair color, age, glasses, . . .). A code
C ⊆ A is discriminating if every individual has at least one attribute in C, and no two individuals
have the same set of attributes in C [30].

Theorem 63 ([28]) If C is an optimal discriminating code in G, then ⌈log2(|I| + 1)⌉ 6 |C| 6 |I|.
Both bounds are sharp.

Discriminating codes may be seen as a generalization of 1-Id codes, since a 1-Id code in a graph
G = (V,E) is clearly a discriminating code in the bipartite graph consisiting of V on the one hand,
and vertices representing the closed neighborhoods in G on the other hand, with edges linking each
closed neighborhood to its members.

The definition can be extended to any odd r > 1, by asking that for i ∈ I, i1 ∈ I, i2 ∈ I, i1 6= i2,
we have Nr(i)∩C 6= ∅ and Nr(i1)∩C 6= Nr(i2)∩C. The associated decision problem is NP-complete
for any fixed r > 1 [28], but for r = 1 there is a linear algorithm in the case of trees [30].

Special cases of bipartite graphs have been investigated: the infinite square and hexagonal
grids [28], bipartite planar graphs [30], and the binary n-cube, for which it can be proved that
for any odd r, there is a bijection between the set of r-Id codes in F

n and the set of r-discriminating
codes in F

n+1 [29].

6.4.6 Line Graphs and Edge Identification

We can identify an edge with edges in a graph G = (V,E): for e ∈ E, we denote N(e) the set
of edges which are adjacent to e, and N [e] = N(e) ∪ {e}. A code CE ⊆ E is edge-identifying



6 Locating-Domination and Identification 19

if for every e ∈ E, we have N [e] ∩ CE 6= ∅, and for every e1 ∈ E, e2 ∈ E, e1 6= e2, we have
N [e1] ∩ CE 6= N [e2] ∩ CE . Clearly, CE is edge-identifying in G if and only if, in the line graph
L(G), the vertices corresponding to the edges in CE form a 1-Id code. This motivates the study of
Id codes in the class of line graphs. For instance, one has the following results.

Theorem 64 ([81]) (a) If G is a 1-twin-free line graph of order n, then Id(G) > 3
√
2

4

√
n ≈

1.06066
√
n.

(b) For n > 4, the minimum size of an edge-identifying code in the binary cube F
n is 2n−1.

The decision problem associated to edge identification is NP-complete [148].

6.4.7 Miscellaneous

• Planar and outerplanar graphs

Theorem 65 ([155]) For any planar graph G of order n > 18, we have LD(G) > n+10
7 ; for any

outerplanar graph G of order n, we have LD(G) > 2n+3
7 . Both bounds are sharp.

• Split graphs

Split graphs have been studied in several works; in particular, complete suns have been intensively
investigated, both for 1-LD and 1-Id codes: see, e.g., [2], [122].

• In the context of LD and Id codes, attention has been given in the existing literature to the
following families: graph products (mostly Cartesian, but also corona, lexicographic, Kronecker or
direct), cubic graphs, rotagraphs and fasciagraphs, finite rectangles extracted from the infinite grids
(k1 rows, k2 columns), n-dimensional infinite grids, Kneser graphs, circulant networks, complemen-
tary prisms, the n-cube endowed with the Lee metric, triangle-free graphs, cographs, Sierpiński
graphs, interval graphs, permutation graphs, triangular graphs, vertex-transitive graphs, fractal
graphs, block graphs, chordal graphs, series parallel graphs, and others. Random graphs have also
been studied.

See also Tables 1.3–1.5 in [79] for a survey of the different lower and upper bounds, and their
tightness, for different classes of graphs.

6.5 Relationships with Other Parameters

We study the different relationships linking the LD and Id numbers of a graph to different param-
eters such as maximum and minimum degree, girth, domination number, independent domination
numbers, or diameter, mostly for r = 1.

6.5.1 Locating-Dominating Codes

Theorem 66 ([170]) For any graph G of order n > 2 and maximum degree ∆, we have n 6

LD1(G) +
∑∆

i=1

(

LD1(G)
i

)

.
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For ∆ = 2 (paths and cycles), this can be improved to n 6 5
2LD1(G), see Th. 43.

Theorem 67 below gives upper bounds on LD1(G), with conditions on minimum degree and
girth, then the best known constructions, for n small or arbitrarily large.

Theorem 67 Let G be a graph of order n, minimum degree δ, and girth g > 5.
(a1) ([50]) If δ > 2, then LD1(G) 6 n

2 .
(a2) ([10]) If δ = 3, then LD1(G) 6 22n

45 ≈ 0.4889n.
(b) ([10]) The cycle C6 has n = 6, δ = 2, g = 6, and LD1(C6) = 3 = n

2 ; there are infinitely many
connected graphs G of order n with δ = 2, g = 5, and LD1(G) = n−1

2 .
The Heawood graph H14 (see Fig. 6.13(a)) has n = 14, δ = 3, g = 6, and LD1(H14) = 6 =

3n
7 ≈ 0.4286n; there are infinitely many connected graphs G of order n with δ = 3, g = 5, and

LD1(G) = 4(n−1)
11 ≈ 0.3636n.
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Fig. 6.13 Black vertices form optimal codes. (a) The Heawood graph H14; (b) The graph G12.

We recall that i(G) (respectively, β(G)) denotes the minimum (respectively, maximum) cardinality
of an independent dominating set in a graph G.

Theorem 68 ([50]) (a) If T is a nontrivial tree, then i(T ) 6 LD1(T ) 6 β(T ).
(b) For every nontrivial tree T , we have LD1(T ) + γ1(T ) 6 n, with equality if and only if T is a

tree consisting only of leaves and support vertices.

Theorem 69 ([25]) Let G be a graph of order n and diameter D > 3. Then LD1(G) 6 n−⌈ 3D−1
5 ⌉,

and the bound is tight. Consequently, if LD1(G) ∈ {n− 2, n− 1}, then G has diameter at most 3.

6.5.2 Identifying Codes

We first give a lower bound involving the maximum degree, then discuss different upper bounds,
first in terms of maximum degree, then of minimum degree and girth.

Theorem 70 ([134]) Let r > 1. If G is an r-twin-free graph of order n and maximum degree ∆,
then Idr(G) > 2n

∆+2 .

For r = 1, [79] gives a full characterization of the graphs reaching the previous lower bound.

Theorem 71 ([83]) Let r > 1 and G be a connected r-twin-free graph of order n and maximum

degree ∆. Then Idr(G) 6 n− n(∆−2)
∆(∆−1)5r−2 = n− n

Θ(∆5r) .
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It is conjectured in [84] that there exists a constant c such that, for every nontrivial connected
1-twin-free graph G, we have Id1(G) 6 n − n

∆ + c. Graphs such that Id1(G) = n − n
∆ exist (e.g.,

K∆,∆ with ∆ > 3). The complete q-ary trees T have ∆ = q + 1 and, by Th. 56(b), we have
Id1(T ) = ⌈n − n

∆−1+1/∆⌉. The conjecture holds for graphs with very high ∆, and for ∆ = 2, and

the following results are intended to further substantiate it.

Theorem 72 ([84]) Let G be a connected, 1-twin-free, triangle-free graph with order n and maxi-
mum degree ∆ > 3.

(a) We have Id1(G) 6 n− n
∆+ 3∆

ln∆−1

= n− n
∆+o(∆) .

(b) If moreover G is a nontrivial planar or bipartite graph, then Id1(G) 6 n− n
∆+9 .

Other graphs can be exhibited, with Id1(G) 6 n− n
o(∆) . In the following theorem, a vertex z is said

to be forced if there are two vertices u and v with symmetric difference N [u]∆N [v] equal to {z},
which implies that z belongs to any 1-Id code in G.

Theorem 73 ([89]) (a) Let G be a connected, 1-twin-free graph, with order n and maximum degree

∆ > 3. Then Id1(G) 6 n− nf2

103∆ , where f is the ratio over n of the number of non-forced vertices.
In particular, if G is ∆-regular, then Id1(G) 6 n− n

103∆ = n− n
Θ(∆) .

(b) There exists an integer ∆0 such that for every connected, 1-twin-free graph with order n and
maximum degree ∆ > ∆0, we have Id1(G) 6 n− n

103∆(∆+1)2 = n− n
Θ(∆3) .

The following result can be compared to Th. 67.

Theorem 74 ([10]) Let G be a twin-free graph of order n, minimum degree δ, and girth g > 5.
(a1) If δ > 2, then Id1(G) 6 5n

7 ≈ 0.7143n.
(a2) If δ = 3, then Id1(G) 6 31n

45 ≈ 0.6889n.
(b) The cycle C7 has n = 7, δ = 2, g = 7, and Id1(C7) = 5 = 5n

7 ; there are infinitely many

connected graphs G of order n with δ = 2, g = 5, and Id1(G) = 3(n−1)
5 .

The graph G12 with vertex set {xi : 0 6 i 6 11} and the edges of the Hamiltonian cycle
x0x1 . . . x11x0 plus the six edges x0x4, x1x8, x2x6, x3x10, x5x9 and x7x11 (see Fig. 6.13(b)) has
n = 12, δ = 3, g = 5, and Id1(G12) = 6 = n

2 ; there are infinitely many connected graphs G of

order n with δ = 3, g = 5, and Id1(G) = 5(n−1)
11 ≈ 0.4545n.

6.5.3 Twin-Free Graphs and Parameters

From now on and until the end of this section, we investigate the extremal values that the following
parameters: size, order, maximum and minimum degree, size of a maximum clique, radius, diameter,
size of a maximum independent set, and identification number, can achieve in a connected r-twin-
free graph. If π stands for such a parameter, we fix r and search for the smallest value fr(π)
that π can reach, or we fix r and n and search for the smallest and largest values fr,n(π) and
Fr,n(π). Therefore, fr(π) = min{π(G) : G connected, r-twin-free with at least 2r + 1 vertices},
fr,n(π) = min{π(G) : G connected, r-twin-free with n > 2r + 1}, and Fr,n(π) is defined similarly.
The first case, when π = ε is the size of the graph, will help understand easily these notions.
• Number of edges ε

For any connected graph of order n, the size is between n − 1 (trees) and n(n−1)
2 (the complete
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graph). The size of a connected r-twin-free graph of order at least 2r + 1 is at least 2r, and if the
order is n > 2r+1, then this number is at least n−1; moreover, the paths P2r+1 and Pn meet these
bounds. So fr(ε) = 2r and fr,n(ε) = n− 1. The maximum number of edges possible for r-twin-free
graphs of order n is known for r = 1, and can be achieved only by the complete graphs minus a
maximum matching [64]. For r > 1, we are close to the exact value.

Theorem 75 ([64]) For all n > 3, we have F1,n(ε) =
n(n−1)

2 − ⌊n
2 ⌋.

Theorem 76 ([5]) (a) For n large enough, we have n2

2 − 2n log2 n . F2,n(ε) .
n2

2 − 1
2n log2 n.

(b) For r > 2 and n large enough with respect to r, we have n2

2 − rn log2 n . Fr,n(ε) . n2

2 −
0.63(r − 0.915)n log2 n.

For r > 2, the gap between the above lower and upper bounds is about (0.37r + 0.58)n log2 n. For
r = 10 and n around 60 000, it represents 0.2%.
• Number of vertices n
Obviously, fr,n(n) = Fr,n(n) = n for all r > 1, n > 2r + 1, and the following comes from Th. 2.

Theorem 77 For all r > 1, we have fr(n) = 2r + 1.

• Maximum degree ∆
In any connected graph of order n, the maximum degree is between 1 (if n = 2) or 2 (the path, the
cycle, n > 3), and n− 1 (the complete graph, the star, every graph G with γ1(G) = 1).

Theorem 78 ([45]) (a) For all r > 1, we have fr(∆) = 2; for all r > 1 and n > 2r + 1, we have
fr,n(∆) = 2.

(b) For all n > 3, we have F1,n(∆) = n− 1.
(c) For all p > 2 and n > 5, if 2p−1 + p− 1 < n 6 2p + p, then F2,n(∆) = n− p− 1.
(d) For all r > 3 and n > 2r + 1, we have Fr,n(∆) 6 k, where k is the largest integer such that

k + (r − 2)⌈log3(k + 1)⌉+ ⌈log2(k + 1)⌉ 6 n− 1.

When r > 2, there are too many cases for the lower bounds on Fr,n(∆) to be given here. Let us
only mention that: (i) we have the exact value of Fr,n(∆) for infinitely many values of n and r—for
instance, if r = 100 and 60 050 6 n 6 60 143, then F100,n(∆) = 59 048; (ii) if n is large with respect
to r, the lower bound on Fr,n(∆) approximately behaves like n− r log3 n, whereas the upper bound
in Case (d) above behaves like n − (r − 2 + log2 3) log3 n, which gives a gap between the bounds
roughly equal to 0.415× log3 n (independent of r).
• Minimum degree δ
In any connected graph of order n, the minimum degree is between 1 and n − 1 (the complete
graph). The first part of Case (b) below relies on the fact that Kn minus a maximum matching is
1-twin-free, cf. Th. 75.

Theorem 79 ([5]) (a) For all r > 1, we have fr(δ) = 1; for all r > 1 and n > 2r + 1, we have
fr,n(δ) = 1.

(b) For all n > 3, we have F1,n(δ) = n− 2; for all n > 5, we have F2,n(δ) = ⌊n−2
2 ⌋.

(c) For all r > 3, we have Fr,2r+1(δ) = 1.
(d) Let r > 3, n > 2r + 2 and k = ⌊n−2

r ⌋.
(d1) We have k − 1 6 Fr,n(δ) if k is odd, and k 6 Fr,n(δ) if k is even.
(d2) For r ∈ {3, 4, 5, . . . , 24}, we have Fr,n(δ) 6

n
⌊ r

2 ⌋+1 − 1.

(d3) For r > 25, we have Fr,n(δ) 6 min
{

n
⌊ r

2 ⌋+1 − 1, 3n−r+2
2(r−5)

}

.
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We conjecture that Fr,n(δ) is close, possibly equal, to ⌊n−2
r ⌋.

• Size ω of a maximum clique

In any connected graph of order n, a maximum clique has size between 2 and n. The clique Kn is far
from being r-twin-free; actually any graph whose r-th power is the clique has r-twins. However, a
twin-free graph may contain quite a large clique, and it is remarkable that we can exactly determine
its size. Case (b) below is connected to Th. 95. Case (c) depends on some conditions on k and n
that we do not give here.

Theorem 80 (Charon, Hudry & Lobstein 2011 [44]) (a) For all r > 1, we have fr(ω) = 2; for all
r > 1 and n > 2r + 1, we have fr,n(ω) = 2.

(b) For all n > 3, we have F1,n(ω) = k, where k is the largest integer such that k+ ⌈log2 k⌉ 6 n.
(c) For all r > 2 and n > 2r + 1, let k be the largest integer such that k + r⌈log2 k⌉ 6 n − 1.

Then, according to conditions on n and k, we have Fr,n(ω) = k or k + 1.

If n is large with respect to r, then Fr,n(ω) behaves like n − r log2 n. If r is a fraction of n, then
Fr,n(ω) is bounded by above by a constant; the extremal case is when r = n−1

2 and Fr,n(ω) = 2
(path P2r+1).
• Radius ρ
In any connected graph of order n, the radius is between 1 (the complete graph, the star) and ⌊n

2 ⌋
(the path, the cycle). The study of the radius in twin-free graphs is easy, the results are complete.

Theorem 81 ([5]) (a) For all r > 1, we have fr(ρ) = r; for all r > 1 and n > 2r + 1, we have
fr,n(ρ) = r.

(b) For all r > 1 and n > 2r + 1, we have Fr,n(ρ) = ⌊n
2 ⌋.

• Diameter D
In any connected graph of order n, the diameter is between 1 (the complete graph) and n− 1 (the
path). The results on the diameter in twin-free graphs are complete. Figure 6.14 illustrates Case (c).

Theorem 82 ([5]) (a) For all r > 1, we have fr(D) = r + 1.
(b) For all r > 1, we have fr,2r+1(D) = 2r.
(c) For all r > 1 and n > 2r + 2, we have fr,n(D) = r + 1.
(d) For all r > 1 and n > 2r + 1, we have Fr,n(D) = n− 1.

Fig. 6.14 The case n =
15, r = 3: the graph
is 3-twin-free and has
diameter r + 1 = 4.

    

• Size α of a maximum independent set

In any connected graph of order n, α lies between 1 (the complete graph) and n − 1 (the star).
Theorem 89 contributes to Case (a) in the following theorem.

Theorem 83 ([5]) (a) For all r > 1, we have fr(α) = r + 1.
(b) For all n > 3, we have f1,n(α) = 2.
(c) For all r > 2, we have fr,2r+1(α) = r + 1.

(d) Let r > 2, n > 2r + 2 and k = ⌊n−2
r ⌋. We have r + 1 6 fr,n(α) 6

{ 2n
k+2 : k even
2n
k+1 : k odd

.
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The star gives Case (a) in the following theorem.

Theorem 84 ([5]) (a) For all n > 3, we have F1,n(α) = n− 1.
(b) For all r > 2 and n > 2r + 1, we have max

{

⌈n
2 ⌉, k + ⌈log2 k⌉⌊ r

2⌋
}

6 Fr,n(α) 6 n− r, where
k is the largest integer such that k + r⌈log2 k⌉ 6 n− 1.

If n is large with respect to r, then k + ⌈log2 k⌉⌊ r
2⌋ behaves approximately like n− r

2 log2 n.
• Identification number Idr
We start with Fr,n(Idr) and fr,n(Idr), and conclude with fr(Idr), the most interesting of the three
functions. From Sect. 6.2.1, in particular Ths. 8 and 13, we derive the following results.

Theorem 85 (a) For all r > 1, if n = 2r + 1, or if n > 3r2 is even, or if n > 3r2 + 1 is odd, we
have Fr,n(Idr) = n− 1. In particular, for all n > 3, we have F1,n(Id1) = n− 1.

(b) For all r > 1 and n > 22r, we have fr,n(Idr) = ⌈log2(n+ 1)⌉.

Theorem 86 ([44]) (a) We have f1(Id1) > 2 and for all r > 2, fr(Idr) > ⌈log2(2r + 4)⌉.
(b) For all r > 1, we have fr(Idr) 6 r + 1.

The constructive upper bound is illustrated by Fig. 6.15.

r=1 r=5r=3 r=4r=2

Fig. 6.15 Different graphs with optimal r-Id codes of size r + 1. Codewords are in black. For r > 3 odd,
there is a cycle C2r+2 and n = (2r+ 2) + r+ 1. For r even, there is a cycle Cr+2 and n = (r+ 2) + r

2
(r+ 1).

The lower and upper bounds in Th. 86 coincide for r ∈ {1, 2, 3}. For r = 4, ad hoc arguments show
that no graph admits a 4-Id code of size 4. Therefore,

Theorem 87 ([44]) For r ∈ {1, 2, 3, 4}, we have fr(Idr) = r + 1.

Open problem: for r > 5, find the exact value of fr(Idr), knowing that it lies between ⌈log2(2r+4)⌉
and r + 1.

6.6 Structural Issues

This section is mostly devoted to identifying codes, either because identifying codes lead to the
problem of their very existence, i.e., to the important issue of when a graph is twin-free, or simply
because in the literature, more attention has been devoted to these topics for identifying codes,
compared to locating-dominating codes.

We shall study problems such as the existence of a chordless path in twin-free graphs, whether
a twin-free graph deprived of a vertex remains twin-free, the consequence of adding or deleting
an edge or a vertex on the identification number, or graphs that are critical, in some sense, with
respect to locating-domination or identification.

Locating-dominating and identifying codes do not lend themselves well to Nordhaus-Gaddum-
type bounds, and there are very few results. We give two examples.
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Theorem 88 ([106]) For any graph G of order n > 1, we have |LD1(G)− LD1(G)| 6 1.

Also, because P4 = P 4 and Id1(P4) = 3, the trivial bounds 2⌈log2(n + 1)⌉ 6 Id1(G) + Id1(G) 6
2(n− 1) and ⌈log2(n+ 1)⌉2 6 Id1(G)× Id1(G) 6 (n− 1)2 are tight.

6.6.1 Structural Properties of Twin-Free Graphs

The first part of Th. 2 is an obvious consequence of the following result, due to Auger in 2008 [3],
which is not obvious.

Theorem 89 Let r > 1 and G be a connected r-twin-free graph. Then G admits P2r+1, the path on
2r + 1 vertices, as an induced subgraph, i.e., there is a chordless path of length 2r in G.

6.6.1.1 Deletion of a Vertex in a Twin-Free Graph

Theorems 90–94, due to Charon et al. [35] in 2007, give results which vary widely with r. If G =
(V,E) is r-twin-free, we say that G is r-terminal if for all v ∈ V , G − v is not r-twin-free (so G is
not r-terminal if there exists v ∈ V such that G − v is also r-twin-free). An alternative would be
r-twin-free critical, see also the discussion before Th. 96.

If n = 2r + 1, the only connected r-twin-free graph is the path P2r+1 for r > 1, and the only
r-terminal graph is P2r+1 for r > 1 (the case of P3 is particular, because removing the middle vertex
yields two isolated vertices, constituting a 1-twin-free graph). We address the following questions:
(a) are there 1-terminal graphs? (b) For r > 1, are there r-terminal graphs other than P2r+1?

The answer to (a) is negative, and the answer to (b) is multifold: it is negative if we restrict
ourselves to trees; it is positive if r > 3. The case r = 2 remains open.

• The case r = 1

Theorem 90 ([35]) Let n > 3 and G = (V,E) be any connected 1-twin-free graph of order n. Then
G is not 1-terminal.

Proof. If n = 3, then G = P3 is not 1-terminal, as already seen; so we can assume that n > 4. By
Th. 6, there is a 1-Id code C of size n− 1 in G. Consider G− v, where {v} = V \C (G− v may be
connected or not); then C is still 1-identifying in G− v, because removing v did not cut connexions
of length r(= 1) between pairs of vertices not containing v itself—this explains why the cases r = 1
and r > 1 are different. Therefore, G− v is 1-twin-free. ✷

The following theorem sharpens the previous one with respect to connectivity.

Theorem 91 ([35]) Let n > 4 and G = (V,E) be any connected 1-twin-free graph of order n. Then
there exists v ∈ V such that G− v is 1-twin-free and connected.

• The case of trees

Theorem 92 ([35]) Let r > 1, n > 2r + 2 and T = (V,E) be any (connected) r-twin-free tree of
order n. Then there exists a leaf v ∈ V such that T −v is r-twin-free (and connected). Consequently,
the only r-terminal trees are the paths P2r+1, for r > 1.
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• The case r > 3
We now consider general graphs, for r > 3.

Theorem 93 ([35]) For each integer r > 3, there is a graph G, G 6= P2r+1, which is r-terminal.

Sketch of proof. We search for a connected r-twin-free graph G = (V,E), with |V | > 2r + 2,
r > 3, such that for all v ∈ V , G − v is not r-twin-free. One possible construction is the following:
take a cycle of length 2r with vertices ci (i ∈ {0, 1, . . . , 2r − 1}), and add one vertex si together
with the edge cisi for every value of i but one. ✷

• Other values of r and open problems

The construction of Th. 93 does not work for r = 2. Other constructions have been tried and failed,
and the problem remains open: Apart from P5, do 2-terminal graphs exist?

Theorem 94 ([35]) For each integer r > 6, there are infinitely many r-terminal graphs.

Now, another open problem is the situation for r ∈ {3, 4, 5}: there exist r-terminal graphs, but are
they in finite or infinite number? Conversely, there is a bound on the number of vertices that need
to be added in order to obtain a 1-twin-free graph.

Theorem 95 ([94]) If G has order n, then G embeds as an induced subgraph in a 1-twin-free graph
with order at most n+ ⌈log2 n⌉. The bound is tight.

6.6.1.2 Deletion of an Edge in a Twin-Free Graph

The graphs that we have called terminal in the previous section might as well have been called
vertex-terminal, and the r-twin-free graphs G = (V,E) such that for all e ∈ E, G− e is not r-twin-
free could then have been called r-edge-terminal. Back to 1974 however, the expression “line-critical
point distinguishing graph” was coined in [68] (for r = 1 only) and the following result was proved.

Theorem 96 ([68]) A nontrivial connected graph G is line-critical point distinguishing [or 1-edge-
terminal] if and only if G = P3.

A nonempty graph is line-critical point distinguishing if and only if it is the disjoint union of
paths of length two and isolated vertices.

To our knowledge, everything remains to be done for r > 1.

6.6.2 Adding or Deleting Edges or Vertices Can Save Codewords

The question is to determine how the identification or locating-domination numbers change when
we add or delete edges or vertices. We first deal with identifying codes.

6.6.2.1 Identifying Codes: Adding or Deleting an Edge

The problem is the following: given an r-twin-free graph G = (V,E) and an edge e ∈ E, and
assuming that the graph G − e is r-twin-free, what can be said about the relationship between
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Idr(G) and Idr(G − e)? The answer widely depends on r, as show the following two theorems by
Charon et al. [37] in 2014.

• The case r = 1

Theorem 97 If G and G− e are 1-twin-free, then Id(G)− Id(G− e) ∈ {−2,−1, 0, 1, 2}. Moreover,
pairs of connected graphs G and G− e such that Id(G) − Id(G − e) = 0, Id(G)− Id(G− e) = ±1
or Id(G) − Id(G− e) = ±2 exist.

• The case r > 2
Now the differences Idr(G) − Idr(G − e) and Idr(G − e) − Idr(G) can be large, and we obtain
results which slightly vary with r.

Theorem 98 Let k > 2 be an arbitrary integer.
(a1) Let r > 2. There exist two r-twin-free graphs, G and G−e, with (r+1)k+r⌈log2(k+2)⌉+2r

vertices, such that Idr(G) > k and Idr(G− e) 6 r⌈log2(k + 2)⌉+ r + 3.
(a2) Let r > 5. There exist two r-twin-free graphs, G and G−e, with (2r−2)k+r⌈log2(k+2)⌉+r+3

vertices, such that Idr(G) > k and Idr(G− e) 6 r⌈log2(k + 2)⌉+ r + 1.
(b1) There exist two 2-twin-free graphs, G and G− e, with 3k+2⌈log2(k+2)⌉+5 vertices, such

that Id2(G− e) > k and Id2(G) 6 2⌈log2(k + 2)⌉+ 5.
(b2) Let r > 3. There exist two r-twin-free graphs, G and G−e, with (2r−2)k+r⌈log2(k+2)⌉+r+2

vertices, such that Idr(G− e) > k and Idr(G) 6 r⌈log2(k + 2)⌉+ r + 1.

Very close results can be obtained with pairs of connected graphs. Whether these inequalities can
be substantially improved is an open problem.

Note that k can be taken arbitrarily and is linked to the order n of G and G− e by the relation
n = (c1r + c2)k + r⌈log2(k + 2)⌉ + (c3r + c4) where the integer quadruple (c1, c2, c3, c4) takes
different values in (a1), (a2), (b1) and (b2) above. This means, roughly speaking, that k is a
fraction, depending on r, of n; therefore, Th. 98 implies that, given r > 2, there is an infinite
sequence of graphs G of order n and two positive constants α and β such that Idr(G) > αn and,
after deletion of a suitable edge e, Idr(G− e) 6 β log2 n (or the other way round: Idr(G) 6 β log2 n
and Idr(G − e) > αn). We can see that adding or deleting one edge can lead to quite a drastic
difference for the identification numbers. On this topic, see also [90] for a probabilistic approach.

6.6.2.2 Identifying Codes: Adding or Deleting one Vertex or More

• The case r = 1
If S ⊂ V , we denote by G− S the graph obtained from G by deleting the vertices of S.

Theorem 99 ([83]) If G and G − S are 1-twin-free, then Id(G) − Id(G − S) 6 |S|. In particular,
if v ∈ V , we have Id(G) − Id(G− v) 6 1; moreover, the two inequalities are tight.

Theorem 100 ([151]) Let n be the order of G, S ⊂ V and v ∈ V .

(a) If n > 2|S|−1, then Id(G − S) − Id(G) 6 n − 2|S| − ⌊n−|S|
2|S| ⌋; the inequality is tight for n

sufficiently large with respect to |S|.
(b) We have Id(G − v) − Id(G) 6 n

2 − ε, with ε = 2 if n ∈ {2, 4, 5, 6, 8}, ε = 1 otherwise; the
inequality is tight.

(c) If G is bipartite, then Id(G− v)− Id(G) 6 n−log2(n−log2 n)
2 − 1; the inequality is tight.
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So, if one deletes a vertex, the identification number cannot drop by more than one, and can increase
by a quantity close to n/2.

• The case r > 2
Now both Idr(G−v)−Idr(G) and Idr(G)−Idr(G−v) can be large: the difference Idr(G−v)−Idr(G)

can increase to approximately n
4 (for even r) and n(3r−1)

12r (for odd r), or n(2r−2)
2r+1 , according to wether

we want the graphs to be connected or not, and Idr(G)− Idr(G− v) to approximately n(r−1)
r .

Theorem 101 ([36]) Let n be the order of G and v ∈ V .
(a) Let r > 2 be even. There exist two connected graphs, G and G − v, such that Idr(G − v) −

Idr(G) > n
4 − (r + 1).

(b) Let r > 3 be odd. There exist two connected graphs, G and G − v, such that Idr(G − v) −
Idr(G) > n(3r−1)

12r − r.

(c) Let r > 2. There exist two graphs, G and G−v, such that Idr(G−v)−Idr(G) > (n−1)(2r−2)
2r+1 −

2r.

Theorem 102 ([36]) Let n be the order of G and v ∈ V . Then there exist two connected graphs, G

and G− v, such that Idr(G)− Idr(G− v) > (n−3r−1)(r−1)+1
r .

Whether all these inequalities can be substantially improved is an open problem.
Figure 6.16 illustrates Th. 102 for n = 17, r = 3.

v

G G−v    

Fig. 6.16 In each graph, the black vertices form an optimal 3-Id code, and Id3(G)−Id3(G−v) = 13−8 = 5.

6.6.2.3 Criticality Concepts

In this section, r = 1. Let π stand for LD = LD1 or Id = Id1. A graph G = (V,E) is said to be
π+-edge removal critical, or π+-ER-critical, if π(G − e) > π(G) for all e ∈ E, and π−-ER-critical
if π(G − e) < π(G) for all e ∈ E. Similarly, one can define π+-vertex removal critical graphs and
π−-vertex removal critical graphs.

For instance, it is possible to characterize all graphs that are LD+-ER-critical. Let H = (V1 ∪
V2, E) be a connected bipartite graph such that: for every w ∈ V2 and for every nonempty subset
V ′
1 ⊆ N(w) there exists a unique w′ ∈ V2 such that N(w′) = V ′

1 . Let H be the set of all such graphs,
see Fig. 6.17 for an example.

Fig. 6.17 Two graphs
belonging to H [21].

P2

V1
V2
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Theorem 103 ([21]) A nontrivial connected graph G is LD+-ER-critical if and only if G ∈ H.
A nonempty graph is LD+-ER-critical if and only if it is the disjoint union of independent sets

and of graphs in H.

For more results, see, e.g., [92] for graphs which are critical for identification, or [62] and [63] for
locating-domination.

In Sect. 6.6.1, we mostly showed what a twin-free graph can become when we delete vertices; so
far, in Sect. 6.6.2 we studied what the identification and locating-domination numbers can become
when adding or deleting vertices or edges; but we can also be interested in what an existing (optimal)
code becomes when edges or vertices are deleted or added—this leads naturally to the notion of
robustness: an r-Id code C is t-edge-robust [111] in G if C remains r-Id in all the graphs obtained
from G by adding or deleting edges, with a total amount of additions and deletions at most t; see
also, among others, [139], [114]. Different definitions exist for t-vertex-robust codes, see [159], [111].

6.7 Number of Optimal Codes

In this section, we are interested in graphs with many optimal codes—or only one.
In order to obtain a large number of optimal 1-Id codes, Honkala, Hudry & Lobstein [110]

considered in 2015 the binary 3-cube and used it to build a graph with 8k + 1 vertices, k > 1,
admitting at least 56k+32k× 56k−1 optimal 1-Id codes, of size 4k, then they built graphs of higher
orders and numbers of optimal codes, until they obtained the following result.

Theorem 104 ([110]) There exist infinitely many connected graphs of order n admitting approxi-
mately 20.770×n different optimal 1-identifying codes.

For r > 1, they used trees admitting many optimal codes, and combined them.

Theorem 105 ([110]) Let r > 1 be an integer and ε > 0 be a real. There exist infinitely many

connected graphs of order n admitting 2(
1+log2 5

2 −ε)n different optimal r-identifying codes.

Note that 1+log2 5
2 ≈ 0.664. An obvious upper bound is

(

n
⌈n

2 ⌉
)

, which, using Stirling’s formula, can

be approximated above by 2n−
1
2 log2 n; to reduce the gap between these lower and upper bounds

remains an open problem.
In [95] there is the description of graphs G where every k-set of vertices is a 1-Id code, but the

codes are not necessarily optimal, that is, k may be different from Id1(G). See a small example in
Fig. 6.18(a).

On the other hand, a characterization of trees admitting a unique optimal 1-LD code is given
in [19], see examples of such trees in Fig. 6.18(b).

For complexity issues related to the uniqueness of optimal codes, see Sect. 6.8.2.

6.8 Complexity

6.8.1 How Hard is it to Find Optimal Codes?

For any integer r > 1, we consider the following two decision problems.
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T1
T4T2

T3
(a)

(b)

Fig. 6.18 (a) A graph where all sets with 7 vertices are 1-identifying codes (not optimal). (b) Codewords are
in black. Each code inside T1, T2, T3, T4, T1 ∪ T2, T2 ∪ T3, T2 ∪ T4, T1 ∪ T2 ∪ T3, T1 ∪ T2 ∪ T4, T2 ∪ T3 ∪ T4,
T1 ∪ T2 ∪ T3 ∪ T4 is a unique optimal 1-locating-dominating code.

r-LD CODE

Instance: A graph G = (V,E) and an integer
k 6 |V |.
Question: Does G admit an r-locating-
dominating code of size at most k?

r-Id CODE

Instance: A graph G = (V,E) and an integer
k 6 |V |.
Question: Does G admit an r-identifying
code of size at most k?

Theorem 106 ([60]) The problem 1-LD CODE is NP-complete.

Proof. We simplify the 1987 proof by Colbourn, Slater & Stewart in [60]. We take an arbitrary
instance of 3-SAT, that is, a set X = {x1, . . . , xn} of variables and a set C = {c1, . . . , cm} of clauses
of size 3. For each variable x, we construct the 5-vertex graph Gx = (Vx, Ex) given in Fig. 6.19(a),
in which additional edges may be incident only with x or x.

HiGx x g

e
i

f
ii

x

(b)
d

x
b

x
a

x(a)

Fig. 6.19 Black vertices will be part of a LD code. (a) The graph Gx. (b) The graph Hi.

For each clause ci = {ℓi,1, ℓi,2, ℓi,3}, we construct the 3-vertex graph Hi = (Wi, Fi) given by
Fig. 6.19(b), where the 3 edges incident with ei and not with fi, are incident with ℓi,1, ℓi,2, and ℓi,3.
We claim that the resulting graph G, whose order 5n+ 3m is polynomial with respect to the size
of the instance of 3-SAT, admits a LD code of size k = 2n+m if and only if the set of clauses C is
satisfiable.

(a) If C is satisfiable, take as codewords the n vertices bx, the m vertices fi, 1 6 i 6 m, then
for each variable x ∈ X , whichever of x and x is true. This code, of size k, is locating-dominating,
in particular because ei and gi are separated by at least one vertex corresponding to a true literal,
i.e., are separated by a codeword.

(b) Let C be a LD code in G, of size k. Obviously, |C∩Vx| > 2 and |C∩Wi| > 1; therefore, thanks
to the choice of k, we have |C∩Vx| = 2 and |C∩Wi| = 1. Also, because gi must be dominated by C,
we have |C ∩ {gi, fi}| = 1 and none of the vertices ei is in C. This implies that |C ∩ {x, x}| = 1,
because if C ∩ {x, x} = ∅, then the non-codewords x and x are not separated by C (the vertex dx
cannot do it), and if |C ∩ {x, x}| = 2, then bx and ax are not dominated by C. So we can define a
valid truth assignment of the variables by setting x true if and only if x ∈ C.



6 Locating-Domination and Identification 31

(i) If C ∩ {gi, fi} = {gi}, then ei must be dominated by a codeword of type x or x; (ii) the same
is true if C ∩ {gi, fi} = {fi}, because gi and ei must be separated by the code. This shows that
every clause ci is satisfied by this assignment. ✷

The same result for r > 2 was stated in [26] in 1995. We indicate the 2003 reference [40], which
gives a proof.

Theorem 107 (a) ([26]), ([40]) For any r > 1, the problem r-LD CODE is NP-complete.
(b) ([57] for r = 1), ([40]) For any r > 1, the problem r-Id CODE is NP-complete.

This means that, given G and r, determining LDr(G) or Idr(G), or finding an optimal r-LD or
r-Id code, is NP-hard.

Note that Th. 107 holds even if the instances are restricted to bipartite graphs; it also exists
for bipartite oriented graphs [39]. For more on complexity, see [4], [6] for identification in planar
graphs with arbitrarily high girth or low maximal degree, or [87] for interval and permutation
graphs; Table 1 in [80] extends Table 1.8 in [79] and summarizes what was known around 2015
about the complexity of certain classes of graphs, for LD and Id codes, as well as dominating codes,
for comparison.

See [118], [119] for identification in the binary n-cube, and [121] for problems closely related,
such as the search for an r-Id code containing a prescribed vertex subset. For concepts close to
locating-domination and identification that will be surveyed in Sect. 6.9: complexity results on
(r,6 ℓ)-identifying codes are given in [6], on watching systems in [7], on open neighborhood locating-
dominating codes in [164], on metric bases in [93, p. 204]; usually, the decision problems are NP-
complete, even for some restricted classes of graphs, but linear for trees (when r = 1). The problem
1-LD CODE is also linear for series parallel graphs [60], and so is 1-Id CODE for block graphs [1].

For approximability issues, see, e.g., [80] (where Table 2 gives a state of play) or [87].
Complexity can bring what may look like surprises [79]: there are classes of graphs in which 1-

LD CODE is polynomial and 1-Id CODE is NP-complete, and, if we define the decision problem
1-DOM CODE similarly to 1-LD CODE or 1-Id CODE, there are even classes of graphs in
which 1-LD CODE and 1-Id CODE are polynomial, whereas 1-DOM CODE is NP-complete.

6.8.2 Uniqueness of Optimal Codes

We consider the following decision problems, stated for fixed r > 1.

UNIQUE OPTIMAL r-LD CODE

Instance: A graph G = (V,E).
Question: Does G admit a unique optimal r-
locating-dominating code?

UNIQUE OPTIMAL r-Id CODE

Instance: A graph G = (V,E).
Question: Does G admit a unique optimal r-
identifying code?

In [123], it is proved, among other results, that for every r > 1, these two problems are NP-hard
and belong to the class LNP (also denoted by PNP [O(log n)] or Θ2), which contains the decision
problems which can be solved by applying, with a number of calls which is logarithmic with respect
to the size of the instance, a subprogram able to solve an appropriate problem in NP.
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6.9 Related Concepts, Generalizations

• One of the first possible generalizations is to consider that more than one vertex may need to be
retrieved by the code, and usually one puts a limit ℓ on the number of these vertices. Therefore, an
(r,6 ℓ)-locating-dominating code C in a graph G = (V,E) is an r-dominating code such that for all
X ⊆ V \ C, Y ⊆ V \ C, such that X 6= Y , |X | 6 ℓ, |Y | 6 ℓ, we have

⋃

u∈X

Nr(u) ∩ C 6=
⋃

v∈Y

Nr(v) ∩ C.

One can similarly define (r,6 ℓ)-identifying codes. Both generalizations, and other similar ones,
have been studied mostly in the n-cube and in the grids; we refer to, e.g., [134], [137], [112], [116],
[97], [73], [70], [150], [86].

• Next, considering that using r-LD or r-Id codes amounts to using r-neighborhoods centered
at the codewords, one can think of changing the pattern surrounding a codeword.

One choice of pattern is, given G = (V,E) and r > 1, to consider that every codeword c ∈ C
can check a connected subset of Nr[c], instead of the whole set Nr[c] for an r-identifying code, and
that several codewords can be on the same vertex. This leads to the notion of watching systems [7],
which are more complex but can be very efficient: consider for instance the star K1,n−1, which
requires as many as n− 1 codewords for 1-identification and even for 1-locating-domination, and as
few as ⌈log2(n+ 1)⌉ if one puts suitable watchers at the centre of the star. See also [9], [8]. When
a watching system has at most one codeword on each vertex, we talk of choice identification [27].

Other patterns for different graphs can be thought of: cycles, paths (including paths of even
order in the infinite path, as opposed to odd paths which are closed neighborhoods around their
centres), squares of even side in Z×Z, as opposed to odd squares, which are closed neighborhoods
in the king grid, etc. See, e.g., [120], [162], [85].

• A slight modification in the definition of a 1-identifying code leads to open neighborhood
locating-dominating codes (OLD codes): an OLD code C is such that for every two vertices u,
v of V (G), the sets N(u) ∩ C and N(v) ∩ C are nonempty and different. This was introduced
in [115] (for r > 1 and for identification of sets of vertices) in the binary n-cube, then extended
to all graphs in [164] (for r = 1). This describes a situation where an intruder at a vertex v can
prevent the detection device at v from signalling the intrusion, that is, v can only check N(v). In
most of our models, we assumed that a codeword correctly sent a 1 if it detected something in its
neighborhood, a 0 otherwise. The definition of OLD codes is one of several definitions for so-called
fault-tolerant codes, where different scenarii are considered for the alarms given by the codewords.

If OLD(G) denotes the minimum size of an OLD code in G, the only graphs with OLD(G) =
|V (G)| are the three graphs given by Fig. 6.20 and the only graphs with OLD(G) = 2 are the
complete graphs K2 and K3 [51]. Another representative result is that the minimum density of an
OLD code in the triangular grid is 4/13 ≈ 0.3077 [136], to be compared with 0.25 for a 1-identifying
code, see Th. 32. For more on this topic, see also, e.g., [165], [176], [163].

  

Fig. 6.20 The three graphs G = (V,E) with OLD(G) = |V |.
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One can also mention here the liar’s problem, when the vertices of C can tell precisely where the
malfunctioning vertex v is if it belongs to their closed neighborhoods, so a dominating code would
be enough, except that any one codeword in the closed neighborhood of v can lie, that is, either
misidentify any vertex in its closed neighborhood as v, or fail to report any vertex. For instance,
three codewords are necessary and sufficient in the complete graphKn with n > 3. See [173] or [161].

• Another related definition is the following: a code C is strongly r-identifying [115] if for all
v1 ∈ V , v2 ∈ V , v1 6= v2, the sets {Nr[v1]∩C,Nr(v1)∩C} and {Nr[v2]∩C,Nr(v2)∩C} are disjoint;
this can be extended to codes identifying more than one vertex. See [109], where the best density
for a strongly 1-Id code in the triangular grid is proved to be 6/19 ≈ 0.3158, or [138], [141].

• Using identifying codes in search of one defective vertex can be seen as asking to the codewords,
all at one time: “Is there a defective vertex in your closed neighborhood?” Adaptive identification
consists in asking the queries one by one, taking into account the previous answers. So, after the
first yes answer is obtained in one neighborhood, we dichotomize this neighborhood with other
neighborhoods (= new queries) so as to minimize the maximum number of queries [12], [127], [135].

• The notions of 1-LD and 1-Id codes can be modified by adding the condition that the code,
instead of being dominating, must be total dominating: a total dominating code C of a graph
G = (V,E) is a locating-total dominating code if for every pair of distinct vertices u and v in V \C,
one has N(u) ∩ C 6= N(v) ∩ C, and C is a differentiating-total dominating code, or an identifying-
total dominating code, if for every pair of distinct vertices u and v in V , N [u]∩C 6= N [v]∩C. See,
e.g., [103], [49], [53], [22], [105], [146], [129].

• An older way of locating vertices is the following: given a graph G = (V,E) and a code C =
{c1, c2, . . . , ck}, the C-location of a vertex v ∈ V is the distance vector (d(v, c1), d(v, c2), . . . , d(v, ck)).
If no two vertices have the same C-location, then C is said to be resolving, as introduced in [101],
or locating, as introduced independently in [167], around 1975. An optimal resolving code is called
a metric basis and its size is the metric dimension of the graph. For example, the only graphs with
metric dimension 1 are the paths, for which each endvertex constitutes a resolving code. See also [24],
[87], or [100]; see [104] for metric-locating-domination (where the code must also be 1-dominating),
and [48] for the related concepts of distance-location and external distance-location.

Moreover, if we have a proper vertex coloring c with k colors, and if Π = (C1, C2, . . . , Ck) is the
resulting partition of V , we can define, for every v ∈ V , the color code of v, that is, the distance
vector (d(v, C1), d(v, C2), . . . , d(v, Ck)). If distinct vertices have distinct color codes, then c is called
a locating-coloring. The locating-chromatic number of G is the minimum number of colors in a
locating-coloring. See, e.g., [46], [47], [11]. Other more or less distant concepts using colorings exist,
such as locally identifying colorings [69], and many more, see, e.g., [181], [148], [180].

• For the model of information retrieval in associative memories, see, e.g., [179], [132], [140].
• The d-identifying codes [177] generalize Id codes by endowing every vertex with a positive

integer cost, which will give a global cost to the code that may be different from its size, and with a
positive integer weight which, together with d, allows and measures a degree of uncertainty in the
identification.

• Another parameter, the propagation time, can be considered; in this model, a fault at one
vertex v in a weighted digraph spreads along the arcs and reaches any out-neighbor w in a time
equal to the weight of the arc vw, then spreads from w, and so on. See, e.g., [158], [14].

• Other definitions: paired-LD or Id codes (the code must be paired-dominating), co-isolated LD
or Id codes (the code C is such that there exists at least one isolated vertex in 〈V −C〉), independent
LD or Id codes, connected codes, weak r-codes and light r-codes, self-LD or Id codes, solid-LD codes.
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It is also possible to generalize these concepts to hypergraphs, and of course, some of these definitions
can be combined, e.g., connected vertex-robust identifying codes [78].

6.10 Concluding Remarks, Open Problems, Conjectures

We have tried to give an overview of the major results on locating-domination and on identification.
We apologize in advance if your favorite variation or result is omitted. We simply refer people
interested to know more about these concepts to [142] for more literature on the topic; they can
search for key-words there, or on the web for even more references.

We conclude with two seemingly paradoxical remarks partly collected from [160]:
(a) For some graphs, increasing r, i.e., increasing the power of the codewords, can require more

codewords; this was first noticed in [26], where a tree T is given, such that LD2(T ) = LD3(T ) = 6
and LD4(T ) = 5, while LD7(T ) > 6. Paths provide similar cases for identification; for instance, if
k > 1, then by Th. 44 we have Id1(P10k+5) = 5k+3, whereas by Th. 49(a) we have Id2(P10k+5) =
5k + 4. In the case of the binary n-cube, we have Id1(F

6) = 19, Id2(F
6) = 8, Id3(F

6) = 7,
Id4(F

6) = 18, Id5(F
6) = 63.

This paradox can be understood when r becomes relatively large with respect to the graph: if
the r-neighborhoods grow too much, they cannot separate anything anymore; the extremal case is
when r reaches the diameter of the graph, where n− 1 codewords are needed for an r-LD code, and
no r-Id code exists. But this is not the case for the example of the path P10k+5 above.

(b) If we take a path or a cycle and make it longer, it may need fewer codewords; for instance,
for k > 1, one has Id2(C10k+6) = Id2(C10k+5)− 2.

The discussion following Th. 62 gives another example, which however can be explained by the
fact that increasing the dimension n of the cube makes r not too large with respect to n anymore.

Finally, we recapitulate the open problems and conjectures given throughout the text.
Open Problem 1 [2020] (see End of Section 6.3). For r > 2, most results on the costs of

locating-domination vs domination are exact but valid for n large. (a) Establish results for all n.
(b) Reduce the gap between lower and upper bounds for FLD,γ(r, n).

Open Problem 2 [2011] (see Th. 87). For r > 5, find the exact value of fr(Idr), knowing that
it lies between ⌈log2(2r + 4)⌉ and r + 1.

Open Problem 3 [2007] (see End of Section 6.6.1.1). (a) Apart from P5, do 2-terminal graphs
exist? (b) There exist r-terminal graphs for r ∈ {3, 4, 5}, but are they in finite or infinite number?

Open Problem 4 [2013]. Improve the bounds in Ths. 98, 101 and 102.
Open Problem 5 [2015] (see Ths. 104 and 105). Reduce the gap between the lower and upper

bounds on the number of different optimal identifying codes.
Conjecture 1 [1995] (see Th. 54). For any tree T of order n, we have LDr(T ) >

n
r+2 .

Conjecture 2 [1999] (see the discussion following Th. 60). (a) We have Idr1+r2(F
n1+n2) 6

Idr1(F
n1)× Idr2(F

n2). (b) We have Id(Fn+1) 6 2Id(Fn).
Conjecture 3 [2010] (see the discussion after Th. 62). For a fixed r > 1, there exists n(r) such

that for all n > n(r), we have Idr(F
n) 6 Idr(F

n+1).
Conjecture 4 [2012] (see the discussion following Th. 71). There exists a constant c such that,

for every nontrivial connected 1-twin-free graph G, with maximum degree ∆, we have Id1(G) 6
n− n

∆ + c.
Conjecture 5 [2009] (see Th. 79). The value Fr,n(δ) is close, possibly equal, to ⌊n−2

r ⌋.
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131 pages.

23. M. Bouznif, F. Havet, M. Preissmann, Minimum-density identifying codes in square grids. Lecture Notes
in Comput. Sci. 9778 (2016), 77–88.
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