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Highlights 11 

• Defining purpose imputation from GPS data in the context of the revolution of GPS-based travel 12 

surveys and two research domains (Transportation Science, Human Geography). 13 

• Reviewing 25 papers found through a systematic survey and careful selection on Scopus, Web of 14 

Science, ScienceDirect and TRID.    15 

• Surveying three steps of purpose detection, which are (1) trip end detection, (2) input feature 16 

selection and (3) main algorithms and validation, to clarify pros and cons of existing methods 17 

coupled with proposing future research directions. 18 

 19 

Abstract 20 

The Global Positioning System (GPS) has motivated rapid advances in mobility data collection. A 21 

massive amount of spatio-temporal information has made it possible to know where a person was and 22 

when, but not how and why (s)he travelled, creating the need for inference models. Compared with 23 

mode detection, purpose imputation has been insufficiently studied. However, the relative lack of 24 

attention to purpose identification does not mean that this field has not emerged. For this paper, which is 25 



 

 
 

the first review dedicated to inferring trip purposes from GPS data, 1,162 non-duplicate papers from four 26 

databases (Scopus, Web of Science, ScienceDirect and TRID) were screened, and a corpus of 25 27 

publications was selected for examination. Based on these papers, the purpose imputation problem is 28 

defined in the contexts of the evolution of GPS-based travel surveys and two research domains, 29 

Transportation Science (TS) and Human Geography (HG). Subsequently, three steps of the purpose 30 

detection process, namely (1) trip end detection, (2) input feature selection and (3) main algorithms and 31 

validation, are surveyed. During these procedures, the differences between studies in TS and those in 32 

HG are highlighted. Finally, unresolved issues related to data and feature selection, algorithms and 33 

assessment are discussed substantially to provide potential research directions. This review may be an 34 

informative reference for those newly accessing the GPS-based purpose imputation field and/or 35 

intending to develop solutions to this problem.        36 
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1    Introduction 42 

The Global Positioning System (GPS) has induced a technological revolution in mobility surveys. 43 

Initially, surveying travel behaviors depended on face-to-face interviews with pen and paper, followed by 44 

telephone and computer-aided methods (Armoogum et al., 2014). However, self-administered 45 

investigations are subject to either under-reporting or over-reporting of trip rate and time (Bricka et al., 46 

2012; Stopher and Shen, 2011; Wolf et al., 2003), not to mention increasing cost, high non-response 47 

rate and long gaps between periodic household travel surveys (Armoogum et al., 2009; Ortúzar et al., 48 

2011; Patrick et al., 2009), underlining a need for improving survey quality with the support of new 49 

technologies. GPS has been a satisfactory answer to this demand thanks to its major benefits over 50 

traditional techniques, including a mitigation of burden on participants, an extension of survey periods, 51 

and the provision of more accurate data with spatial and temporal details (Bachu et al., 2001; Bohte and 52 

Maat, 2009; Zhao et al., 2015). In the infancy of travel surveys, on-board devices and then wearable 53 

loggers were used. More recently, the ubiquity of smartphones with inbuilt GPS sensors and the 54 

proliferation of dedicated applications for collecting and validating mobility data have put handheld 55 

devices in the past (Stopher et al., 2018) and created opportunities for a wider reach of GPS-assisted 56 

surveys (Marra et al., 2019; Semanjski et al., 2017; Thomas et al., 2018; Xiao et al., 2016; Zhao et al., 57 

2015).  58 

GPS data, on the one hand, can draw a high-resolution picture of where and when a participant 59 

stayed or passed, but on the other hand, such data require sophisticated approaches to extract trip 60 

characteristics, which are not included directly (Du and Aultman-Hall, 2007). The two most important trip 61 

attributes are transportation mode and purpose. In comparison with the former, the latter has been 62 

insufficiently studied (Ermagun et al., 2017). No existing review has been dedicated solely to purpose 63 

imputation from GPS data, whose content makes up a small part of discussions about broad topics such 64 

as the comparison between small and big data (Chen et al., 2016), mining GPS data (Lin and Hsu, 65 

2014), and evaluation of a series of new positioning technologies (Lee et al., 2016). 66 

Although focusing on mode detection solutions, Gong et al. (2014) and Shen and Stopher (2014) 67 

devote more effort to synthesizing how to derive purposes from GPS data than do other authors. The 68 



 

 
 

former study has shed light on reviewing purpose imputation in the context of GPS data processing, 69 

carefully presenting both positive and negative sides of the methods examined. The latter authors go 70 

further by classifying algorithms into three categories according to their mathematical complexity. Only 71 

concentrating on main algorithms to infer purposes would be a limitation as input feature selection and 72 

method validation are focal respects in a classification problem. 73 

To fill the mentioned-above gaps, conducting a critical synthesis to suggest potential future research 74 

directions is necessary. The remainder of this paper is structured into five parts (see Figure 1). Section 75 

2 describes the procedures of searching for and selecting papers for this review. In Section 3, the GPS 76 

data-based purpose imputation problem is defined in the context of the travel survey revolution and two 77 

research domains (Transportation Science and Human Geography). Section 4 reviews three primary 78 

steps to infer purpose, that is, trip end detection, feature selection, main algorithm and validation. A 79 

substantial discussion about unsolved issues is presented in Section 5 before Section 6 reveals 80 

conclusions.      81 

 82 
Fig. 1 Description of review process and the structure of the rest of this paper 83 



 

 
 

2    Data collection 84 

In order to make this review systematic, a search for papers published by mid-January 2020 on four 85 

databases (Web of Science, Scopus, TRID and Science Direct) was conducted by a function using 86 

Boolean operations, that is, (“activity inference” OR “activity type” OR “activity types” OR “trip purpose” 87 

OR “trip purposes”) AND (“GPS” OR “social media”). To the best of our knowledge, purpose(s) and 88 

activity/activities are interchangeable terminologies in the literature because a purpose refers to an 89 

activity performed at a trip destination. To limit the number of candidates found but still ensure sufficient 90 

pinpointing of publications, trip, type(s) and inference were added. Because some authors only indicate 91 

social media but not GPS in titles, abstract and keywords (e.g., Cui et al., 2018), social media were 92 

coupled with GPS. Only journal articles, conference papers and book chapters/lecture notes published 93 

officially and in English were examined. 94 

The numbers of papers found was: 1,098 (Scopus), 127 (TRID), 103 (Web of Science) and 38 95 

(ScienceDirect). After removing duplicates, 1,162 were kept. Then, a screening of their titles, abstracts 96 

and keywords was undertaken. For papers including social media but not GPS in titles, abstracts and 97 

keywords, research data descriptions in full texts were scrutinized. Finally, a corpus of 25 publications 98 

(see Table 1) was selected based on the four criteria that follow: (1) available full text, (2) showing 99 

clearly method with variables/features used, (3) detecting at least three purposes from GPS data, (4) 100 

achieving ≥ 1 citation, ≥ 3 citations and ≥ 6 citations for those published in 20191, 2016–2018 and 101 

2001–2015, respectively. The fourth criterion enables the removal of publications with low impacts on 102 

the literature. The number of citations was based on statistics from Google Scholar. As can be seen in 103 

Figure 2, starting from 2001, the field of purpose imputation from GPS data introduced eight selected 104 

papers for the first 10 years. Since 2012, there has been at least one paper annually. 105 

                                                
1 Papers are usually published online in article in press; therefore, they may have citations before published formally. 



 

 
 

 106 

Fig. 2 The number of selected papers according to year of publication and domain  107 

3    Defining trip purpose imputation from GPS data 108 

3.1     In the context of GPS-based travel survey revolution 109 

The concern over missing trips in conventional data collection techniques triggered the use of GPS in 110 

the early 2000s (Chen et al., 2014; Shen and Stopher, 2014). GPS enables passively, continuously 111 

recording movement and activity at high resolution (Auld et al., 2009; Wolf et al., 2014), and thus it aids 112 

effectively in measuring (Forrest and Pearson, 2005; Wolf et al., 2003) and correcting (Bricka and Bhat, 113 

2006) the influences of the missing trip problem in self-reported travel surveys. People tend to neglect 114 

trips they consider unimportant (Richardson et al., 1996); therefore, purposes are always inferred prior 115 

to audit and estimate impacts of underreported trips.  116 

At the beginning of the 21st century, GPS loggers were installed on vehicles to take advantage of 117 

on-board electricity, resulting in the non-existence of mode detection problems and scrupulous attention 118 

to inferring trip purpose. Nevertheless, with the recent availability of person-based multimodal GPS data 119 

collected by wearable devices or smartphones, transportation mode identification has become the heart 120 

of GPS-based research.  121 

The secondary role of purpose detection results from its complex nature. In contrast to visible 122 



 

 
 

transportation modes, inferring purposes involves seeking the most probable activity at a specific 123 

location type. In fact, different people can engage in dissimilar activities at the same place in cases of 124 

multiple functionality (e.g., a shopping mall with restaurants and a cinema inside). Additionally, while 125 

movement parameters (e.g., instantaneous speed, acceleration), which are usually provided by devices 126 

or easily calculated from coordinates and timestamps, are sufficient for labelling modes (Feng and 127 

Timmermans, 2013; Nguyen et al., 2019a; Schuessler and Axhausen, 2009), purpose prediction 128 

depends largely on external sources like land use data (Oliveira et al., 2014; Xiao et al., 2016). GPS 129 

traces and/or GIS data may not be accurate enough to recognize the places of activities (Meng et al., 130 

2017). Shortage of data also prevents researchers from conducting more studies. A trip comprises 131 

some single-mode segments (i.e. stages/trip legs) but has only one purpose.  132 

3.2     In research domains 133 

GPS data are useful for research in two domains, namely Transportation Science (TS) and Human 134 

Geography (HG).  135 

3.2.1     Transportation Science 136 

Transportation Science (TS) studies persons’ or objects’ movement from place to place by an array of 137 

methods like physics, operation research, probability, control theory (Hall, 2003). Trip purposes coupled 138 

with their respective locations are useful since they are predictors of mode choice and travel forecast 139 

models (Burbidge and Goulias, 2009; Ho and Mulley, 2013).  140 

Because of long-lasting and unresolved drawbacks of data quality collected in conventional travel 141 

surveys (Chen et al., 2016), TS researchers pay assiduous attention to the potential of GPS for 142 

supplementing and even replacing the traditional methods of data collection (Auld et al., 2009). That is 143 

to say, the focus of TS is on developing and validating methods of deriving trip purpose and other 144 

characteristics from GPS data. 145 

The majority of purpose imputation studies are found within TS (see Table 1). In this domain, 146 

developing methods are undertaken after travel surveys are completed (i.e. post-collection analysis). 147 

Twelve out of 19 studies gather data using personal devices or smartphones ((Bohte and Maat, 2009; 148 



 

 
 

Chen et al., 2010; Cui et al., 2018; Deng and Ji, 2010; Feng and Timmermans, 2015; Gong et al., 2018; 149 

Montini et al., 2014; Oliveira et al., 2014; Shen and Stopher, 2013; Stopher et al., 2008; Xiao et al., 150 

2016; Yazdizadeh et al., 2019). TS studies is to regularly collect ground truth, which refers to confirmed 151 

travel diaries corresponding to GPS streams, through prompted recall surveys following up 152 

GPS-enabled ones (Auld et al., 2009). A variety of strategies to collect ground truth have been carried 153 

out, including the use of paper diaries (Chen et al., 2010; McGowen and McNally, 2007; Oliveira et al., 154 

2014; Reumers et al., 2013; Wolf et al., 2001), websites (Bohte and Maat, 2009; Cui et al., 2018; Deng 155 

and Ji, 2010; Feng and Timmermans, 2015; Krause and Zhang, 2019; Lu et al., 2012; Montini et al., 156 

2014; Shen and Stopher, 2013; Stopher et al., 2008), telephone (Xiao et al., 2016), mail (Cui et al., 157 

2018) and smartphone (Yazdizadeh et al., 2019). Another way is to manually label activities by means 158 

of visualizing trip ends in association with POI (i.e. Point Of Interest) data (Gong et al., 2018; Liao et al., 159 

2007).  160 

3.2.2     Human Geography 161 

Human Geography (HG), a major discipline of the subject field of geography (Gibson, 2009), studies the 162 

interrelationships between people, place, and environment and how they vary spatially and temporally 163 

(Castree et al., 2013). It places attention on elements of human activity and organization, such as 164 

culture, urbanization, population and transport (Castree et al., 2013; Fang et al., 2017).      165 

Similar to TS, GPS-based purpose imputation studies in HG undertake post-collection analyses in 166 

order to acquire general knowledge on mobility and whereabouts of activities. They do so by 167 

segmenting trajectories into parts of stopping and moving before semantically enriching them through 168 

inference algorithms, usually called the semantic enrichment process (Furletti et al., 2013; Gautama et 169 

al., 2017; Prelipcean et al., 2017).  170 

Compared to studies in TS, GPS-based purpose imputation studies in HG are fewer and published 171 

within the last decade (see Figure 2 and Table 1). Most HG studies use data from specific dweller 172 

groups (e.g., cyclists [Usyukov, 2017] or taxi passengers [Chen et al., 2019; Gong et al., 2016; Wang et 173 

al., 2017]) gathered by on-board devices (Chen et al., 2019; Furletti et al., 2013; Gong et al., 2016; 174 

Wang et al., 2017). Ground truth is optional because the common sense or the travel patterns from 175 



 

 
 

previous surveys are sufficient for validation (Chen et al., 2019; Gong et al., 2016; Usyukov, 2017; 176 

Wang et al., 2017). In Furletti et al. (2013) and Reumers et al (2013), ground truth is collected, enabling 177 

application of learning methods to semantically annotate activities to GPS traces. The poor prediction of 178 

non-home and non-work purposes in Reumers et al. (2013) and of “services, shopping” in Furletti et al. 179 

(2013) may not be a concern since the main travel patterns are obtained. 180 

Table 1 Overview of purpose imputation studies in Transportation Science and Human Geography 181 

Indicator Transportation Science Human Geography 

Focus 
Methods of deriving purposes from GPS 

data 

Semantic enrichment for GPS 

trajectories 

Validation Directly by ground truth 
Indirectly by previously known 

knowledge(1) or by ground truth 

Mainly assessed 

by 

Quantitative measurement (e.g., accuracy, 

precision, recall) 

Consistent with previously known 

knowledge 

Main devices 

used to collect 

GPS data 

Personal devices and smartphones Devices attached to vehicles 

Data source Travel surveys Travel surveys and taxi (probe) data 

Studies for this 

review 

19: (Bohte and Maat, 2009; Chen et al., 

2010; Cui et al., 2018; Deng and Ji, 2010; 

Feng and Timmermans, 2015; Gong et al., 

2018; Krause and Zhang, 2019; Liao et al., 

2007; Lu et al., 2012; McGowen and 

McNally, 2007; Meng et al., 2017; Montini 

et al., 2014; Oliveira et al., 2014; Shen and 

Stopher, 2013; Stopher et al., 2008; Wolf et 

al., 2004, 2001; Xiao et al., 2016; 

Yazdizadeh et al., 2019) 

6: (Chen et al., 2019; Furletti et al., 

2013; Gong et al., 2016; Reumers et al., 

2013; Usyukov, 2017; Wang et al., 

2017) 

Note: (1) refers to common sense and information extracted from large-scale travel household surveys. 182 



 

 
 

4    Reviewing GPS data-based purpose imputation process 183 

Purpose imputation, which is a classification problem, is addressed by a three-step process, including 184 

(1) trip end detection, (2) feature selection, and (3) main algorithm and validation. 185 

4.1     Trip end detection 186 

Rule-based routine is the key to handling the trip detection challenge. The minimum threshold of 187 

duration of the nearly stationary status of the observed object is heavily utilized. The 120s threshold 188 

yields the best trip identification performance in Wolf et al. (2001), agreed by Deng and Ji (2010) and 189 

Stopher et al. (2008), but smaller than 180s in Bohte and Maat (2009), Krause and Zhang (2019), and 190 

Yazdizadeh et al. (2019) and 300s in Wolf et al. (2004). The highest is 10 minutes in Usyukov (2017). 191 

Shen and Stopher (2013) and Gong et al. (2018) do not report the cut-off value. The low and high 192 

thresholds coincide with over-segmentation and under-segmentation, respectively.   193 

Cui et al. (2018) manually examine both GPS data and reported travel diaries to merge or divide 194 

trajectories into trips and activities, enabling elimination of spurious activities. Liao et al. (2007) detect 195 

trip ends by using street maps to develop a complex probabilistic method. Clustering points is 196 

implemented in Chen et al. (2010) and Montini et al. (2014).   197 

In case of in-vehicle devices used, a trip end is detected through signals showing the change in 198 

engine status between on and off (Lu et al., 2012). However, this method is not reliable enough, and 199 

thus the three-minute rule of stability is applied (Krause and Zhang, 2019; Wolf et al., 2004). For taxi 200 

trips, a trip end is easily detected as a drop-off point (Chen et al., 2019; Gong et al., 2016; Wang et al., 201 

2017).  202 

Identifying trip ends does not exist in McGowen and McNally (2007) because the authors geo-code 203 

origins and destinations of trips in the California household travel survey. Geo-coded data act as a 204 

surrogate of GPS data.  205 

4.2     Feature selection 206 

All features are classified into four categories, including (1) geographic data, (2) activity-related and 207 



 

 
 

trip-related, (3) participant-related and (4) others. 208 

4.2.1     Geographic data 209 

Geographic data are employed most frequently to infer activity types. Except for Montini et al. (2014) 210 

and Reumers et al. (2013), all other studies utilize GIS-related features. In studies developing random 211 

forest models, which compute and order variables by their importance (Gong et al., 2018; Montini et al., 212 

2014; Yazdizadeh et al., 2019), variables based on the distances to POIs are the most significant. Gong 213 

et al. (2018) and Oliveira et al. (2014), by dropping out and employing again features, emphasize that 214 

adding spatial features considerably improves activity predictions, especially for non-mandatory 215 

purposes like eating out, banking and shopping (Oliveira et al., 2014). This argument is supported by 216 

Reumers et al. (2013), who reach only 20%, 26.9% and 7.1% success rates for social, shopping and 217 

leisure activities respectively due to lack of spatial features. In Lu et al. (2012), a land use-based model 218 

successfully labels 72.3% of total cases while those based on social demographics only and 219 

previous/next trip attributes solely produce accuracies of 51.9% and 60.6%, respectively.  220 

The threshold of distance between a trip end and a place varies among studies, possibly resulting 221 

from the combination of four factors, namely (1) GIS data types, (2) device types, (3) place types and (4) 222 

quality of GPS data. An explanation of these factors follows: 223 

 First, GIS data, which are available for regions or downloaded directly from Google Places (Cui 224 

et al., 2018; Furletti et al., 2013; Meng et al., 2017) or OpenStreetMap (Furletti et al., 2013; Krause and 225 

Zhang, 2019), exist in two forms, that is, a point representing a (small) place (i.e. POI) or a polygon 226 

representing a large place. Once polygon-shaped information is used, if a trip end is perfectly within a 227 

land use area (Deng and Ji, 2010; Xiao et al., 2016) or within a short distance of it (e.g., 25m of a 228 

commercial area in Oliveira et al. [2014]), the type of this area is assigned to the trip end. Once POIs are 229 

used, the higher distance thresholds are determined, shorter than 150m to a church in Oliveira et al. 230 

(2014), for example. 231 

 Second, unlike personal devices, onboard devices fail to access within places. Consequently, 232 

the distance thresholds, which are indicated as the maximum walkable distance between an 233 

origin/destination and a parking lot (for car data) or a drop-off point (for taxi data), tend to be set at a 234 



 

 
 

(very) high value of 1000m (Furletti et al., 2013), 500m (Lu et al., 2012) or 300m (Krause and Zhang, 235 

2019). Since taxi is a nearly door-to-door service, the threshold would be smaller (e.g., 200m in Gong et 236 

al. [2012]). 237 

 Third, distance to known places and often visited could be higher than that to unknown ones. 238 

Bohte and Maat (2009) determine 50m for most POIs and 100m for homes and workplaces whose 239 

addresses are provided by participants. 240 

 Fourth, for data with limited quality, the distance thresholds to POIs are high—for instance, at 241 

250m in New York due to strong urban canyon effects (Chen et al., 2010) or 150m owing to the use of 242 

low-cost devices (Usyukov, 2017).  243 

Original types of POIs and polygon-shaped locations vary across cities/regions and are much more 244 

numerous than activity types, which indicates a need for grouping them (Deng and Ji, 2010; Gong et al., 245 

2016; Xiao et al., 2016; Yazdizadeh et al., 2019). Twenty polygon-level and 18 POI-level land use types 246 

in Shanghai (China), for instance, are aggregated into 10 categories (Xiao et al., 2016). Street maps are 247 

used by Liao et al. (2007) to support trip end detection. 248 

Schedules of land use types, which are not employed in all TS studies, are deployed in HG ones (see 249 

Table 2). A location will be disregarded if it closes when a person visits it (Furletti et al., 2013; Gong et 250 

al., 2016). Working time is unavailable in GIS data, leading Furletti et al. (2013) and Gong et al. (2016) to 251 

assign it to each type. To give an illustration, opening hours of shopping malls, government agencies 252 

and bars will be 9:00am–10:00pm, 8:00am–6:00pm and 2:00pm–03:00am, respectively (Gong et al., 253 

2016).       254 

4.2.2     Trip and activity related 255 

An activity is the main business undertaken in a significant location; hence, it is in harmony with a 256 

purpose. A trip is a one-way course of travel to conduct an activity. Trip and activity have a close 257 

relationship (Ho and Mulley, 2013). Temporal attributes of trip and activity (i.e., time of day or day of 258 

week) are the same and listed as features of activity. Yet, mode, speed, distance, start time and end 259 

time characterize a trip. Except for Furletti et al. (2013), other authors deploy features related to either 260 

activity or trip or both to construct their models.  261 



 

 
 

As for activity, the four characteristics, namely duration, time of day, day of week and start time are 262 

used most frequently (see Appendix); however, some of them rather than all are integrated in each 263 

study. If home type is neglected, duration and start time are sufficient for the models (Feng and 264 

Timmermans, 2015; Oliveira et al., 2014). The reasons would be that start time may be equivalent to 265 

time of day (e.g., morning, afternoon, night) and the confusion of duration between work and home does 266 

not exist. Activity history-related features occur in two studies (Chen et al., 2010; McGowen and 267 

McNally, 2007). Chen et al. (2010) conclude that the frequency of visiting locations, estimated from 268 

one-day data, carries little meaning. Based on the frequency of visiting a specific location per day, 269 

McGowen and McNally (2007) estimate the accumulated duration and give value to a dummy variable 270 

(1 for re-visiting case). Temporal profiles of activities are sufficient for detecting basic purposes (such as 271 

work and home) (Reumers et al., 2013). Shen and Stopher (2013) propose tour2-based corrections to 272 

enhance accuracy by approximately 8%. Notably, activity information is not available for HG studies 273 

using taxi data (Chen et al., 2019; Gong et al., 2016; Wang et al., 2017). 274 

Trip attributes are employed in Deng and Ji (2010), Feng and Timmermans (2015), Gong et al. 275 

(2018), Lu et al. (2012), Montini et al. (2014), Oliveira et al. (2014), Xiao et al. (2016) and Yazdizadeh et 276 

al. (2019). Cui et al. (2018) use trip characteristics but not activity ones to impute purposes. Importantly, 277 

mode information is taken directly from ground truth in all existing studies while mode and purpose must 278 

be imputed in GPS data processing (Shen and Stopher, 2014). In this sense, mode detection and 279 

purpose imputation are now considered separately, although they should be combined in a continuous 280 

process. Travel mode is not included in HG studies since most of them use vehicle-based data (Chen et 281 

al., 2019; Furletti et al., 2013; Gong et al., 2016; Usyukov, 2017; Wang et al., 2017).            282 

4.2.3     Participant related 283 

Personal information is used in TS studies but not in HG ones, many of which employ anonymous data 284 

(i.e., taxi data) (Chen et al., 2019; Gong et al., 2016; Wang et al., 2017) (see Table 2).  285 

Addresses of home and work, which are seen in Bohte and Maat (2009), Gong et al. (2018), Montini 286 

et al. (2014), Shen and Stopher (2013), Stopher et al. (2008), Wolf et al. (2004) and Yazdizadeh et al. 287 

                                                
2 Tour is defined as trips and activities occurring between a participant leaving home and returning home (Shen and Stopher, 20 13) 



 

 
 

(2019), help in boosting considerably the overall classification performance since the number of work 288 

and home activities is by far greater than the number of other purposes. In case home address is not 289 

provided, home location can be estimated satisfactorily by examining the first trip’s origin and the last 290 

trip’s destination every day (Usyukov, 2017).  291 

Among socio-demographics, age and occupation (Cui et al., 2018; Deng and Ji, 2010; Gong et al., 292 

2018; Montini et al., 2014; Oliveira et al., 2014; Xiao et al., 2016; Yazdizadeh et al., 2019) are used 293 

much more frequently than the remainder (see Appendix). 294 

In comparison with the two above feature categories, participant-related features are less informative 295 

for directly distinguishing activities and play a supportive role in increasing the classifier power (Lu et al., 296 

2012; Shen and Stopher, 2013). Without participants’ information, 96.8% of activities of 329 people in 297 

the Netherlands are correctly identified by Feng and Timmermans (2015).    298 

4.2.4     Other features 299 

In TS, Gong et al. (2018) test the use of weather-based variables (e.g., temperature, precipitation and 300 

snow accumulation) in combination with the three above-mentioned feature categories by data collected 301 

in two distinct seasons in Hakodate, Japan. The authors report that weather features decrease the 302 

model accuracy without further explanation of reasons. This is a negative and surprising result given the 303 

significant relationship between weather and mobility in the literature (Böcker et al., 2013; Cools et al., 304 

2010; Liu et al., 2017). 305 

Social media (e.g., Twitter and Foursquare) information is useful for enhancing purpose inference in 306 

both TS (Cui et al., 2018; Meng et al., 2017; Yazdizadeh et al., 2019) and HG (Chen et al., 2019; Wang 307 

et al., 2017). Since social media data are noise, an information retrieval process is first conducted to find 308 

a place (i.e. POI) matching each post (e.g., tweet or check-in) (Cui et al., 2018; Meng et al., 2017). In this 309 

way, each post can be arranged into a category (e.g., food, education, leisure  [Meng et al., 2017]). 310 

Then, the number of posts that belong to a specific category and are close to a trip end (e.g., with 311 

distance less than 250m [Yazdizadeh et al., 2019]) is used as a predictor variable. While studies in TS 312 

use social media data in tandem with geographical data achieved from other sources (e.g., Google 313 

Places and OpenStreetMap), city-wide POIs and their categories are achieved directly from Foursquare 314 



 

 
 

check-in data in HG (Chen et al., 2019; Wang et al., 2017). It should be noted that using social media 315 

data creates a lack of robustness owing to a variety of social media services and coverage. To give an 316 

illustration, in China, Weibo, a domestic social network, is far more common than Twitter or Facebook.      317 

Table 2 Summary of using input features in two domains 318 

Feature category Specific features TS HG 

Geographic data 
Polygon-based; POI; Street map √ √ 

Working time of land use types - √ 

Activity-related 
Duration, Time of day, Day of week, Start time √ √ 

Activity history √ √ 

Trip-related 
Travel mode, Mode of next trip, Mode of previous trip  √ - 

Speed, Distance, Duration, Start time, End time √ √ 

Participant-related 

Home address, Work address, Occupation, Age, School address, 

Frequently visited places, Working hours, Gender, Driving license, 

Employment status, Income, Education degree, Race, Family 

structure, Household information, Marital status, Driving frequency 

√ - 

Others 
Social networking: Foursquare, Twitter √ √ 

Weather: Temperature, Precipitation, Snow accumulation √ - 

4.3     Main algorithm and validation 319 

This study follows the classification of Gong et al. (2014) to review three method categories in turn, 320 

namely (1) rule-based, (2) probability-based and (3) machine learning, before discussing how to 321 

validate prediction results. 322 

4.3.1     Rule-based method 323 

Deterministic rules were the most common method for the initial era of purpose imputation because they 324 

are simple and easily interpretable. On the basis of polygon-based land use data and temporal 325 

characteristics of activities, Wolf et al. (2001) infer 10 purpose types to trips by 13 participants in Atlanta 326 

(USA) with a 79.5% accuracy. Using addresses for home, work and two frequently visited grocery 327 



 

 
 

stores, Stopher et al. (2008) report a set of rules to achieve an accuracy of over 60%. They improve their 328 

rules by deploying tour information to correctly classify 66.5% of 4,133 trips in the Greater Cincinnati 329 

region (USA) (Shen and Stopher, 2013). The lowest accuracy is 43%, reported by Bohte and Maat 330 

(2009), who use data of 1,104 respondents in the Netherlands to classify seven purposes by 331 

participants’ home and work addresses together with a geographic database. They assign a location 332 

type to a trip end if the location has the shortest distance to the trip end. However, due to the error of 333 

GPS points, the closest would not be the right choice. A notable point from these four studies is that the 334 

accuracy is inversely proportional to the sample size, explained by an increase in the heterogeneity of 335 

travel patterns and activities in diverse samples. What’s more, the quality of rules hinges on experts’ 336 

knowledge of transport conditions in the research area. Rules are the least transferable since daily lives 337 

and travel patterns in different environments vary, requiring great efforts to re-calibrate and re-set up 338 

thresholds. Deterministic approaches have been used to construct the first steps of deriving purposes 339 

from GPS data. It is now integrated as a way to choose potential locations of a trip end or to estimate 340 

location of home for both TS and HG studies (Furletti et al., 2013; Usyukov, 2017; Xiao et al., 2016) (see 341 

Table 3). 342 

4.3.2     Probability-based method 343 

Probabilistic approaches are more flexible than rules because they simultaneously take into 344 

consideration spatial and temporal confusion between purposes.  345 

In TS, the first effort is estimating probability of each POI based on distance to cluster of trip end (Wolf 346 

et al. 2004) rather than choosing the closest like Bohte and Maat (2009). Nevertheless, 347 

socio-demographic variables are included in a deterministic way. Chen et al. (2010) introduce a 348 

multinomial logit model to analyze 49-person data in high-density areas of New York and classify four 349 

purposes into home-based group and non-home-based group with accuracies of 67% and 78%, 350 

respectively. Using data from 1,352 participants and more variables with the addition of trip-related 351 

variables, Oliveira et al. (2014) create a two-level nested logit model to distinguish 12 purposes with an 352 

accuracy of 60% at the expense of a time-intensive computation. Therefore, statistical methods would 353 

be better than rule-based ones in dense environments with high confusion between location types, yet 354 



 

 
 

they become much more complex and fail to adequately address a list with various purposes.  355 

In HG, probability-based methods are the most common. Similar to Chen et al. (2010), Usyukov 356 

(2017) develops a multinomial model using start time and duration of activity to discriminate work 357 

activities from others. Furletti et al. (2013) propose temporal and spatial rules to choose a set of 358 

potential locations corresponding to each stop of a car. Only locations that are within a 359 

1,000m-radius-buffer and open when a stop occurs are kept. Subsequently, the probability of each 360 

location is estimated based on the gravity model. The chosen location type has the largest probability. 361 

Gong et al. (2016) re-use the temporal and spatial compatibility criteria, which are integrated into 362 

Bayes’s rules with distance decay effect, and attractiveness of POI (i.e. service capability, size and 363 

fame) to create a probability function of visiting each POI. Wang et al. (2017) utilize probabilistic 364 

distributions (multinomial and Dirichlet) to first categorize POIs into 10 topics (e.g., shopping, university, 365 

office) based on the similarity of functionality, and then assign topics to both origin and destination of 366 

each trip. The addition of time helps in uncovering the semantic meanings of trip purposes.      367 

Thresholds of (working) time, on the one hand, are impossibly set for every place, resulting in 368 

misclassification for specific cases. On the other hand, annotating activities with a degree of 369 

approximation is accepted for the HG authors, who aim at semantically enriching trajectories and 370 

discovering general activity patterns rather than focusing on precision at an individual level. Thanks to 371 

their flexibility, probabilistic methods are more powerful than rule-based ones. Rules are specific cases 372 

of probabilities. Compared with rules, statistical algorithms are less dependent on the subjective 373 

knowledge of researchers and are thus more transferable. They are capable of deducing purposes from 374 

far larger data sets (e.g., one-week data of 6,600 taxis [Gong et al., 2016]) (see Table 3).    375 

4.3.3     Machine learning method 376 

Supervised machine learning (SML) algorithms are trendy in TS and considered a better choice than 377 

both deterministic and probabilistic methods. Their evolution can be divided into two main periods.  378 

The period between 2001 and 2010 has witnessed decision tree models (C4.5 [McGowen and 379 

McNally, 2007] and C5.0 [Deng and Ji, 2010]). A more complex process, hierarchical conditional 380 

random field, is proposed mainly to detect stops (Liao et al., 2007). Most of these studies are 381 



 

 
 

small-scale tests. Deng and Ji (2010) use 226 trips by 36 participants while Liao et al. (2007) use data 382 

from three persons to train their model before validating it with the trips of a fourth person. With small 383 

sizes, samples would be homogeneous, resulting in high accuracy levels of 85.2%–90.6% (Liao et al., 384 

2007) or 87.6% (Deng and Ji, 2010). With a larger sample of 17,000 households, McGowen and 385 

McNally (2007) report the precision at 73%–74% for five major activities and only 63%–64% for 386 

disaggregated purposes.  387 

Since 2011, a boom in building up and enhancing a host of SML algorithms has been seen. Lu and Liu 388 

(2012) and Oliveira et al. (2014) continue employing decision tree and fail to generate an accuracy of 389 

over 80%. In contrast, Montini et al. (2014) pioneer a random forest model correctly classifying 84.4% of 390 

total trips by 156 persons in Zurich, Switzerland. Notably, random forest has replaced decision tree to 391 

become the most-utilized method (Feng and Timmermans, 2015; Gong et al., 2018; Montini et al., 2014; 392 

Yazdizadeh et al., 2019). It hits 96.8% accuracy with 329-person data in the Netherlands (Feng and 393 

Timmermans, 2015). However, it tends to encounter bias towards the categorical variables with many 394 

more levels (Deng et al., 2011) and the activity types occurring more frequently in training sets (Montini 395 

et al., 2014). 396 

Some authors display impressive performances with improved neural networks. Xiao et al. (2016) use 397 

particle swarm optimization instead of back propagation in artificial neural network structure to obtain a 398 

96.5% accuracy. By estimating parameters between nodes of different layers using probability 399 

distribution based on Bayesian inference rather than fixed values, Cui et al. (2018) successfully label 400 

90.5% of activities.  401 

Evaluating SML algorithms across studies would be questionable owing to the differences in purpose 402 

lists, features used, sizes and homogeneous levels of samples, not to mention the effects of the trip 403 

under-reporting problem in prompted recall surveys. However, in some studies reporting performances 404 

of multiple methods (Cui et al., 2018; Feng and Timmermans, 2015; Meng et al., 2017; Xiao et al., 405 

2016), comparisons are feasible. Unsurprisingly, newly proposed models yield the best performances. 406 

Random forest has the second highest accuracy (Cui et al., 2018; Meng et al., 2017), while support 407 

vector machine only generates reasonable accuracy levels, which are much lower than the highest (Cui 408 

et al., 2018; Meng et al., 2017; Xiao et al., 2016).  409 



 

 
 

Contrasting opinions about the power of Bayesian networks are reported. Observing the accuracy of 410 

46.2%, Feng and Timmermans (2015) conclude that it is not appropriate for inferring purpose, 411 

contradicting the high accuracy levels of 87.8% in Meng et al. (2017) and 86.6% in Xiao et al. (2016). 412 

Recently, with the view that a purpose, which is decided at origin, will determine the trip end type, 413 

Krause and Zhang (2019) integrate a decision tree-based purpose inference into a model aimed at 414 

predicting vehicle destination. The purpose of a trip is inferred by features related to the trip origin before 415 

the derived purpose is used to estimate the trip destination. 416 

Based on the comparison of Oliveira et al. (2014), probability-based models are outweighed by SML 417 

algorithms. SML is the most transferable because it learns from data to make predictions instead of 418 

being explicitly programmed by rules. In addition, it is suited to big data like GPS and GIS data as well as 419 

a host of input variables (Gong et al., 2018; Xiao et al., 2016; Yazdizadeh et al., 2019). For example, 29 420 

features are deployed in Cui et al. (2018). As for SML’s shortcomings, they need ground truth to train 421 

models and numerous data to avoid the overfitting problem. In that SML is a complex structure with 422 

many hyper-parameters (e.g., learning rate, number of trees), it is challenging to interpret magnitude of 423 

variables. A typical matter for SML is how to form training and test sets effectively (see Table 3). The 424 

common way is by dividing equal proportions of observations belonging to each purpose (e.g., 75% for 425 

training and 25% for testing [Montini et al., 2014]). However, Gong et al. (2018) highlight that data in 426 

training and test sets coming from different, distinct seasons weaken prediction results.   427 

Authors in HG develop both SML and unsupervised machine learning (UML) models. Reumers et al. 428 

(2013) introduce a decision tree model, employing temporal features, to impute six purposes. Without 429 

ground truth, Chen et al. (2019) propose a novel combination of autoencoder and K-means. 430 

Autoencoder is an unsupervised neural network whose encoder maps a 22-dimension (i.e. original 431 

features) input vector to a more representative vector with 10 dimensions. Then, each trip that is 432 

represented by a 10-dimension vector is classified into one among five clusters (i.e. purposes) by 433 

K-means algorithm. One hundred thousand trips are used to train the autoencoder network. Because 434 

there is only one study, it is difficult to assess the transferable level and the importance of splitting data 435 

for UML. UML’s shortcomings are complex structure with a need for big data coupled with low 436 

interpretation. Furthermore, its prediction is validated reasonably at aggregated level only (see Table 3).              437 



 

 
 

Table 3 Synthesis of purpose inference methods 438 

 Rule-based Probability-based 
Supervised 

machine learning 

Unsupervised 

machine learning 

Transferable level Low Medium High - 

Suitable data size Small Medium and big Big Big 

Role of data 

selection/division 
Minor Minor Major - 

Number of variables Small Small Large Large 

Ground truth Optional Optional Mandatory No 

Mainly used in 

Estimating home 

address; Choosing 

location candidate 

Human Geography 
Transportation 

Science 

Human 

Geography 

Power/performance Low Reasonable High Reasonable 

Interpretation High Medium Low Low 

4.3.4     Purpose list and validation 439 

Prediction assessment is based on counting the matching times between the prediction and the ground 440 

truth for each category before summarizing them in a confusion matrix (Sokolova and Lapalme, 2009). 441 

The main measurement indexes are precision and recall for purposes and accuracy for the model. 442 

While the majority of studies report the confusion matrix, some (Chen et al., 2010; Lu and Liu, 2012) 443 

present the precision levels at aggregate levels only. The accuracy is not reported in Gong et al. (2018) 444 

or Krause and Zhang (2019). 445 

Generally, the overall accuracy is inflated by identification of home trips, which are inferred at a high 446 

success rate and account for the largest percentage. When home activities are taken into consideration, 447 

the accuracy increases by 15% to 80% (Oliveira et al., 2014).  448 

How to define purposes is scarcely presented. Most authors do not pay attention to mode transfer 449 

activity, although Montini et al. (2014) and Oliveira et al. (2014) do. Transferring from one mode to 450 

another is the purpose of a separate movement stage but not of a trip connecting between two 451 

significant locations. Because transition between stages during a trip is frequent, the inclusion of mode 452 



 

 
 

transfer exaggerates the model performance.  453 

In a case of unavailable ground truth, Usyukov (2017) uses data from the 2006 Ontario Transportation 454 

Tomorrow Survey, which is believed to sufficiently represent the travel patterns of inhabitants. Because 455 

the shares of purposes extracted from GPS data are nearly in line with those obtained from the 456 

household survey, the model performs satisfactorily. The consistency between spatio-temporal patterns 457 

extracted from GPS data and the common distribution of activities according to time and space is 458 

deployed to validate models (Chen et al., 2019; Gong et al., 2016; Wang et al., 2017). To provide 459 

illustrations, the spatial distribution of home purpose is positively correlated with that of residential 460 

areas, and the direct distribution of all trips aligns with the geometry of central business districts in the 461 

research area (Gong et al., 2016). Since trips for the same purpose tend to have similar temporal 462 

distribution, the model of Wang et al. (2017)—with its smaller estimate of average time difference of trips 463 

annotated identically, as compared to its counterpart generated by a previous method—is validated.  464 

5    Discussion 465 

5.1     Feature selection 466 

The above review emphasizes the great importance of geographic databases in purpose imputation, but 467 

relying on such databases would be the biggest barrier to carrying out purpose detection in areas where 468 

facilities and locations are not geo-coded well. GIS data, which themselves are numerous, are 469 

categorized differently in different regions, requiring great efforts to merge them with GPS data, 470 

especially for the simultaneous use of GIS data of several regions. In fact, to limit the complexity of 471 

problems and amount of computation, almost all existing studies involve experiments conducted in a 472 

specific area and neglect purpose imputation for long-distance trips. Krause and Zhang (2019) stress 473 

that including long-distance trips may exert adverse effects on purpose prediction results, but they do 474 

not show a detailed figure. Accordingly, it is worth digging and testing more features related to 475 

participants, activities and trips. Without geographic variables, a model tends to become more 476 

transferable and to be utilized not only to include several areas in a comparative analysis but also to 477 

identify purposes of long-distance trips.  478 



 

 
 

As for participant-related features, more socio-demographics put a heavier burden on participants 479 

and thus result in a higher incomplete survey rate (Armoogum et al., 2014). Additionally, some locational 480 

information, such as school addresses, would be sensitive to parents (Feng and Timmermans, 2015). 481 

Therefore, a model using the minimum number of these features would be welcomed. Future studies 482 

should carry out more tests and report the sensitivity of their models while adding or dropping 483 

person-specific variables.   484 

Transportation mode and purpose are desired by researchers. In GPS data processing, mode 485 

detection is the step prior to purpose imputation (Shen and Stopher, 2014). However, up to now, they 486 

have been handled separately. As discussed above, trip mode is informative for inferring purposes, but 487 

all existing studies use mode information extracted from ground truth. Therefore, deducing purposes 488 

from GPS data with the support of the results of trip identification is promising, likely introducing the 489 

potential for incorporating both in an automated process.    490 

Using social media information enables an improvement of detection but with lack of robustness. 491 

When driving, attending classes or working, people are less likely to tweet compared to when going 492 

shopping or eating out. Moreover, social media data would be biased toward young people and against 493 

the elderly (Chen et al., 2019). There are a number of social networking services (e.g., Facebook, 494 

Twitter, Foursquare, Weibo), and they offer different ways of accessing and exploiting their data. 495 

Accordingly, more efforts should be invested in testing different social media networking services to 496 

clarify how they complement participant, activity and geography-related variables to help in obtaining 497 

satisfactory purpose imputation results. 498 

Reports of the negative or marginal roles of some features spur more tests. Historical trip frequency 499 

should be extracted from data collected during an adequate period, rather than from one day as in Chen 500 

et al. (2010). The negative effects of variables related to seasonal phenomena (e.g., snow, temperature) 501 

on purpose imputation results require more attention to draw a comprehensive conclusion and uncover 502 

reasons for their influences. 503 

5.2     Data selection and enhancing algorithm 504 

Developing and enhancing machine learning-based methods require masses of data collected over 505 



 

 
 

several years (Feng and Timmermans, 2015; Gong et al., 2018), leading to a concern over data 506 

selection. First, as a result of the seasonal variability of travel patterns in different weather conditions 507 

(Liu et al., 2017), training and test sets should not be formed by data from distinct seasons (Gong et al., 508 

2018). Second, different people display different numbers of each type of activity. Division based on the 509 

rate of participants may induce a lack of specific trip types in the training process. In addition, different 510 

people tend to carry out the same activity in dissimilar ways; therefore, training and test sets should 511 

have a similar distribution of socio-demographics. The most common way is now randomly using the 512 

same percentage of each purpose type. This method ignores the logic between consecutive trips in a 513 

chain. If many more trips come from several specific participant groups (e.g., the young group), the 514 

prediction may be weakened in that the model over-fits these groups. Accordingly, thinking about how to 515 

populate training and test sets to ensure similar distribution with respect to seasonal conditions, people 516 

and activity would be benefit future researchers.  517 

Generally, basic machine learning algorithms (e.g., decision tree, random forest, artificial neural 518 

network, support vector machine) have been constructed. To bring about methodological improvement, 519 

combining them in hybrid models to limit the long-lasting problem of over-fitting should be considered. 520 

Bayesian network may need to be tested in different circumstances to clarify the contrasting reports in 521 

Feng and Timmermans (2015), Meng et al. (2017) and Xiao et al. (2016).      522 

5.3     Validation and assessment 523 

The variability of purpose categories prevents cross-evaluation among studies, raising the question of 524 

what constitutes an optimal list of activity types. An ideal list may be determined at the minimum level 525 

based on the balance between the specific research targets and the requirements of resolution quality 526 

for the travel demand forecast (Oliveira et al., 2014). Furthermore, it is worth considering the nature of 527 

data instead of using predefined purpose categories. In this regard, UML methods may be applied to 528 

classify activities into groups sharing mutual characteristics with unknown labels. The results of these 529 

classes would be serious candidates for deciding purpose lists. In any case, the mode transfer purpose 530 

should not be included if trip is taken into consideration. To limit the inflation of the overall accuracy, a 531 

higher penalty may be imposed on misclassified home cases, or home activities may be disregarded.  532 



 

 
 

The error propagation from trip end detection to purpose imputation result would be a useful area for 533 

research. Dividing a trajectory is subject to under- and/or over-segmentation problems. While there is no 534 

way to detect neglected trip ends in order to fix under-segmentation, over-segmentation is generally 535 

preferred (Montini et al., 2014; Shen and Stopher, 2014). The challenge is how to detect a spurious trip 536 

end, which is either a mode transfer point or simply a stop at a traffic light. A potential solution is to 537 

detect purposes of all potential trip ends with a certain level for each. Subsequently, using the most 538 

certain ones as well as logic in trip chain or tour could help in detecting and eliminating wrongly labelled 539 

trip ends. The rate of unidentified spurious ends reflects the error propagation level of the trip end 540 

detection step.   541 

Duration, start time and end time of an activity are estimated from timestamps of GPS points. 542 

Estimation from GPS is subject to technical and random errors (Chen et al., 2010; Stopher et al., 2008) 543 

while using prompted recall travel diary tends to be prone to under-reporting. Therefore, it is better to 544 

compare start time, end time and duration of both to determine the accuracy rather than using the 545 

number of matches between detection results and reported diary only.  546 

Inferring purpose from GPS surveys is seen predominantly in Belgium, the USA, the Netherlands, 547 

Japan, Canada, Switzerland and Australia (Bohte and Maat, 2009; Gong et al., 2018; Stopher et al., 548 

2008; Wolf et al., 2004, 2001; Yazdizadeh et al., 2019), while among developing countries, China is the 549 

only venue of such studies (Deng and Ji, 2010; Xiao et al., 2016). Because working, living and transport 550 

conditions in emerging countries are distinct from those in developed countries (Nguyen et al., 2019b; 551 

Nguyen and Pojani, 2018; Pojani, 2020), it is worth carrying out more experiments in these nations. 552 

6    Conclusions 553 

Purpose imputation from GPS data is a complex problem that a wealth of studies have attempted to 554 

address. Here, we provide a critical synthesis of these studies based on the process of addressing a 555 

purpose inference challenge and according to two domains, TS and HG. In reality, researchers always 556 

confront one of two situations: analyzing a post-collected dataset or designing a survey to create an 557 

enhanced inference model. In both cases, positioning the domain of research is vital. For example, a 558 

post-gathered dataset without ground truth should be treated as a study in HG to semantically annotate 559 



 

 
 

GPS stream. On contrary, if aiming at a methodological contribution, researchers may need a dataset 560 

with corresponding travel diary collected in a prompted recall survey. Although applying the same 561 

process with trip end detection, feature selection and prediction result evaluation, studies from TS and 562 

HG draw up various schemes with both similarities and differences (see Section 4) due to dissimilarity of 563 

research focus (see Table 1). This review, therefore, could help with efforts to obtain a clear 564 

understanding of purpose imputation in both domains. Furthermore, the unresolved issues mentioned in 565 

Section 5 could serve as suggestions for future research. Dealing with these issues is the key to (1) 566 

integrating purpose and mode imputation into an automated and continuous process, enabling GPS 567 

travel surveys to replace, in part or completely, conventional techniques and (2) gaining a better 568 

understanding of how human beings travel from GPS data. 569 
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Appendix: Summarizing 25 selected papers on purpose imputation  579 

Author Data, study area, collection device 
Trip end 

detection 
Feature selection 

Method 

type 
Method description Accuracy Ground truth 

I. Transportation Science 

1. Wolf et al. 

(2001) 

156 trips; 13 participants; 3-day 

survey; in Atlanta (US) in 2000 

In-vehicle GPS devices 

RB 

- GI: POI data and polygon-based 

land use 

- Activity: start time, duration 

RB Matching table for 10 categories (home, shop, go 

to work, pick-up/drop-off, change mode, 

recreation, personal business, eat, unknown) 

79.5% Paper diary 

2. Wolf et al. 

(2004) 

39 participants (28 fulltime workers 

and 11 retirees); 30 days in 

Borlange (Sweden) in 2002 

In-vehicle GPS devices 

RB 

- GI: POI data and polygon-based 

land use 

- Activity: duration, time of day, 

day of week 

- Participant: home address, 

profession, working hours 

PB Estimation of probability based on distance to POI. 

10 categories (home, leisure, long-term shopping, 

daily shopping, work, school, work related, private 

business, pick up/drop off) 

NA NA 

3. Liao et al. 

(2007) 

4 participants; 7 days per person; 

40,000 points with 10,000 

segments per person 

PB 

- GI: street map, POI data 

- Activity: stay duration, time of 

day, day of week 

SML Hierarchical Conditional Random Fields to 

recognize activities and places 

85.2%-90.6% Manually label 

4. McGowen 

and McNally 

(2007) 

170,000 activities of 17,000 

households per day; 2-day survey, 

in California (US) in 2000-2001; 

Geo-coding location reported  

NA 

- GI: polygon-based land use 

- Activity: time of day, duration, 

start time, activity history (repeat 

duration, repeat location)  

- Participant: age, gender, driving 

license, employment status. 

SML Discriminant analysis  

Classification (regression) tree model  

5 activities (school/work, discretionary, coupling, 

maintenance, egress through wait for vehicle) 

73% 

74% 

Paper diary 

5. Stopher et 

al. (2008) 

21 participants in the Sydney 

Household Travel and 45 ones in 

pilot Travel Behavior Change 

Program in Canberra (Australia) 

Personal devices 

RB 

- GI: land use 

- Activity: duration 

- Participant: home, school, work, 

frequently visited stores  

RB Heuristic rules.  

10 purposes (home-based {work, education, 

shopping, eating, personal/medical, recreational, 

pick-up/drop-off, other}, non-home-based 

{work-other, other-other})  

Over 60% Web-based 

diary 

6. Bohte and 

Maat (2009) 

1,104 participants; one week per 

person; 3 municipalities in the 

Netherlands in 2007 

Personal devices 

RB 
- GI: POI and polygon-based data  

- Participant: home, work address 

RB Heuristic rule based on the closest distance to POI.  

7 purposes (work, study, shop, social visit, 

recreation, home, other) 

43% Web-based 

diary 



 

 
 

7. Deng and Ji 

(2010) 

36 participants; 226 trips; 

2.5-month data collection in 

Shanghai (China)  

RB 

- GI: polygon-based data 

- Participant: occupation, income, 

family structure, age 

- Activity: weekdays, weekend, 

time of day 

- Trip: speed, modes, distance, 

duration  

SML Decision tree (C5.0) with adaptive boosting 

6 purposes (work, school, pick up/drop off, 

shopping/recreation, business visit, others) 

87.6% Web-based 

diary 

8. Chen et al. 

(2010) 

25 participants for one day and 24 

participants for 5 weekdays; in New 

York (US) 

Personal devices 

Clustering 

trip ends 

- GI: polygon-based land use 

- Activity: time of day, duration, 

historical activity frequency 

RB & PB Multinomial logit for high-density areas  

Deterministic matching for low-density areas 

4 purposes (work/school, personal business, 

shopping, recreation) for two groups 

(home-based, non-home-based)   

67% – 78% Paper diary 

9. Lu et al. 

(2012) 

3,188 trips; Twin Cities Metro Area, 

Minnesota (US) in 2008 

In-vehicle devices 

Engine 

on/off signal 

- GI: polygon-based data 

- Participant: income, race, 

education level 

- Trip: start and end time of 

current, previous and next trip, 

duration 

SML Decision tree  

10 purposes (home, work, shopping, daycare, 

dining, driving others, services, school, 

social/recreation, others) 

 

73.4% Web-based 

diary 

10. Shen and 

Stopher 

(2013) 

4,133 trips; Greater Cincinnati 

region (USA) in 2009 

Personal devices 

NA 

- GI: land use 

- Activity: duration, start time, end 

time, tour 

- Participant: home, school, work, 

frequently visited stores 

RB Heuristic rules.  

5 purposes (home, work, education, shopping, 

other) 

66.5% Web-based 

diary 

11. Oliveira et 

al. (2014) 

1,352 participants (subsample of 

Atlanta Household Survey); 22,734 

activities (10,512 non-home ones); 

in 2011 in Atlanta (US) 

Personal devices 

NA 

- GI: land use 

- Activity: duration 

- Participant: occupation, age, 

household’s information, etc. 

- Trip: trip mode, mode of next 

trip, etc.   

PB & 

SML 

Two-level Nested Logit Model 

Decision tree 

12 purposes (mode transfer, work, pick up, drop 

off, maintenance, work, work-related, attending 

class, shopping, eating, religious ones, 

entertainment, social visit) 

60% 

65% 

Paper diary 



 

 
 

12. Montini 

et al.  (2014) 

156 participants; 6,938 activities; in 

2012 in Zurich (Switzerland) 

Personal devices every 1s 

Clustering 

trip ends 

- Activity: day of week, duration, 

start time.  

- Participant: education level, age, 

income, marital status, home and 

work address     

- Trip: mode before and after 

activity 

SML Random forest. 

8 purposes (mode transfer, home, work, shopping, 

recreation, business, pick up/drop off, others) 

84.4% Web-based 

diary 

13. Feng and 

Timmermans 

(2015) 

329 participants; 10,545 activities 

except “return home” purpose; 

2012-2013 in Rijnmond Region (the 

Netherlands) 

Personal devices every 3s 

NA 

- GI: POI data 

- Activity: start time, duration  

- Trip: mode (walk, bike, bus, car, 

taxi, tram, metro and train) 

SML Random forest 

Decision tree 

Bayesian belief network 

11 purposes (paid work, daily shopping, help 

parents/children, non-daily shopping, recreation, 

social, voluntary work, service, leisure, pick up, 

study) 

96.8% 

69.8% 

46.2% 

Web-based 

diary 

14. Xiao et al. 
(2016) 

321 participants; 2,409 person 
days; 7,039 activities; 
10/2013-06/2015 in Shanghai 
(China) 
Smartphones every 1s 

NA 

- GI: POI and polygon-based data 
- Participant: age, gender, income, 
occupation, child in household   
- Activity: duration, time of week, 
start time 
- Trip: mode (walk, bike, e-bike, 

bus, car) 

SML Artificial neural network with particle swarm 
optimization 

Artificial neural network with back propagation 
Support vector machine 
Bayesian network 
Multinomial logit 
6 purposes (home, work/education, eat out, 
shopping, social visit, pick up/drop off)  

96.5% 
 

93.8% 
87.1% 
86.6% 
80.2% 

Telephone-bas
ed collection 

15. Meng et 
al. (2017) 

8,631 GPS trajectories in California 
Travel Household Survey 

NA 

- GI: POI data from Google places 

- Activity: time and duration, 
previous activity 
- Trip: modes 
- Social network: Twitter  

SML Bayesian network 

Random forest 
K-nearest neighbour 
Artificial neural network 
Support vector machine 

87.8% 

60.1% 
38.5% 
45.4% 
33.7% 

Available but 

not reported 

16. Gong et 
al. (2018) 

20 participants; 9,981 trips (5,512 
in summer & 4,469 in winter); 
12/2012-04/2013 in Hakodate 
(Japan) 
Smartphones every 30s 

RB 

- GI: POI data 
- Participant: home & work 
addresses, gender, age, 
household’s information (size, 

vehicle number), driving frequency 
- Activity: time of day, day of time, 
time of week 
- Trip: duration, length 
- Weather: temperature, snow 
accumulation and precipitation 

SML Random forest 
6 purposes (home, commute, meal, shopping, 
recreation, others) 

Only for 
separate 
purposes 

Manual 
labelling 



 

 
 

17. Cui et al. 
(2018) 

10,474 participants (42,431 
households); Bay Area, California 
(US) in 2012-2013 
Personal and in-vehicle devices  

Comparison 
between 
GPS data 

and ground 

truth 

- GI: POI data from Google places 
- Participant: age, 
occupation/employment  
- Trip: departure time, duration, 
distance 
- Social network: Twitter 

SML Bayesian neural network 
Support vector machine 
Artificial neural network 
K-nearest neighbor 
Random forest 

6 purposes (eat out, personal, recreation, 
shopping, transportation, education) 

90.5% 
49.9% 
48.2% 
45.1% 
61.9% 

Web-based 
and 

mail-based 
diary 

18. 
Yazdizadeh et 
al. (2019) 

6,845 participants with validated 
data; 102,904 trips; 10-11/2016 in 

Montreal (Canada)  
Smartphones  

RB 

- GI: land use data 
- Participant: age, occupation, 
gender, home’s neighbourhood 
value, home/work/education 
addresses 

- Activity: day of week, time of day 
- Trip: travel time, modes, origin 
and destination in comparison 
with Montreal Island  
- Social network: Foursquare  

SML Random forest 
6 purposes (education, health, leisure, shopping, 
return home, work) 

71.26% Prompted 
recall by 

smartphone 

19. Krause 
and Zhang 
(2019) 

260 participants, 36,000 trips, 70 
days; 10/2011-02/2012 in 22 states 
of US 
On-board devices every minute 

RB 
- GI: POI data 
- Participants’ characteristics 
- Trip: start-of-trip information  

SML Decision tree (J48) 
7 purposes (home, school, shopping, social, work, 
driving, other) 

NA Online 
web-based 

diary 

II. Human Geography  

20. Furletti et 
al. (2013) 

28 participants; around 30,000 
trips; in Flanders (Belgium) 
In-vehicle devices 

NA 
- GI: POI data, opening/working 
time 

PB Gravity model based on distance 
6 purposes (services, food, daily shopping, 
shopping, education, leisure) 

43% Daily diaries 

21. Reumers 
et al. (2013) 

1,250 households; one-week 
survey; 290 activities (test set); in 
Flanders (Belgium) in 2006 – 2007 
GPS-enabled Personal Digital 
Assistants (PDA) every 1s 

NA - Activity: start time, duration 

SML Decision tree.  
6 purposes (home, work, bring-get, leisure, 
shopping, social) 

75.9% Paper diary 

22. Gong et 
al. (2016) 

6,600 taxis; one-week survey; 
06/2019 in Shanghai (China) 
In-vehicle devices every 10s 

Signal of 
whether 

passenger 
on-board 

- GI: POI data, opening time 
- Activity: drop-off time 

PB Bayes’ rules based on spatial and temporal 
constraints  
9 purposes (in-home, work-related, transfer, 
dining, shopping, recreation, schooling, lodging, 
medical) 

NA; use 
spatio-temporal 

pattern; trip 
length; trip 
direction 

NA, use 
common 

sense 

23. Usyukov 
(2017) 

108 cyclists, 541 survey days (5 
days per cyclist), 2011 in Waterloo 
(Canada) 
Low-cost personal devices every 5s  

RB 
- GI: land use data 
- Trip: start time, end time   

RB & PB Heuristic rule for home activities 
Discrete choice for non-home activities 
3 purposes (home, work, other) 

NA, proportion 
of activities 

NA, use 
Transportation 

Tomorrow 
Survey (2006) 



 

 
 

24. Wang et 
al. (2017) 

188,363 trajectories with 13,455 
pick-up and 17,926 drop-off points; 
in NYC (USA), 01-06/2015 
In-vehicle devices  

Signal of 
whether 

passenger 
on-board 

- Trip: start time  
- Social network: Foursquare 

PB General probabilistic model 
3 purposes (work-oriented, 
entertainment-oriented, nightlife-oriented)   

NA, use 
spatio-temporal 

pattern 

NA, use 
common 

sense 

25. Chen et 
al. (2019) 

110,000* of 13 million taxi trips; in 
Manhattan, NYC (USA) 
In-vehicle devices 

Signal of 
whether 

passenger 
on-board 

- Trip: time of day, day of week, 
duration  
- Social network: Foursquare 

UML  Autoencoder and K-means 
5 purposes (dining, recreation, work, homing, 
others) 

NA, use 
spatio-temporal 

pattern 

NA, use 
common 

sense 

GI is “Geographic Information”; RB is “Rule-based”; PB is ”Probability-based” ; SML is “Supervised Machine Learning”; UML is “Unsupervised Machine Learning”; NA is “Not 580 
Available”; 100,000 for training Autoencoder and 10,000 for evaluating model.581 
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