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Abstract 31 

Neurodegenerative diseases (NDs) are characterized by disorders with progressive deterioration 32 

of the structure and/or function of neurons. Genetic mutations can lead to many NDs. 33 

Nevertheless, neurodegeneration can also take place due to several biological processes. The 34 

pathogenesis of several NDs including Alzheimer’s (AD), Parkinson’s (PD), and Huntington's 35 

(HD) diseases are associated with oxidative stress (OS). In order to maintain the normal 36 

functions of neurons, lower levels of reactive oxygen species (ROS) and reactive nitrogen 37 

species (RNS) are important, since their increased levels can cause neuronal cell death. It has 38 

been found that OS-mediated neurodegeneration involves a number of events including 39 

mitochondrial dysfunction, Ca2+ overload, and excitotoxicity. A growing number of studies are 40 

suggesting the benefit of using polyphenols for the treatment of neurodegenerative disorders. 41 

Indeed, in order to treat most of the NDs, synthetic drugs are extensively used which are found to 42 

exert side effects in the course of the treatment. There is mounting evidence that researchers have 43 

identified several naturally-occurring chemical compounds in plants, which are used for the 44 

management of NDs. Overall, polyphenolic phytochemicals are safer in nature and have 45 

negligible side effects. In this article, we have focused on the potential efficacy of polyphenols 46 

such as epigallocatechin-3-gallate, curcumin, resveratrol, quercetin and methylated polyphenols 47 

berberine against the most common neurodegenerative disorders. 48 

Keywords: Neuroprotection, Polyphenols, Oxidative stress, Neurodegeneration, Neurotrophins 49 
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1. Introduction 58 

Over time, neurodegenerative diseases (NDs) have become a global threat. Presently, there is no 59 

available treatment that can cure these NDs. It has been found that NDs are most common 60 

among elderly people (Uddin et al., 2018). Globally, since there is a rise in the elderly 61 

population, therefore the number of people who are suffering from NDs is also increasing. Older 62 

people often develop NDs which ultimately can lead to death. Parkinson’s disease (PD), 63 

Alzheimer’s disease (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) 64 

are the commonly seen NDs among elderly people (Islam et al., 2018; Sahab Uddin and Shah 65 

Amran, 2018; Uddin et al., 2017, 2019c). Indeed, movement disorders are linked with PD 66 

patients (Kaur et al., 2020), whereas dementia is most common among patients with AD (Uddin 67 

et al., 2020g). It is well-known that neurons of the brain are susceptible to oxidative stress (OS) 68 

(Satoh et al., 1998) owing to high oxygen demand, low levels of glutathione, abundantly of 69 

redox-active metals (iron, copper), and high levels of polyunsaturated fatty acids (Geon Ha Kim 70 

et al., 2015). Furthermore, OS has the ability to disrupt the overall functions of the brain (Uddin 71 

and Kabir, 2019). At molecular and cellular levels, a number of processes exist that provide 72 

protection against oxidative toxicity. In the case of NDs, it has been found that disruptions take 73 

place in the defensive mechanisms which can trigger neurological impairments. It was suggested 74 

by various studies that OS may trigger cellular damage (Liguori et al., 2018), mitochondrial 75 

dysfunction (Van Houten et al., 2018) and impairment of the deoxyribonucleic acid repair 76 

system (Van Houten et al., 2018), all of these are crucial factors associated with multiple NDs 77 

including AD, PD, and HD (Andersen, 2004; Uddin and Upaganlawar, 2019). Increased 78 

generation of reactive oxygen species (ROS) inside mitochondria could lead to oxidative injury 79 

against mitochondrial membranes, mitochondrial DNA, and mitochondrial proteins, ultimately 80 

causing mitochondrial damage (Higgins et al., 2010). ROS affect the heme-comprising 81 

cytochrome c oxidase I (complex IV) of the respiratory chain and trigger further injury to the 82 

components of complexes I, II, and III (Lassmann, 2011). Oxidative injury in mitochondria plays 83 

a crucial role in the release of cytochrome c inside the cytosol causing apoptosis. Furthermore, 84 

the internal mitochondrial membrane displays higher penetrability to small molecules (Chen et 85 

al., 2012). It has indeed been found that several events such as the overproduction of ROS, 86 

mitochondrial dysfunction, as well as oxidative injury are accountable for neurodegeneration 87 

(Hroudová et al., 2014). 88 
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 89 

An association between aging and buildup of OS has also been confirmed (Castelli et al., 2019; 90 

Uddin et al., 2019a). Therefore, it is essential to elucidate the complete relationship between 91 

cellular damage and OS in the case of the aging process and NDs (Harman, 2006). Indeed, it is 92 

established that different cellular events such as mitochondrial dysfunction, an overload of Ca2+, 93 

excitotoxicity, and the induction of intracellular signaling mechanisms have significant 94 

contributions in the molecular and cellular processes underlying OS-stimulated cell death 95 

(Bossy-Wetzel et al., 2004; Liu et al., 2017). It has been found that the survival of neurons under 96 

OS is promoted by several polyphenols (Numakawa et al., 2011; Potì et al., 2019; Uddin et al., 97 

2020b). Polyphenols are involved with a wide range of neuroprotective activities such as 98 

inhibiting neuroinflammation, providing protection to neurons against neurotoxin-induced injury, 99 

and improving cognitive function, learning, and memory (Choi et al., 2012; Uttara et al., 2009; 100 

Vauzour, 2012). Furthermore, phytosterols, for example, have important actions on the redox 101 

state. A study reported that β-sitosterol reversed the impaired ratio of glutathione/oxidized 102 

glutathione mediated via phorbol esters, in RAW 264.7 macrophage cultures. The findings of 103 

this study can be linked with the reduction in the activity of catalase and the rise in the activities 104 

of glutathione peroxidase and manganese superoxide dismutase (Vivancos and Moreno, 2005). 105 

Currently available drugs only provide symptomatic treatment to the individuals with NDs, 106 

rather than preventing or curing neurodegeneration (Hossain et al., 2019; Kabir et al., 2019b, 107 

2019a). Therefore, effective therapeutic agents are still lacking to treat NDs (Mizuno, 2014). In 108 

this regard, it is essential to develop novel and more therapeutic approaches to fight against these 109 

NDs. In recent times, there is growing popularity in the use of polyphenols to treat against 110 

chronic diseases. Interestingly, polyphenols can also be used in association with other 111 

phytochemicals leading to both additive and synergistic actions as shown, for example, in the 112 

case of the combined effects of the polyphenol resveratrol, the monophenol tyrosol and the 113 

phytosterol β-sitosterol on oxidative stress in RAW 264.7 macrophages (Vivancos and Moreno, 114 

2008). Furthermore, a number of studies have been published regarding the use of dietary plant 115 

constituents in the treatment of NDs (Debnath et al., 2017; Hossain et al., 2017; Makkar et al., 116 
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2020; Rahman et al., 2017; Venkatesan et al., 2015). In this article, we have focused on the 117 

mechanism of actions and the significance of some dietary polyphenols in neurodegenerative 118 

diseases.              119 

 120 

2. Oxidative stress in neurodegenerative diseases 121 

In terms of cellular functions, low levels of RNS and ROS have a physiological role including 122 

neuronal plasticity (Kishida and Klann, 2007). Nevertheless, excessive RNS/ROS can cause 123 

nitrosylation/oxidation of nucleic acids, proteins, and lipids, which can ultimately lead to 124 

neuronal cell death (Meo et al., 2016). It has been observed that such damage can take place 125 

either due to the decreased activity of non-enzymatic and enzymatic antioxidants or owing to the 126 

excessive production of RNS/ROS. Therefore, an intricate balance is required between pro- and 127 

antioxidant reactions so as to maintain normal neuronal functions.            128 

 129 

It has been found that OS-mediated toxicity might be closely associated with the pathogenesis of 130 

NDs including HD, PD, AD, and ALS (Andersen, 2004; Uddin et al., 2020e) as shown in Fig. 1. 131 

In this regard, for instance, markers for DNA oxidation (8-hydroxy-2-deoxyoguanine [8-132 

OHdG]), lipid oxidation (4-hydroxy-2-nonenal [4-HNE]), and protein oxidation (protein 133 

carbonyls and 3-nitro-tyrosine [3-NT]) are found to be increased in AD brains (Butterfield et al., 134 

2007). Amyloid beta (Aβ) buildup is regarded as an AD hallmark, which can trigger the 135 

production of ROS including hydrogen peroxide (H2O2) in the presence of Cu2+ or Fe3+ (Huang 136 

et al., 1999; Jiang et al., 2007; Xudong  Huang et al., 1999). Unfortunately, a progressive and 137 

selective loss of dopamine (DA) neurons takes place in the substantia nigra pars compacta in the 138 

brains of individuals with PD. In addition to this, the levels of 8-OHdG, 3-NT, protein carbonyls, 139 

and 4-HNE are found to be elevated, while the level of glutathione (GSH, a major intracellular 140 

antioxidant) is reduced (Zhou et al., 2008). It has been observed that 4-HNE has the ability to 141 

covalently bind with the central protein in PD pathogenesis, α-synuclein (α-Syn), which 142 

eventually leads to neurotoxic actions on GABAergic and DAergic neuronal cultures (Qin et al., 143 

2007). On the other hand, increased levels of 8-OHdG, malondialdehyde (a marker for lipid 144 

oxidation), lipofuscin (a product of unsaturated fatty acid peroxidation), and 3-NT have been 145 

observed in case of HD brains (Stack et al., 2008). Decreased GSH level has been observed in 146 
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cultured neurons obtained from mice that express mutant huntingtin protein (Htt140Q/140Q) (Li 147 

et al., 2010). 148 

 149 

- Insert Figure 1- 150 

 151 

Oxidative toxicity has also been found to play a pivotal role in reperfusion injury/cerebral 152 

ischemia (Uddin et al., 2019b; Zaplatic et al., 2019). There are limited areas of brain and types of 153 

neurons that are susceptible to ischemia. Cerebral blood flow is regarded as the primary reason 154 

behind the aforesaid phenomenon since this flow is highly spatiotemporally regulated (Cremer 155 

and Seville, 1983). The phenomena outlined before may also reveal why certain neuron types of 156 

different brain areas are affected in each ND. It has been suggested by copious evidence that 157 

aggregation of OS-dependent damage can take place in the course of normal aging, which can 158 

further result in substantial impairment in cognitive function (Bishop et al., 2010; Harman, 2006; 159 

Jakaria et al., 2019).  160 

          161 

In many NDs, cell death primarily takes place due to apoptosis (a form of programmed cell 162 

death). A number of processes usually contribute to apoptosis, such as OS, endoplasmic 163 

reticulum (ER) stress, mitochondrial dysfunction, Ca2+ overload, and excitotoxicity (Bossy-164 

Wetzel et al., 2004) as given in Fig. 2. It is known that via the electron transport chain (ETC), 165 

mitochondria generate a lower level of ROS in cellular respiration. There are five protein 166 

complexes (I–V) that comprise the ETC. It has been found that excess ROS production can occur 167 

due to the disruption of ETC (Nicholls, 2008). Various studies have indeed revealed that 168 

mitochondrial dysfunction (including the disrupted activity of the ETC) may be involved in AD 169 

animal models and patients with HD (Gil and Rego, 2008), PD (Henchcliffe and Beal, 2008), 170 

and AD (Adam-Vizi and Starkov, 2010).  171 

 172 

Furthermore, mitochondria affect the homeostasis of Ca2+  by sequestering superfluous cytosolic 173 

Ca2+ within their matrix. However, neurodegeneration may occur through an uncontrolled Ca2+ 174 

loading. According to the study of Oliveira et al. (Oliveira et al., 2007), disrupted Ca2+ 175 

homeostasis was observed in striatal mitochondria of Hdh150 knock-in HD mice. It has been 176 

found that a lack of phosphatase and tensin homolog deleted on chromosome 10-mediated 177 
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putative kinase 1, causes mitochondrial aggregation of Ca2+ in cultured neurons (Gandhi et al., 178 

2009). Moreover, ER controls intracellular levels of Ca2+ via ryanodine receptors as well as 179 

inositol-1,4,5-triphosphate receptors (InsP3Rs). Remarkably, presenilin (PSEN) 1 and 2 play a 180 

pivotal role in AD pathology, act as a passive ER Ca2+ channel to keep up the equilibrium state 181 

of Ca2+ levels that disrupts by mutant PSEN2-N141I and PSEN1-M146V (Tu et al., 2006; Zhang 182 

et al., 2010c). These PSEN mutants increased the gating of InsP3Rs activity, resulting in the 183 

aggregation of Aβ (Cheung et al., 2008). It has also been observed that Aβ-comprising senile 184 

plaques lead to Ca2+ overload (Kuchibhotla et al., 2008). Collectively, it is assumed that mutant 185 

PSEN as well as Aβ lead to the disturbance of Ca2+ homeostasis that might result in 186 

mitochondrial dysfunction causing neurodegeneration (Adam-Vizi and Starkov, 2010). 187 

 188 

- Insert Figure 2- 189 

 190 

3. Polyphenols as antioxidative factors  191 

Since there is an involvement of OS in the pathogenesis of NDs, thus a crucial therapeutic 192 

approach can delay or block the OS through elevating the activity of endogenous antioxidants 193 

and/or inhibiting the generation of ROS. However, it is still elusive whether OS is a consequence 194 

or cause of ND (Andersen, 2004). It has been suggested by evidence that OS directly starts and 195 

progresses to neuronal cell death. Nevertheless, there is a chance that OS accumulation is easily 196 

stimulated in neurons that are damaged by other insults. Death signaling pathways can be 197 

activated in the apoptotic process through a number of cellular processes such as excitotoxicity, 198 

Ca2+ overload, and mitochondrial dysfunction. In fact, cell viability may get affected by such 199 

negative feedback loops. The aforesaid processes can take place in parallel and have an additive 200 

action in case of stimulation of cell death. Henceforth, along with the blockage of OS 201 

accumulation, activating survival signaling and suppressing death-signaling cascades may also 202 

prove effective.  203 

                      204 

Some studies revealed that one or more mechanisms related to adaptive cellular stress responses 205 

might get activated by lower amounts of dietary polyphenols (Mandel et al., 2008; Schroeter et 206 

al., 2001, 2007; Vauzour et al., 2007). Activation of such hormetic signaling pathways in 207 

neurons can lead to the generation of various types of cytoprotective proteins such as anti-208 
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apoptotic proteins, antioxidant and phase II enzymes, protein chaperones, and neurotrophic 209 

factors (Calabrese, 2008; Mattson and Cheng, 2006). There is a growing interest in the hermetic 210 

actions in neurons that involve nuclear factor erythroid 2-related factor 2 (Nrf2). It has indeed 211 

been reported that Nrf2 has the ability to bind with antioxidant-responsive element (ARE) with 212 

high affinity and has a significant contribution in the up-regulation of genes that are involved in 213 

the modulation of the cellular redox status and the protection of the cells from OS (Kraft et al., 214 

2004; Lee and Johnson, 2004; Uddin et al., 2020h). Furthermore, Nrf2 can also interact with a 215 

cytosolic repressor protein Keap1 (Kelch ECH associating protein) limiting Nrf2-induced gene 216 

expression, under basal conditions (Itoh et al., 1999). Upon exposure to oxidative damage, Nrf2 217 

is released in cells from Keap1 and translocates to the nucleus, where it causes activation of 218 

ARE-dependent transcription of phase II and antioxidant defense enzymes including heme 219 

oxygenase-1 (HO-1), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) 220 

(Nguyen et al., 2003).   221 

A study by Calabrese et al. (Calabrese, 2008) demonstrated that most polyphenols responded in a 222 

bell-shaped dose-response mode, showed cellular toxicity at high concentrations whereas 223 

triggering light chemical stress at low doses with the initiation of physiological hormesis in cells, 224 

causing increased expression of protective genes including those initiated by Nrf2. Some studies 225 

revealed that resveratrol protected PC12 cells from H2O2-induced oxidative stress (Chen et al., 226 

2005b) and attenuated cerebral ischemic injury in an animal model (Ren et al., 2011) through the 227 

initiation of Nfr2 as well as the upregulation of HO-1. Numerous upstream signaling pathways 228 

might activate Nrf2 either independently, or in a combined way. These have specific functions 229 

on several lipid and protein kinase signaling pathways including the mitogen-activated protein 230 

kinase (MAPK) and phosphoinositide 3-kinase (PI3k)/protein kinase B (Akt) cascades that 231 

control prosurvival transcription factors as well as the expression of the gene (Williams et al., 232 

2004). Furthermore, activation of the extracellular signal-regulated kinase (ERK) plays an 233 

essential role in the initiation of cyclic adenosine monophosphate (cAMP)-response element-234 

binding protein (CREB), a transcription factor that leads to the initiation of long-term alterations 235 

in memory and synaptic plasticity (Bourtchuladze et al., 1994; Impey et al., 1998). The 236 

activation of CREB also controls the expression of many essential genes, such as brain-derived 237 

neurotrophic factor (BDNF), consequently playing an important role in regulating synaptic 238 

activities and neuronal survival in the adult central nervous system (CNS) (Finkbeiner, 2000; 239 
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Tully et al., 2003). Besides, another polyphenol, fisetin, is commonly observed in strawberries, 240 

which has been revealed to enhance long-term potentiation as well as to improve object 241 

recognition in an animal model by the initiation of CREB and ERK (Kong et al., 2000). 242 

 243 

4. Neuroprotective potential of polyphenols against neurodegenerative events 244 

NDs including multiple sclerosis (MS), HD, PD, and AD fall under the category of NDs along 245 

with neurotraumatic disorders (Helman and Murphy, 2016; Winner et al., 2011). Environmental 246 

and genetic factors also have a significant contribution to the progression of NDs. 247 

Neuroinflammation, OS, and buildup of certain aggregated proteins are the common pathological 248 

characteristics of NDs (Farooqui, 2012; Uddin et al., 2020d, 2020f). These stimuli are embedded 249 

in the plasma membrane via extracellular receptors. Chronic inflammation is directly related to 250 

oxidative/nitrosative stress (Mitjavila and Moreno, 2012). Lipoxygenase (LOX), as well as 251 

cyclooxygenase (COX) cascades, are upregulated in chronic and age-related brain pathologies 252 

(Bishnoi et al., 2005; Vivancos and Moreno, 2002). The metabolism of polyunsaturated fatty 253 

acids (PUFAs) are impaired by COX. Furthermore, COX-1, COX-2 are accountable for the 254 

generation of many eicosanoids, as well as by LOXs that catalyze the addition of oxygen to 255 

docosahexaenoic linolenic, and arachidonic acids and other PUFA playing a crucial role in the 256 

generation of bioactive lipids, which considerably affects the event of neurodegeneration. Amid 257 

numerous isoforms, 12/15-LOX and 5-LOX are particularly significant in neuroinflammation or 258 

neurodegeneration (Czapski et al., 2016).  259 

In brain, increased levels of PUFAs including arachidonic acid and docosahexaenoic acid have 260 

been observed as compared to other organs. Since these fatty acids are extremely unsaturated, 261 

they are thus prone to OS-mediated lipid peroxidation, which has been found to be one of the 262 

major consequences of free radical-induced injury (Montine et al., 2002). Breakdown of 263 

neuronal membrane-associated PUFAs can lead to the release of increased concentrations of 264 

reactive electrophilic aldehydes, which can further covalently bind proteins to generate multiple 265 

adducts (Tramutola et al., 2017) including 4-HNE. Various studies have confirmed elevated 266 

levels of nitrosative stress and lipid peroxidation in the brains of individuals with AD and PD 267 

(Butterfield et al., 2006; Hardas et al., 2013; Yoritaka et al., 1996). Numerous studies have 268 

revealed an association between OS and protein homeostasis. Proteostasis network is essential 269 
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for the degradation of proteins that are irreversibly oxidized (Jung et al., 2009; Sahab Uddin and 270 

Ashraf, 2020; Tramutola et al., 2017). During aging, the ability of the cells to preserve 271 

proteostasis is reduced, which can make the organism vulnerable towards neurodegeneration 272 

(Uddin et al., 2020c). Furthermore, the main outcome of protein oxidation is the generation of 273 

large protein aggregates, whose buildup develops toxicity in cells. Insoluble aggregates can be 274 

generated due to covalent cross-links among peptide chains, as in the case of the mutant 275 

superoxide dismutase 1 in ALS, α-synuclein in PD, and neurofibrillary tangles (NFTs) and Aβ in 276 

AD (Kabir et al., 2020; Uddin et al., 2020a; Uddin and Kabir, 2019).      277 

 278 

Furthermore, neurotrophins (NTs) can cause cellular stress and stimulate release and generation 279 

of the BDNF, and activation of the tropomyosin-related kinase B (TrkB) receptor family and 280 

other downstream protein kinases (Fig. 3) (Barbacid, 1994; Marini et al., 2004). In the brain, 281 

NTs play vital roles in the regeneration, survival, and maintenance of specific neuronal 282 

populations (Venkatesan et al., 2015). Moreover, the expression of NT has a strong association 283 

with the occurrence of ND (Cho et al., 2013). On the other hand, mammalian NTs including NT-284 

3, BDNF, nerve growth factor (NGF), and NT-4/5 play a significant role in the maintenance of 285 

neurons of both central and peripheral nervous systems (Reichardt, 2006). Indeed, NTs have 286 

been identified as promoters of neuron survival. It was also suggested that the levels of NT drop 287 

drastically in the case of NDs (Dawbarn and Allen, 2003). Henceforth, NTs are regarded as vital 288 

targets for polyphenols that exert effects against ND. Through the binding and activation of Trk 289 

receptors (located in the plasma membrane), NTs avert neuronal degeneration as depicted in Fig. 290 

3.  291 

- Insert Figure 3- 292 

In addition, the aforesaid binding of NTs with Trk receptors ultimately helps in the establishment 293 

of a growth-encouraging microenvironment for neurons (Huang and Reichardt, 2001). Following 294 

this, several intracellular signaling processes occur including the ERK pathway and PI3k/Akt 295 

cascade which stimulate cell survival and help in protecting the neurons against 296 

neurodegeneration. Besides activation of the signaling pathway, expression of B-cell lymphoma 297 

2 (Bcl-2) genes (an inhibitor of intracellular apoptosis) can also be promoted by NT. On the 298 

other hand, gradual degeneration of neurons has been observed in the absence of binding of NTs 299 
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to the tropomyosin-related kinase (Trk) receptors. Therefore, the administration of NTs might be 300 

an effective way to combat neurodegeneration and ultimately overcome this disorder. 301 

Nevertheless, crossing the blood-brain barrier (BBB) is still a big challenge to treat CNS 302 

disorders. In order to reverse NT loss, an enhancer or modulator (i.e. therapeutic agent) 303 

particularly targeting the Trk receptor might be a good candidate (Reichardt, 2006). Moreover, 304 

due to the promising findings of several studies, there is a rise in the intake of certain plant 305 

ingredients for the treatment of NDs (Essa et al., 2012; Howes and Houghton, 2012). 306 

Polyphenols are most commonly found in vegetables, fruits, and natural products. Furthermore, 307 

polyphenols contain several hydroxyl groups on aromatic rings (Tresserra-Rimbau et al., 2018; 308 

Vauzour, 2012). Interestingly, in vitro studies have revealed that polyphenols exert their 309 

beneficial effects by directly scavenging free radicals and nitrogen species (Halliwell, 2006; 310 

Pannala et al., 1997; Russo et al., 2000; Visioli et al., 1998). Nonetheless, polyphenols are 311 

limitedly bioavailable and get extensively metabolized. These factors attenuate their antioxidant 312 

properties making it also difficult to estimate the in vivo concentrations at which they will exert 313 

them (Williams et al., 2004). 314 

 315 

4.1. Epigallocatechin-3-gallate 316 

EGCG (Fig. 4) is the most common polyphenol found in tea. Because of its potential to delay 317 

neurodegeneration, this plant compound has drawn a lot of attention in the last few decades. 318 

Interestingly, it has been observed that the occurrence of NDs is inversely connected with the 319 

consumption of tea (Pervin et al., 2018). In AD models, several experiments have been carried 320 

out where EGCG was provided. Many studies have revealed that the administration of a drug 321 

named D-gal in AD models played a significant role in the reduction of Aβ (Chan et al., 2016; 322 

Walker et al., 2015; Wobst et al., 2015). A study by Liu et al., showed that the administration of 323 

EGCG decreased the level of β- and γ-secretases [i.e. amyloid precursor protein (APP) cleaving 324 

enzyme)] via suppression of the activity of nuclear factor kappa B (NF-κβ) and ERK, which 325 

ultimately leads to the prevention of neuronal cell death (Liu et al., 2014b). It was also found that 326 

EGCG administration resulted in a reduced level of Aβ due to the α-secretase-mediated APP 327 

cleavage (Smith et al., 2010). On the other hand, Choi et al., (Choi et al., 2002) recommended 328 
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that consumption of three or more cups of tea containing high levels of EGCG led to a reduced 329 

risk of PD development.  330 

It has been observed that there is a substantial loss of tyrosine hydroxylase (TH) positive cells in 331 

PD. Koh et al., (Koh et al., 2003) demonstrated that the concurrent consumption of EGCG and 332 

tea could help to prevent the loss of these cells in the substantia nigra. Collectively, these 333 

findings denote that the use of EGCG can be useful in the treatment of ND. Furthermore, by 334 

preventing the uptake of DA and by displaying neuroprotective effects, EGCG can inhibit 335 

neuronal cell death. EGCG exerts this aforesaid function through its activity on the catechol-O-336 

methyltransferase (COMT) enzyme that blocks DA metabolism. α-Syn accumulation is also 337 

observed in ND. It is supposed that EGCG regulates the proteolytic cleavage of α-Syn converting 338 

it into a less toxic form (Koh et al., 2003; Liu et al., 2014b). 339 

EGCG exerts neuroprotective effects on oxidative-stress-mediated apoptosis in neuronal-340 

differentiated PC12 cells by downstream signaling via mitochondrial damage, poly(ADP-ribose) 341 

polymerase, and caspase (CASP)-3 as well as upstream signaling via the PI3K/Akt, and GSK-3 342 

cascades (Koh et al., 2003). Interestingly, EGCG also counteracts radicals and exerts antioxidant 343 

effects, since EGCG has a 3′, 4′, 5-trihydroxy B ring containing a member of the catechol family 344 

(Kalaiselvi et al., 2013). The Nrf2/ARE pathway outlined above plays an important role in 345 

mediating the antioxidant effects of EGCG (Han et al., 2014). In addition, catalase and 346 

superoxide dismutase (SOD) are the two radical scavenging enzymes that are typically activated 347 

by EGCG (Kalaiselvi et al., 2013; Srividhya et al., 2008).        348 

Several properties of EGCG such as its BBB penetrating and metal chelating features make this 349 

plant compound a promising solution for neurodegenerative events. Numerous studies performed 350 

in animal models demonstrated the BBB permeability of EGCG and showed that it can prevent 351 

cognitive dysfunctions (Pervin et al., 2017; Wei et al., 2019) (Table 1). It has already been 352 

observed that EGCG restores DA neurons by preventing the aggregation of iron-dependent α-353 

Syn (Bieschke et al., 2010). A number of clinical studies have confirmed that EGCG suppresses 354 

the activity of cytochrome p450 and that this plant compound is also accountable for lipid 355 

peroxidation in vitro as well as in vivo (Mangialasche et al., 2010; Schneider et al., 2014). In 356 

their work, Castellano-González et al., (Castellano-González et al., 2016) observed that EGCG 357 

mediates oxidative phosphorylation via activating cytochrome c oxidase (CcO) in human 358 
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cultured astrocytes and neurons. Furthermore, they also noticed that there is an increased activity 359 

of CcO in 10 μM EGCG-treated neurons as compared to the controls. However, the increased 360 

activity of CcO recorded in astrocytes was not statistically significant. EGCG treatments up to 50 361 

μM did not elevate the generation of ROS in both human cultured neurons and astrocytes, while 362 

EGCG at 100 μM elevated the generation of ROS in neurons. Over generation of ROS is found 363 

to be involved in the stimulation of apoptosis. The presence of CcO dysfunction has also been 364 

detected in individuals with NDs including AD (Castellano-González et al., 2016). Thus it is 365 

likely that treatment with EGCG may restore the functions of mitochondria and avert the 366 

following synaptic functional loss.                     367 

EGCG exerts neuroprotective effects in SH-SY5Y cells by playing a significant role in the 368 

intracellular signaling mechanism of protein kinase C (PKC). It has been observed that inhibitors 369 

of PKC also take part in the neuroprotective mechanisms of EGCG. On the other hand, the 370 

neurotoxin, 6-hydroxydopamine (6-OHDA), was reported to be inhibited by EGCG through its 371 

activation of PKC phosphorylation (Koh et al., 2003). It has been found that EGCG not only 372 

activates the PKC signaling pathway, but also other pathways including the MAPK, PI3k/Akt, 373 

and pathways regulating calcium influxes (Chen et al., 2017; Ortiz-López et al., 2016). 374 

According to the study by Levites et al., (Levites et al., 2002) EGCG displayed a neuroprotective 375 

effect by restoring the reduced ERK1/2 and PKC phosphorylation levels induced by 6-OHDA, 376 

and by modulating of antiapoptotic-related genes. Furthermore, the study of Ding et al., (Ding et 377 

al., 2017) has demonstrated that EGCG was capable to efficiently suppress sevoflurane-induced 378 

neurodegeneration as well as enhance memory and learning retention of mice through the 379 

activation of CREB/BDNF/TrkB-PI3K/Akt signaling (Table 2). 380 

 381 

- Insert Figure 4- 382 

 383 

4.2. Berberine 384 

Berberine (Fig. 4), a naturally-occurring isoquinoline alkaloid, can be isolated from the stems, 385 

rhizome, roots, and bark of plants of the genus Berberis and also from plants including Hydrastis 386 

canadensis and Coptis chinensis (Koppen et al., 2017). Berberine also crosses BBB, exerts a 387 

direct action on neurons and accumulates in the hippocampus in several brain diseases (Wang et 388 
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al., 2005). According to the study of Zhang et al., (Zhang et al., 2012d) berberine improves BBB 389 

permeability and displays its neuroprotective effects through the activation of Akt/glycogen 390 

synthase kinase (GSK) signaling, downregulation of NF-κB nuclear transposition, and 391 

upregulation of phosphorylated cyclic AMP response element binding protein (pCREB) (Table 392 

1). On the other hand, berberine has the ability to stop the activity of a number of enzymes that 393 

are associated with AD progression (Hsu et al., 2013a). According to the study of Hsu et al., 394 

(Hsu et al., 2013a) berberine demonstrates neuroprotective effects by activating Akt/GSK-395 

3β/Nrf2-mediated regulation, triggers NGF and BDNF secretion and suppresses tumor necrosis 396 

factor alpha (TNF-α), cyclooxygenase-2 (COX-2), interleukin 1β (IL-1β), and nuclear factor-397 

kappa B (NF-κB) levels (Table 2). A number of in vitro studies have revealed that H2O2 and 398 

glutamate can induce neurotoxicity. In addition, it was found that cobalt chloride can facilitate a 399 

decreased oxygen environment that connected with neurotoxicity, as well. It was also established 400 

in these in vitro studies that berberine has the ability to protect neuronal cells from H2O2, 401 

glutamate and cobalt chloride-induced neurotoxicity (Cui et al., 2009; Hsu et al., 2013a; Simões 402 

Pires et al., 2014). Furthermore, berberine is useful in the treatment of cobalt chloride-induced 403 

hypoxia. In this regard, berberine plays a key role as a scavenger of ROS (i.e. which can inhibit 404 

multiple apoptosis-promoting agents) produced upon hypoxic conditions, therefore providing 405 

neuroprotective effects (Zhang et al., 2012c). Nevertheless, a study by Kwon et al. (Kwon et al., 406 

2010) showed that berberine could exert substantial side effects including a fall in the level of 407 

DA neurons as a result of the cytotoxicity of 6-hydroxydopamine.              408 

Berberine exerts its neuroprotective properties through activating the PI3K/Akt/Nrf2 pathway by 409 

scavenging radicals. Additionally, berberine exerts anti-apoptotic effects by decreasing the 410 

expression of CASP-1 and -3, Bax along with Bcl-2 upregulation (Asai et al., 2007). Another 411 

study by Hsu et al., (Hsu et al., 2012) revealed that the administration of berberine can prevent 412 

H2O2-stimulated neurotoxicity by decreasing the expression of cyclin D1, CASP, p53 and 413 

elevating the expression of Bcl-2 associated agonist of cell death (BAD). It has been observed 414 

that at a nanomolar concentration, berberine reduced OS and promoted cell survival via the 415 

downregulation of multiple factors including CASP, Bax, and cytochrome c (Maleki et al., 416 

2018). 417 
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Zhang et al. (Zhang et al., 2009) demonstrated that the administration of berberine reduced the 418 

decrease of choline acetyltransferase and SOD activities in an aluminum-induced rat model of 419 

NDs. Interestingly, it has been observed that berberine provides protection against ischemic 420 

stroke by decreasing OS (Kim et al., 2014). Berberine administration can restore memory 421 

function and BDNF levels maintains cholinergic enzyme activity and reduces the expression of 422 

inflammatory molecules (Durairajan et al., 2012).  423 

On the other hand, numerous studies have revealed that chronic administration of berberine can 424 

lead to loss of dopaminergic substantia nigra neurons (Kim et al., 2014; Kwon et al., 2010; Shin 425 

et al., 2013). Individuals receiving chronic therapy with levodopa might require the use of 426 

neurotoxic isoquinoline agents along with berberine, though they should be monitored for 427 

adverse reactions (Shin et al., 2013). Berberine exerts anti-apoptotic effects by reducing the 428 

hypoxia-inducible factor 1α and p53 expression, which are both regarded as the major processes 429 

in order to avert apoptosis via berberine administration (Zhang et al., 2012c). Moreover, 430 

berberine is also believed to reduce ischemic stroke-caused damages via reducing the activity of 431 

gelatinase and by decreasing the expression of the matrix metalloproteinase-9, laminin, and that 432 

of neuronal nuclear protein (Hong et al., 2012). As berberine was reported to solubilize Aβ 433 

plaques in mouse models, this compound can thus be useful in the AD treatment (Asai et al., 434 

2007).  It has also been suggested that berberine binds with the N-methyl-D-aspartate (NMDA) 435 

receptor in order to exert its neuroprotective effects. In a caspase-independent manner, berberine 436 

exceeding 1 μM decreased the viability of neurons through early changes of mitochondrial 437 

morphology and function. According to the study of  Kysenius et al., (Kysenius et al., 2014) 438 

MK-801 and memantine played a significant role in the inhibition of NMDA receptors, which 439 

totally blocked berberine-mediated neurotoxicity.  440 

There are still some concerns related to the safety profile of berberine, since some studies 441 

reported that bradycardia and exacerbation of neurodegeneration can take place owing to the use 442 

of berberine. In the study of Kysenius et al. (Kysenius et al., 2014), it was revealed that at 443 

micromolar level, berberine can cause rapid mitochondria-dependent toxicity in primary neurons 444 

and this toxicity was characterized by elevated OS, mitochondrial swelling, reduced 445 

mitochondrial membrane potential and depleted ATP content. Activation of caspase-3 is not 446 

induced by berberine and the resultant neurotoxicity stays unchanged due to the treatment with 447 
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pan-caspase inhibitor. MK-801 and memantine inhibited the NMDA receptors, which eventually 448 

leads to the complete blockage of berberine-mediated neurotoxicity. In addition, subtoxic 449 

nanomolar berberine concentrations were sufficient to cause sensitization of neurons to rotenone 450 

injury and glutamate excitotoxicity. Nevertheless, more studies are required on the safety profile 451 

of berberine, mainly because of its propensity to gather in the CNS and due to the potential risk 452 

of neurotoxicity linked to its increasing bioavailability. 453 

-Insert Table 1- 454 

-Insert Table 2- 455 

 456 

4.3. Curcumin 457 

One of the significant constituents of turmeric is curcumin (Fig. 4). A proposed mechanism of 458 

action for curcumin in AD is that it can bind to Aβ by suppressing NF-κβ, conferring this 459 

polyphenol the potential to reduce AD pathogenesis (Nam et al., 2014). A study by Kim et al., 460 

(Kim et al., 2005) reported that out of about 214 compounds possessing anti-oxidant effects, 461 

curcumin exhibited the highest affinity towards Aβ. In aged mice, upon administration of 462 

curcumin, cognitive deficits were ameliorated because of the rise in the levels of BDNF and 463 

CREB (Nam et al., 2014). Furthermore, in a PD model, it has been observed that curcumin can 464 

aid in the regeneration of neurons via activating Trk/PI3K signaling pathways which eventually 465 

increase the levels of BDNF (Table 2) (Yang et al., 2014). A study by Hoppe et al., (Hoppe et 466 

al., 2013) exposed that nanoparticles of curcumin can improve cognitive deficit through 467 

recovering the levels of BDNF by activating Akt/GSK-3β signaling pathways. Indeed, curcumin 468 

plays a crucial role in several aspects of NDs. Therefore, curcumin can be used as a cheap and 469 

safe preventive measure in NDs.             470 

Current studies are mainly focusing on the discovery of curcumin derivatives which possess 471 

more lipophilic properties helping them to penetrate BBB more easily and thus providing them 472 

more affinity towards Aβ (Mourtas et al., 2011). A study of Garcia‐Alloza et al., (Garcia-Alloza 473 

et al., 2007) demonstrated that curcumin could permeate the BBB and labeled senile plaques and 474 

ultimately ameliorates existing plaques in AD (Table 1). Present studies carried out in cell 475 

cultures and in vivo have also shown that the formation of Aβ plaques can be reduced by 476 

curcumin (Wang et al., 2018). Zhang et al. reported that the activity of curcumin is not only 477 
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limited to disruption of Aβ levels but also averts APP maturation in mouse neurons (Zhang et al., 478 

2010a). Indeed, NF-κB inhibition is the main mechanism by which curcumin protects from Aβ 479 

plaques. Curcumin can provide protection against the PD through α-Syn destabilization, as well 480 

(Liu et al., 2014a).       481 

Studies have revealed that Aβ plaques in AD individuals possess iron and the presence of this 482 

metal is also accountable for the production of free radicals, lipid peroxidation, advanced 483 

glycation end-products (AGEs), oxidation of DNA and proteins. Interestingly, in vitro studies 484 

have revealed that curcumin exhibits an affinity for iron (Liu et al., 2014a). Many works have 485 

reported that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-OHDA can be used to 486 

generate PD models and curcumin was shown to exert neuroprotective effects in these models 487 

through ROS inhibition (Yang et al., 2014; Zbarsky et al., 2005). According to the study of Yu et 488 

al., curcumin suppresses the c-Jun N-terminal kinase (JNK) pathway in MPTP- and 1-methyl-4-489 

phenylpyridinium (MPP)-induced neurotoxicity in mice models (Yu et al., 2010). It has also 490 

been found that curcumin ameliorates locomotion and lifespan in different fruit fly AD models 491 

(Caesar et al., 2012).  492 

In mammals, prepared Aβ-expressing mice were administered with curcumin (Lim et al., 2001), 493 

resulting in curcumin-improved NDs by scavenging ROS, disrupting Aβ plaques, and showing 494 

anti-apoptotic and anti-inflammatory properties (Hoppe et al., 2013). In a recent animal study, 495 

administration of curcumin at a dose of 500 ppm inhibited the aggregation of Huntingtin protein 496 

(Frautschy et al.). Curcumin has also shown various beneficial effects in vitro, for example 497 

enhancing the lifespan in Caenorhabditis elegans and Drosophila, though no improvement in 498 

mice was observed (Liao et al., 2011; Strong et al., 2013). Poor bioavailability of curcumin is 499 

one of the main issues associated with it, however, it can be managed by conjugating curcumin 500 

with lipophilic compounds or by changing its chemical structure (Purpura et al., 2018).   501 

 502 

4.4. Resveratrol 503 

Resveratrol (Fig. 4) is a type of polyphenol found in peanuts, grapes, wine, and tea displaying 504 

numerous biological activities (Jeandet et al., 2018, 2019; Storniolo and Moreno, 2019). A lot of 505 

in vitro as well as in vivo investigations have shown the potential neuroprotective properties of 506 

resveratrol. For example, copious studies have revealed that resveratrol provides cytoprotective 507 
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activity in cells exposed to Aβ and/or Aβ -metal complex through sirtuin-3 (SIRT3)-mediated 508 

mechanisms (Granzotto and Zatta, 2011; Yan et al., 2018). In a study of mice with cerebral Aβ 509 

deposition, oral administration of resveratrol decreased the activation of microglia associated 510 

with the formation of cortical Aβ plaques (Capiralla et al., 2012). Moreover, long-term 511 

consumption of dietary resveratrol has shown a neuroprotective role of this compound together 512 

with reduced cognitive impairment, tau hyperphosphorylation, and amyloid burden in age-related 513 

AD (SAMP8) mice (Porquet et al., 2013). In addition, increasing scientific evidence suggests 514 

that resveratrol can provide beneficial effects in cells or animals representing PD. For example, 515 

in primary midbrain neuron-glia cultures of rat, resveratrol has been shown to protect against 516 

lipopolysaccharide-induced neurotoxic dopaminergic neurons in a time- and dose-dependent 517 

way, by inhibiting the activation of microglia and the resultant reduction in the release of pro-518 

inflammatory factors (Zhang et al., 2010b). In a clinical study, resveratrol also improved 519 

pathological changes and motor deficits in MPTP-treated mice by activating Sirtuin-1 (SIRT1) 520 

and the resultant light chain 3 (LC3)  deacetylation-mediated autophagic degradation of α-Syn 521 

(Guo et al., 2016). All of the above investigations have proposed that resveratrol is likely to be a 522 

possible therapeutic or prophylactic solution for NDs.    523 

 524 

The anti-oxidative activities of resveratrol have comprehensively been reported since the past 525 

years (Chen et al., 2005a; de Sá Coutinho et al., 2018; Wang et al., 2001; Zhang et al., 2008), but 526 

the recent popular discovery of the activation of vitagenes and SIRT1 by resveratrol, has caught 527 

fire (Yazir et al., 2015). Timmers et al., (Timmers et al., 2011) demonstrated that both resveratrol 528 

and energy restriction work in a similar way in increasing life expectancy. The possible 529 

mechanism of resveratrol includes the activation of peroxisome proliferator-activated receptor 530 

(PPAR) and the deacetylation of PGC-1α (PPARγ coactivator-1) (Zhang et al., 2012a). PPAR 531 

activation can consecutively activate the catalase gene by PI3K/Nrf/Keap pathway (Rubiolo et 532 

al., 2008). Moreover, resveratrol provides neuroprotection by encouraging mitochondrial 533 

biogenesis through adenosine monophosphate (AMP)-activated protein kinase (AMPK) 534 

activation (Wu et al., 2011). The study by Anastácio et al., (Anastácio et al., 2014) reported that 535 

resveratrol exhibits neuroprotective effects by activating ERK-induced CREB regulation, 536 

triggers BDNF, NGF, and glial cell-derived neurotrophic factor (GDNF)  secretion, and 537 

suppresses IL10, IL-1β, and NF-κB levels (Table 2). One of the main reasons for 538 
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neurodegeneration is ROS, which is caused by mitochondrial dysfunction and the nicotinamide 539 

adenine dinucleotide phosphate (NADPH) oxidases (Zhang et al., 2010b). All of the above 540 

studies afford evidence that resveratrol provides a favorable solution for neurodegenerative 541 

diseases. Resveratrol is also effective in preventing BBB impairment and inhibiting Aβ1–42 542 

from crossing the BBB and accumulating in the hippocampus (Omar, 2017; Zhao et al., 2015). 543 

According to the study of Wang et al., (Wang et al., 2002) resveratrol could cross the BBB and 544 

demonstrate protective effects against cerebral ischemic injury (Table 1). 545 

 546 

 547 

 548 

4.5. Quercetin 549 

Flavonoids are widely known for their anti-oxidant activities and quercetin, one member of the 550 

flavonoid group (Fig. 4), has been extensively investigated for its anti-proliferative properties 551 

(Lesjak et al., 2018). Heo and Lee (Heo and Lee, 2004) reported the protective activities of 552 

quercetin on H2O2-mediated neurodegeneration in pheochromocytoma cells (PC12) cells. 553 

Findings also revealed that quercetin treatment convincingly ameliorates cell viability. In 554 

addition to this, quercetin exhibited an increased antioxidant protective activity as compared to 555 

vitamin C. Indeed, 10 µM quercetin exerted protective activities in neurons and also exhibited a 556 

superior cell viability effect over 30 µM (Heo and Lee, 2004). It has been shown to cross the 557 

BBB and prevents H2O2-induced cytotoxicity, as well (Heo and Lee, 2004). According to the 558 

study of Ishisaka et al., (Ishisaka et al., 2011) quercetin could permeate the BBB and protect it 559 

from disorders connected with oxidative stress in an animal model (Table 1).  560 

Quercetin regulates the activity of kinases that consecutively modulate gene expression and 561 

cellular function. The arrangement of the functional groups also plays an important role in the 562 

properties of quercetin (Barreca et al., 2016). The activity of quercetin is influenced by some 563 

factors including time exposure and cell type, and at higher doses (>100 µM) it shows cytotoxic, 564 

apoptotic, genotoxic, and anti-proliferative properties. Dajas et al., (Dajas et al., 2015) 565 

demonstrated that quercetin regulated NF-κB which could consecutively improve inflammatory 566 

processes associated with neurodegenerative diseases. Numerous studies (Liu et al., 2013, 2015; 567 

Suganthy et al., 2016) have reported that quercetin demonstrates neuroprotective activity by 568 



20 

 

regulating synaptic plasticity, learning, and neuronal adaptation through signaling pathways of 569 

the PI3K/Akt/Nrf2, ERK/CREB/BDNF, PGC-1α/fibronectin type III domain containing 5 570 

(FNDC5)/BDNF, and activation of SIRT1 (Table 2).  571 

Quercetin has also been found to modulate protein kinases, lipid kinases including the PI3k, 572 

tyrosine kinases, Akt/PKB, MAP kinases, and PKC (Dajas et al., 2015). This is useful as it 573 

modifies the state of phosphorylation of the target molecules hence deciding the cellular fate. 574 

Moreover, quercetin has been shown to activate pro-apoptotic as well as anti-apoptotic pathways 575 

(Bournival et al., 2009). Quercetin also plays an important role in increasing the biogenesis of 576 

mitochondria and this is an essential feature as mitochondrial dysfunction results in degenerating 577 

neurons by depleting adenosine triphosphate levels and generating ROS. Therefore, quercetin 578 

has the potential to protect from NDs through mitochondria-targeted activities (Dajas et al., 579 

2015). Nonetheless, before the clinical trials of quercetin, there is a need for more evidence about 580 

the absorption and metabolism of quercetin after its oral administration (Moreno et al., 2017).  581 

 582 

5. Conclusion 583 

At the molecular and cellular levels, an increased level of neuronal damage might be associated 584 

with the pathogenesis of NDs. Possibly, OS can cause neuronal cell death by elevating the 585 

concentration of intracellular Ca2+, glutamate-mediated excitotoxicity, reducing overall survival 586 

signaling, activation of death-signaling cascades, and mitochondrial dysfunction. Polyphenols 587 

indeed provide protection against neuronal damage and this article elucidates the multiple 588 

mechanisms by which they can act against NDs. Although a number of studies have revealed 589 

their potential benefits, more extensive studies are required to establish the efficacy and long-590 

term effects of using polyphenols as therapeutics for NDs.    591 
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 1329 

Figure Legends 1330 

Figure 1: The role of oxidative stress in the pathogenesis of neurodegenerative diseases. 1331 

Several events like environmental factors, mitochondrial dysfunction as well as cellular 1332 

metabolic process are responsible for oxidative stress. Protein misfolding and aggregation are 1333 

common hallmarks of several neurodegenerative disorders. Oxidative stress activates PP2A, 1334 

p38MAPK, and JNK that lead to increase expression of neurotoxic Aβ and tau (hallmarks of 1335 

Alzheimer’s disease) that further increase cellular levels of ROS and RNS and results in 1336 

neurodegeneration. Furthermore, oxidative stress causes neuronal dysfunction by atypical 1337 

misfolding and aggregation of α-synuclein (for Parkinson’s disease), mHtt (for Huntington’s 1338 

disease), and TDP-43 for (amyotrophic lateral sclerosis) by augmenting ROS and RNS levels. 1339 

ROS, reactive oxygen species; RNS, reactive nitrogen species; PP2, protein phosphatase 2; 1340 

p38MAPK, mitogen-activated protein kinase p38; JNK, c-Jun N-terminal kinase; mHtt, mutant 1341 

huntingtin; TDP-43, TAR DNA binding protein 43; NOX, NADPH oxidase; NFTs, 1342 

neurofibrillary tangles. 1343 

 1344 

Figure 2: Mechanism of oxidative stress-mediated neuronal apoptosis and 1345 

neurodegeneration. A number of pathogenic intracellular events like endoplasmic reticulum 1346 

stress and mitochondrial dysfunction cause oxidative stress by increasing Ca2+ influx and 1347 

subsequent neuronal excitotoxicity. Excessive production of reactive species causes oxidation of 1348 

proteins, lipids, and nucleic acids that lead to neurodegeneration. Oxidative stress causes 1349 

activation of the p53 apoptotic pathway leads to the expression of Noxa, Bax, and Puma.  The 1350 

expression of Puma causes the release of cytosolic p53 that held inactive by binding with Bcl-xL. 1351 

P53 and Bcl-xL complex cause Bax oligomerization and mitochondrial translocation. 1352 

Accumulation of intracellular p53 serves as a major source of mitochondrial p53 that induces 1353 

Bax and Bak oligomerization as well as antagonize the antiapoptotic effect of Bcl-2 and Bcl-xL 1354 

in the mitochondria. As a result, mitochondrial cytochrome c is released that stimulates the 1355 

activation of caspase pathways that lead to neuronal apoptosis and finally neurodegeneration. 1356 

p53, tumor suppressor protein p53; 8-OHG, 8-hydroxyguanosine; 8-OHdG, 8-hydroxy-2′-1357 

deoxyguanosine; 4-HNE,  4-hydroxy-2-nonenal; MDA, malondialdehyde; Noxa, phorbol-12-1358 

myristate-13-acetate-induced protein 1; Puma, p53 upregulated modulator of apoptosis; Bax, 1359 
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Bcl-2-associated X protein, Bak, Bcl-2 antagonist/killer; Bcl-2, B-cell lymphoma 2; Bcl-xL, B-1360 

cell lymphoma-extra-large. 1361 

 1362 

Figure 3: Role of polyphenols involved with neurotrophins to alleviate the progression of 1363 

neurodegenerative diseases by activating the TrkB receptor. Polyphenols or neurotrophins 1364 

especially BDNF binds to the TrkB receptor, which activates PI3K/Akt, Ras/ERK 1/2 and PL-Cγ 1365 

pathways and eventually phosphorylates CREB protein. Subsequently, CREB increases the 1366 

transcription of target genes coding NTFs, Bcl-2 and antioxidant genes that regulate cell survival 1367 

and ultimately inhibit neurodegeneration. Polyphenols also trigger Keap-Nrf2-ARE cascade and 1368 

increase the expression of antioxidant enzymes and proteins, which play an essential role in 1369 

increasing the neuroprotective activity. In addition, polyphenols also inhibit the ROS and GSK3β 1370 

that leads to neurodegeneration. Trk, tropomyosin-related kinase; BDNF, brain-derived 1371 

neurotrophic factor; PI3K, phosphatidylinositol-3-kinase; MEK, MAP kinase kinase; MAPK, 1372 

mitogen-activated protein kinase; ERK, extracellular signal-regulated kinases; PL-Cγ, 1373 

phospholipase Cγ; PKC, protein kinase C; CaMKII/IV, Ca2+-calmodulin kinase II/IV; Nfr2, 1374 

nuclear factor erythroid 2-related factor 2; CREB, cyclic adenosine monophosphate response 1375 

element-binding protein; CRE, cyclic adenosine monophosphate response elements; GSK3β, 1376 

glucose synthase kinase-3β; ROS, reactive oxygen species; Akt, protein kinase B; Ras, a small 1377 

GTPase; Keap1, Kelch-like ECH associated protein; ARE, antioxidant response element; NTFs, 1378 

neurotrophic factors; Bcl-2, B-cell lymphoma 2. 1379 

 1380 

Figure 4: Chemical structures of several neuroprotective polyphenols. 1381 
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Table 1: The blood-brain barrier permeability of different polyphenols for 1385 

neuroprotection. 1386 
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Table 2: The effects of different polyphenols on neurotrophin factors to combat 1388 

neurodegeneration. 1389 
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Table 1: The blood-brain barrier permeability of different polyphenols for neuroprotection. 

Phytochemicals 
Species/Studied 

Materials 
Dose 

Route of 

Administration 

Neuroprotective 

Effects 

BBB 

Permeability 
References 

Epigallocatechin-

3-gallate 

(EGCG) 

Male 

SAMP10/TaSlc 

(SAMP10) mice 

and human 

neuroblastoma 

SH-SY5Y cells 

20 mg/kg Oral 

 

 

Ameliorates 

cognitive 

dysfunction by 

increasing brain 

plasticity 

EGCG crosses the 

blood-brain barrier 

(BBB) and reaches 

the brain 

parenchyma 

at a very low 

concentration 

(Pervin et 

al., 2017) 

Male pathogen-

free Sprague–

Dawley rats 

100 mg/kg Oral 

 

 

Improves learning 

and memory 

dysfunctions 

Different 

pharmacokinetic 

and tissue 

distribution 

patterns confirm 

the BBB 

permeability of 

EGCG 

(Wei et al., 

2019) 

Male Wistar rats 
0.1% 

(w/v) 
- 

 

Inhibits neuronal 

stem cell death by 

free radicals 

and ameliorates  

traumatic brain 

injury 

EGCG crosses the 

 BBB due to its 

lipophilicity 

(Itoh et al., 

2012) 

Berberine 
Male Sprague-

Dawley rats 

10 

and 40 

mg/kg 

Intraperitoneal 

injection 

Exerts 

neuroprotective 

effect 

through activation 

of the Akt/GSK 

signaling 

pathway, 

upregulation of 

pCREB, 

downregulation of 

NF-κB 

nuclear 

transposition 

Berberine 

ameliorates BBB 

permeability 

(Zhang et 

al., 2012d) 



Male Wistar rats 3 mg/kg 
Intravenous 

injection 

 

 

Directly acts on 

neuron and 

accumulate in the 

hippocampus 

Berberine 

penetrates the 

BBB to reach the 

hippocampus 

(Wang et 

al., 2005) 

Male Wistar rats 
187.75 

mg/kg/day  

 

Enhances spatial 

learning memory 

impairment 

Berberine can 

cross the BBB and 

improves APP 

misprocessing in 

the hippocampus 

(Wang et 

al., 2019) 

Curcumin 

Adult male 

C57BL/6 mice 

100 

mg/kg 

Intraperitoneal 

injection 

 

Improves 

neurologic 

outcomes and 

attenuates brain 

edema by 

preserving BBB 

integrity 

BBB permeability 

of curcumin was 

increased in the 

left hemisphere, 

right hemisphere, 

cerebellum, and 

brain stem 

(Yuan et 

al., 2017) 

Human 

Alzheimer’s and 

Tg2576 Mouse 

Brain 

500 ppm 

Injected 

peripherally 

into the carotid 

artery of aged 

mice 

 

 

Attenuates 

amyloid in 

Alzheimer's 

disease 

Curcumin crosses 

the BBB and 

labels plaques and 

reduced amyloid 

levels 

(Yang et 

al., 2005) 

Adult male and 

female 

APPswe/PS1dE9 

mice 

7.5 

mg/kg/day 

Intravenous 

injection 

 

 

Attenuates 

existing plaques in 

Alzheimer's 

disease 

Curcumin crosses 

the BBB and 

labels senile 

plaques 

(Garcia-

Alloza et 

al., 2007) 

Resveratrol 

Chinese Kun 

Ming mouse 

Up to 

2000 

mg/kg 

Oral 

 

Effective in the 

treatment of 

Alzheimer's 

disease 

Derivative of 

resveratrol crosses 

the BBB in vitro 

(Lu et al., 

2013) 

Adult male 

Mongolian 

gerbils 

30 mg/kg 
Intraperitoneal 

injection 

Neuroprotective 

effects against 

cerebral ischemic 

injury 

Resveratrol in the 

brain reached a 

peak at 4 h 

(Wang et 

al., 2002) 



Male Wistar rats 
12.5 

mg/kg 

Intraperitoneal 

injection 

 

Neuroprotective 

effectsby up 

regulating several 

detoxifying 

enzymes 

Resveratrol 

crosses the BBB 

and modifies 

antioxidant 

isoenzyme 

patterns 

(Mokni et 

al., 2007) 

Quercetin 

Male Wistar rats 

50 and 

200 

mg/kg 

Oral 

 

Inhibits oxidative 

stress and protects 

from disorders 

connected with 

oxidative stress 

Quercetin can 

access the brain 

and reduces the 

increased 

oxidative stress in 

the hippocampus 

(Ishisaka et 

al., 2011) 

Male Sprague 

Dawley rats 
2.7 mg/kg Oral gavage 

Exerts 

neuroprotective 

effects by 

maintaining 

antioxidant levels 

Nano-encapsulated 

quercetin can 

access in different 

brain regions 

(Ghosh et 

al., 2013) 

Male Sprague-

Dawley (SD) 

rats 

25 

μmol/kg 
- 

Reduces brain 

edema and BBB 

leakage, and 

enhances BBB 

dysfunction via 

Wnt signaling 

pathway 

Quercetin crosses 

the BBB 

(Jin et al., 

2019) 

 



Table 2: The effects of different polyphenols on neurotrophin factors to combat neurodegeneration. 

Phytochemical

s 

Species/Studie

d Material 

Experimental 

Model 
Effects Mechanisms 

Induced 

Neurotrophi

ns 

References 

Epigallocatechi

n-3-gallate 

Pregnant 

C57BL/6 mice 

Sevoflurane-

induced 

neurotoxicity 

Improve learning 

and memory 

retention 

Activates cyclic 

AMP response 

element binding 

protein (CREB)/ 

brain-derived 

neurotrophic 

factor (BDNF)/ 

tropomyosin 

receptor kinase B 

(TrkB)- 

phosphoinositide 

3-kinase (PI3K)/ 

protein kinase B 

(Akt) signaling 

pathway 

Brain-derived 

neurotrophic 

factor 

(BDNF) 

(Ding et 

al., 2017) 

PC12 cells 

Oxidative-

radical-stress-

induced 

apoptosis 

Neurodegenerativ

e diseases 

Activates 

PI3K/Akt and 

inhibits glycogen 

synthase kinase 

(GSK)-3 

Nerve growth 

factor (NGF) 

(Koh et al., 

2003) 

Rats 
Acrylamide-

treated 

Attenuates 

cerebral cortex 

damage and 

enhances brain 

regeneration 

Increases 

acetylcholinestera

se activity and 

decreases the 

expression of 

inducible nitric 

oxide and 

cyclooxygenase-2 

(COX-2) level 

BDNF 
(He et al., 

2017) 

Berberine 
SH-SY5Y 

cells 

Glucose-induced 

neurotoxicity 

Neuritogenesis, 

neuroinflammatio

n, and 

neuroprotection 

Activates 

Akt/GSK-3β/ 

nuclear factor 

erythroid 2-

related factor 2 

(Nrf2)-mediated 

regulation, 

BDNF, NGF 
(Hsu et al., 

2013b) 



cholinergic 

activity-induced 

neurite outgrowth, 

and inhibits COX-

2, tumor necrosis 

factor-α (TNF-α), 

nuclear factor-

kappa B (NF-κB), 

and interleukin 

(IL)-1β levels 

Rats 

Middle cerebral 

artery occlusion 

model 

Neuroprotection 

Reduction of 

striatum apoptosis 

via the BDNF-

TrkB-PI3K/Akt 

signaling pathway 

BDNF 
(Yang et 

al., 2018) 

CD1 and C57 

mice 

chronic social 

defeat stress 

model 

Ameliorates 

depressive-like 

behaviors 

Upregulation of 

neuronal per-arnt-

sim domain 

protein 4 and 

BDNF 

expressions in 

hippocampus 

BDNF 
(Deng et 

al., 2018) 

Curcumin 

Male Sprague-

Dawley (SD) 

rats 

6-

hydroxydopamin

e-induced 

Parkinson's 

disease 

Neural 

regeneration and 

neuroprotection 

Activates 

Trk/PI3K 

signaling 

pathways 

BDNF 
(Yang et 

al., 2014) 

Rats 

β-amyloid-

induced 

cognitive 

impairments 

Improves 

cognitive deficit 

and 

neuroprotection 

Activates 

PI3K/Akt 

signaling 

pathways and 

inhibits GSK-3 

BDNF 
(Hoppe et 

al., 2013) 

Rodent cortical 

neurons 
- Neuroprotection 

Mediates through 

BDNF/TrkB- 

mitogen-activated 

protein kinase 

(MAPK)/PI3K- 

cyclic AMP 

response element 

binding protein 

(CREB) signaling 

BDNF 
(Wang et 

al., 2010) 



pathway 

Resveratrol 

Adult Wistar 

rats 

Two-vessel 

occlusion 

Neuritogenesis, 

neuroinflammatio

n, and 

neuroprotection 

Activates 

extracellular 

signal-regulated 

kinase (ERK)-

mediated CREB 

regulation and 

inhibits IL-10, IL-

1β, and NF-κB 

levels 

BDNF, glial 

cell-derived 

neurotrophic 

factor 

(GDNF), 

NGF 

(Anastácio 

et al., 

2014) 

Female Wistar 

rats 
- 

Neurological 

diseases 

Induces the 

phosphorylation 

of ERK1/2 and 

CREB in astroglia 

BDNF, 

GDNF 

(Zhang et 

al., 2012b) 

Male Wistar 

rats 

Phenylephrine- 

induced 

contraction of 

vascular smooth 

muscle cells 

Neuroprotection 

Increases BDNF 

serum 

concentrations 

and reduces the 

contractility of 

resistance arteries 

via nitric oxide 

synthase-

independent 

mechanisms 

BDNF 

(Wiciński 

et al., 

2017) 

Quercetin 

Male Chinese 

Kunming mice 
High fat diet 

Ameliorates 

cognitive 

impairment 

Modulates 

PI3K/Akt/Nrf2 

pathway and 

activates CREB 

pathway 

BDNF 
(Xia et al., 

2015) 

Male Wistar 

albino rats 

Streptozotocin-

induced diabetes 

model 

Neuroprotection 

Activates Akt 

survival pathway, 

increases the level 

of TrkB and Bcl-2 

and decreases the 

level of both 

caspase-3 and 

cytochrome c 

BDNF, NGF 
(Ola et al., 

2017) 



Adult male 

albino rats 

Polychlorinated 

biphenyls-

induced 

neurotoxicity 

Protects and 

prevents neuronal 

damage 

Prevents 

transmembrane 

tight junctional 

proteins, 

cytoplasmic 

accessory tight 

junctional 

proteins in the 

hippocampus as 

well as maintains 

the level of 

estradiol 

BDNF 

(Selvakum

ar et al., 

2019) 

 






