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Abstract

This paper presents the methods that have participated in the SHREC’20
contest on retrieval of surface patches with similar geometric reliefs and
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the analysis of their performance over the benchmark created for this chal-
lenge. The goal of the context is to verify the possibility of retrieving 3D
models only based on the reliefs that are present on their surface and to
compare methods that are suitable for this task. This problem is related to
many real world applications, such as the classification of cultural heritage
goods or the analysis of different materials. To address this challenge, it
is necessary to characterize the local ”geometric pattern” information,
possibly forgetting model size and bending. Seven groups participated
in this contest and twenty runs were submitted for evaluation. The per-
formances of the methods reveal that good results are achieved with a
number of techniques that use different approaches.

1 Introduction1

Figure 1: A visual representation of the challenge proposed in this contest. A
query model Q with a bark-like relief impressed on its surface is selected. In
the ideal case, models with a bark-like relief are retrieved before than models
with different reliefs, independently of the global geometry of the models. The
”check” and ”cross” marks highlight models that are relevant or non-relevant
to the query.

Geometric reliefs are a significant component for the local characterization2

of a surface, which are independent of its overall shape and spatial embedding.3

Being able to characterize different repeated relief patterns on a surface is a4

key issue for several tasks, such as the analysis and detection of molding marks,5

composite materials and ornamental decorations on an object surface. The6

characterization of this local surface property is an open problem that is gaining7

more and more interest over the years.8

Several methods have been introduced for the characterization of local, re-9

peated, geometric variations on a surface, showing this is a vivid research field.10

In the set of methods that face this problem, we distinguish two main strate-11

gies: i) to (fully or partially) project a 3D model into an image or a set of12

images and then apply a texture image retrieval method; ii) to extend the im-13

age texture characterization directly to 3D model representations. Examples14

of methods that face this problem as an image texture retrieval problem have15

been proposed for the classification of trees based on their bark reliefs [34] or the16

classification of engraved rock artifacts based on their height-fields [52]. In this17

trend, the combination of the SIFT descriptor with the Fisher Vector, which18

gave very good performances for image texture retrieval [16], has shown very19
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good performances also for the retrieval of relief patterns [19]: in this case, rep- 1

resentative surface images were obtained by projecting the mean curvature of 2

the neighborhood of the center of the model. Methods that directly use 3D rep- 3

resentations are generally designed for triangle meshes or point clouds, because 4

these representations allow a precise and locally adaptive representation of the 5

surface that is less accessible with grids (e.g., voxels). This class of methods 6

includes the numerous extensions of the the Local Binary Pattern (LBP) [32] 7

proposed in recent years. The first of these extensions was the meshLBP [48, 47], 8

followed by the edgeLBP [26, 27, 28, 11, 31] and the mpLBP [29, 30]. Besides 9

the different strategies to encode the neighbour of a vertex, the main idea be- 10

hind these LBP-based 3D characterizations is to replace the gray-scale value in 11

the pixels of an image with geometric or colorimetric properties (e.g., curvatures 12

or color channels) defined on the faces or the vertices of the model. Recently, 13

also the multi-scale properties of the Laplacian operator have been used in [33] 14

to obtain a scale-aware surface description. In this case, the parts of interest 15

are obtained by analyzing the difference between a surface and its counterpart 16

obtained by smoothing. 17

Based on the increasing number of methods for 3D pattern retrieval made 18

available in recent years, we think it is now important to understand how much 19

existing methods are suitable to address realistic applications. The aim of this 20

SHREC 2020 track is to provide a new benchmark for geometric pattern retrieval 21

and to evaluate methods for assessing the similarity between two objects, only on 22

the basis of the local, geometric variations of their surfaces, without considering 23

their global shape. Our new collection of 3D models is characterized by different 24

classes of reliefs on the models surface. A visual representation of the task 25

addressed in this contest is shown in Figure 1. 26

These reliefs represent different kinds of materials, like bark wood or rocks, 27

and structures, like bricks. The peculiarity of the models proposed in this 28

contest is that a realistic geometric pattern (derived from real texture images) 29

is applied to a number of base models, some of those have a non-trivial topology 30

(with handles, tunnels, boundaries, etc.). 31

The remainder of the paper is organized as follows. Section 2 briefly overviews 32

existing datasets and benchmarks that address the geometric pattern retrieval 33

or strictly related tasks. Section 3 describes the 3D models used in this chal- 34

lenge and details how they have been generated from a base model and a set 35

of real textures. Section 4 details the eight methods submitted to this contest, 36

while Section 5 introduces the methodology and the measures used to evaluate 37

the different runs. Section 6 presents the settings of the runs submitted to this 38

contest and their retrieval and classification performances. Finally, discussions 39

and concluding remarks are in Section 7. 40

2 Related benchmarks 41

The interest for geometric pattern analysis has been borrowed from image tex- 42

ture analysis, which is a typical problem of Computer Vision. To the best of 43
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our knowledge, the first dataset explicitly delivered for 3D texture analysis was1

the ”MIT CSAIL Textured Models Database” [1]. During years, several fac-2

tors have concurred to the increase of collections of 3D models equipped with3

textures; for instance, the improvement of the spatial data acquisition systems4

that also allow the representation of the surface details; the increase of applica-5

tions interested in the comparison of 3D models on the basis of their texture or6

material and, even, the success of benchmarks and methods for image texture7

retrieval [16].8

Without aiming to list all the existing general purpose data collections that9

contain some model equipped with a 3D texture (e.g., Skechfab [3] or Tur-10

bosquid [5]), we focus on benchmarks for similarity evaluation that provides11

also a ground truth and a number of evaluation measures. Several previous12

SHape REtrieval Contest (SHREC) tracks are somehow related to our chal-13

lenge. The first SHREC track that partially faced the problem of local surface14

characterization is the SHREC’13 track on retrieval and classification of 3D15

textured models [13], extended the SHREC’14 track [9] with the same task but16

a larger dataset. A complete analysis of the methods tested on those contests17

was published in [10]. Differently from this contest that only focuses on local,18

geometric surface variations, there, the task was to group models based on their19

overall shape and their colorimetric texture. In other words, models that were20

globally similar but with different textures were less similar than those with21

the same shape and texture. While in the SHREC’13 and SHREC’14 tracks,22

texture analysis was colorimetric and only marginal, here it is geometric and23

the only aspect that drives the similarity among models.24

The interest on geometric reliefs shaped into the SHREC’17 track on the25

retrieval of reliefs [11]. There, fabrics with different patterns were acquired with26

photogrammetry and used to create a benchmark for the pattern retrieval task.27

That benchmark entirely focused on the local characterization of surfaces based28

on patterns and it is currently used as the reference benchmark by many of29

the works on this topic. The high number of subscribers to that track, but the30

quite limited number of effective runs submitted to the track revealed the high31

interest in the subject and the difficulty in facing that task. Aside from some32

highlights, the methods submitted to the original contest showed quite limited33

performances, later on the research on this topic progressed, several methods34

have been proposed and successfully tackled such a benchmark. On a similar35

note, the SHREC’18 track on gray patterns [31] proposed a retrieval task on36

a dataset of models characterized by gray-scale patterns. Interestingly, all the37

participants proposed feature-vector based methods.38

It is also worth mentioning the SHREC’18 track on geometric pattern recog-39

nition [12] that differs from the previous benchmarks on 3D pattern retrieval40

because the participants were asked to locate a query relief sample in a set of41

3D models. The challenge was to recognize if a type of geometric pattern is42

contained or not in another model and, eventually, to identify it on the model.43

The challenge launched in that task is still an open problem and that track44

report can be considered as a position paper on 3D pattern recognition.45

Based on the progresses made in recent years, it is now important to analyse46
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how much the performance of the various approaches has improved compared to 1

the methods presented in the SHREC’17 track [11], while bearing in mind that 2

the more general issue of 3D pattern recognition presented in the SHREC’18 3

track [12] is still open. 4

Figure 2: An example of the transformation process from texture to height map.
On the left, the original textures are shown. On the right, the final height-map
obtained with the process explained in Section 3. This process can end with a
binary image (just black and white, as in the example at the Top) or a gray-scale
one (like that at the Bottom).

3 The dataset 5

The dataset proposed for this challenge consists of 220 triangulated surfaces. 6

Each one of them is characterized by one of 11 different geometric reliefs. 7

To create the models, we selected the 20 base models already used in [31]. 8

These models represent pots, goblets and mugs. The surfaces of these models 9
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Figure 3: (Left): the 20 base models on which the reliefs are applied. (Cen-
ter): the 11 transformed textures used as height-fields on the base models (the
brighter the color, the higher is the value of the field in that point). (Right): a
sample of the final models of the dataset of the contest.

are properly oriented and they are made of a single connected component. The1

topology of some models is non trivial (they may contain handles or tunnels)2

and may present a boundary, depending on the object represented. Then, a set3

of 11 textures is selected from the free dataset of textures available online from4

the site Texture Haven [4] that contains a set of natural, high quality texture5

images made from scanned maps. Most of these textures represent real bricks,6

floors, roofs surfaces and rock or wood materials.7

Given the nature of the textures selected, on the one hand, models of build-8

ings or their agglomerates would be the most realistic; on the other hand, we9

think that in 3D pattern retrieval the most challenging issue is to deal with10

free-form models, possibly with more complex bendings and non trivial topol-11

ogy. Given the heterogeneity of the textures selected and the geometry of the12

base models, methods that perform well in this contest have a high chance of13

being equally valid in other contexts, with little to no changes.14

We transform each texture in height values suitable to create a geometric15

relief by converting each texture into a gray-scale image. The brightness and16

the contrast values of each image were tuned for each image, based on the values17

that better enhance the details of the respective color texture. The obtained18

height field map is applied to the models: initially, the texture is projected onto19

the target model. Depending on the surface bending, this procedure deforms20

the texture. To limit this effect, each model is fixed by hand, in particular, in21

correspondence of significant distortions and parts of the surface with complex22

geometry (like tight handles). Finally, we rise the vertices of the triangle mesh23

based on the gray-scale value of the previously processed image along the normal24

vectors of the models. The same process is repeated for all the textures. A25

couple of examples of the conversion of a texture into a height map are depicted26
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in Figure 2. 1

Finally, the models are slightly smoothed to minimize the perturbations in 2

the color derived from the gray-scale conversion of the textures and the models 3

are sampled with 50000 vertices. Base models, height fields and examples of the 4

final 3D models are shown in Figure 3. 5

The Ground Truth 6

The challenge proposed in this contest is to group the models only according 7

to the geometric reliefs impressed on them, rather than their shape. In other 8

words, a perfect score is obtained if a method is able to define 11 groups of 20 9

models each, each group with the models characterized by one of the 11 different 10

geometric reliefs. 11

4 The participants and the proposed methods 12

Seven groups subscribed to this track. All of them submitted at least one 13

method; one group submitted two methods; overall, eight methods and twenty 14

runs were submitted to evaluation. The participants are anonymous for review 15

for and their proposed method(s) are summarized in the following. 16

4.1 Augmented Point Pair Feature Descriptor Aggrega- 17

tion with Fisher Kernel (APPFD-FK) by Ekpo Otu, 18

Reyer Zwiggelaar, David Hunter, Yonghuai Liu 19

The Augmented Point Pair Feature Descriptor (APPFD) is a 3D object de- 20

scriptor made of local features that capture the geometric characteristics or 21

properties of a set of surface patches, each centred at a point (i.e. a keypoint) 22

pki = [x, y, z], which incorporates the geometrical relation between pki and its 23

r-nearest neighbors (i.e. the surface patch around pki). The APPFD algorithm 24

consists of the following stages: point cloud sampling, surface normals estima- 25

tion, keypoints determination, local surface patch (LSP) selection, Augmented 26

Point-pair Features (APPF) extraction and keypoints descriptor (APPFD) com- 27

putation for LSPs. While the APPF extraction and APPFD algorithms are 28

described in detail here, the reader is referred to the literature in [35] for more 29

details on the other stages. Finally, the Fisher Kernel approach to local descrip- 30

tor aggregation with Gaussian Mixture Model (GMM) [22, 39] is applied to the 31

local APPFD to derive a single signature, APPFD-FK, for each 3D shape. Fig- 32

ure 5 shows the processing pipeline of the APPFD-FK algorithm. The three 33

main steps of the algorithm are outlined in the following: 34

1. Augmented Point Pair Feature Descriptor (APPFD): The APPFD is de- 35

rived by three sub-steps: i) For each LSP extracting four-dimensional 36

local Point-Pair Feature (PPF), f1 = (α, β, γ, δ) as in [46], ii) Aug- 37

menting f1 to a six-dimensional feature - the Augmented PPF, using 38
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additional two-dimensional local angular feature, f2 = (θ, φ), depicted1

in Figure 4, and iii) Discretizing the six-dimensional augmented feature2

f3 = (α, β, γ, δ, θ, φ) into one or multi-dimensional histograms to yield the3

final local APPFD. Firstly, extracting PPF involves two sets of oriented4

points, pi, pj = [(pi, ni), (pj , nj)], used to encode the underlying surface5

geometry for their patch on a 3D surface. For every possible combination6

q of pi, pj in LSP (i.e. r-neighbourhood of pki), where pi is the source7

point w.r.t. the constraint in (1) holding TRUE, where i 6= j, then a8

transformation independent Darboux frame, Df = U, V,W is defined as:9

U = ni, V = U × ((pj − pi)/δ), W = U × V .10

|ni · (pj − pi)| ≤ |nj · (pj − pi)| (1)

Alternatively, pj becomes the source point (i.e. point with the larger an-11

gle between its associated normal and the line connecting the two points)12

if the constraint in (1) is FALSE, and the variables in (1) are reversed.13

f1(pi, pj) = (α, β, γ, δ) is then derived for the source point as follows:14

α = arctan(W · nj , U · nj), α ∈
[
−π

2
,
π

2

]
(2)

β = V · nj , β ∈ (−1, 1) (3)

γ = U · pj − pi
‖pj − pi‖

, γ ∈ (−1, 1) (4)

δ = ‖pj − pi‖. (5)

Secondly, f2(pi, pj) = (θ, φ) is extracted for every possible combination15

of point-pair, pi, pj in the LSP, because f1 is not robust enough to cap-16

ture the entire geometric information for a given surface region or LSP. In17

addition, the PPF approach opens up possibilities for additional feature18

space. Therefore, as illustrated in Figure 4, θ is geometrically the angle19

of the projection of the vector,
−→
S onto the unit vector

−→
V1, and φ is the20

angle of the projection of the vector
−→
S onto the unit vector

−→
V2, where21 −→

V1 = pi − pc,
−→
V2 = pi − l, and

−→
S = pi − pj , with pc = 1

ni

∑ni

i=1 pki (i.e.22

LSP centroid), and l = (pj − pc), the vector location of pki w.r.t. its LSP.23

Note that pi, pj , pc, and l are all points in R3 space, although l is a vector.24

25

Basically, α, β, γ are the angular variations between (ni, nj), while δ is26

the spatial distance between pi and pj . In Euclidean geometry, each of27

the projections φ and θ can be interpreted as an angle between two vec-28

tors. For example ∠1〈
−→
S ,
−→
V1〉 and ∠2〈

−→
S ,
−→
V2〉 are equivalent to θ and φ29

respectively. These angles are derived by taking the scalar products of30

(
−→
S ·
−→
V1) for ∠1, and (

−→
S ·
−→
V2) for ∠2 about a point pi in a given LSP. Math-31

ematically, scalar products defined in this manner are homogeneous (i.e.32

invariant) under scaling [50] and rotation [24]. For this reason, our two-33

dimensional local geometric features, θ, φ are rotation and scale invariant34
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for 3D shapes under rigid and non-rigid affine transformations. Moreover, 1

notice that since geometric information are embodied by these variations 2

and projections, the global shape of the 3D shape is not considered at all. 3

Lastly, for each LSP or keypoint, pki with q combinations, q(q − 1)/2 4

six-dimensional APPF: f3 = (f1 + f2) is obtained thus: f3(pi, pj) = 5

(f1(pi, pj), f2(pi, pj)) = (α, β, γ, δ, φ, θ) and descritized into histograms 6

to yield APPFD. In computing APPFD for this task, 4500 points and 7

their normals, (P,N) were sampled from each 3D surface, K keypoints, 8

{pki , i = 1 : K} were selected and for each pki , a LSP, {Pi, i = 1 : K} and 9

their corresponding normals, {Ni, i = 1 : K} were computed. Points in Pi 10

are within the specified radius, r = 0.30− 0.40 around pki . 11

12

For our first and second experimental runs (APPFD-FK-run1 and APPFD- 13

FK-run2) a one-dimensional [0, 1] normalized histogram with bins = 35 14

is used to represent each of the feature-dimension in APPF, concatenated 15

to yield a final 6 times 35 = 210-dimensional local descriptor for each 16

LSP or keypoint. In our third experimental run (APPFD-FK-run3) all 17

six-dimensional feature in APPF are discretized into a multi-dimensional 18

histogram with bins = 5 in each feature-dimension, flattened and nor- 19

malized to give 56 = 15625-dimensional local descriptor for each LSP or 20

keypoint. 21

2. Keypoint APPFD Aggregation with Fisher Vector (FV) and Gaussian Mix- 22

ture Model(GMM): Inspired by the work in [22, 39], the final stage of our 23

novel APPFD-FK algorithm consists of computing a global FV for each 24

input 3D shape given their keypoint APPFDs. The FV computation relies 25

on training a GMM, as a generative probabilistic model, with the keypoint 26

APPFDs for all database shapes. The GMM is trained with 10 Gaussians, 27

using diagonal covariances for all experimental runs. Using the trained 28

GMM and local keypoint APPFDs for a given 3D shape, a final global FV 29

which is L2 and power-normalized (so it has unit length) is computed with 30

the help of [2]. Then, for local APPFD with 210 and 15625 dimensions, 31

FVs with 4210 and 312510 dimensions, respectively are returned, which 32

represent a single 3D shape. However through experimental findings, ap- 33

plying linear dimensionality reduction (in our case principal component 34

analysis, PCA) to either of the 4210 or 312510 dimensional FVs remain- 35

ing 99% of their information reduces them to 162 or 186 respectively, and 36

still yield close matching results. 37

3. Shape Similarity Measurement: Overall, the L2 or cosine distance metric 38

between FVs is expected to give a good approximation of the similarity 39

between shapes in the sc20-relief-rc dataset. The cosine metric in (6) is 40
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adopted, instead.1

cos(FV1,FV2) =
FV1 · FV2

‖FV1‖ ‖FV2‖

=

∑n
i=1 FV1iFV2i√∑n

i=1 (FV1i)2
√∑n

i=1 (FV2i)2

(6)

Figure 4: Local Surface Patch (LSP), Pi with pairwise points (pi, pj) as part of a
surflet-pair relation for (pi, ni) and (pj , nj), with pi being the origin. θ and φ are the
angles of vectors projection about the origin, pi. θ is the projection angle from vector
〈pi − pj〉 to vector 〈pi − pc〉 while φ is the projection angle from vector 〈pi − pj〉 to
vector 〈pi − l〉. The LSP centre is given by pc, keypoint is given as pki where i = 2.
Finally, l is the vector position of pki − pc.

4.2 Orientation Histogram (OH) and Deep Feature En-2

semble (DFE) by Hoang-Phuc Nguyen-Dinh, Minh-3

Quan Le, Hai-Dang Nguyen and Minh-Triet Tran4

This group submitted two different methods, with three runs each. Since the5

two methods share the pre-processing steps, we describe both methods in this6

Section. As the goal of the track is to retrieve 3D models based only on the7

relief of their surfaces and not the shape of the 3D models, the authors do not8

exploit the 3D mesh directly but take the 2D screenshots of the 3D models.9

Best view among multiple 2D screenshots is selected by searching the maximum10

inscribed rectangle.11

4.2.1 Orientation Histogram (OH)12

1. Uprighting and rendering a 3D object: The first step is to upright the13

3D object by transforming the object into a new 3D coordinate system so14

that the object stands vertically across the y-axis for the ease of rendering.15
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Figure 5: Overview of the APPFD-FK framework, which computes a global Fisher
Vector (FV) for each 3D shape.

That could be done by finding the eigenvector of all the vertices of the 1

object and then choose the normalized version of it (called vector j′) to 2

be the O′y axis of the new system. The two remaining axes O′x and O′z 3

are chosen randomly, satisfying that all the three vectors are unit vectors 4

and pairwise orthogonal. The origin of the new system is the centroid of 5

the object. Moving the camera around the O′y axis, many 2D images of 6

the object are sampled. Among these, the image having the most relief 7

patterns is selected. As plain images would have fewer points at which the 8

gradient vectors equal to zero and vice versa, the Sobel Filter [23] is used 9

to calculate the gradients of an object’s rendered images. The image with 10

the most non-zero gradient vectors is set to be the one representative of 11

this object. An overview of this step is shown in Figure 6. 12

2. Finding the largest inscribed square: In order to remove the global shape 13

of the object and focus on the local reliefs, the largest inscribed square 14

of the object on the 2D image is extracted, which means selecting the 15

largest region of only relief patterns. This is done by solving the problem 16

of finding the largest square with no white points inside of it (because 17

white points are background). The latter problem is resolved by using a 18

simple binary search algorithm with the complexity of N2 ∗ logN (N is 19

the greater value between the width and the height of an image). After 20
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this step, each 3D object has one representing a 2D square image.1

3. Feature extraction: The goal of this step is to represent every image2

after the second step as feature vectors with the length of N. Such vector3

is obtained with the method of counting the “gradient histogram” of an4

image. Specifically, in each image, first, Sobel Filter [23] is used to find the5

gradient vectors of every point and derive their modules and their angles6

with the Ox axis. Second, a histogram with the number of bins being N,7

ranging from −π/2 to π/2, is computed on the frequency of the calculated8

angles. Every angle is counted with the weight of its corresponding vector’s9

module instead of one as usual. Furthermore, the weight of a sample is10

distributed to the two nearest bins with a suitable ratio instead of just11

one. This histogram could describe the direction and size of the relief on12

an image. The histogram is then normalized by making the sum across13

N bins be 1 and translating the histogram so that the highest bin is the14

first bin (ranged from −π/2 to π/2 + π/n). Every histogram is saved as a15

1D-array called the feature vector of the image.16

4. Creation of the Dis-similarity Matrix: The distance between pairs of 3D17

objects is calculated on their feature vectors using suitable metrics, such as18

L1 distance, L2 distance, chi-square distance, cosine-distance, etc.. The19

original distance matrix is then created by calculating the distance be-20

tween every pair of vectors. Authors aim to further exploit the visual re-21

lationships of an object x and its neighbors with another object y. There-22

fore, the authors use the Average Query Expansion (AQE)[6] to modify23

the original distance matrix (see Figure 7. Let R(x) be the list of the24

nearest neighbors (in the ascending order) of the object x. The modified25

distance between object x and object y is defined as follows:26

distAQE(x, y) = α× dist(x, y) +
1− α
k
×

k∑
i=1

dist(R(x)i, y)

where dist is the original distance, dist AQE is the modified distance ma-27

trix, k and α are hyperparameters.28

An overview of these last two steps is shown in Figure 8. The runs submitted29

to the track differ for the number of bins and the metrics for the feature vectors,30

their settings are described in Section 6.1.31

4.2.2 Deep Feature Ensemble (DFE)32

This method shares the first two steps (i.e., the model pre-processing steps) with33

the method described in Section 4.2.1. The third and fourth steps are described34

in the following.35

3. Use of pre-trained models to extract features: With the advances of deep36

learning, especially pre-trained Convolutional Neural Networks (CNNs),37
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Figure 6: Overview of the pre-processing steps for the OH and DFE methods.

the authors propose using these pre-trained models to extract features 1

of each pattern. Many high-performance models such as ResNet [20], 2

DenseNet [21], VGG [40], and Efficient-Net [43] suit this purpose. 3

A common approach is to use an extracted feature vector from a pre- 4

trained network as the input for classification. However, the output at 5

each layer in a pre-trained model offers different high-level information 6

about the textures in the original input. Therefore, the authors propose 7

to synergize the information extracted from different intermediate layers 8

of different pre-trained networks by assembling feature vectors. 9

The authors choose intermediate layers instead of the last ones because 10

features extracted in the middle layers would be more appropriate to repre- 11

sent information of the simple patterns on the texture input image. First, 12

the authors pass a square image containing patterns into a pre-trained 13

neural network. Then, the authors take the output tensor of a chosen 14

intermediate layer of that network with the shape of (h, w, channelsize). 15

After that, the authors pass the tensor through a Global Average Pooling 16

Layer to create a vector with a length of (channelsize,) used as a fea- 17

ture vector. By using Global Average Pooling, the authors pick up all 18

requisite activated features without missing any of them as using Global 19

Max Pooling and make the result more robust to spatial translation in the 20

image. Finally, the authors multiply each feature vector by a parameter 21

(see Section 6.1) and concatenate them into one single final feature vector. 22

A visual representation of the way authors ensemble the feature vectors 23

from different layers in different models is shown in Figure 9 24

4. Creation of the Dis-similarity Matrix: After extracting features by the 25

method described above, each object is represented as a feature vector. 26

Such vectors are used to calculate distance between all pairs of objects 27

(with metrics such as cosine similarity, L1 distance, L2 distance, etc.). 28

Besides, the authors combine Average Query Expansion (AQE)[6] with a 29

view to helping our model to remove noises. 30

13
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Figure 7: Overview of the Average Query Expansion used in OH and DFE.

The pipeline of DFE method is summarized in Figure 10. The authors consid-1

ered many single pre-trained models.; the pre-trained models considered in the2

runs submitted to this track are described in Section 6.1.3

4.3 Deep Patch Metric Learning (DPML) by Leonardo4

Gigli, Santiago Velasco-Forero, Beatriz Marcotegui5

This method works in two main steps. The first one involves the extraction of6

patch images from the mesh surfaces, to decorrelate information about relief7

from the global shape of the mesh. The second step uses these patches to train8

a Siamese Neural Network [15] to learn a distance function between each pair9

of images.10

1. Patch extraction: The goal is to extract images containing only the lo-
cal texture. Let us define a triangle mesh S ⊂ R3, along with a graph
GS = (V, E) associated to S, that is the graph whose nodes are the points
(x1, . . . , xn) of S. Two nodes are connected if and only if they are ver-
tices of one of the triangles of S at the same time. With this setting, the
method starts sampling a subset of points (x1, . . . , xn) ∈ S using Poisson
Disk Sampling [51]. Then for each point xi, using the geodesic distance
defined over the graph GS , a local neighborhood is defined. In particular,

14
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Figure 9: Illustration for step three ”Extracting Feature by concatenating fea-
ture vectors from different layers of pre-trained models” of the DFE method
(the figure illustrates the step when using Dense-Net-201).

the geodesic distance d between two points xi and xj is the length of the
shortest path connecting them. Thus, given r > 0, the local neighborhood
is defined as Nr(xi) = {xj ∈ V|d(xi, xj) ≤ r}. The goal is to project the
local neighborhood over a plane and obtain an elevation image. For this
reason, only the neighborhood that are as flat as possible are selected. To
estimate such a property, the covariance based features are used. Those
features are derived from the eigenvalues λ1 ≤ λ2 ≤ λ3 of the neighbor-
hood covariance matrix defined as:

cov(Nr(xi)) =
1

|Nr(xi)|
∑

x∈Nr(xi)

(x− x)(x− x)T

and x is the centroid of the neighborhood Nr(xi). The following criteria 1

are used to estimate if the neighborhood is flat enough: 2

• criterion on planarity: λ2−λ3

λ1
≥ 0.5, 3

• criterion on the change of curvature: λ3

λ1+λ2+λ3
≤ 0.03. 4
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method (DFE).

Figure 11: Pipeline of the first step of the DPML method.

The two values have been chosen empirically after some test over different1

objects. Validated neighborhoods are projected over the tangent space2

of the surface at xi. A regular grid is defined over the tangent space,3

and each element of the grid corresponds to a pixel of the image. The4

intensity values of the image correspond to the distance between the points5

projected over the element and the tangent plane. In order to obtain6

a uniform sized patch the method crops them to obtain images of size7

231 × 231 (equal to the smallest image extracted with this process). For8

each patch, crops are computed so that there is the minimum number9

of void pixels in each image. An overview of this process is reported in10

Figure 11.11

2. Learning the embedding: The selected images are used to train a Siamese12

neural network with the Triplet Loss. The architecture is composed of13

three CNNs sharing the same weights. In this case the VGG16 [41], with-14

out fully connected layers, is chosen as CNN. The CNNs work in parallel15

taking as input a triplet of images and generating a comparable feature16

vectors, as shown in Figure 12. The Triplet Loss minimizes the distance17

between an anchor and a positive, both of which have the same iden-18

tity, and maximizes the distance between the anchor and a negative of a19

different identity, i.e. an image from a different object [14].20

16



Figure 12: Overview of the network of the DPML. Such network consists of a
batch input layer and a deep CNN which results in the image embedding by
using a triplet loss during training.

Finally, the distance ∆ between two objects Si and Sj is defined as the
minimum distance between any couple of images belonging to the two
surfaces:

∆(Si,Sj) = min
h,k∈{1,...,mi}×{1,...,mj}

δ(Ih, Ik),

where δ(Ih, Ik) is the similarity function learned by the Siamese neural 1

network. 2

The authors submitted two runs for this method. The different parameter set- 3

tings are reported in Section 6.1. 4

4.4 Signature Quadratic Form Distance and PointNet (Point-5
Net+SQFD) by Ivan Sipiran and Benjamin Bustos 6

This method consists of computing the distance between two shapes using 7

the Signature Quadratic Form Distance [8] (SQFD) over descriptions of local 8

patches. The SQFD distance has proven to be effective in large-scale retrieval 9

problems where shapes are represented as sets of features [42]. This approach 10

focuses the attention in the relief (instead of the entire shape) by decomposing 11

the shape into local patches and describing the local patches using a neural net- 12

work. Subsequently, authors compute aggregated features that keep the local 13

variability of the patches. Finally, the SQFD distance is used to compare two 14

signature collections. 15

Given the 3D shape M , the feature set FM contains descriptors for the 16

shape. To use the SQFD distance, the feature set FM has to be clustered in 17

17



a set of disjoint descriptors, such that FM = C1 ∪ C2 ∪ . . . Cn. A signature is1

computed for each cluster, defined as SM = {(cMi , wMi ), i = 1, . . . , n}, where2

cMi =
∑

d∈Ci
d

|Ci| and wMi = |Ci|
|FM | . Each signature contains the average descriptor3

in the corresponding cluster and a weight that quantifies the representative4

power of the cluster with respect to the entire feature set. The clustering method5

uses an intra-cluster threshold (λ), and an inter-cluster threshold (β) and a6

minimum number of elements per cluster (Nm) to perform the grouping. For7

more details about the local clustering method, see [42].8

Given two objects M and N , and their corresponding signatures SM and
SN , the SQFD distance is obtained as follows:

SQFD(SM , SN ) =
√

(wM | − wN ) ·Asim · (wM | − wN )T ,

where (wM |wN ) denotes the concatenation of weight vectors. Matrix Asim
stores the correlation between averaged descriptors in the signature. The cor-
relation coefficient between two descriptors is defined as:

corr(ci, cj) = exp(−αd2(ci, cj)).

Given an input shape, p local patches of diameter diam are sampled. The9

first seed vertex is randomly selected from the shape, while the remaining ver-10

tices are chosen using a farthest point sampling strategy over geodesic distances.11

For each selected vertex, a local patch of diameter diam is computed, using a12

region growing method. Each local patch is used to obtain a point cloud that13

represents the patch. In all the submitted runs, a local patch is sampled with14

2500 points. For the description of a given point cloud, a PointNet neural15

network [36] is used. A PointNet network using the ModelNet-10 dataset [53]16

is pre-trained for the classification task. After training, the neural network is17

fed with the point clouds obtained from the previous procedure. The 1024-18

dimensional feature obtained by PointNet is used before the classification of the19

network.20

In the end, each shape in the dataset is represented by p descriptors of 102421

dimensions, which are finally used to compute the signatures and the SQFD.22

The other parameters that characterize the runs are the number and diameter23

of the patches. More details on these settings are reported in Section 6.1.24

4.5 Smooth-Rugged Normal Angle (SRNA) by Ioannis25

Romanelis, Vlassis Fotis, Gerasimos Arvanitis, Kon-26

stantinos Moustakas27

This approach outlines the geometric texture by using a per-vertex quantity28

and extracts a representative feature vector which is used to test against every29

other model in the database.30

Consider a smooth planar surface on which a transformation matrix T1(vi)31

is applied on each of its vertices, ”bending” it in such a way, that it forms32

a smooth cylinder (see Figure 11(b, left)). As is to be expected, T1(vi) is33
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different depending on vi. By applying a pattern on the planar surface, while 1

retaining one-to-one correspondence between the vertices, the surface of Figure 2

11(b, center) is obtained. The new vertices will have moved by some distance 3

εi from their original positions yielding v̂i = vi + εi. This surface can also be 4

morphed into a cylinder, using a transformation T2(v̂i). With sufficient vertex 5

density it is possible to state that T1(vi) ≈ T2(v̂i). 6

Since the transformation matrices affect not only the shape’s vertices, but 7

also its vertex normals, we can conclude that the angle between the normal 8

vectorsni (smooth) and n̂i (with pattern) is preserved on both the plane and 9

the cylinder. This implies that the quantity θi = ∠(ni, n̂i) is not affected by 10

the underlying geometry and depends solely on the pattern. A small error is 11

introduced in cases where the vertex density is not sufficient, but the angles θi 12

remain a good descriptor of local features. 13

1. Laplacian Smoothing: The smoothing of the mesh is an iterative proce-
dure which adjusts the position of each vertex based on the position of its
neigborhood. The process is described by the following recursive equation:

pn
i = pn−1

i + λL(pn−1
i )

L(pn−1
i ) =

∑
j∈Ni

pn−1
j · wij∑

j∈Ni

wij
− pn−1

i

wij =
√

(pj − pi) · (pj − pi)T

Authors set 30 iterations with a smoothing factor λ = 0.7 in order to erase 14

the pattern from the meshes. An example of the final output of this step 15

is shown in Figure 13(a). 16

2. Theta Calculation: The normal vectors of the original and the smooth 17

models are computed as well as the angles between them. As can be seen 18

from the visualization in Figure 13(c), the angles outline the local features 19

with great precision. Thus, it can be concluded that the process can be 20

generalized to more complex shapes than planes and cylinders. 21

3. Surface Segmentation: In order to distinguish areas containing pure tex- 22

tures from those with little to no texture, authors use the magnitude of 23

the saliency si of the vertices, similarly to [25]. In particular, points with 24

small saliency are considered to lie on flat areas. Points with high saliency 25

are either part of a texture or lie in areas with significant geometric de- 26

formation. Generally, the latter points are few and far between, so they 27

are not taken into consideration. More precisely, for each vertex vi of the 28

mesh, a patch of the 20 closest geometrical neighbours (including vi) is 29
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created, together with a matrix Ni = (nT
1 nT

2 ... nT
N) of their normals.1

Afterwards the co-variance matrix is formed as:2

Ri = NT
i Ni ∈ R3×3 ∀ i = 1, · · · , n (7)

Decomposing the covariance matrix leads to Ri = UΛU−13

Finally, the saliency value of each vertex is computed as4

si =
1√

λ2i1 + λ2i2 + λ2i3
∀ i = 1, · · · , n (8)

where λ1i, λ2i, λ3i are the elements of Λ. Finally, k-means is used to5

cluster the points in the two aforementioned categories: with or without6

texture. The points that belong to the cluster with the smallest centroid7

are considered to be part of flat areas (4 centroids were used in total). The8

points have now been labeled but they are randomly scattered along the9

surface of the mesh. A density based clustering helps unify them into large10

textureless areas. A variation of the DBSCAN algorithm [17] is used to11

find and connect neighboring flat points. In this variation the connectivity12

of the mesh is used to define a one-ring topological neighborhood instead13

of a geometrical one. An arbitrarily large threshold of points (in this case14

1000) per area ensures that only large areas are classified as flat. The15

segmentation result is visualized in Figure 13(d).16

4. Feature Vector Extraction: Finally, a feature vector needs to be computed17

for each model. The feature vector is a concatenation of 2 histograms18

H1, H2(see Table 1) multiplied by the weights w1, w2 defined as follows:19

w1 =
number of points in the ”flat” areas

total number of points
(9)

20

w2 =
number of points in the ”texture” areas

total number of points
(10)

Probability normalization is applied to both histograms to bring the values21

between models to the same order of magnitude. It is important to note22

that while flat areas may also contain some minor characteristics of the23

texture (see Figure 13(d)), they have to be taken into consideration during24

feature vector extraction. Finally, the feature vector is equal to:25

FV = [w1 ·H1, w2 ·H2]; (11)

The distances between each model are computed using the Manhattan26

distance, which makes the calculation very efficient computation-wise. Fi-27

nally, the distance matrix obtained by comparing all the models is com-28

puted. While the method itself will take a significant amount of time to29

finish, it is highly parallelizable.30
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Histogram Description Value range

H1 angles in the ”flat” areas [0, π
4

]

H2 angles in the ”texture” areas [0, π
2

]

H3 st. dev. of the angles in the ”flat” areas [0, 0.5]
H4 st. dev. of the angles in the ”texture” areas [0, 0.5]

Table 1: Description and parameterization of the Histograms used for the feature
vector of the SRNA method. For every histogram a constant number of 30
uniformly sampled bins has been used.

(a) (b)

(c) (d)

Figure 13: Overview of the steps of the SRNA method. (a): on the left, the
original models with texture, while on the right the smoothed models without
texture. (b): On the left, a smooth cylinder; on the center, a plane with texture;
on the right, a cylinder with texture. (c): Theta angles visualization on different
models. (d): Thetas (on the left) and segmentation (on the right) of the same
model.

5. Neighborhood angle standard deviation: The method described so far only 1

depends on the set of θ angles of a mesh. As a variation of the previous 2

steps, the authors included some neighborhood information in the feature 3

vector. If two textures display similar angles but differ in their spatial 4

distributions they would otherwise be classified as the same. This extra 5

bit of information can help distinguish between them and improve the ac- 6

curacy of the method. However, computing a complex, rotation-invariant 7

spatial descriptor is by no means an easy task, so authors overcome this 8

problem by using the standard deviation of angles in small topological 9

neighborhoods (1 rings). If the normals of that area have a common ori- 10

entation the value will be small, whereas irregular areas will display much 11

larger values. Two more histograms H3, H4 (see Table 1) with weights 12

w3 = w1, w4 = w2 for the flat and texture areas are added to produce the 13

final feature vector. A distance matrix is finally computed as described in 14

the step 4. 15
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4.6 Mesh Local Binary Pattern (meshLBP*), meshLBP-1

Sobel and meshLBP-Sharpen by Claudio Tortorici,2

Naoufel Werghi, Ahmad Shaker Obeid and Stefano3

Berretti4

This method comprises four stages: (i) the extraction of patches from the object5

surface, (ii) the regularization of the patches tessellation, (iii) the computation6

of the descriptors, and finally, (iv) the generation of the dissimilarity matrix.7

Being based on a local patch analysis, this approach is intrinsically de-correlated8

from the global shape of the surface. These four steps are described down below.9

1. Patches extraction from the objects surface: Up to six points are selected10

on the surface, obtained intersecting the mesh surface with the three eigen-11

vectors of the covariance matrix centered at the center of mass of the object12

(see Figure 14(a)). This process, depending on the object shape, can de-13

tect 4 to 6 points on the mesh surface. Around each of these points a region14

is sampled (called patch), selecting only the vertices of the mesh within a15

given geodesical radius. Among those, the three patches with the largest16

ratio e2
e3

, where e2 and e3 are respectively the second and third eigenvalues17

associated to the eigenvectors of the covariance matrix of the patch. An18

example of the final outcome of this step is shown in Figure 14(b).19

2. Regularization of the patches tessellation: The three patches are then re-20

sampled by projection (PR) [49]. At first, (a) PCA is used to determine21

the two main axes of the sample that define a 2D plane of projection; (b)22

a uniform 2D grid of points is generated, which is then triangulated us-23

ing the Delaunay algorithm; (c) the points on the grid are projected back24

to the mesh surface using interpolation, while keeping their triangulation25

intact.26

3. Descriptor computation: Using the ORF structure (see Figure 15), it27

is possible to compute LBP patterns and perform convolution-like opera-28

tions locally and directly on the mesh. In particular, the authors use the29

ORF (as in [45]) as a tool to operate convolution on the mesh manifold,30

and represent them as Convolution Binary Pattern [45]. Leveraging on31

the ordered structure of the ORF, the authors redefine the convolution32

operator between a meshM and a filter F in polar coordinates as follows:33

(M∗F) =
∑
r

∑
θ

mr,θ · fr,θ , (12)

where mr,θ, and fr,θ are, respectively, a scalar function computed on the34

mesh and the filter values, both at radius r and angle θ. Subsequently, the35

response to the filter is used as input for the MeshLBP descriptor, thus36

obtaining a convolution binary pattern. Finally, the local descriptors are37

accumulated on a histogram computed over the entire patch surface.38

4. Dissimilarity matrix computation: To compare two models, authors com-39

pare all their patches together in a pair-wise manner using Bhattacharya40
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distance. The dissimilarity between the two models is obtained by accu- 1

mulating such distances. 2

Three runs have been submitted, changing the descriptor computed directly on 3

the mesh manifold. The descriptors used in the runs are listed in Section 6.1 4

4.7 Correspondence matching based on kd-tree Fast Li- 5

brary for Approximate Nearest Neighbors (kd-tree 6

FLANN) by Yoko Arteaga and Ramammorthy Lux- 7

man 8

This method is based on using the kd-tree Fast Library for Approximate Nearest 9

Neighbors (FLANN [18]) correspondence matching to match the query of the 10

other objects in the database. FLANN stands for Fast Library for Approximate 11

Nearest Neighbors and it is a method used for evaluating the correspondence 12

between two objects, by finding the distance between the extracted features. For 13

this context, the kd-tree radius is set to be 0.15. This method works essentially 14

in two steps: a pre-processing step that only extracts the surface information 15

and the application of the kd-tree FLANN method on such information. For 16

each patch, the authors detect points that are suitable for effective descrip- 17

(a)

(b)

Figure 14: Patches extraction for the meshLBP-* method. (a) Intersection
between the eigenvectors of the covariance matrix with the object surface to
select the candidate points for the patch extraction. (b) A sample model is
shown on the left, and the three extracted patches are reported on the right.
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Figure 15: ORF ordered structure, showing its construction procedure, the ordered
rings and its extension to multiple rings.

tion and matching, using uniform sampling keypoints detection method. Then,1

the local feature descriptor SHOT352 [44] is applied for each of the detected2

keypoints. The obtained features are then matched using KD Tree FLANN3

correspondence matching method. Notice that, instead of analysing the global4

shape, this method matches the features from the representative patches in or-5

der to de-correlate relief from shape. The criteria for choosing the patches is6

that the curvature must be minimum so it belongs to a flatter section of the7

object.8

The pre-processing step is done to speed up the retrieval and to ensure only9

texture information is used. First, 400 points within the object are chosen at10

random. From each of the 400 points, their 400 nearest neighbors are found.11

Then, the mean curvature and the normals of each of the 400 patches are found.12

The final patch used as the representative of the object is selected as follows: it13

must be the one with the lower mean curvature and the greater mean variance14

of the normals. That is because, if the mean curvature is low, the patch belongs15

to a flat area of the object with the least curvature from its global shape, while16

the highest mean variance of normals implies that this area has the highest17

distribution of peaks and valleys in the sample, i.e. more texture. An example18

of the extracted representative is shown in Figure 16.19

The kd-tree FLANN method is used to match the model representatives.20

Each entry of the dissimilarity matrix is equal to the inverse of the number of21

matches obtained as results from the kd-tree FLANN matching. If no matches22

are found, the value is set to 1.23

5 Evaluation measures24

We selected different evaluation measures for this SHREC track. The combina-25

tion of these measures gives us a global view of the various methods, highlighting26

various properties (goodness of the method per model, class, overall based on27

multiple criteria). These measures are well known performance measures in in-28

formation retrieval [37, 7] and many of them are already used in related SHREC29
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Figure 16: On the left, the final point cloud obtained after the conversion used
for the kd-tree FLANN method. On the center, the representative patch (in
blue) no the model. On the right, final extracted patch.

tracks [31, 11]. To better understand which measure does what, in the following 1

we describe the evaluation measures we are going to use. 2

Nearest Neighbor (NN), First tier (FT), Second tier (ST). These measures 3

checks the fraction of models in the query class also appearing within the top 4

k retrievals [38]. In the case of NN, k is 1 and corresponds to the classification 5

rate if the nearest neighbor classifier would be performed. Given a class of |C| 6

elements, k is |C| − 1 for the FT and k is 2 ∗ (|C| − 1) for the ST. Higher values 7

of the NN, FT and ST measures indicate better matches. These measures range 8

in the interval [0, 1]. 9

Normalized Discounted Cumulated Gain (nDCG). This measure is based on the 10

assumption that relevant items are more useful if appearing earlier in the list 11

of the retrieved items. The nDCG is based on the graded relevance of a result 12

with respect to the query. Then, the value is normalized with respect to the 13

ideal outcome of that query. 14

Average precision-recall curves, mAP and e-Measure (e). Precision is the frac- 15

tion of retrieved items that are relevant to the query. Recall is the fraction of 16

the items relevant to the query that are successfully retrieved. By plotting the 17

precision value with respect to the recall value we obtain the so called recall vs. 18

precision curve: the larger the area below such a curve, the better. In particular, 19

the precision-recall curve of an ideal retrieval system would result in a constant 20

curve equal to 1. For each query, we have a precision-recall (PR) curve. In 21

our context, results are evaluated on the mean of all the PR curves. The mean 22

Average Precision (mAP) corresponds to the area between the horizontal axis 23

and the average precision-recall curve and ranges from 0 to 1. The higher, the 24

better. The e-Measure (e) derives from the precision and recall for a fixed num- 25

ber of retrieved results (32 in our settings), [37]. For every query, the e-Measure 26

considers the first 32 retrieved items and is defined as e = 1
1
P + 1

R

, where P and 27

R represent the precision and recall values over those results, respectively. 28

Confusion matrix. To each run we associate also a confusion matrix CM , that is, 29

a square matrix whose order is equal to the number of classes in the dataset. For 30

a row i in CM , the element CM(i, i) gives the number of items which have been 31
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correctly classified as elements of the class i. The elements CM(i, j), with j 6= i,1

count the items of the class i which have been misclassified and j corresponds2

to the class in which they were wrongly classified. An ideal classification system3

should be a diagonal matrix. The sum
∑
j CM(i, j) equals the number of items4

in the class i. Generally, the confusion matrix is non-symmetric.5

Tier images. Similar to the confusion matrix, the tier image visualizes the6

matches of the NN, FT and ST. The value of the element T (i, j) is: black if j7

is the NN of i, red if j is among the (|C| − 1) top matches (FT) and blue if j is8

among the 2(|C| − 1) top matches (ST), where |C| is the number of elements of9

the class C. The models of a class are grouped along each axis so it is easier to10

interpret. With this configuration, the optimal tier image clusters the black/red11

square pixels on the diagonal.12

Receiver Operating Characteristic (ROC) curve and AUC value. ROC curves13

are largely used to evaluate the classification performance of a method and14

are suitable to assess retrieval issues, too. The ROC curve shows the ratio15

between False Positive Rate and True Positive Rate for each model at different16

classification thresholds. In our scenario, the classification thresholds are the17

number of models in each class (20) multiplied by a scalar value that goes from18

1 to the number of classes in the dataset (11). The higher the curve is the19

better. A quick comparison between the methods based on the ROC curves can20

be derived also by the AUC value (namely the area under curve value), which21

is the measure of the area under the ROC curve. The higher this value is, the22

better. Anyway, note that an AUC value of 0.5 means that the corresponding23

method is not able to classify the models at all. In this work, we consider the24

mean of all ROC curves.25

6 Description and evaluation of the submitted26

runs27

In this Section, the settings of the runs submitted for evaluation are detailed.28

Their outcome is presented with respect to the performance measures described29

in Section 5.30

6.1 Run settings31

In the following, the parameter settings of the runs submitted are listed. If32

an author sent a single run, the setting are those described in Section 4. The33

same happens if the runs of a single method differ more than ”just” different34

parameters.35

• APPFD-FK : two runs (APPFD-FK(run1) and APPFD-FK(run2) respec-36

tively) use a mono-dimensional, [0, 1] normalized histogram with 35 bins37

for each one of the feature-dimensions in the APPF; these histograms are38

concatenated to yield a final 6 x 35 = 210-dimensional local descriptor39
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for each LSP or key-point. In APPFD-FK(run3), the six-dimensional fea- 1

tures in the APPF are discretized into a multi-dimensional histogram with 2

5 bins for each feature-dimension, the histogram is then flattened and nor- 3

malized to give a 56 = 15625-dimensional local descriptor for each LSP or 4

key-point. 5

• OH : The authors sent three runs for this method, changing the number 6

of bins of the histogram or the metric used for the dissimilarity matrix 7

computation (or both). In particular, 8

– OH(run1): Number of bins: N = 200 - metric: modified L1 norm 9

– OH(run2): Number of bins: N = 200 - metric: modified cosine- 10

similarity. 11

– OH(run3): Number of bins: N = 128 - metric: modified L1 norm. 12

• DFE : The runs differ in the models used for transfer learning. The models 13

used in each run are listed in the following. 14

– DFE(run1): 15

∗ model 1: DenseNet201(layer pool3 pool) + Global Average Pool- 16

ing 17

∗ model 2: DenseNet201(layer pool4 pool) + Global Average Pool- 18

ing 19

∗ model 3: DenseNet169(layer pool3 pool) + Global Average Pool- 20

ing 21

The authors ensemble the three models above with the ratio of weights: 22

model1 : model2 : model3 = 2 : 1 : 1, using the Cosine distance as 23

metric. 24

– DFE(run2): Same model settings as DFE(run1), using Euclidean 25

distance as metric. 26

– DFE(run3): 27

∗ model 1: ResNet152(layer conv4 block36 out) + Global Average 28

Pooling 29

∗ model 2: ResNet152(layer conv5 block3 out) + Global Average 30

Pooling 31

∗ model 3: ResNet101(layer conv4 block23 out) + Global Average 32

Pooling 33

The authors ensemble the three models above with the ratio of weights: 34

model1 : model2 : model3 = 2 : 1 : 2, using the Cosine distance as 35

metric. 36

• DPML: The runs differ in the way the patches generated are pre-processed 37

and in the use of data augmentation. 38
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– DPML(run1): once obtained the patches authors uniformed them1

cropping to obtain images of size 231 × 231. No data augmentation2

has been used in this run.3

– DPML(run2): Same model as in Run 1. This time instead of cropping4

patches, authors padded them with zero-values to the size of the5

biggest patch that is 836 × 836. Furthermore, during training data6

augmentation was applied rotating input image with random angles7

and also flipping vertically and horizontally.8

• PointNet+SQFD : All the runs used the following clustering parameters:9

λ = 0.3, β = 0.4 and Nm = 10. The other settings are listed in the10

following:11

– PointNet+SQFD(run1): number of patches p = 100 of diameter12

diam = 0.1 of the diagonal of the bounding box of the shape.13

– PointNet+SQFD(run2): number of patches p = 200 of diameter14

diam = 0.05 of the diagonal of the bounding box of the shape.15

– PointNet+SQFD(run3): number of patches p = 500 of diameter16

diam = 0.025 of the diagonal of the bounding box of the shape.17

In all the submitted runs, α = 0.9 and d is the L2 distance.18

• SRNA: Two runs have been proposed for this method:19

– SRNA(run1); this run corresponds to the outcome of the first four20

steps of the method described in Section 4.5;21

– SRNA(run2): this run corresponds to the variation of the SRNA22

method that includes also neighbour information as described in the23

step five of Section 4.5.24

• meshLBP-* : the descriptors used in each of the three runs submitted are:25

– (meshLBP-so): Sobel filter;26

– (meshLBP-sh): sharpen filter;27

– (meshLBP): MeshLBP.28

6.2 Results29

Table 2 summarizes the performances of all the twenty runs submitted for eval-30

uation, namely each column of the Table reports the label of each run, the31

Nearest Neighbour (NN), the First Tier (FT), the Second Tier (ST), the nor-32

malized Discounted Cumulated Gain (nDCG), the e-measure (e) and the AUC33

value, respectively. The best performances for each measure are highlighted in34

bold. Many methods achieve good or very good performances. For example, 435

methods have an NN value above the level of 0.9, i.e. they have a classification36

rate above 90%. Similarly, the same 4 methods have the mAP value greater37
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NN FT ST mAP nDCG e AUC

APPFD-FK(run1) 0.186 0.204 0.332 0.235 0.523 0.211 0.672

APPFD-FK(run2) 0.132 0.186 0.299 0.212 0.497 0.192 0.632

APPFD-FK(run3) 0.186 0.192 0.318 0.228 0.507 0.203 0.682

OH(run1) 0.791 0.406 0.567 0.470 0.737 0.377 0.817

OH(run2) 0.750 0.374 0.517 0.418 0.709 0.341 0.779

OH(run3) 0.714 0.405 0.575 0.469 0.732 0.382 0.818

DFE(run1) 0.982 0.920 1.000 0.930 0.974 0.715 0.987

DFE(run2) 0.982 0.913 1.000 0.926 0.973 0.714 0.986

DFE(run3) 0.982 0.865 1.000 0.896 0.963 0.693 0.980

DPML(run1) 0.900 0.836 0.990 0.868 0.941 0.686 0.974

DPML(run2) 0.982 0.887 0.992 0.912 0.968 0.690 0.978

PointNet+SQFD(run1) 0.095 0.095 0.184 0.168 0.440 0.113 0.569

PointNet+SQFD(run2) 0.077 0.099 0.203 0.171 0.442 0.122 0.582

PointNet+SQFD(run3) 0.173 0.119 0.225 0.190 0.470 0.137 0.605

SRNA(run1) 0.905 0.493 0.670 0.548 0.802 0.447 0.869

SRNA(run2) 0.923 0.494 0.683 0.563 0.811 0.453 0.882

meshLBP-so 0.909 0.631 0.764 0.687 0.872 0.516 0.870

meshLBP-sh 0.895 0.601 0.759 0.656 0.853 0.522 0.875

meshLBP 0.905 0.671 0.832 0.726 0.884 0.570 0.909

kd-tree FLANN 0.686 0.312 0.424 0.359 0.656 0.283 0.690

Table 2: Nearest Neighborhood, First Tier, Second Tier, mAP, nDGC, e-
measure and AUC value of all the submitter runs. Values goes from 0 (red), to
1 (green). The higher the value is, the better the method performs.

than 0.7 and the nDCG greater than 0.8. Also, note that 2 methods have the 1

ST score above 0.99 which, having all the classes 20 models each, means that 2

the models with the same 3D texture as a query are generally found within the 3

first 39 retrieved models, with very few exceptions. 4

For a better visual comparison of the methods, only the Confusion Matrix 5

and Tier Image of the best run of each method are reported in Figure 18 and 6

Figure 19 respectively. For completeness, the Confusion matrices and the Tier 7

images of the all the runs submitted are listed in the Appendix. Precision-Recall 8

plots of the best run for each method are shown in Figure 17. Similarly, only 9

the ROC curves of the best runs are shown in Figure 20. As also reflected by 10

the area under the ROC curve, methods with AUC greater than 0.97 provide 11

a better classification than other methods. For completeness, the PR plots 12

and the ROC curves of the all the runs submitted are listed in the Appendix. 13

This more complete overview of the runs highlights that the performances of 14

a method show the same trend for the different runs, with small qualitative 15

variations between the different parameter choices. 16
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Figure 17: Overview of Precision-Recall plots of the best run for each method.

7 Discussions and concluding remarks1

Overall, the best performances are obtained by the DFE method, which uses2

a pre-trained neural network. We observe that the NN, FT and ST scores for3

the methods based on transfer learning do not change significantly. This fact4

suggests that, if they have success, these methods have a larger capability of5

ranking the models that contains a texture similar to the query at the beginning6

of the list of the items retrieved, while the other methods drop around 0.37

from NN to FT. However, also methods that do not use learning techniques8

perform well (like the meshLBP, OH and SRNA). We notice that these methods9

are all based on feature vectors. Some methods share some background, for10

instance, the meshLBP-so run and the OH methods use of the Sobel Filter.11

However, among the three meshLBP-based runs submitted to this track, the best12

performances are reached by the meshLBP run that is based on convolution-like13

operations extended to a triangle mesh.14

A common characteristic of most of methods is the sampling of one or more15

representative patches as a pre-processing step. It consists of a single patch (like16

in the case of the DFE, OH, DPML, kd-tree FLANN runs) or multiple ones (like17

in the APPFD-FK, PointNet+SQDF, SRNA, meshLBP runs). In general, the18

selection of a single patch seems to lead to good results with the exception of19

the SRNA and meshLBP methods, which compute a more statistical approach20

on the representative patches.21

Methods that convert the model into point clouds (APPFD-FK) or that22

are based on CNNs trained on point clouds (PointNet) seem to be sub-optimal23

for this task. Probably these methods lose information on local details (for24

instance, the sampling process in the APPFD-FK focuses on the representation25

of the global geometry) and do not capture the subtle geometry and structure26

variations of local patterns and reliefs. On a similar note, the authors of the27

kd-tree FLANN method suggest that the performance of their methods will28

probably be improved by considering a smaller representative patch. With the29

current size of the patch, the global geometry of the model is still kept in30

consideration and it biases the results. This fact highlights the importance31

of analysing a surface with reliefs by local approaches (but that are robust to32
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noise). 1

From the Confusion Matrices we observe there is not a class (i.e. a realistic 2

geometric relief that corresponds to a real texture) that is more complex to deal 3

with at all. On the other hand, Tier Images highlight that some methods (DFE 4

and meshLBP in particular) tend to confuse class 10 (straight horizontal lines 5

with some thing double lines) and class 2 (just straight lines) or class 4 (bricks). 6

Indeed, all these classes have a set of horizontal and parallel lines which lead to 7

some uncertainty in the classification (especially classes 10 and 2). 8

In conclusion, we have presented the results of the SHREC’20 contest track 9

on ”Retrieval of surface patches with similar geometric reliefs”. The number 10

of runs (twenty) and methods (eight) is significantly numerous and show the 11

increasing efforts of the community in the effective characterization of all the 12

aspects of a surface. The runs and the methods submitted to this track present 13

a satisfactory variety, in terms of the diversification of the approach followed 14

(feature-based and learning-based methods) and the type of description chosen 15

(global vs local descriptions). Several methods use a transfer learning approach 16

based on pre-trained, image-based neural networks. For instance, the best per- 17

formances are obtained by the DFE method, which follows such a strategy. 18

With respect to the methods submitted to similar, previous SHREC contests, 19

we can observe the rise of the machine learning based approaches specifically 20

designed for and/or adapted to this track task. A future direction of investiga- 21

tion is to deepen the analysis of the performances of methods based on learning. 22

To this end, it will be necessary to create larger data collections, opportunely 23

equipped with a training set of models, even if the application of reliefs to a 24

surface is not trivial. Indeed, at the moment it requires some manual cleaning 25

of the models, in particular in correspondence of high curvature features like 26

handles. 27

The way models are analysed by most methods, that is a local conversion 28

of the surface into a kind of texture image, helps in removing the influence of 29

the underlying surface from the reliefs. Still, corresponding to models that can 30

be manufactured, the surfaces of the models proposed in this benchmark can 31

be locally projected in a plane and therefore in an image. Further research is 32

needed to deal with more challenging models and how these methods work on 33

models with a more complex geometry and/or how they could be patched to 34

deal with them. 35

Overall, this contest has received a good number of satisfactory solutions 36

that highlight the progress of recent years in the field of geometric pattern 37

retrieval. As a future research direction we envisage an increase of interest in 38

the more complex task of pattern recognition on surfaces, i.e., addressing a 39

problem similar to the challenge proposed in [12], where the models were only 40

partially covered by none, one, or many patterns. The goal of that track was 41

to identify, from a set of sample patterns, if and where the same pattern was 42

located on each model. At the time of that track [12] there were no satisfactory 43

solutions. In the near future, in the light of the progress achieved in the pattern 44

retrieval problem and the progress made in the field of transfer learning, it 45

would become interesting to understand what can be exploited also in the field 46
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of pattern recognition, too.1
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Figure 18: Overview of the confusion matrices of the best run for all the meth-
ods.
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Figure 19: Overview of the tier images of the best run for all the methods.
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Figure 20: Overview of ROC curves of the best run for each method.
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A Confusion Matrices, Tier Images, PR plots1

and ROC curves2
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Precision-Recall plots

ROC curves
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