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Abstract. Automatic discovery of category-specific 3D keypoints from
a collection of objects of some category is a challenging problem. One
reason is that not all objects in a category necessarily have the same
semantic parts. The level of difficulty adds up further when objects are
represented by 3D point clouds, with variations in shape and unknown
coordinate frames. We define keypoints to be category-specific, if they
meaningfully represent objects’ shape and their correspondences can be
simply established order-wise across all objects. This paper aims at learn-
ing category-specific 3D keypoints, in an unsupervised manner, using a
collection of misaligned 3D point clouds of objects from an unknown cat-
egory. In order to do so, we model shapes defined by the keypoints, within
a category, using the symmetric linear basis shapes without assuming the
plane of symmetry to be known. The usage of symmetry prior leads us to
learn stable keypoints suitable for higher misalignments. To the best of
our knowledge, this is the first work on learning such keypoints directly
from 3D point clouds. Using categories from four benchmark datasets,
we demonstrate the quality of our learned keypoints by quantitative and
qualitative evaluations. Our experiments also show that the keypoints
discovered by our method are geometrically and semantically consistent.

Fig. 1: Category-specific 3D Keypoints. The predicted keypoints follow the
symmetric linear shape basis prior modeling all instances in a category under a
common framework. They not only are consistent across different instances, but
also are ordered and correspond to semantically meaningful locations.
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1 Introduction

A set of keypoints representing any object is historically of large interest for
geometric reasoning, due to their simplicity and ease to handle them. In fact,
keypoints-based methods have been crucial to the success of many vision ap-
plications. A few examples include; 3D reconstruction [1–3], registration [4–7],
human body pose [8–11], recognition [12, 13], and generation [14, 15]. That be-
ing said, many keypoints are defined manually, while considering their semantic
locations such as facial landmarks and human body joints, to serve and simplify
the problem at hand. To further benefit from their widespread utility, several
attempts have been made on learning to detect keypoints [16–20], as well as
on automatically discovering them [21–24]. In this regard, the task of learning
to detect keypoints from several supervision examples, has achieved many suc-
cesses. However, discovering them automatically from unlabeled data –such that
they meaningfully represent shapes and semantics– so as to have a similar util-
ity as those of manually defined, has received only limited attention due to its
difficulty.

Therefore, it must not come as a surprise that keypoints defined in 3D space
are preferred for geometric reasoning, where the objects of interest also reside.
For given 3D keypoints, their counterparts in 2D images can be associated by
merely using camera projection models [25–27]. By the above reasoning, it is
natural to seek for 3D keypoints. In fact, one may infer 3D keypoints only using
2D images, 3D structures, or 2D-3D pairs. Learning such keypoints directly from
2D requires image correspondences and their poses to be known, along with the
camera projection model. Generally, the difficulties of estimating camera pose
and of establishing correspondences are avoided by using 2D-3D aligned pairs,
where the primary interest is to infer 3D keypoints from 2D images. In this re-
gard, a notable work [24] uses 3D structure and multiple associated 2D images
with known poses. However in practice, multiple images together with aligned
3D structure may not always be available. In that context, one is left with the
task of directly learning keypoints from 3D structures (or 2D images). In this
work, we are interested on learning keypoints using only 3D structures. In fact,
3D structures with keypoints suffice for several applications including, registra-
tion [28], shape completion [29], and shape modeling [30]; without requiring their
2D counterparts.

When 3D objects go through shape variations, either because of being de-
formable or when two different objects of one category are compared, keypoints
are desired to be consistent for meaningful geometric reasoning. Recall the exam-
ples of semantic keypoints such as facial landmarks and body joints. To serve a
similar purpose, can we automatically find kepoints that are consistent over inter-
subject shape variations and intra-subject deformations in a category? This is the
primary question that we are interested to answer in this paper. Furthermore,
we wish to discover such keypoints directly from 3D point clouds, in an unsuper-
vised manner. We call these keypoints “category-specific”, which are expected
to meaningfully represent objects’ shape and offer their correspondence order-
wise across all objects. More formally, the desired properties of category-specific
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keypoints are: i) generalizability over different shape instances and alignments
in a category, ii) one-to-one ordered correspondences and semantic consistency,
iii) representative of the shape as well as the category while preserving shape
symmetry. These properties not only make the representation meaningful, but
also tend to enhance the usefulness of keypoints. Learning category-specific key-
points on point clouds, however, is a challenging problem because not all the
object parts are always present in a category. The challenges are exacerbated
when the practical cases of misaligned data and unsupervised learning are con-
sidered. Related works do not address all these problems, but instead opt for;
dropping category-specificity and using aligned data [23], employing manual su-
pervision on 2D images [17], using aligned 3D and multiple 2D images with
known pose [24]. The latter method achieves category-specificity without explic-
itly reasoning on the shapes.

In this paper, we show that the category-specific keypoints with the listed
properties can be learned unsupervised by modeling them with non-rigidity
based on linear basis shapes. We further model non-rigidity using reflective sym-
metry, with an instance-wise symmetry when available. For categories without
instance-wise symmetry we propose the use of symmetric linear basis shapes in
order to better model, what we define as symmetric deformation spaces, e.g., a
human body deformations. This allows us to better constrain the pose and the
shape coefficients prediction. Our proposed learning method does not assume
aligned shapes [24], pre-computed basis shapes [17] or known planes of symme-
try [31] and all quantities are learned in an end-to-end manner. Our symmetry
modeling is powerful and more flexible compared to that of previous NRSfM
methods [31, 32]. We achieve this by considering the shape basis for a category
and the reflective plane of symmetry as the neural network weight variables,
optimized during the training process. At inference time, the network predicts
the basis coefficients and the pose in order to estimate the instance-specific key-
points. Fig. 2 shows the basic overview of our training strategy. Note that we
do not require the Siamese-like architecture as in [4, 23]. Using multiple cat-
egories from four benchmark datasets, we evaluate the quality of our learned
keypoints both quantitatively and with qualitative visualization. Our experi-
ments also show that the keypoints discovered by our method are geometrically
and semantically consistent, which are measured respectively by intra-category
registration and semantic part-wise assignments. We further show that symmet-
ric basis shapes can be used to model symmetric deformation space of categories
such as human body.

2 Related Work

Category-specific keypoints on objects have been extensively used in NRSfM
methods, however, only few methods have tackled the problem of estimating
them. In terms of the outcome, our work is closest to [24], which learns category-
specific 3D keypoints by solving an auxiliary task of rigid registration between
multiple renders of the same shape and by considering the category instances to
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Pose and coefficients branch
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Fig. 2: Overview: the proposed learning strategy consists of two main branches
that predict the instance-specific parameters while the common category param-
eters get optimized as network weights. Refer to Sec. 3 for the modeling, Sec. 4
for learning and supplementary material for more details.

be pre-aligned. Although the method shows promising results on 2D and 3D, it
does so without explicitly modeling the shapes. Consequently, it requires renders
of different instances to be pre-aligned to reason on keypoint correspondences
between instances. A similar task is also solved in [17] for 6-degrees of freedom
(DoF) estimation which uses low-rank shape prior to condition keypoints in 3D.
Although, the low-rank shape modeling is a powerful tool, [17] requires super-
vision for heatmap prediction and relies on aligned shapes and pre-computed
shape basis. [33] also predicts keypoints for categories with low-rank shape prior
but the method is again trained on fully supervised manner. Moreover, all of
the mentioned methods learn keypoints on images as heatmaps and thereafter
lift them to 3D. Shape modeling of category shape instances has been widely
explored in NRSfM works. Linear low-rank shape basis [2, 34, 35], low-rank tra-
jectory basis [36], isometry or piece-wise rigidity [37,38] are some of the different
methods used for NRSfM. Recently, a few number of works have used low-rank
shape basis in order to devise learned methods [1,31,33,39]. Another useful tool
in modeling shape category is the reflective symmetry, which is also directly
related to the object pose. Although [32] showed that the low-rank shape basis
can be formulated with unknown reflective symmetry, its adaptation to learned
NRSfM methods is however, not trivial. Recent methods, in fact, assume that
the plane of symmetry is one among a few known planes [31]. Moreover, none
of the methods formulate symmetry applicable for non-rigidly deforming objects
such as a human body.

While shape modeling is a key aspect of our work, another challenge is to infer
ordered keypoints by learning on unordered point sets. While several advances
have been made on deep neural networks for point sets [40–42], current achieve-
ment of learning on ordered structure such as images dwarfs those of learning on
point sets. A related work learns to predict 3D keypoints unsupervised by again
solving the auxiliary task of correctly estimating rotations in a Siamese architec-
ture [43]. The keypoint prediction is done without order by pooling features of
certain point neighborhoods. Another previous work [4] proposes learning point
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features for matching, again using alignment as the auxiliary task. Matching
such keypoints across shapes is not an easy task as the keypoints are not pre-
dicted in any order. In the following sections we show how one can model shape
instances using the low-rank symmetric shape basis and use the shape modeling
to predict ordered category-specific keypoints.

3 Background and Theory

Notations. We represent sets and matrices with special Latin characters (e.g.,
V) or bold Latin characters (e.g., V). Lower or uppercase normal fonts, e.g.,
K denote scalars. Lowercase bold Latin letters represent vectors as in v. We
use lowercase Latin letters to represent indices (e.g., i). Uppercase Greek letters
represent mappings or functions (e.g., Π). Finally the operator vec(.) denotes
the vectorize operation of a matrix.

3.1 Category-specific Shape and Keypoints

We represent shapes as sets of point coordinates, or point clouds, defined as an
unordered set of points S = {s1, s2, . . . , sM}, sj ∈ R3, j ∈ {1, 2, . . . ,M}. The set
of all such shapes in a category defines the category shape space C. We write
a particular i-th category-specific shape instance in C as Si. For convenience,
we will use the terms category-specific shape and shape interchangeably. The
category shape space C can be anything from a set of discrete shapes to a smooth
manifold spanned by a deformation function ΨC , whose co-domain consists of
only category-specific shapes. The focus of the work is on learning meaningful
3D keypoints from the point set representation of Si. To that end, this section
defines category-specific keypoints and develops their modeling.

Category-specific keypoints. We represent category-specific keypoints of a shape
Si as a sparse tuple of points, Pi = (pi1, pi2, . . . , piN ), pij ∈ R3, j ∈ {1, 2, . . . , N}.
Unlike the shape, its keypoints are represented as ordered points, forming a to-
tally ordered set. Our objective is to learn a mapping ΠC : Si → Pi in order
to obtain the category-specific keypoints from an input shape Si for a cate-
gory shape space C. Although not completely unambiguous, we can define the
category-specific keypoints using the properties listed in Section 1. In mathe-
matical notations they are:

(i) Generalization: ΠC(Si) = Pi, ∀Si ∈ C.
(ii) Corresponding points and semantic consistency: paj ⇔ pbj , Sa,Sb ∈ C. For

any Sa,Sb ∈ C, paj and pbj have the same semantics.

(iii) Representative-ness: vol(Si) = vol(Pi) and pij ∈ Si, where vol(.) is the Vol-
ume operator. If Si ∈ C has a reflective symmetry, Pi should have the same
symmetry.
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3.2 Category-specific Shapes as Instances of Non-Rigidity

Several recent works have modeled shapes in a category as instances of non-
rigid deformations [1,31,33,39]. The motivation lies in the fact that such shapes
often share similarities to a large extent. Consequently there, likely, exists a
deformation function ΨC : ST → Si, which can map a global shape property
ST to a category shape instance Si. However, we argue that modeling ΨC is not
trivial and in fact a convenient representation of ΨC may not exist in many cases.
This observation, in fact, is what makes the dense Non-Rigid Structure-from-
Motion (NRSfM) [31] so challenging. On the other hand, one can imagine a
deformation function ΦC : PT → Pi, going from a global keypoints property PT

to the category-specific keypoints Pi. The deformation function ΦC thus satisfies:
pij ∈ ΦC implies pij ∈ ΨC and effectively, ΦC ⊂ ΨC , if the set order in Pi is ignored.
Unlike ΨC , the deformation function ΦC may be simple enough to model and use
for estimating the category-specific keypoints Pi. We therefore, choose to seek
the non-rigidity modeling in the space of keypoints P = {P1,P2, . . . ,PL}, which
functions as an abstraction of the space C. Non-rigidity can be used to define
the prediction function ΠC as below:

ΠC(Si; θ) = ΦC(ri; θ) = Pi, (1)

where θ denotes the constant function parameters of ΠC and ri is the predicted
instance specific vector parameter. In our problem, we want to learn θ from the
example shapes in C without using the ground-truth labels, supervised by ΦC .
In the NRSfM literature, two most common approaches of modeling shapes as
non-rigid deformations are the shape basis or low-rank shape prior [2,34–36] and
the isometric prior [37, 38]. In this paper, we investigate the modeling using a
particular form of low-rank shape prior, i.e., the symmetric shape basis.

3.3 Low-Rank Non-rigid Representation of Keypoints

The NRSfM approach of low-rank shape basis comes as a natural extension of
the rigid orthographic factorization prior [44] and was introduced by Bregler
et al. [34]. The key idea is that a large number of object deformations can be
explained by linearly combining a smaller number K of basis shapes at some
pose. In the rigid case, this number is one, hence the rank is 3. In the non-rigid
case, it can be higher, while the exact value depends on the complexity of the
deformations. Consider F shape instances in C and N points in each keypoints
instance Pi. The following equation describes the projection with shape basis.

Pi = ΦC(ri; θ) = Ri vec(ci1
>)BC . (2)

where BC = (B1, . . . ,BK),BC ∈ R3K×N forms the low-rank shape basis. The rank
is lower than the maximum possible rank of 3F or N for 3K < 3F or 3K < N .
The vector ci ∈ RK denotes the coefficients that linearly combines different basis
for the keypoints instance i using the 3-vector of ones 1. Each keypoints instance
is then completely parametrized by the basis BC and the coefficients ci. Next, the
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projection matrix Ri ∈ SO3 is simply the rotation matrix for the shape instance
i instead of a Stiefel matrix in the NRSfM problem.

Unlike in NRSfM, the problem of computing the category-specific keypoints,
has Pi as unknown. Similar to NRSfM, the rest of the quantities in Eq. (2) – ci,
BC and Ri are also unknown. This fact makes our problem doubly hard. First
the problem becomes more than just lifting the 2D keypoints to 3D and second,
the order of keypoints present in the NRSfM measurements matrix is no longer
available. Eq. (2) can be directly related to the deformation representation of ΦC
in Eq. (1), where θ includes the global parameters or basis BC and ri includes the
instance-wise pose Ri and coefficients ci. A remark here is necessary regarding
the number of shape basis K. Although we choose K ≈ N , Eq. (2) still reduces
the solution space for Pi. However, one issue remains related to the ambiguities
of Ri when the number of basis shapes K is large. We propose to address the
problem by also computing the reflective plane of symmetry of the category.

3.4 Modeling Symmetry with Non-Rigidity

Many object categories have shapes which exhibit a fixed reflective symmetry
over the whole category. To discover and use symmetry, we consider two different
priors: instance-wise symmetry and symmetric deformation space.

Instance-wise symmetry. Instance-wise reflective symmetry about a fixed plane
is common in a large majority of rigid object categories in ShapeNet [45] and
ModelNet [46] datasets. Instance-wise symmetry has been previously combined
with the shape basis prior in NRSfM [32], however, a convenient representation
for learning both the symmetry and the shapes have not been explored yet. A
recent learning-based method [31] uses the symmetry prior by performing an
exhaustive search over a few planes in order to predict symmetric dense non-
rigid shapes. However, such a strategy may not work when the shapes are not
perfectly aligned. Instance-wise symmetry can be included by re-writing Eq. (2)
as follows:

Pi 1
2

= Ri vec(ci1
>)BC 1

2
, Pi =

[
Pi 1

2
ACPi 1

2

]
, (3)

where Pi 1
2
∈ R3×N/2 represents one half of the category-specific keypoints. Pi 1

2

is reflected using AC ∈ R3×3 and concatenated to obtain the final keypoints. Due
to the exact instance-wise symmetry, we similarly can parametrize the basis as
BC 1

2
∈ R3K×N/2 to denote the shape basis for the first half of the keypoints. The

reflection operator AC is parametrized by a normal vector nC ∈ R3 of the plane
of symmetry passing through the origin. The most important advantage going
from Eq. (2) to Eq. (3) is the reduced dimensionality of the unknowns in BC as
well as the additional second equality constraint of Eq. (3) which reduces the
ambiguities in NRSfM [32].

Symmetric deformation space. In many non-rigid objects, shape instances are
not symmetric. However, symmetry may still exist in the deformation space,
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e.g., in a human body. Suppose that the shape instance Sk ∈ C has the reflective
symmetry about nC , which allows us to define its two halves: Sk 1

2
and S′

k 1
2

and

thus correspondingly for all shape instances.

Definition 1 (Symmetric deformation space). C is a symmetric deforma-
tion space if for every half shape deformation instance Si 1

2
, there exists any shape

instance Sj ∈ C such that the S′
j 1
2

is symmetric to Si 1
2
.

The above definition also applies for the keypoints shape space P. The instance-
wise symmetric space is a specific case of the above. However, Eq. (3) cannot
model the keypoints instances in the symmetric deformation space. We model
such keypoints by introducing symmetric basis that can be weighted asymmet-
rically, thereby, obtaining the following:

Pi = Ri

[
vec(ci1

>)BC 1
2

vec(c′i1
>)B′C 1

2

]
(4)

where B′C 1
2

is obtained by reflecting BC 1
2

with AC and c′i ∈ RK forms the coeffi-

cients for the second half of the basis. Although Eq. (4) increases the dimension
of the unknowns in the coefficients over Eq. (2), the added modeling of the sym-
metry of the deformation space and the reduced dimensionality of the basis can
improve the final keypoints estimate. This brings us to the following proposition.

Proposition 1. Provided that BC 1
2

and B′C 1
2

are symmetric about a plane,

Eq. (4) approximates a symmetric deformation space if the estimates of ci and
c′i come from the same probabilistic distribution.

Proof. The proof is straightforward and provided in the supplementary material.

As a consequence of Proposition 1, we can model keypoints in non-rigid sym-
metric objects with Eq. (4), while also tightly modeling the symmetry as long
as we maintain the distribution of c and c′ to be the same.

4 Learning Category-specific Keypoints

In this section, we use the modeling of ΦC to describe the unsupervised learning
process of the category-specific keypoints. More precisely, we want to learn the
function ΠC : Si → Pi as a neural network of parameters θ, using the supervisory
signal from ΦC . In regard to learning keypoints on pointsets, recent work [23]
trains a Siamese network to predict order-agnostic keypoints stable to rotations
for rigid objects [23].We use a similar network architecture as in [23] that is
based on PointNet [40] but we do not use the Siamese training. The overview
of the network is shown in Fig. 2, whose input consists of a single shape Si
misaligned in SO2. This is reasonable since point clouds are usually aligned
to the gravity direction. Our learning strategy consists of two main branches
that will predict the instance-specific parameters while optimizing the network
weights as category-specific parameters. The complete network architecture is
provided in the supplementary material. We describe the branches below.
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Nodes branch. This branch estimates nodes that are potentially category-specific
keypoints but are not ordered. We denote them as Xi = {xi1, xi2, . . . , xiN}, xij ∈
R3 and j ∈ {1, 2, . . . , N}. Initially, a predefined number of nodes N are sam-
pled from the input shape using the Farthest Point Sampling (FPS) and a local
neighborhood of points is built for each node with point-to-node grouping [23,47],
creating N clusters which are mean normalized inside the network. The num-
ber of nodes corresponds to the desired number of category-specific keypoints,
and every point in Si is associated with one of these nodes. The branch con-
sists of two PointNet-like [40] networks followed by a kNN grouping layer that
uses the initial sampled nodes to achieve hierarchical information aggregation.
Finally, the local feature vectors are fed into a Multi-Layer Perceptron (MLP)
that directly outputs the final nodes.

Pose and coefficients branch. The quantities Ri and ci are learned and predicted
by this branch. We use a single rotation angle to parametrize Ri. The branch
consists of an MLP that estimates the mentioned parameters. The output size
will vary depending on whether we are interested in symmetric shape instances
as in Eq.(3) or symmetric basis as in Eq. (4), the size being double in the latter.

Additional learnable parameters. Several quantities in Eq. (3) or (4) are constant
for a category shape space C. Such quantities need not be predicted instance-wise.
We rather choose to optimize them as part of the network parameters θ. These
parameters are BC of dimension 3K×N and the plane of symmetry of dimension
3 with unitary constraint. We choose 5 ≤ K ≤ 10. Depending upon the problem,
alternate parametrization can be considered for nC , e.g., Euler angles.

4.1 Training Losses

In order to adhere to the definitions of the category-specific keypoints introduced
in Section 1 as well as our shape modeling, several key loss functions are used
for the training process. We list these loss functions and define them below.

Chamfer loss with symmetry and non-Rigidity. Eq. (1) suggests that an `2 loss
between the neural network predictions Xi and the deformation function Pi =
ΦC(Ri, ci;BC , nC) should be enough to supervise the neural network ΨC in order
to satisfy Pi = Xi. However, as confirmed by our evaluations in our model as
well as in [23], the `2 loss does not converge as predicting the order of points
adds much more complexity to the network. Alternatively, the Chamfer loss [48]
does converge, minimizing the distance between each point xik in the first set Xi

and its nearest neighbor pij in the second set Pi. We define it as follows:

Lchf =

N∑
k=1

min
pij∈Pi

‖xik − pij‖22 +

N∑
j=1

min
xik∈Xi

‖xik − pij‖22, (5)

Chamfer loss ensures that the learned keypoints follow a generalizable
category-specific property – that they are a linear combination of common basis
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learned specifically for the category. To additionally model symmetry, Eq. (3) or
(4) is directly used in Eq. (5). Therefore, two different Chamfer losses are pos-
sible modeling two different types of symmetries. We further add unitary vector
constraint on the global variable nC .

Coverage and inclusivity loss. The Chamfer loss, however, does not ensure that
the keypoints follow the object shape. Loss terms that guarantee this property
can be designed by having the following conditions: a) the keypoints cover the
whole category shape (coverage loss), b) the keypoints are not far from the
point cloud (inclusivity loss). The coverage loss can be defined as a Huber loss
comparing the singular values Λ of the nodes Xi with respect to those of the
input shape Si. However, for the sake of efficiency, we reformulate it to compare
the 3D bounding boxes defined by these set of points instead. This improves the
training speed and based on our initial evaluations showed better accuracy. The
final loss is as follows:

Lcov = ‖vol(Xi)− vol(Si)‖ (6)

The inclusivity loss is formulated as a single side Chamfer loss [49] which
penalizes nodes in Xi that are far from the original shape Si, similarly to Eq. (5):

Linc =

N∑
k=1

min
sij∈Si

‖xik − sij‖22. (7)

5 Experimental Results

We conduct experiments to evaluate the desired properties of the proposed
category-specific keypoints and show their generalization over indoor/outdoor
objects and rigid/non-rigid objects with four different datasets in total
(Sec. 5.1 5.2). All these properties are also compared with a proposed baseline.
We then evaluate the practical use of our keypoints for intra-category shapes reg-
istration (Sec. 5.3), analyzing the influence of symmetry. Additional qualitative
results are shown in Fig. 1 and the supplementary material.
Datasets. We use four main datasets. These include ModelNet10 [46], ShapeNet
parts [45], Dynamic FAUST [50] and Basel Face Model 2017 [51]. Since our
method is category-specific, we require separate training data for each class in
the datasets. For indoor rigid objects, we choose three categories from Mod-
elNet10 [46], including chair, table and bed. Three outdoor rigid object cat-
egories, including airplane, car and motorbike, are evaluated from ShapeNet
part dataset [45]. For non-rigid objects, we randomly choose a sequence of the
Dynamic Faust [50] dataset that provides high-resolution 4D scans of human
subjects in motion. Finally, we generate shape models of faces using the Basel
Face Model 2017 [51] combining 50 different shapes and 20 different expressions.
All the models are normalized so that the longest dimension lies in [-1,1] and
are randomly misaligned within a 45 degrees range on each axis.
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Baseline. Since this is the first work computing category-specific keypoints
from point sets, we construct our own baseline based on the very recent work
USIP [23]. The method detects stable interest points in 3D point clouds under
arbitrary transformations and is also unsupervised, which makes it the closest
method for comparison. The USIP detector is not category-based, so we train the
network per category to create the baseline. Additionally, we adapt the number
of predicted keypoints so that the results are directly comparable to ours. While
training some of the categories with this detector, specifically car and bed, we
observe that predicting lower number of keypoints can lead to some degeneracies
in the results [23], which is also mentioned in the paper.
Implementation details. Input point clouds of dimension 3×2000 are used. We
implement the network in Pytorch [52] and train it end-to-end from scratch using
the Adam optimizer [53]. The initial learning rate is 10−3, which is exponentially
decayed by a rate of 0.5 every 40 epochs. We use a batch size of 32 and train each
model until convergence, around 200 epochs. The final loss function combines
the three training losses mentioned above and are weighted as follows: wchf =
wcov = 1 and winc = 2. For the ModelNet10 and ShapeNet parts datasets, we
use the training and testing split provided by the authors. For the Basel Face
Model 2017 we follow the common practice and split the 1000 generated faces in
85% training and 15% test. We use the same split strategy for the sequence used
from the Dynamic Fuaust dataset, which is ‘50009 jiggle on toes’ and contains
244 examples.

5.1 Desired Properties Analysis

As described in Sections 1 and 3, the category-specific keypoints satisfy certain
desired properties. We propose six different metrics to evaluate the properties
which are also used for comparison against the baseline. All the results are
presented in Table 1, and are averaged across the test samples.
Coverage: According to property iii), we seek keypoints that are representative
of each instance shape as well as of the category itself. To measure it, we calculate
the percentage of the input shape 3D bounding box covered by the keypoints.
On average, we achieve a 29.4% more of coverage with respect to our baseline.
Model Error: This metric refers to the Chamfer distance between the estimated
nodes and the learned category-specific keypoints, normalized by the model’s
scale. We get a very low error, meaning that the network satisfactorily manages
to generalize, describing the nodes with the symmteric non-rigidity modeling
(Property i) and iii)).
Correspondence: We measure the ability of the model to find the same set
of keypoints on different instances of a given category (Property ii)). We first
use K-means clustering to show this property in comparison to our baseline in
Fig. S3, rest of categories are provided in the supplementary material. One can
see at a glance how our keypoints are neatly clustered, whereas the ones of our
baseline USIP get mixed. Numerically, we show the % occurence of each specific
keypoint belonging to the same cluster across instances. This property can just
be evaluated when the interest points are ordered, therefore the USIP keypoints
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are ordered per instance according to the performed clustering. Obeying the low-
rank non-rigidity prior, this property is fully satisfied by our learned keypoints,
meaning that they are consistent across shapes of the same class, in contrast to
the baseline keypoints.
Inclusivity: We measure the percentage of keypoints that lie inside the point
cloud (of scale 2) within a certain threshold chosen as 0.015, which also proves
property iii). This is the only metric in which our method doesn’t outperform
the baseline in all the cases.
Symmetry: The metric shows the angle error of the predicted reflective plane
of symmetry. We obtain highly accurate prediction for rigid categories. In the
non-rigid human body shape however, the ambiguities are severe. Despite that,
the learned keypoints satisfy the other properties, particularly that of semantic
correspondence. Both of these facts can be observed in Fig. 1.
Definition: As soon as the number of predefined nodes is increased, the pre-
dicted keypoints get grouped into clusters to follow the low-rank constrain. By
detecting those clusters, we obtain the number of points in the keypoints.

Category Coverage ModelErr Correspondence Inclusivity SymErr Definition

% % % % ◦

chair 88.83 0.72 100 90.46 0.40 10
table 93.33 0.99 100 93.38 2.86 6
bed 80.31 0.94 100 95.33 0.13 6

airplane 89.15 0.64 100 96.35 0.20 8
car 92.39 0.72 100 97.77 2.21 8

motorbike 96.13 0.79 100 90.53 1.42 8
human body 85.59 0.72 100 97.73 33.30 11

faces 97.93 0.41 100 100 0.15 9

chair 79.73 − 55.6 98.50 − 10
table 79.72 − 34.5 99.83 − 6
bed 42.18 − 49.33 70.00 − 6

airplane 69.24 − 47.5 87.13 − 8
car 26.87 − 32.18 74.0 − 8

motorbike 75.29 − 48.14 84.57 − 8
human body 72.66 − 50.45 100 − 11

faces 42.98 − 30.11 100 − 9

Table 1: Properties Analysis: First (top) and second (bottom) block of the
table present our and baseline results [23] respectively. For coverage, correspon-
dence and inclusivity bigger is better, whereas for model error and symmetry
error smaller is better. We not only demonstrate the desired properties of our
keypoints, but also show the generalization of our method over indoor/outdoor,
rigid/non-rigid objects and over four different datasets. Best results are in bold.

5.2 Semantic Consistency

We make use of the ShapeNet part dataset to show the semantic consistency
of the proposed keypoints. Following the low-rank non-rigidity prior, the key-
points correspond to geometrically meaningful locations. The idea of the exper-
iment is to measure keypoint-semantics relationship for every keypoint across
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Chair

Ours USIP USIP USIP

Human bodyAirplane

Ours Ours

Fig. 3: Keypoints correspondence across instances. We cluster the key-
points predicted for all the instances of a category to show their geometric con-
sistency. Note how our keypoints get neatly clustered creating a general 3D shape
template.

instances of the category. The results are presented in Fig. 4 as covariance ma-
trices, along with qualitative result per category for our method. On average, the
proposed keypoints have consistency of 93% across instances, which means that
our category-specific keypoints preserve the semantic relation across instances,
despite the large appearance differences and intra-category variability. The same
experiment is performed for our baseline and presented in the bottom part of
Fig. 4. Again, we follow the approach mentioned in Sec. 5.1 for matching key-
points. Here, the degeneracy in the case of the car causes all the keypoints to
approach the object centroid. Nonetheless, one can observe there is less clear
semantic consistency even in Airplane category without degeneracies. As can be
seen in the results, our model, aiming for a common representation for all the
instances of the category, avoids placing keypoints in less representative parts
or unique parts, e.g., arm rests in chairs (in Fig. 1), engines in airplanes or gas
tank in motorbikes. This highlights a significant difficulty in modeling, requiring
well-constrained and effective learning mechanism in order to achieve robustness.
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Fig. 4: Semantic part correspondence. First block, including qualitative re-
sults, presents the semantic correspondence for our category-specific keypoints,
whereas the second block presents USIP results. Our predicted keypoints corre-
spond to semantically meaningful locations across the category.
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5.3 Objects Pose and Intra-category Registration

Previous methods do not handle misaligned data due to the obvious difficulty it
poses to unsupervised learning. This deserves special attention since real data
is never aligned. In this section we evaluate the intra-category registration per-
formance of our model and show the impact of the different symmetry models
proposed. These results implicitly measure the object poses estimated as well.
Rotation Ambiguities: Recent unsupervised approaches for keypoint detec-
tion actually self-supervise rotation during training, e.g., [23, 24], and highlight
that it is crucial for achieving a good performance. In our case, we do not su-
pervise the learned rotations and discover that different combination of basis
shapes can result in different alignments. This means that computing Pi with
the deformation function ΦC will give a correct set of keypoints, but the predicted
rotations alone are not meaningful for a quantitative evaluation.
Experimental setup: Despite the above ambiguity, an important characteristic
of the proposed keypoints is that they are ordered, which empowers direct inter-
instances registration since no extra descriptors are needed for matching. We
perform experiments for the chair category, using 10 keypoints (Table 1) and
a misalignment of 45 degrees range on each axis. Three different models are
compared. The first one is trained without symmetry awareness following Eq. (2).
A second one uses shape symmetry during training as shown in Eq. (3). The last
model is trained with basis symmetry as in Eq. (4). We attempt to register
keypoints in each instance to those of randomly chosen three aligned templates
by computing a similarity transformation and observe the mean. Fig. 5 shows
that symmetry helps to have more control over the rotations and tackle higher
misalignment. More results and analysis are provided in the supplementary.

Input Rotation (°)

R
R

E
 (

°)

15 20 25 30 35 40 45 

9 
8 
7 
6 
5 
4 
3 
2 
1 

No Symmetry
Basis Symmetry
Shape Symmetry

Intra-category registration

Fig. 5: Left: Relative rotation error for different symmetry modelings. Right: 3
examples of registration between different instances of the same category.

6 Conclusions

This paper investigates automatic discovery of kepoints in 3D misaligned point
clouds that are consistent over inter-subject shape variations and intra-subject
deformations in a category. We find that this can be solved, with unsupervised
learning, by modeling keypoints with non-rigidity, based on symmetric linear
basis shapes. Additionally, the proposed category-specific keypoints have one-
to-one ordered correspondences and semantic consistency. Applications for the
learned keypoints include registration, recognition, generation, shape completion
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and many more. Our experiments showed that high quality keypoints can be
obtained using the proposed methods and that the method can be extended to
complex non-rigid deformations. Future work could focus on better modeling
complex deformations with non-linear approaches.
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Supplementary Material

Abstract. In this supplementary document, we provide more de-
tails on our network architecture. We also give more insights regarding
symmetry, including the proof of Proposition 1. Furthermore, experi-
ments showing the generalization of our method on real data is included,
as well as some results for the segmentation label transfer task. Finally
additional qualitative results are presented on the four datasets evaluated
in the main paper at the end of the document.

S1 Network Architecture Details

In this section, we detail the network architecture used throughout our exper-
imental evaluations. Fig. S1 illustrates our network architecture. Our network
comprises of two main branches that predict the instance-specific parameters;
one branch that estimates a sparse tuple of unordered nodes that are potentially
category-specific keypoints, Xi, and a second branch that predicts the param-
eters of the non-rigid shape (rotation, Ri, and basis coefficients, ci). During
training, we additionally learn the basis shapes, BC , and the normal direction
of the plane of symmetry, nC , that are common for the category shape space C.
Such quantities are optimized as network parameters.

The learning strategy consists of learning the parameters of the deformation
function, ΦC , which is able to explain the estimated nodes obtained from the
neural network ΠC , as a linear combination of basis shapes. The final sparse tuple
of ordered points that we name category-specific keypoints, Pi, are obtained from
the deformation function ΦC .

In our experiments, we consider a single point cloud as an input and the
sequence of layers comprising the two main branches are depicted in Fig. S1.

Misaligned Input Shape

Nodes 

branch

Pose and coefficients 

branch 

Sampling & clustering

Mx3

mlp

(C1, C1, K+1)
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Category-specific keypoints
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Max pool
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Fig. S1: Illustration of our network architecture. The pose and coefficients
branch and the additional learnable parameters generate the output category-
specific keypoints. The nodes branch estimates the nodes that guide the learning
process. “mlp” stands for multi-layer perceptron.
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S2 Symmetry

S2.1 Symmetric deformation space.

Proof. The two linear spaces due to the two basis BC 1
2

and B′C 1
2

are symmetric

by Definition 1 as BC 1
2

is symmetric to B′C 1
2

for any K ∈ Z. Let ci ∈ L and

c′i ∈ L′, such that L and L′ define the spaces of the predicted coefficient vectors.
Consequently, the actual deformation spaces are symmetric to one another if L
and L′ are equal. We define p : p(ci) as the probability distribution of ci and
q : q(c′i) as the probability distribution of c′i. If p and q come from the same
distribution, we approach p = q. Then we have:

if ci = c′i,

either, p(ci) = q(c′i) = 0,

or, p(ci) > 0 and q(c′i) > 0

for all, ci ∈ L, c′i ∈ L′.

(S1)

Condition (S1) guarantees that L = L′ and thus we obtain a symmetric defor-
mation space. ut

Note that for condition (S1) to be true, we do not require the two distribu-
tions to be equal, however, it is sufficient and desirable to have so. Therefore,
Proposition 1 in the main text highlights such sufficient and desirable case. It is
particularly meaningful when we are learning to predict the coefficients through
stochastic methods such as a neural network training. In the network architec-
ture of Fig. S1, indeed one can expect the distributions of these two vectors to
be similar given the data exhibits such a symmetric deformation space, since the
prediction branches of ci and c′i are very similar. Alternatively, one may also try
to enforce the condition using a KL divergence loss.

-0.5

0

0.5

1

1.5

2

Fig. S2: Coefficients distribution. Mean values of ci components (left) and
c′i components (right) for the Dynamic FAUST [50]. The mean of the variances
for the different components are: ci : 0.54, c′i : 0.50. The figure shows that the
network learns similar distribution for the coefficients ci and c′i.
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S2.2 Symmetry Plane Parametrization.

As mentioned in Sec. 5.3 in the main paper, we observe that handling misaligned
data with unsupervised methods can lead to some rotation ambiguities. More
specifically, we observe that different combination of basis shapes can result in
different alignments.

As we show in Fig. 5 in the text, predicting the symmetry plane of the
object category allows to have more control over the predicted instance poses.
We came up with the idea of learning an additional common parameter, RC ,
which is directly related to the symmetry plane. By adding this category-specific
parameter, the network learns a common rotation for all the objects in the
category. As a consequence, the instance-wise rotation, Ri, can be thought like
an offset from the reference basis alignment. Several evaluations confirmed that
this strategy helps the learning process, reducing the rotation ambiguities.

S3 Additional Experiments

S3.1 Keypoints correspondence

We provide a complete overview for all the object categories evaluated regarding
the keypoints correspondences across instances in Fig. S3. This demonstrates the
ability of our model to capture and model the inter-subject shape variations and
intra-subject deformations in a category.

S3.2 Segmentation Label Transfer

As demonstrated in Sec. 5.2 in the main paper, our predicted keypoints cor-
respond to semantically meaningful locations. Therefore, here we explore the
utility of the proposed category-specific keypoints for the segmentation label
transfer task. In this experiment, for every point in the original shape sij ∈ Si,
we find its closest category-specific keypoint pik ∈ Pi, and transfer the corre-
sponding semantic label to it. We assume the keypoints labels are known and
correspond to those in Fig. 4 in the paper.

Some qualitative results are shown in Fig. S4. Our method achieves full
correspondence between instances, therefore avoiding placing keypoints in less
representative parts. An example is the engine, in grey, in the case of airplanes.
This is reflected in the label transfer since there is no distinction of these parts.
Besides that, only with eight keypoints in the example, we achieve reasonable
results, close to the ground truth data.

S3.3 Real Data

In this section, we show the performance of our method for real data in Fig. S5.
For this experiment, the network is trained on the chair category from the Mod-
elNet10 dataset [46] and tested on real chairs from the SUNRGBD dataset [54].
To generate the real data dataset from [54], we crop the points inside the ground
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Fig. S3: Keypoints correspondence across instances. We cluster the key-
points predicted for all the instances of a category to show their geometric consis-
tency. Note how our keypoints get neatly clustered creating a general 3D shape
template.

Fig. S4: First row: results of performing semantic label transfer with our key-
points. Second row: ground truth. This is evaluated in ShapeNet part dataset
[45] using eight keypoints for the label transfer.
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truth 3D bounding boxes provided by the authors. Real data entail additional
challenges. This is not only because shapes appear incomplete and noisy, but
also because other objects may cause occlusions, e.g. part of a table occluding a
chair. As illustrated in Fig. S5, even though real data is fairly challenging, our
network can still produce corresponding meaningful keypoints.

Being able to generalize to previously unseen real objects as demonstrated
in Fig. S5 is crucial and really useful for many tasks such as guide for shape
completion or shape generation.

Fig. S5: Results in real chairs from SUNRGBD dataset [54] training with CAD
chairs from ModelNet10 dataset [46].

S4 Qualitative results

In this section, we provide additional qualitative results on various object cat-
egories from the datasets evaluated in the paper; ModelNet10 [46] in Fig. S6,
ShapeNet parts [45] in Fig. S7, Dynamic FAUST [50] in Fig. S8 and Basel Face
Model 2017 [51] in Fig. S9.

Again, we note that our network predicts corresponding keypoints between
instances of the same category and consistently associates the same keypoint
with the same semantic part. For instance, for the chair object category, the
keypoint colored in pink is always associated with the chair back, the keypoint
colored in cyan is associated with the front left leg, etc.
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Fig. S6: Qualitative results in table, chair and bed categories from ModelNet10
dataset [46].

Fig. S7: Qualitative results in airplane, car and motorbike categories from
ShapeNet parts dataset [45].
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Fig. S8: Qualitative results in human bodies from Dynamic FAUST dataset [50].

Fig. S9: Qualitative results in faces from Basel Face Model 2017 dataset [51].
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