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Abstract: The human visual perception uses structural information to recognize stereo
correspondences in natural scenes. Therefore, structural information is important to build an
efficient stereo matching algorithm. In this paper, we demonstrate that incorporating the structural
information similarity, extracted either from image intensity (SSIM) directly or from image gradients
(GSSIM), between two patches can accurately describe the patch structures and, thus, provides more
reliable initial cost values. We also address one of the major phenomenons faced in stereo matching
for real world scenes, radiometric changes. The performance of the proposed cost functions was
evaluated within two stages: the first one considers these costs without aggregation process while
the second stage uses the fast adaptive aggregation technique. The experiments were conducted on
the real road traffic scenes KITTI 2012 and KITTI 2015 benchmarks. The obtained results demonstrate
the potential merits of the proposed stereo similarity measurements under radiometric changes.

Keywords: stereo matching; structure similarity measurement; cross-based aggregation method;
KITTI 2012; KITTI 2015

1. Introduction

Intelligent vehicles rely on active sensors (e.g., time-of-flight-camera [1], LiDAR [2]) in order to
represent the cloud points of the surrounding environment. However, low cost passive computer
vision offers the potential to produce richer geometric representations. In particular, our intention was
paid to the stereo matching task, as it is vital for applications that are linked to intelligent vehicles.

The aim of stereo matching process is to estimate the depth of a scene viewed from two stereo
images. Stereo matching algorithms can be roughly split into two categories. Sparse algorithms that
rely on feature-based matching methods, generally used in camera calibration or orientation tasks [3,4],
and dense algorithms, estimate depth values at every pixel value in the image.

Dense algorithms can be classified to global or local approaches. The global approaches formulate
the stereo correspondence problem as an energy function over all image pixels with some smoothness
constraints. This function is then minimized by global methods, such as the commonly used dynamic
programming [5], belief propagation [6], and graph-cuts [7]. Generally, these approaches can effectively
alleviate the matching ambiguities and, therefore, provide quite accurate depth results. However,
they are inappropriate for real-time applications due to their slow convergence to optimal values.
By contrast, local approaches consider for each individual pixel in the image a local smoothness
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assumption to estimate its depth values [8–10]. This makes them computationally inexpensive but
produce a lower disparity results, especially in textureless areas. A stereo matching algorithm can be
performed in four steps [11]: cost computation, cost aggregation, disparity selection, and disparity
refinement. The first step consists of matching pixels of the two stereo pairs. Several cost functions
can be adopted in this step. Each of these have different characteristics that enable dealing with
specific image regions. The second one, cost aggregation, is performed in order to filter out noisy
matches that could have been occurred during the first stage. In the third step, disparity values are
selected. The Winner-Take-All (WTA) strategy is often performed. It considers the disparity with the
lowest or higher matching cost from the previous aggregation step. The last step, disparity refinement,
is optional and it aims to refine erroneous disparity values by filtering out wrong matches using global
smoothness assumptions.

Although all of these steps are required for accurate disparity results, the cost computation
is the most critical, since early ambiguous cost values considerably affect the accuracy of the final
results independently, regardless of the stereo matching algorithm. Therefore, obtaining a robust
disparity map in real traffic situations require building a cost function that can be effective under
radiometric distortions.

In this paper, we propose two new cost functions, which are based on the structural information
(SSIM), CSSIM, and its gradient variant, the CGSSIM. The performance of the proposed costs was
evaluated using both aggregation [10] and no aggregation approaches. The local WTA strategy was
adopted to generate disparity maps. The experimental results were conducted on two challenging
datasets, the real road traffic stereo pairs of KITTI 2012 [12] and KITTI 2015 [13].

The remainder of the paper is organized, as follows: in Section 2, we review the related works to
the matching cost functions. In Section 3, we present the proposed cost function. Experimental results
and discussions are given in Section 4. Additionally, finally, we draw conclusions in Section 5.

2. Related Work

A wide range of cost functions have been proposed in the literature. Of these, the absolute intensity
differences, squared intensity differences, cross correlation sum, and normalized cross-correlation.
Non parametric cost functions have been introduced for being robust against radiometric
distortions [14]. Authors in [15] have proposed a cost function based on the mutual information in
order to handle the complex radiometric relationships between images. Several works have focused on
enhancing the performance of the traditional cost functions by proposing enhanced costs or by merging
multiple cost functions to provide efficient variants of the existed ones. In [16], the authors fused
both the absolute difference on image color and gradient along the horizontal direction. Other studies
have exponentially fused the absolute difference on image color with the Census Transform (CT) cost
function [17]. The authors in [18] have fused three cost functions: the absolute difference on color image,
on image gradients, and the CT computed in image gradients using an exponential function. Authors
in [19] have proposed an adaptive fusion method of multiple cost matching functions. The efficiency
of the state of art cost function has been widely examined in several studies [20–22]. Indeed, the study
that is presented in [20] included the comparison of robustness using six cost matching functions
in term of photometric distortion and noise. While [21] is more extended and it has included the
evaluation of fifteen different cost functions using various optimization schemes. The results have
demonstrated that costs that are based on the CT give the best results, particularly for radiometric
changes. Recently, authors in [22] have investigated cost functions in stereo matching algorithms
for automotive vehicle applications using two different stereo matching algorithms. One is based
on global energy optimization (Graph cuts) [7], and the other one uses local adaptive method [10].
The results of this study have proven that the cost function derived from the CT or its variants, as the
Cross-Comparison Census (CCC) combined with the mean sum of relative pixel intensity differences
within a CT window, provide overly a good performance on the KITTI 2012 benchmark. A variant of
CCC cost function [23] was proposed in order to handle better the radiometric distortions. The authors
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claim that the proposed cost function outperforms the conventional cost functions on the KITTI
2012 benchmark. These studies have demonstrated that it is quite difficult to address the disparity,
with radiometric distortions, relying only on intensity-based cost functions. Some research studies
have investigated SSIM for stereo matching algorithms. In [24], authors have proposed to compute
the final matching cost function using SSIM index over filtered left and right patches obtained from
the non-local means algorithm [25]. In [26], the SSIM index has been introduced for multiview setero
to compute the matching cost function in coarst-to-fine workflow.

3. The Proposed Cost Function

3.1. SSIM Based Cost Function (CSSIM)

When considering the stereo matching problem as a visual issue. Extracting the most adopted
information captured by the Human Visual System (HVS) can provide a consistent information in
order to accurately describe the considered patch, and facilitate the matching process. In this context,
we propose a new cost function based on the structural information [27]. Let p(x, y) be a pixel in the
reference image (I1), Ip is the intensity value of pixel p and q(x, y−d) its hypothetical corresponding,
with intensity value Iq in the target image (I2) at a disparity d. The CSSIM between p and q is defined,
as follows:

CSSIM(p, q, d) = [l(p, q, d)]α.[c(p, q, d)]β.[s(p, q, d)]γ (1)

where, l(p, q, d) is the luminance, c(p, q, d) the contrast and s(p, q, d) structure measurements between
p and q, defined in Equations (2)–(4), respectively.

l(p, q, d) =
2µpµq + C

µ2
p + µ2

q + C
(2)

c(p, q, d) =
2σpσq + C

σ2
p + σ2

q + C
(3)

s(p, q, d) =
σ(p,q) + C
σpσq + C

(4)

C is a small constant to avoid the denominator being zero. µp and µq are the mean values
computed in neighborhood Np and Nq of p in I1 and q in I2, respectively. σp and σq are standard
deviations of p and q respectively. The standard deviations of p in the support window Np is described
as follows:

σp =

 1
(||Np|| − 1) ∑

p′∈Np

(Ip′ − µp)
2

1/2

(5)

where ||Np|| is the number of pixels in the support window Np. The σ(p,g) is the covariance between p
and q, and can be estimated as:

σ(p,q) =
1

(||Np|| − 1) ∑
p′∈Np ,q′∈Nq

(Ip′ − µp)(Iq′ − µq) (6)

Finally, α > 0, β > 0, and γ > 0 are parameters that allow for to controlling the influence of the
each of the three components.

3.2. SSIM Gradient Variant (CGSSIM)

Besides the structural information, the human visual system is capable of extracting the image
gradients based structural features, such as (edges and points). Thus, in order to take into account
this assumption, the structural information is extracted from image derivatives ∂I/∂x, ∂I/∂y, rather
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than image intensities. To do so, the luminance (l), the contrast (c), and the structure measurement (s),
in Equation (1) will be modified by incorporating the gradient. Therefore, the gradient based structural
information cost function CGSSIM is defined, as follows:

CGSSIM(p, q, d) = [lg(p, q, d)]α.[cg(p, q, d)]β.[sg(p, q, d)]γ (7)

where lg, cg and sg are structural information defined as follows :

lg(p, q, d) = ∑
p∈{ ∂I1

∂x , ∂I1
∂y },q∈{

∂I2
∂x , ∂I2

∂y }

2∂µp∂µq + C
∂µ2

p + ∂µ2
q + C

(8)

cg(p, q, d) = ∑
p∈{ ∂I1

∂x , ∂I1
∂y },q∈{

∂I2
∂x , ∂I2

∂y }

2∂σp∂σq + C
∂σ2

p + ∂σ2
q + C

(9)

sg(p, q, d) = ∑p∈{ ∂I1
∂x , ∂I1

∂y },q∈{
∂I2
∂x , ∂I2

∂y }
∂σ(p,q)+C
∂σpσq+C (10)

∂µp and ∂µq are the mean values computed for the neighborhood ∂Np in ∂I1 for p and ∂Nq in ∂I2

for q and q in ∂I2. ∂I1 and ∂I2 are the gradients along x and y directions, respectively. ∂σp and ∂σq are
the standard deviations of p in ∂I1 and q in ∂I2. The standard deviations of p ∂σp is defined, as follows:

∂σp = ∑
p∈{ ∂I1

∂x , ∂I1
∂y }

 1
(||Np|| − 1) ∑

p′∈∂Np

(∂Ip′ − ∂µp)
2

1/2

(11)

The ∂σ(p,g) is defined, as follows:

∂σ(p,q) = ∑
p∈{ ∂I1

∂x , ∂I1
∂y }

1
(||Np|| − 1)

∗ ∑
p′∈∂Np ,q′∈∂Nq

(∂Ip′ − ∂µp)(∂Iq′ − ∂µq) (12)

In contrast to the Equation (1), this enables to compute the new structural features on image
principal derivatives with respect to x and y coordinates.

4. Experimental Results

In this section, we evaluate the ability of the proposed cost functions to discriminate stereo
correspondences. We explore the proposed costs for stereo matching through two different algorithms:
a stereo matching algorithm without aggregation stage and a fast local adaptive aggregation technique.
These cost functions are then compared to the top cost functions CDIFFCensus [22] and CGCCC [23].
The optimal parameter values that were proposed in [22,23] were retained. Experiments were
conducted on the KITTI 2012 [12] and KITTI 2015 [13] training datasets in order to evaluate the
proposed approach in the context of intelligent vehicles applications.

• The KITTI 2012 is divided into two sets, training one which contains 194 stereo pairs and 195
stereo pairs in the testing one.

• The KITTI 2015 dataset contains 200 training stereo pairs and 200 testing pairs.

The evaluation for the KITTI 2012 datasets is measured by computing the percentage of disparity
errors with respect to the ground truth. While, for the KITTI 2015 D1—all error measure is computed,
it represents the percentage of pixels for which the estimation error is larger than three pixels and larger
than 5% of the ground truth disparity at each pixel. For the parameters sets of both cost functions,
CSSIM and CGSSIM, were experimentally set as: α = 0.9, β = 0.1 and γ = 0.2 to minimize the overall
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error rate. Parameter C is set to the smallest value to prevent dividing by zero. In the aggregation
stage, the spacial and color similarity thresholds were fixed at L = 9 and τ = 20, respectively. The local
WTA strategy was adopted in order to generate disparity results. We used the highest matching cost
instead of the lowest one, as the proposed costs are built upon similarity measurement.

4.1. Evaluation of the Discriminative Ability of the Proposed Costs

In this section, the effectiveness of the proposed cost functions is studied on both KITTI datasets
without using any cost aggregation method. Figure 1 shows a visualization of the output disparity
results for each cost functions using both two stereo algorithms is presented. Column one shows the
results that were obtained without using an aggregation method, while column two shows the results
obtained with based on adaptive aggregation method. The output results for the #0 stereo pair from
the KITTI 2012 training dataset are presented. The presented figure illustrates, in both cases, that the
proposed cost functions lead to promising results, while the conventional costs provide highly noisy
disparity results.

Figure 1. Disparity maps of #0 stereo pair from the KITTI 2012 dataset . The first column corresponds
to left stereo (a1) with its corresponding ground truth disparity map (b1). The computed disparity
maps are listed in the following lines corresponding to cost functions CDi f f Census, CGCCC, CSSIM and
CGSSIM, respectively. First column (a) correspond to the output obtained without the use of an
aggregation method (WCA), while second column (b) are the output based on the adaptive aggregation
method (CA).

Tables 1 and 2 present the mean error rate on all of the stereo pairs in different regions
(non−occluded and all) on both datasets, KITTI 2012 and KITTI 2015, respectively. According to
results, our both cost functions achieves notable results. In addition, the CGSSIM provides the lowest
rate of error in both datasets.
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The presented results demonstrate the discrimination power of the proposed costs without
considering aggregation costs, which proves the effectiveness of the SSIM information for capturing
reliable local information for stereo matching. The next section investigates the efficiency of these costs
while using aggregation techniques.

Table 1. Percentage of erroneous disparities of stereo matching without an aggregation method for
KITTI 2012 training database.

Cost Functions 3-px Threshold

Non-Occluded All

CDIFFCensus [22] 54.25 55.30
CGCCC [23] 30.78 32.34

CSSIM 20.94 22.73
CGSSIM 18.00 19.86

Table 2. Results on the KITTI 2015 training datasets.

Cost Functions No Aggregation Method Aggregation Method

D1—All
(Non-Occluded) D1—All (All) D1—All

(Non-Occluded) D1—All (All)

CDIFFCensus [22] 50.74 49.87 18.63 20.05
CGCCC [23] 27.52 28.76 14.63 16.05

CSSIM 15.23 16.69 11.08 13.06
CGSSIM 15.38 16.83 10.06 12.07

4.2. Evaluation of the Proposed Costs Using the Adaptive Aggregation Technique

To further reduce noise and construct refined cost functions, the adaptive aggregation method [10]
was performed. This choice is motivated by the fact that this method is fast and accurate, which is
suitable for real time applications.

The effectiveness of the proposed method was firstly evaluated with respect to the support
window size on KITTI 2012 training datasets. Figure 2 presents the mean error rate, in both
non-occluded and all regions, computed at the default 3 pixels threshold for all of training set
images. It can be noted that the size of the support window impacts highly the performance of
the algorithm of both cost functions. Indeed, significant improvement in the performance of the local
stereo matching algorithm can be obtained as the size of the support window increases. More precisely,
the improvement is by a factor of 1.65% for the non-occluded and by 1.61% for occluded zones, for the
CSSIM cost function when the size window passed from 3 to 5, for example.

In the following, we evaluate the robustness of the proposed cost functions based on adaptive
aggregation method against the state-of-the-art cost function. Tables 2 and 3 present the average
percentage of erroneous pixels with both non-occluded and all regions. In Table 3, the errors were
calculated at three different pixels error thresholds, while in Table 2 the D1−all error was computed.
The obtained results indicate that the proposed CGSSIM cost functions outperform the others ones by
a significant margin. Indeed, the CGSSIM provides the lower mean disparity errors on both datasets,
followed by the proposed CSSIM cost function under different scenarios. Indeed, in Table 3 at the
default three pixel threshold, the improvement obtained by CGSSIM is of the order 2.23, 3.47 for
non-occluded region and of 2.84, 3.4 for other zones, with respect to CDIFFCensus and CGCCC costs.
Besides, from Table 2 , we can see clearly that the performance of our methods are significantly better
than all other cost functions in both regions. For example, the improvement obtained by CGSSIM is of
the order 1.87, 2.91 for non-occluded region and of 1.82, 2.84 for other zones, with respect to CGCCC
and CDIFFCensus costs.
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Figure 2. The disparity results obtained with respect to support window size for both cost functions,
for KITTI 2012 training sets.

Table 3. Percentage of erroneous disparities in non-occluded and regions for the KITTI 2012 training set.

Cost functions 2 px Threshold 3 px Threshold 5 px Threshold

Non-Occluded All Non-Occluded All Non-Occluded All

CDIFFCensus [22] 20.08 21.88 12.97 14.91 9.70 11.63
CGCCC [23] 20.47 22.27 11.93 13.89 10.19 12.18

CSSIM 16.39 18.29 11.08 13.06 8.18 10.17
CGSSIM 14.06 16.00 10.06 12.07 7.83 9.83

This evaluation shows that the proposed CGSSIM cost function is more appropriate for the real
outdoor disparity computation than the top performers CDi f f Census and CGCCC.

4.3. Sensitivity of the Cost Functions in the Presence of Radiometric Distortions

In this section, we study the impact of radiometric distortions on different cost functions.
These distortions are generated while using the absolute color difference between corresponding
pixels [22]. At each level of radiometric distortion, we compute the mean disparity errors for all
KITTI training set for CSSIM, CGSSIM, CDIFFCensus [22], and CGCCC [23] cost functions. It can be
visualized from the Figure 3 that the proposed cost CGSSIM give the lowest error rate at all radiometric
distortion levels.

4.4. Discussion

In the literature, it has been proven that cost functions based on pixel intensities are very sensitive
to radiometric changes. In this paper, new intensity based cost functions have been proposed. It takes
the local intensity, luminance, and contrast into account, which provide a significant local information
to describe the considered pixel within a support window. This new consideration provides the ability
of the proposed cost function to deal with radiometric changes (see Figure 3). The results described in
Tables 2 and 3 demonstrate that the proposed cost functions outperform the top performer, in both
KITTI 2012 KITTI 2015 datasets, compared to CDi f f Census and CGCCC costs. Although these latter
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promise better results with aggregation techniques, the aggregation costs proposed have led to the
best results (see Tables 2 and 3). It must be noted that the overall performance of the proposed cost
functions depends on support widow size. It can be seen that both cost functions performs well as the
size of the support region increases, as shown in Figure 2. This is trivial since large support regions
hold sufficient information to more accurately describe the considered patch, and then lead to good
accurate initial cost functions.
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Figure 3. The disparity results obtained with respect to radiometric distortions for all of the presented
cost functions, for KITTI 2012 training sets.

5. Conclusions

In this paper, we presented a new stereo matching algorithm with a new structural information
based cost functions for the cost computation step. Thus, two cost functions were proposed and
evaluated using real road scenes from the challenging KITTI 2012 and KITTI 2015 training datasets.
The obtained results have demonstrated that both cost functions lead to the lowest disparity mean
errors as compared to the top performer in this data set under different scenarios, which has proven
that our cost functions are more robust to radiometric distortions than conventional cost functions.
The evaluation of the proposed local stereo matching algorithm using the best performing cost function
over the current state-of-the-art algorithms has demonstrated the potential merits of the proposed
stereo similarity measurement.
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