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Abstract—We propose a method for semantic image segmenta-
tion, combining a deep neural network and spatial relationships
between image regions, encoded in a graph representation of
the scene. Our proposal is based on inexact graph matching,
formulated as a quadratic assignment problem applied to the
output of the neural network. The proposed method is evaluated
on a public dataset used for segmentation of images of faces,
and compared to the U-Net deep neural network that is widely
used for semantic segmentation. Preliminary results show that
our approach is promising. In terms of Intersection-over-Union
of region bounding boxes, the improvement is of 2.4% in average,
compared to U-Net, and up to 24.4% for some regions. Further
improvements are observed when reducing the size of the training
dataset (up to 8.5% in average).

Index Terms—Computer vision, Deep learning, Inexact graph
matching, Quadratic assignment problem.

I. INTRODUCTION

Deep learning has shown its efficiency in many fields [1],
in particular for semantic segmentation of images in computer
vision [2]. One limitation of deep neural network approaches
concerns the requirement of a large and representative train-
ing dataset, including its annotations, as recently highlighted
in [3]. Moreover, deep learning is intrinsically based on
embedded information at pixel level, which is then processed
and combined through different layers involving multiple
parameters to be optimized.

This type of approach ignores the structural information that
can be observed at a high level. This structural information can
for example concern spatial relationships between different
spatial entities, as illustrated in Figure 1 with the relative
positions between the main regions of the face observed in the
annotated image. This type of high-level structural information
is often ignored in semantic image analysis, despite its poten-
tial illustrated by related works, integrating spatial, inclusion
or even photometric relations [4]–[7], often applied to medical
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imaging [8]–[10]. This information is commonly represented
using graphs, where vertices correspond to regions, and edges
carry the structural information. Then, recognition turns into
a general graph matching problem [5], [6], [11].

Fig. 1. Semantic segmentation and spatial relationships. Images are extracted
from the public FASSEG database [12], [13]. a) Initial image. b) Semantic
segmentation where some distinct regions belong to the same class (e.g.
eyes). c) Semantic segmentation where each region belong to a specific class
(e.g. left eye, right eye). d) Spatial relationships modeled by a graph where
each vertex corresponds to a specific region of c: background, hair, left/right
eyebrow, left/right eye, nose, mouth. Edges carry relationships, corresponding
to distances between regions in our case. For the sake of clarity, only some
of the edges of the complete graph are displayed.

In this context, we propose to combine two approaches:
deep neural networks that have proven very efficient but often
require large training datasets, and graphs for encoding high
level relational representations in the visual scenes. Of note
the use of deep neural networks for graph matching is a topic
that is currently attracting a lot of interest from the scientific
community, for problems other than computer vision such as
biology, social sciences, linguistics [14]–[16].

The originality of the proposed method is that it allows for
such a combination, formulated as an inexact graph matching
problem applied to the output of deep neural networks. It
enables to correct the semantic segmentation resulting from the
single use of the probability map produced by the neural net-
works, by taking into account spatial relationships observed in
the annotated database. The use of the global spatial structure

Preprint International conference on Image Processing Theory, Tools & Applications (IPTA 2020)



Deep 
Neural

NetworkAnnotated database

Gm

Graph 
Model

Inexact graph matching
Training

Semantic segmentation

Deep 
Neural

Network

"one-to-one"

Gr Gm

Refinement "many-to-one"

Gr Gm

Fig. 2. Method overview. Training: the annotated training dataset is used to train the neural network and build a model graph (similar to Figure 1-d). For
the sake of clarity, although graphs are complete, only some edges are reported. Vertex color correspond to colored region labels. Semantic segmentation:
the neural network produces a semantic segmentation, possibly with artefacts (e.g. small bright region within the eyebrow and dark region on the neck). A
graph Gr is then built from this segmentation and matched with the model graph Gm. This inexact graph matching is achieved in two steps. First, correctly
segmented regions are retrieved (one-to-one matching), artefacts being ignored (two remaining vertices in this example). Secondly, remaining artefact regions
are matched (many-to-one matching): both artefacts are correctly relabelled (see surrounded areas).

of the scene also enables to be less sensitive to the diversity
(and therefore the size) of the training dataset used to train
the neural network. In order to manage spatial relationships in
an explicit manner, we consider a graph matching approach
formulated as a quadratic assignement problem (QAP) instead
of a neural-networks-based approach.

The proposed method is detailed in Section II. Preliminary
experiments illustrating the potential of this combination are
presented in Section III. Section IV concludes the paper with
a discussion.

II. COMBINING DEEP LEARNING AND STRUCTURAL
KNOWLEDGE

Figure 2 gives an overview of the proposed method,
using, for illustration purposes, images considered in the
experiments. Using an annotated training dataset, the deep
neural network is trained to perform semantic segmentation.
Moreover, using annotated images only, spatial relationships
between the different regions are measured (e.g. average of
measured distances), leading to the model graph Gm: vertices
and edges correspond to annotated regions and spatial rela-
tionships, respectively.

When processing an unknown image, the neural network
provides a segmentation proposal, from which a hypothesis
graph Gr is constructed (see Gr in Figure 2). This hypothesis
graph is then matched with the model graph (two steps inexact
graph matching, as illustrated in Figure 2). The purpose is to
match the vertices (and thus the underlying regions) produced
by the neural network with those of the model, involving
the relabelling of some regions (many-to-one matching in

Figure 2). This produces a final semantic segmentation cor-
responding to the high-level relations observed in the training
dataset.

We detail hereafter the step of construction of the hy-
pothesis graph from the output of the deep neural network
(Section II-A) and then its matching with the model graph
(Section II-B).

A. Graph construction

The input image is processed by the neural network which
produces, as output, a tensor S ∈ RI×J×C with I the width
(in pixels) of the image, J the height (in pixels) of the image
and C the total number of classes. At pixel location (i, j), the
value S(i, j, c) ∈ [0, 1] is the probability of belonging to each
class considered in the segmentation, with the constraints :

(∀c = 1, . . . , C, 0 ≤ S(i, j, c) ≤ 1) ∧
(

C∑

c=1

S(i, j, c) = 1

)

The segmentation map L∗ selects the label c of the class with
the highest probability:

∀(i, j) ∈ {1, . . . , I} × {1, . . . , J},
L∗(i, j) = arg max

c∈{1,...,C}
S(i, j, c) (1)

From this segmentation map, we define a set R of all re-
sulting connected components (see Figure 3, where R =
{R1, · · · , R4}). We also define a set R∗ = {R∗1, . . . , R∗C},
where, for each class c ∈ {1, · · · , C}, R∗c is a set of regions
corresponding to the connected components belonging to the
class c according to the neural network (see Figure 3, where
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Fig. 3. Graph construction from the tensor S (output of the U-Net) and the
resulting L∗ entity. Each point of the left image is associated to the probability
vector represented by a blurring effect. R∗

1 is the set of regions (regions R1

and R2) that belong to class 1 (according to probabilities). Edge attributes of
the graph are computed from spatial relationships between regions Ri. Vertex
attributes are mean probability vectors, computed over related regions Ri.

R∗ = {R∗1, . . . , R∗3}). This set R∗ is used for constraining the
graph matching as described in Section II-B1.

From the set R, a structural representation is built and
modeled by the graph Gr = (Vr, Er, A,D), where Vr is the
set of vertices, Er the set of edges, A a vertex interpreter and
D an edge interpreter. Each vertex v ∈ Vr is associated to a
region Rv ∈ R with an attribute, provided by the function A,
which is the average membership probability vector over the
set of pixels p = (i, j) composing Rv , therefore computed on
the initial S tensor (see Figure 3):

∀v ∈ Vr, c ∈ {1, . . . , C}, A(v)[c] =
1

|Rv|
∑

(i,j)∈Rv

S(i, j, c)

(2)
We consider a complete graph where each edge e = (i, j) ∈
Er has an attribute defined by the function D, associated with
a relation between the regions Ri and Rj (see Figure 3). In
our experiments, we choose the minimum distance between
the two regions:

∀e = (i, j) ∈ Er, D(e) = min
p∈Ri,q∈Rj

(|p− q|) (3)

The model graph Gm = (Vm, Em, A,D), composed of C
vertices (one vertex per class), is constructed from the training
set. The attribute of a vertex is a vector of dimension N
with only one non-zero component (with value equal to 1),
associated with the index of the corresponding class. The edges
are obtained by calculating the average relationships (in the
training set) between the regions (according to the D relation
considered).

B. Matching with the model graph

In order to identify the regions, the purpose is to associate
each of the vertices of Gr to a vertex of the model graph
Gm. According to the realistic assumption of having more
regions in the image associated with Gr than in the model (i.e.
|Vr| ≥ |Vm|), we face a problem of inexact graph matching,
namely many-to-one matching [11]. We propose to formulate
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Fig. 4. Graph matching formulated as a quadratic assignment problem
(illustration inspired by [17]). Left: our proposal consists of two steps, where
the X matrix models a matching between Gr and Gm graphs. The first
step (top-left) focuses on a one-to-one matching (each vertex of Vm is
associated with only one vertex of Vr). The second step (bottom-left) aims at
matching remaining vertices of Gr , leading to the final matching (many-to-one
matching). Right: For finding the optimal one-to-one matching, a K matrix
is used, combining both Kv and Ke matrices, which respectively measure
dissimilarities between vertices and edges. For the sake of clarity, only two
edge attributes are reported.

this problem in the general form of a quadratic assignment
problem (QAP), as recently considered in [17].

In our case, the concept of matching is represented by a
matrix X ∈ {0, 1}|Vr|×|Vm|, where Xij = 1 means that vertex
i ∈ Vr is matched with vertex j ∈ Vm. This is illustrated in
Figure 4-left in two cases (“one-to-one” and “many-to-one”
matchings). The goal is to determine the best matching (X∗),
minimizing the following cost:

X∗ = argmin
X

{
vec(X)TK vec(X)

}
(4)

where vec(X) is the column vector representation of X and T
denotes the transposition operator. The K matrix, not detailed
here for the sake of brevity (see [17] for details), embeds
the dissimilarity measures between the two graphs Gr and
Gm, at vertices (diagonal elements) and edges (non-diagonal
elements):

K = α Kv + (1− α) Ke

maxKe
(5)

where Kv embeds dissimilarities between vertices (Euclidian
distance between class membership probability vectors). In the
example in Figure 4-right, Kv[1, 1] = 0.4 (row and column
named 2a) represents the dissimilarity, in terms of probability
vectors, between vertices 2 of Gr and a of Gm, if one
would match these two vertices. The matrix Ke is related
to dissimilarities between edges. For instance, in Figure 4-
right, Ke[6, 1] = 9 (row and column respectively named
3b and 2a) corresponds to the dissimilarity between the
edges (2, 3) ∈ Er (scalar attribute whose value is 16) and
(a, b) ∈ Em (scalar attribute whose value is 7), if we would
simultaneously match vertex 2 with vertex a and vertex 3 with
vertex b. In such a case, Ke[6, 1] is computed using edge
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attributes: Ke[6, 1] = 16 − 7 = 9. Ke terms are related to
distances between regions (normalized in the final K matrix).

The α parameter (α ∈ [0, 1]) allows weighting the relative
contribution of vertex and edge dissimilarities (Kv terms range
between 0 and 1, and Ke is normalized in Equation 5).

Due to the combinatorial nature of this optimization prob-
lem [17] (i.e. set of possible X candidates in Equation 4), we
propose a two-steps procedure, relying on the initial semantic
segmentation provided by the neural network:

1) Search for an initial one-to-one matching (Figure 4-top-
left).

2) Refinement by matching remaining vertices, finally lead-
ing to a many-to-one matching (Figure 4-bottom-left).

1) Initial matching: one-to-one.: One searches for the op-
timal solution to Equation 4 by imposing the following three
constraints on X , thus reducing the search space for eligible
candidates:

1)
∑|Vm|

j=1 Xij ≤ 1: some i vertices of Gr may not be
matched.

2)
∑|Vr|

i=1 Xij = 1: each j vertex of Gm must be matched
with only one vertex of Gr.

3) Xij = 1 ⇒ Ri ∈ R∗j : vertex i ∈ Vr can be matched
with vertex j ∈ Vm if the associated Ri region was
initially considered by the neural network to most likely
belong to class j (i.e. Ri ∈ R∗j ). For instance, in the
case of Figure 3, only vertices related to regions R1 and
R2 would be considered as candidates for class 1 (R∗1).

The first two constraints ensure to search for a one-to-one
matching Thanks to the third constraint, one reduces the search
space by relying on the neural network: one assumes that it has
correctly, at least to some extent, identified the target regions,
even if artifacts may still have been produced as well (to be
managed by refining the matching). This step allows us to
retrieve the general structure of the regions (thus verifying the
prior structure modeled by Gm).

2) Refinement: many-to-one.: We assign each remaining
vertex k (i.e. k ∈ Vr |

∑|Vm|
j=1 Xkj = 0) to the vertex

i∗ ∈ Vr by considering the following cost function between
two vertices i and j of Gr:

cost(i, j) = α|A(j)−A(i)|+ (1− α) D(j)−D(i)

maxu∈ER
D(u)

. (6)

For each remaining vertex k, the best matching vertex i∗,
among already matched vertices with Vm, minimizes the cost
function:

i∗ = argmin
i∈Vr|

∑|Vm|
j=1 Xij=1

cost(i, k). (7)

According to this formulation, it appears that remaining
vertices are matched to vertices of Gm by indirectly searching
for correspondances with already matched vertices of Gr.
Therefore, one focuses on similarities within the current image
and not with the model. In Figure 4-bottom-left, this corre-
sponds to finding the matching between vertex 1 and vertex b
by indirectly studying the relevance of the matching of vertex 1
with 3 (vertex 3 being already matched with vertex b).

The formulation related to Equation 7 and concerning one
vertex only is similar to the matrix formulation related to
Equations 4 and 5 (and concerning simultaneously several
vertices). The only difference is that we consider vertex and
edge dissimilarities within Gr graph instead of considering
dissimilarities between Gr and Gm.

III. EXPERIMENTS

We present, hereafter, the dataset used in the experiments,
then the evaluation protocol, and finally the results.

A. Data

We consider the FASSEG1 public data set. This dataset fo-
cuses on the multi-class semantic segmentation of the face [12]
(see Figure 1) as well as the estimation of its pose [13]. For
this preliminary study, we consider a subset of this dataset
corresponding to a specific pose (the front view).

This subset contains 70 images. FASSEG is a dataset of
images with semantic segmentation rich in structural informa-
tion that does not however distinguish certain regions (i.e. left
eye and right eye, left eyebrow and right eyebrow). We have
therefore refined the annotations in order to give a unique label
to these regions. Note that we have also refined some semantic
label maps for the creation of our model graph (see Figure 1).

B. Evaluation protocol

For these experiments, we consider the U-Net neural net-
work [3] that copes well with a training set with a small
number of samples. For these experiments, we split our dataset
as follows: 20 images are used for training (reference training
set), 10 for the validation (reference validation set) and 40 for
the test (reference test set). 100 epochs are used for training
the network.

The model graph is constructed by calculating the average
distances (Equation 3) between the different annotated regions
of the training set. The α parameter is empirically selected,
based on observations on some images, and set to 0.4 for
experiments, yet without any optimization.

As this was experimentally investigated, a simple distance
measurement between the centers of gravity of the regions
appeared inappropriate, due to the variability of the shape of
some regions (e.g. hair).

We evaluate the difference between the quality of semantic
segmentation at the output of neural networks and that after
matching, i.e. with integration of structural information. We
consider the Intersection over Union (IoU or Jaccard index)
to evaluate the quality of our results against our manual
annotation used as ground truth. This evaluation measure
is used to compare regions at the pixel level and also at
the bounding box level. This comparison of bounding boxes
allows us to quantify segmentation errors corresponding to a
correct main region but with errors related to one or more
minor sub-regions far from the main region (and not very
significant in terms of number of pixels). These measurements

1The FASSEG annotated public dataset can be downloaded at the following
address: https://github.com/massimomauro/FASSEG-dataset.
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TABLE I
COMPARISON OF SEGMENTATIONS PROVIDED BY THE U-Net AND OUR APPROACH ADDING GRAPH MATCHING (U-Net+GM) CONSIDERING THE IOU
INDEX RELATED TO REGION BOUNDING BOXES AND PIXELWISE PRECISION COMPARED TO THE MANUAL SEGMENTATION.RESULTS ARE PROVIDED AS
AVERAGE AND FOR EACH CLASS: BG (BACKGROUND), HR (HAIR), FC (FACE), L-BR (LEFT EYEBROW), R-BR (RIGHT EYEBROW), L-EYE (LEFT EYE),

R-EYE (RIGHT EYE), NOSE AND MOUTH. RESULTS ARE ALSO PROVIDED FOR DIFFERENT SIZES OF THE TRAINING/VALIDATION SETS.

Pixelwise Bounding box
Training Classes Classes

dataset (%) Approach Average Bg Hr Fc L-br R-br L-eye R-eye Nose Mouth Average Bg Hr Fc L-br R-br L-eye R-eye Nose Mouth
U-Net 75.3 88.0 88.2 91.9 61.8 60.5 76.9 72.8 67.3 77.2 76.0 84.0 82.5 96.1 66.3 63.6 74.0 75.1 69.0 78.2

100 U-Net + GM 75.4 88.0 88.9 91.8 62.1 60.7 77.0 72.8 67.3 77.2 78.4 84.0 92.4 96.1 66.5 68.3 79.4 75.2 70.4 78.9
U-Net 74.0 88.5 85.9 91.0 60.8 56.8 75.5 72.8 64.7 77.9 74.7 84.0 74.5 95.8 66.7 59.5 78.0 75.1 64.9 79.8

75 U-Net + GM 74.3 88.3 86.8 91.1 61.7 57.5 75.6 72.8 64.7 78.0 77.5 84.0 84.9 96.1 66.8 69.2 78.8 75.0 67.5 79.9
U-Net 72.0 86.0 84.9 90.9 54.6 54.2 73.5 72.4 65.9 75.4 68.0 85.4 75.7 94.5 52.4 41.8 77.7 66.6 63.8 70.6

50 U-Net + GM 73.7 86.7 86.9 91.0 59.9 57.9 74.5 72.5 66.1 75.6 76.5 85.4 86.0 94.4 65.3 66.2 78.5 74.9 68.5 74.7
U-Net 38.2 84.5 83.6 56.8 2.4 28.1 61.7 25.6 57.7 70.0 36.3 81.2 80.1 90.5 1.7 33.7 68.4 12.8 55.1 66.9

25 U-Net + GM 39.8 83.8 86.4 61.0 2.7 30.6 65.7 26.5 55.1 71.4 42.3 78.0 90.1 82.8 2.9 34.8 65.9 27.4 59.3 70.1

are performed for each class, the overall mean value being also
computed.

We also study the impact of the size of the training and
validation sets on the quality of our semantic segmentation.
Experiments are performed for various sizes of the reference
training and validation datasets expressed in percentage i.e.
100% (20 images, so the full reference training set and
10 images for validation, so the full reference validation
dataset), 75% (15 training images from reference training set, 7
validation images from the reference validation set), 50% and
25% (5 images for training, and 2 for validation). Experiments
are run 20 times with random image selection for reference
training and validation datasets for 75%-25% set sizes, and
average performance results are reported for these cases.

C. Quantitative Segmentation Results

Overall, the semantic segmentation is improved thanks to
graph matching as can be seen on average over all classes
(training sets size between 50% to 100%) in Table I providing
results in terms of pixelwise IoU index and IoU index of
bounding boxes.

The degree of improvement is more significant when using
IoU on region bounding boxes in comparison to pixel based
IoU. This is due to the fact that, for a given class, misclassified
pixels represent a small proportion of the ground truth area
(benefits appear higher for small areas such as eyes and
eyebrow). With IoU based on bounding boxes, one favors
the analysis of the spatial distribution of misclassified areas.
In this case, improvement appears particularly significant:
24.4% of improvement for the class right eyebrow (R-Br)
with 50% training set size (Table I). The use of spatial
relationships allows avoiding misclassified regions that are
spatially incoherent (e.g. piece of hair between the nose and
the mouth).

Table I also reports the influence of reducing the training
data set. It appears that the smaller the dataset is, the higher are
the benefits of using graph matching. Our modeling capturing
spatial relationships combined with graph matching allows
then improving segmentation results, compensating for the
lack of representativity of a small training dataset.

Note that with only 25% of the training dataset, depending
on randomly selected images, some trained networks appeared

unable to propose region candidates for some classes on some
test images. This is due to the poor representativity in the
training dataset. In such cases, graph matching fails because
of missing class candidates, this case being not yet managed
by our approach. For this reason, results reported in Table
I for 25% ignore such cases, and reported performances are
only averaged on segmented test images providing at least one
region per class (48.9% of images are not considered).

D. Qualitative Segmentation Results

Figure 5 gives some examples of semantic segmentations
with both U-Net and our approach. As visually observed,
improvements are significant in many cases (e.g. part of the
eye on the middle image, neck), in particular when reducing
the size of the training dataset (i.e. partial compensation of an
under-trained model).

Fig. 5. Examples of segmentation results (initial image, result with U-Net,
result with the proposed approach), for different sizes of the training dataset
(only 75%, 50% and 25%). Bounding boxes highlight regions with significant
improvements

IV. DISCUSSION AND PERSPECTIVES

The proposed approach appears efficient to improve the
semantic segmentation achieved by the U-Net deep neural
network. The improvement appears particularly significant
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for some classes (up to 24.4% for the Right-eyebrow label,
compared to the average improvement of 8.5% considering
the bouding box IoU with a training percentage of 50%).
This is due to the nature of the considered information, which
appears highly complementary to the low-level (pixel-level)
information considered by the U-Net that intrinsically ignores
high-level spatial relationships. As observed, an additional
strength of our approach is its ability to compensate for
segmentation errors resulting from the reduction of the training
database. This is an important aspect as the size of the learning
database in deep learning is a strong constraint, as underlined
in the introduction.

While promising, our approach suffers from a few lim-
itations. First, our approach is invariant in translation and
rotation, but not yet in scale. This could be managed by
introducing a scale factor as part of the matching process (in
particular regarding the computation of the K matrix reported
in Equation 4). Moreover, several parameters (e.g. α) need to
be set empirically.

Secondly, partial occlusions in images that could affect
the computation of graph Gr are cases not yet considered
in our current formulation. Indeed, each vertex (region) is
assumed to be necessarily matched to a region of the model.
Handling occlusions could be managed by relaxing hypotheses
pertaining to matching the vertex of the model.

Thirdly, our modeling may not to be robust to face pose
changes that alter spatial relationships. This issue can be ad-
dressed by choosing a more generic and representative model.
Note that other domains of applications for our technique such
as 3D medical images segmentation may not present the same
challenges in practice as face segmentation presented here as
illustration for our technique. To support high variation in
spatial relationships, an alternative could be to consider a set
of representative graph models instead of only one, with the
underlying difficulty of selecting the appropriate one when
segmenting an image. Our future work will also investigate
how deep learning on graphs [18] can help in improving our
approach.

Finally, small computation time may be crucial in some
applications. In particular, the high complexity of the first step
(formulated as a quadratic assignment problem) may involve
a dramatic increase of the computation time, if the number of
classes and regions grows. Nevertheless, raw estimates pro-
vided in the paper are encouraging and further improvements
could be sought using dedicated hardware (e.g. GPU).

V. CONCLUSION

In this paper, we have proposed an original method com-
bining spatial relationships with deep learning for semantic
segmentation. Preliminary results show how this approach
improves significantly segmentation, with the additional ben-
efit of using a limited number of training samples. The best
obtained improvement over the U-Net neural network used
alone for segmentation is of 8.5% IoU on average, trained
with only 50% of the available training dataset.

Future work will focus on the scale invariance, a finer eval-
uation of the computational complexity and on experiments in
other application domains. Another aspect to be studied is the
ability to manage graph matching using neural networks (i.e.
neural networks on graphs and not only on images [14], [16]).
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