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Capillary thinning and break-up of liquid jets is one of the long-standing important problems attracting wide scientific and industrial interest [START_REF] Eggers | [END_REF]. The problem is particularly challenging in the case of polymer liquids [2,3]. One relevant application domain of polymer liquids is spinning of fibers which is well known in nature and is widely involved in technological processes like artificial fiber production and electrospinning [4,5]. The physics standing behind the effect is far from being fully uncovered and still presents a formidable issue in spite of a long history of efforts to clarify it.

Last decades the essential progress has been attained in study of Newtonian jets [6,7].

However experiments reveal that Newtonian and polymer liquid threads show qualitatively different types of behavior. It was found that jets formed by solutions of flexible polymers can show formation of periodic beads-on-a-string structures [8,9] and blistering patterns where solvent droplets set on micro-or nano-fibers [10][11][12][13]. The beads-on-a-string pattern arises upon capillary pinching and involves spherical beads separated by narrow threads with stretched chains and constant polymer concentration [13,14]. The nature of the blistering patterns is less studied. One of the approaches elucidating this phenomenon based on opportunity of polymer molecules migrate in the thinner regions due to the stress-concentration coupling effect [15,16].

However, this approach faces difficulties in the analysis of non-linear behavior of polymer jets, as it disregards short-scale modes. Such dynamical modes are captured by the molecular models.

One such model has recently been used to study the flow induced phase separation in dilute polymer solutions under extension [17,18]. It predicts a polymer/solvent demixing due to a flowinduced orientation of polymer chains acting to reverse their effective interactions from repulsive to attractive. As a result the elongated chains form a network of fibrils which then tends to compress by squeezing out the solvent to the surface. The emerging solvent layer turns then unstable with respect to undulations. This instability can be understood in analogy with that of a liquid annular coating of a wire [START_REF] Papkov | The Liquid-Crystalline State of Polymers[END_REF]. In the latter case undulations with the period 22 a λπ where a is the jet radius have been predicted in good agreement with experiments [10].

Most of the above results cover solutions of flexible chains. Meanwhile solutions of stiff polymers such as polypeptides, DNA, cellulose, aromatic polyamide copolymers etc. are particularly interesting for applications. Such polymer systems show anisotropic phases with high degree of order; they are also capable of forming high performance fibers and play an important role in living systems [START_REF] Semenov | [END_REF][21][START_REF] Doi | The Theory of Polymer Dynamics[END_REF]. Our study is focused on capillary thinning of solutions of stiff polymers in the regime of ultrathin jet when its diameter is smaller than the polymer chain length and the chains are highly oriented along the jet axis. Such regime arises at the terminal stage of capillary thinning. Focusing on the jet dynamics for solutions of rod-like macromolecules we show that polymer/solvent demixing occurs due to capillary forces, i.e. the capillary forces activate drainage of the solvent to the jet surface and trap rods inside the jet core.

It is interesting to note that this mechanism is likely to be qualitatively applicable also for solutions of semiflexible polymers when the chains are highly stretched by the extensional flow.

Let us consider a semidilute solution of rod-like macromolecules of length L and diameter d , dL . The average concentration c is such that 3 1 cL meaning that the rods are crowded while their volume fraction 2 /41 Ldc φπ =

. The dynamics of an isolated rod in the dilute solution without entanglements is characterized by the rotational diffusion constant
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where r τ is the characteristic time necessary for a rod to move on a distance L along its axis, 

1/2 H cL ξξ - =
is the screening length which is of the order of the average distance between the neighboring rods ξ [18,22]. This length is roughly the mean distance from an arbitrary point to the nearest rod. The tube diameter for an isotropic solution of rods is estimated as ( ) where ε is the elongation rate. Here z e is the unit vector along z-axis and r e is a radial unit vector. Upon stretching the rods get oriented along the z-axis.

Their orientational distribution is given by the function ()

f n , ()1 fd Ω= ∫ n n
, where n is directed along the rod axis and d Ω n is an element of the steric angle around the direction n .

Rotational diffusion coefficient of the rods in the anisotropic state is given by 2 rr DDI - with ( ) ( ) ( )
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where cos z θ = ne . Parameter α is obtained from Eq. ( 1) self-consistently. At 1 α

( 1/ I α ) it is written as ( ) ( ) ( ) ( ) (
)
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Below we consider highly oriented rods when the characteristic value of the angle between the rod axis and z-axis is smaller than the magnitude of the angle fluctuations inside the tube, ( ) ( )
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It leads to ( )
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. The condition (3) corresponds to the second line in Eq. ( 2).

It is well known that the shape of the cylindrical jet is unstable with respect to undulations [START_REF] Eggers | [END_REF]. We can assess the instability effects rendering the jet non-uniform. The subsequent dynamics of the jet is governed by the capillary forces. It is important however that in ultrathin jet when its radius less than rod length, aL < , the dynamics of long-wave fluctuations with the period λ exceeding the rod length, L λ , differs from the dynamics of short-wave fluctuations with aL λ << .

In the first regime, La λ >

, we can employ the conventional approach assuming that the solution of rod-like polymers is approximated by the continuum medium. Concentration of rods in this case is constant. The effective viscosity η of the solution can be obtained based on the general equation for the stress tensor [START_REF] Teraoka | [END_REF]: and the effective viscosity is given by 3 [START_REF] Eggers | [END_REF] 18
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. The last formula is similar to that for viscosity of solutions of flexible chains being in the stretched state [12].

The dynamics of the jet in the scope of the slender body approximation ( /1 az ∂∂ ) [START_REF] Eggers | [END_REF] is described by the volume conservation equation ( )
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and by the momentum equation ( )
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Here the radius a and velocity z υ depend on the axial coordinate z and time t. C is the total curvature of the jet so that the Laplace pressure is C γ . Linear stability analysis shows that the fastest growing mode of the jet shape fluctuations is characterized by the wave vector 2/ kπλ = and the growth rate Γ [1]:

( ) Let us consider the regime of a thin liquid jet of radius smaller than the rod length: 0 aaL =. Below we show that in the short-wave regime, 0 aL λ << , the fluctuation growth and consequent variation of the cylindrical shape are driven by a drainage of the solvent to the surface leading to a shrinkage of the system of rods inside the core of radius 0 aa -< as illustrated in Fig. 1(a,b). As long as rods repel each other, the free energy of the core increases upon its compression thereby hindering the fluctuation growth. On the contrary, the surface energy decreases if the fluctuation width along the z-axis exceeds the radius 0 a . Thus, the short-wave pinching dynamics of the jet depends on the balance between the surface and volume forces. 
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where the osmotic pressure inside the jet is [21],
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Here the second term in brackets is due to steric repulsion of rods and T Θ is the Θ -temperature of the isotropic solution. Note that θ is a small typical angle between a rod and z-axis, * 1 θ . For * / dL θ ≤ the rods become nearly parallel, and the steric effect decouples from the rod orientations. In this regime the osmotic pressure is still defined in eq. ( 10) provided that () I α is formally set to 4/ dL .

The optimum shape of the droplet is found from minimization of the surface area d A at fixed radius of the core and volume of the droplet. It corresponds to the surface of constant curvature C [24], defined by the differential equation The length of the annular droplet is found from eq. (11b) using a new variable ϕ which is defined through the formula ( ) ( )
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and the surface area and the volume of the annular droplet are written as ( ) ( )
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The droplet surface curvature is represented as In what follows we neglect the interaction part of the osmotic pressure given by the 2nd and the 3rd terms in Eq. (10). As for the last term, we disregard attraction of rods assuming that it is dominated by their repulsion. Further, the repulsive contribution is dominated by the idealgas contribution, 

The reduced activation energy thus depends strongly on the ratio 0 / a ξ . It becomes significant ). This velocity can be found by balancing the activation energy and the total energy dissipated due to solvent/rod friction force while the system descends from the barrier. The dissipation rate inside the volume We can now specify the regime where virial interactions of rods do not alter much the osmotic pressure Π . For 1 φ (low volume fraction of rods,

2 cLd φ
) and 1 θ (highly oriented rods) the relevant condition is (cf. Eq. ( 10)
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The angle θ can be estimated as the typical angle of a rod rotation during the characteristic time * τ . To get an upper bound estimate we assume a free rotation, so , which is a reasonable condition as we expect the rod diameter 5nm d < .

In the above analysis we assumed that the droplet has an equilibrium shape. FH γ ∆ and the pressure gradient along the z-axis is
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. The pressure gradient generates a flow both inside the droplet and inside the core. The characteristic longitudinal velocity inside the droplet and the core is denoted as dz υ and cz υ correspondingly.

The relaxation time is the ratio of the half droplet volume deviation The depth ) can be obtained based on the principle of maximum dissipation rate [25]. The energy dissipated during the time d τ is F ∆ , hence the dissipation rate is of the order of / d F τ ∆ .

Its maximum is attained when ) is maximized: The subsequent dynamics of the solvent/polymer phase demixing involves formation of multiple droplets. This regime will be considered separately.

In summary, we examined two qualitatively different mechanisms of polymer liquid jet instability arisen on long and short length-scales. We focused on the most interesting regime when the jet thickness is smaller than the rod length and the rods are highly oriented. For lengthscales exceeding the rod length the surface tension-driven thinning develops in a conventional way (Plateau-Rayleigh mechanism [START_REF] Eggers | [END_REF]) which ultimately should result in breaking up of the jet.

By contrast, we show that at shorter length-scales the rods get effectively trapped inside the jet core whereas the solvent drains to the surface and forms droplets there. The latter process of capillary phase separation occurs much faster and can prevent the jet from breaking up. This mechanism works both with non-volatile solvents and with no specific attraction between oriented polymer chains and differs from the mechanism of phase separation which is connected with a reduction of the steric repulsion of the stretched chains [17,18]. Moreover, the described mechanism may be also at work in solutions of semiflexible polymers if the chains are highly stretched due to extension. Thereby the discovered capillary-driven phase separation effect can provide a universal mechanism of fiber formation in solutions of stretched polymers.

Experimental observation and identification of the predicted solvent/polymer demixing mechanism is a challenging problem. A thin quasi-uniform jet can be easily produced, for example, by stretching of a liquid droplet. This process gives rise to formation of a thin neck Quite obviously, the polymer solutions should contain very long macromolecules which are aligned by the flow. One option is to use solutions of DNA. These chains can be very long and form nano-thick fibers in solutions [26]. The most appropriate system to verify our results must involve very long rods. Such macromolecular rods (with length 110 microns ≥-) are known, examples are given by protein polymers (F-actin, microtubules) and other self-assembling supramolecular structures (like tri-arylamine fibers) [27][START_REF] Oosawa | Thermodynamics of the Polymerization of Protein[END_REF][START_REF] Van Mameren | [END_REF][30][31].

  . The distribution function () f n is found from the Smoluchowski equation for rotational motion of the rods and for the elongational flow is given by[START_REF] Teraoka | [END_REF] 

  e. a micron-sized jet falls in the viscosity dominated regime with the characteristic breakrods are kept highly oriented by the flow during the jet thinning process. In the viscosity dominated regime the condition /1 L λ is satisfied if the radius
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 1 Fig. 1. (a) Illustration of the fluctuation in the short-wave regime. Haa +- =is the annular droplet height, λ is its length along the axis, * /2 zλ = , a -is the radius of the droplet/core interface,
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 1 Fig.1(a)). Below we assume for simplicity that the radius a -of the core/droplet interface is constant; this assumption is justified by the condition L λ . The solution of Eq. (11a) is presented in the implicit form ( )aaa -+ ≤≤

Fig. 2 .

 2 Fig. 2. Annular droplet profiles on the jet core of radius 1 a -= and (a) 0.2 H = , (b) 0.5 H = and (c) 1 H = .

  Below we will analyze the case barrBFkT when only a single droplet is formed. We also assume that the fluctuation of length L Λ . This choice can be justified for the critical nucleation stage of droplet formation, * HH (see Fig. 1(a)): fluctuations with L Λ are too slow because the relevant solvent/rod friction force is proportional to Λ , while the osmotic energy penalty for droplet nucleation strongly increases in the regime L Λ . The characteristic time of the optimum fluctuation formation is estimated as * w is zcomponent of the solvent velocity inside the core (solvent moves in the longitudinal direction from periphery into the forming droplet, Fig. 1(b)

  total flux J which is a sum of the flux inside the droplet, is the flow penetration depth in the core. The velocity dz υ of the flow inside the droplet is found from

  Once the potential barrier is overcome the droplets start to grow while the core shrinks due to capillary forces. The dynamics of the droplet growth can be found based on the energyflow velocity sz w can be found through the balance between the pressure gradient inside the core 2 0 H aL γ and the friction force per unit volume sz cLw ζ : the relationship of the last formula in (16b) we arrive at the exponential growth law for the droplet height droplet thickness becomes of the order of the jet radius,

  in time. The theory developed above is applicable to such pinching bridge with z aLwhich can be locally considered as a uniform cylinder. The jet radius a must be small enough,