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Abstract

This work introduces and studies a new family of velocity jump Markov processes
directly amenable to exact simulation with the following two properties: i) trajectories
converge in law, when a time-step parameter vanishes, towards a given Langevin or
Hamiltonian dynamics; ii) the stationary distribution of the process is always exactly
given by the product of a Gaussian (for velocities) by any target log-density. The simu-
lation itself, in addition to the computability of the gradient of the log-density, depends
on the knowledge of appropriate explicit upper bounds on lower order derivatives of this
log-density. The process does not exhibit any velocity reflections (jumps maximum size
can be controlled) and is suitable for the ’factorization method’. We provide rigorous
mathematical proofs of the convergence towards Hamiltonian/Langevin dynamics when
the time step vanishes, and of the exponentially fast convergence towards the target
distribution when a suitable noise on velocities is present. Numerical implementation is
detailed and illustrated.
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1 Introduction
A kinetic process is a Markov process (Xt, Vt)t>0, where Xt ∈ Rd and Vt ∈ Rd are respectively
called the position and velocity of the process, such that Xt = X0 +

∫ t
0
Vsds for all t > 0. In

addition to modelling a variety of phenomena, these processes can be used as time continuous
Markov Chain Monte Carlo algorithms. In this case, given a target probability distribution ν
on Rd, the idea is to construct a kinetic process that is ergodic with respect to some probability
measure π on R2d whose first marginal is the target distribution ν. This program generalizes
the usual construction of a ν-ergodic process (Xt)t>0 on Rd. When this ergodicity holds, for
observables f that only depend on the position, the empirical estimation t−1

∫ t
0
f(Xs)ds still

converges in large times towards ν(f). This idea traces back to the Molecular Dynamics
(MD) of Alder and Wainwright [1], based on the Hamiltonian dynamics, introduced shortly
after the seminal Metropolis algorithm. Beyond physical applications and motivations —
Hamiltonian-based processes simulate the real physical dynamics, an algorithmic motivation
is that kinetic processes have a ballistic, rather than diffusive, behaviour: their inertia reduces
backtracking, which improves the exploration of the configuration space, by comparison with
reversible processes such as Metropolis-Hastings random walk or usual elliptic diffusions.

Langevin diffusion and Hamiltonian Monte-Carlo (HMC) are classical kinetic processes
used for sampling purposes. In the last decade, another class of velocity jump samplers has
emerged, first obtained as scaling limits of rejection-free lifted Markov chains [20, 4, 16].
In these new samplers, the velocity is piecewise constant and is updated at random times;
in particular, the process belongs to the family of piecewise deterministic Markov process
(PDMP). The law of these so-called jump (or collision, or event) times is chosen in such a
way that the invariant distribution of the process is the target π. An appealing feature of
these processes is that they can be implemented in continuous time, since only the value of
the process at its jump time is needed, and no supplementary time discretization is required.
In particular, the equilibrium of the process effectively implemented is the correct one, which
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is usually not the case for discretized diffusions. In HMC-like methods, a Metropolis step is
added which corrects for the time discretization; however the introduced rejection requires
a velocity reflection which destroys the ballistic dynamics and impairs the efficiency of the
algorithm. Another interesting point is that, as detailed in Section 2.1 (see also [17, 18]),
different parts of the log-density of ν may be treated at different time scales through a
factorization of the target measure, thus reducing the overall computational complexity of
the algorithm. This property is somewhat analogous to the deterministic multi-time-step
integration methods [22, 14] but, again, without their statistical bias.

If the user is only interested in computing static quantities, that is, integrals of some
observables with respect to ν, then any ν-ergodic process, or π-ergodic kinetic process with
marginal ν, is theoretically usable, even if some may perform better than others for a finite
computational budget. The question is a bit different when the aim is to compute dynamical
quantities (diffusion constants, escape rates, quasi-stationnary distributions...) for a given,
particular kinetic process, typically the Hamiltonian or Langevin dynamics. Indeed, though
they have the same equilibrium, different kinetic processes may have completely different
dynamical properties. For instance, bouncy-type samplers, HMC, or other Metropolized
schemes based on Langevin diffusions [19] all feature occasional reflections of the velocity;
such discontinuities never happen in Hamiltonian or Langevin dynamics.

Errors in the computation of dynamical quantities naturally occur when the computation
is done by discretizing in time the continuous time dynamics of interest: a Langevin process
discretized with a Verlet-like scheme for example, does not have exactly the same dynam-
ical properties as the reference continuous-time process. In these cases however, there is a
parameter, namely the discretization time-step ε, which may be tuned to obtain a trade-off
between dynamical precision and cost: smaller ε lead to a better precision on the dynam-
ical properties, at the cost of longer computations —- simulating a trajectory for a given
fixed time T typically requires T/ε computations of the gradient of the log-density of ν.
Such a precision/computation cost tradeoff does not currently exist for bouncy-type kinetic
samplers.

The main contribution of the present work is the design of a new family of velocity
jump processes with two interesting properties. Firstly, similarly to discretized Langevin
or Hamiltonian schemes, the process does not suffer from regular velocity reflections and
moreover converges when a time-step parameter ε vanishes towards a given Langevin of
Hamiltonian dynamics. Secondly, similarly to bouncy-type samplers, it is a kinetic MCMC
sampler with exact target distribution and suitable for the factorization method.

We provide a rigorous mathematical proof of two related properties. The first one is
the convergence in distribution of trajectories of the considered process towards Hamiltonian
dynamics, when the time-step parameter ε vanishes. This result relies on classical character-
ization techniques based on martingale problems. The second property we establish is the
exponentially fast convergence of the process time marginal distributions towards the exact
target distribution, in an L2 sense. This result relies on a hypocoercivity analysis based on
a Lyapunov function in the form of a well-chosen modified L2-norm, in the spirit of [10].

The improvement from Hamiltonian integrators and randomized variants is thus that the
static properties are unbiased and, maybe more importantly in this context, the factorization
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method is still available. The price to pay is the loss of geometric properties as symplecticity.
The improvement from bouncy-type samplers is that the proposed method introduces a
time-step parameter ε that enables to interpolate the former with Hamiltonian/Langevin
dynamics.

Finally, we remark that several recent works [6, 9] in Bayesian statistics have argued that
samplers based on Hamiltonian dynamics or Langevin diffusion have good convergence prop-
erties, from the fact the continuous-time limit process has dimension-free convergence rate
for smooth and concave potentials, and then controlling the distance between this limit and
the effective algorithm. In this context, our family of processes may provide a way to keep the
dimension-free convergence rate while suppressing the bias (although the dimension should
still intervene in the complexity of the algorithm). As said above, we provide explicit L2

convergence rates in the spirit of [10] and [2] under general assumptions.

The article is organized as follows. The general framework of kinetic samplers and velocity
jump processes is introduced in Section 2. Section 3 contains the definition of the new family
of processes and the proof of convergence toward the Hamiltonian dynamics (Theorem 3.6).
Exponential convergence toward equilibrium with explicit rates is established in Section 4
through Hypocoercivity arguments (Theorem 4.3). The effective simulation of the processes
is discussed in Section 5, and numerical experiments are provided in Section 6. Finally, the
proof of a general result for the convergence of Markov processes, Theorem 7.1, used in the
proof of Theorem 3.6, is postponed to Section 7.

2 Kinetic samplers

2.1 General setting

Let ν and γ be two probability laws on Rd, where ν admits a density with respect to the
Lebesgue measure proportional to exp(−U), for some function U ∈ C1(Rd) — the log-density.
We are interested in kinetic processes for which the Gibbs distribution π = ν ⊗ γ, namely

π(dxdv) ∝ exp (−U(x)) dxγ(dv) , (2.1)

is invariant.

Remark 2.1 (Marginal in the velocities). There are several possible choices for γ. Usual
ones are Gaussian distributions and the uniform measure on a sphere or on a discrete set of
velocities.

Consider a Markov process on Rd × Rd with — formal — generator L, decomposed as

Lϕ(x, v) = T ϕ(x, v) + Fϕ(x, v) +Dϕ(x, v) (2.2)

for smooth, compactly supported test functions ϕ ∈ C∞c (R2d), where:

• the transport part T ϕ(x, v) = v · ∇xϕ(x, v) is the free-flight transport operator, and
is the only part that acts on the position variable in the sense that Dϕ = Fϕ = 0 if
ϕ(x, v) = g(x) for some function g. In terms of trajectories, this ensures that Xt =∫ t

0
Vsds.
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• the dissipative part D is a Markov generator that acts on the velocity variables and
leaves γ invariant:

∀ϕ ∈ C∞c (R2d) ,∀x ∈ Rd ,

∫
Rd

Dϕ(x, v)γ(dv) = 0 . (2.3)

• the force part F acts on velocity variables and is such that for all ϕ ∈ C∞c (R2d),∫
R2d

Fϕ(x, v)π(dxdv) = −
∫
R2d

ϕ(x, v) (v · ∇U(x))π(dxdv) . (2.4)

Integrating by parts, we see that this last condition means that
∫
Fϕπ = −

∫
T ϕπ for all

ϕ ∈ C∞c (R2d). As a consequence (2.3) together with (2.4) imply that π(Lϕ) = 0 for all
ϕ ∈ C∞c (R2d). If C∞c (R2d) is a core for L, which is usually true and can be proven through
regularization and truncation arguments [12], then this implies that π is invariant for L.

Many operators satisfy the requirements for the dissipative part D; let us mention three
usual choices:

• Friction/Dissipation:

Dϕ(x, v) = −v · ∇vϕ(x, v) +
σ2

2
∆vϕ(x, v) , (2.5)

for some σ > 0. In this case γ is the centered normal distribution with variance σ2,
and D is the generator of an Ornstein-Uhlenbeck process acting on velocities.

• Velocity refreshment:

Dϕ(x, v) =

∫
Rd

(ϕ(x,w)− ϕ(x, v)) γ(dw) . (2.6)

In terms of trajectories this corresponds to resampling the velocity at rate 1, according
to the equilibrium measure γ.

• Partial refreshment:

Dϕ(x, v) =

∫
Rd

(
ϕ(x, pv +

√
1− p2w)− ϕ(x, v)

)
γ(dw) , (2.7)

for some p ∈ [0, 1) if γ is a normal distribution. This corresponds to changing the
velocity at random times, using the transition kernel of the Ornstein-Uhlenbeck process,
and can be seen (up to a rescaling in time) as an interpolation between the previous
two exemples.

In general, note that (2.3) implies that for any probability law ν̃ on Rd, ν̃ ⊗ γ is invariant
for D. Moreover, if (2.3) holds, then it also holds for the generator D2ϕ(x, v) = η(x)Dϕ(x, v)
for any positive function η on Rd. For instance, when D models the interaction of the system
with an external heat bath, there may be no coupling with the heat bath in the interior of
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some domain, i.e. η(x) = 0 for x in the domain, and η(x) > 0 outside. Similarly, if D1

and D2 both satisfy (2.3), then D1 +D2 does too.

Let us now discuss in more detail the force part F . The most classical choice here is the
deterministic drift operator

Fϕ(x, v) = −σ2∇U(x) · ∇vϕ(x, v)

which satisfies (2.4) if γ is the centered normal distribution with variance σ2. With this
choice, then L is the generator of the Hamiltonian dynamics if D = 0, of the Langevin
diffusion if D is given by (2.5), or of the HMC if D is given by (2.6).

The factorization (or splitting) method relies on the following remark. Suppose that
∇U(x) =

∑N
i=1 ξi(x) for some vector fields ξi on Rd, i = 1..N , and that we have N operators

F1, . . . ,FN such that for all i ∈ J1, NK,∫
R2d

Fiϕ(x, v)π(dxdv) = −
∫
R2d

ϕ(x, v) (v · ξi(x)) π(dxdv) . (2.8)

Then F =
∑N

i=1Fi satisfies (2.4). If ξi = ∇Ui for all i ∈ J1, NK for some Ui ∈ C1(Rd), then
the decomposition of F is based on the factorization

ν(dx) ∝
N∏
i=1

e−Ui(x)dx .

Note that in that case it is not necessary that exp(−Ui) has finite mass. More generally
ξi is not required to be a gradient. For instance, if (ei)i∈J1,dK is the canonical basis of Rd,
then ξi(x) = (∇U(x) · ei)ei gives a decomposition of the forces ∇U as a sum of possibly
non-gradient forces.

Through such a decomposition, different forces may be treated with different dynamics.
For instance, as we will see in Section 5, jump mechanisms are easily simulated if ∇U is
bounded, or Lipschitz, with a known bound, which is not always the case. On the other hand,
drift mechanisms suffer the problem of discretization, and a possibly higher computational
cost since the forces have to be computed at each time-step. If ∇U can be decomposed in
long-range forces which are expansive to compute but easily bounded, and short-range forces
which are possibly singular but cheap to compute, then it is natural to treat the first ones
with jump processes and the second ones with drift processes [18]. Similarly, if different
forces have different time-scales, then instead of using different time-steps in a numerical
integration of a drift mechanism, it is possible to use different jump mechanisms as detailed
in Section 3.3.2.

In the rest of the paper, unless otherwise specified, we will only consider the non-factorized
condition (2.4). Indeed, from an operator F that satisfies (2.4) (or more precisely (2.14)
below) and whose definition only involves U through∇U , it is then easy to obtain an operator
Fi that satisfies (2.8) by replacing∇U by ξi everywhere in the definition of F (see Section 3.3).

2.2 Velocity jumps

Let λ(x, v) be a non-negative function, and for each x, let k(x, v; dv′) be a Markov kernel.
We denote by q the non-normalized kernel q(x, v; dv′) = λ(x, v)k(x, v; dv′). From now on, we
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consider the case where the jumps on the velocity are given by such a kernel:

Fϕ(x, v) =

∫
v′∈Rd

(ϕ(x, v′)− ϕ(x, v)) q(x, v; dv′). (2.9)

In this case, the dynamics of a Markov process with generator T +F is the following: the x
variable evolves deterministically at velocity v; the velocity is piecewise constant, and jumps
at a rate λ(x, v) to a new velocity v′ sampled according to k(x, v; dv′). The number of jumps
may go to infinity at finite time, unless for instance λ is bounded. This kind of process is
known as a velocity jump process.

In a way that is similar to the classical Metropolis algorithm, the jump mechanism q
will be constructed by choosing a nice proposal kernel q0, and then modifying it to take the
log-density U into account, yielding a corrected kernel q. We start by stating two conditions
that our proposal kernel should satisfy.

Definition 2.2 (Conditions for the proposal kernel). A non-negative kernel q0(x, v; dv′) is
reversible with respect to γ if

q0(x, v; dv′)γ(dv) = q0(x, v′; dv)γ(dv′) ∀x ∈ Rd. (R)

It satisfies the average condition (A) if moreover
∫
v′

1 + |v′| q0(x, v; dv′) < +∞ for all
(x, v) ∈ R2d and

∇U(x) ·
∫
v′∈Rd

1

2
(v − v′)q0(x, v; dv′) = ∇U(x) · v, dxγ(dv)-a.e.. (A)

Note that (A) may be rewritten in terms of the intensity λ0(x, v) =
∫
q0(x, v, dv′) and the

normalized kernel k0 = q0/λ0 as(∫
v′k0(x, v; dv′)

)
· ∇U(x) =

(
1− 2

λ0(x, v)

)
v · ∇U(x). (2.10)

Let ψ : R→ R+ be a measurable function such that

ψ(s)− ψ(−s) = s, ∀s ∈ R. (2.11)

The basic choice for ψ is ψ(s) = (s)+, but as remarked in [3] there are other possibilites, like
ψ(s) = a ln(es/a + 1) for a > 0. For any proposal kernel q0, let us define a corrected kernel
by:

q(x, v, dv′) = ψ

(
1

2
∇U(x) · (v − v′)

)
q0(x, v; dv′). (2.12)

Our work is based on the following remark.

Lemma 2.3. Assume that q0(x, v; dv′) is reversible with respect to γ, in the sense of condi-
tion (R). Let q be the corrected non-normalized kernel defined by (2.12), where the function ψ
satisfies (2.11). The corresponding operator F given by (2.9) satisfies the condition (2.4) if
and only if the average condition (A) holds true; if this holds then the measure π is invariant
for the process.
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Proof. Let a(x, v, v′) = 1
2

(∇U · v − v′). For any ϕ,∫
Fϕ(x, v)dπ(dxdv) =

∫
ϕ(x, v′)ψ(a(x, v, v′))q0(x, v; dv′)π(dxdv)

−
∫
ϕ(x, v)ψ(a(x, v, v′))q0(x, v; dv′)π(dxdv) .

In the first integral, use the reversibility assumption and interchange the variables v and v′
to get:∫
Fϕ(x, v)dπ(dxdv) =

∫
ϕ(x, v)ψ(a(x, v′, v))q0(x, v; dv′)π(dxdv)

−
∫
ϕ(x, v)ψ(a(x, v, v′))q0(x, v; dv′)π(dxdv)

=

∫ [∫
(ψ(a(x, v′, v))− ψ(a(x, v, v′))) q0(x, v; dv′)

]
ϕ(x, v)π(dxdv)

= −
∫ [∫

a(x, v, v′)q0(x, v; dv′)

]
ϕ(x, v)π(dxdv).

As a consequence, the condition (2.4) is met if and only if the term between brackets is
almost everywhere equal to v · ∇U(x), which is exactly the averaging condition (A).

Remark 2.4. In the case where the corrected kernel is constructed with the function ψ(s) =
(s)+, at each jump, the scalar product of the velocity with −∇U increases almost surely. In
that sense, there is “minimal noise” in the tangential part ∇U . The condition can be relaxed
by setting:

q(x, v; dv′) =

[
ψ

(
1

2
∇U(x) · (v − v′)

)
+ g(x)

]
q0(x, v; dv′) (2.13)

for any non-negative function g on Rd. One checks easily that the averaging condition (A)
is unchanged. The process then performs jumps more often, but they are less constrained
to be aligned with −∇U . In fact, if q0 is reversible for γ, then the kernel q̃(x, v; dv′) :=
g(x)q0(x, v; dv′) leaves invariant ν̃ ⊗ γ for all law ν̃ on Rd, and thus q̃ can be incorporated
in the dissipative part D of the generator. For this reason, in the rest of the paper we only
consider the case g = 0.

Remark 2.5. In the proof of Lemma 2.3 the integration with respect to the variable x plays
no role, so that in fact if q0 satisfies the conditions (R) and (A) then for all ϕ ∈ C∞c (R2d),∫

Rd

Fϕ(x, v)γ(dv) = −
∫
Rd

ϕ(x, v) (v · ∇U(x)) γ(dv) dx-a.e.. (2.14)

2.3 Particular known cases

We now show how special forms of q0 lead to various known sampling algorithms.

Theorem 2.6 (Zig Zag process). Let γ be the uniform measure on the finite set {−1, 1}d.
For v ∈ {−1, 1}d, let q0(x, v; dv′) =

∑
w:w∼v δw(dv′), where w ∼ v means that v and w are

neighbours on the discrete cube, that is, they differ by one coordinate.
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Then q0 is reversible with respect to γ and satisfies the average condition (A); the corre-
sponding process is the zig-zag process.

Proof. The reversibility is clear. To check the average condition, remark that if w and v differ
only by the ith coordinate, then (v − w)/2 = viei where ei is the ith basis vector. Therefore

∇U(x) ·
∫
v′∈Rd

1

2
(v − v′)q0(x, v; dv′) =

d∑
i=1

∇U(x) · viei = ∇U(x) · v.

With ψ(s) = (s)+, the corrected kernel is given by

q(x, v, dv′) =
1

2
(∇U(x) · (v − v′))+ q0(x, v; dv′) =

d∑
i=1

(∇U(x) · viei)+ δv−2viei

which is exactly the zig-zag jump kernel.

Theorem 2.7 (Bouncy particle). Let γ be the uniform measure on a sphere. For v on the
sphere, let q be the degenerate kernel q(x, v; dv′) = δR(x)v(dv

′) where R(x) is the symmetry
with respect to the orthogonal of ∇U , that is,

R(x)v = v − 2ll{∇U 6=0}
v · ∇U(x)

|∇U(x)|2
∇U(x).

Then q is reversible with respect to γ and satisfies the average condition (A); the corresponding
process is the bouncy particle sampler.

Proof. Once more, the reversibility is clear. The interesting thing to notice here is that

1

2
∇U(x) · (v −R(x)v) = ∇U(x) · v.

Therefore

∇U(x) ·
∫
v′∈Rd

1

2
(v − v′)q0(x, v; dv′) = ∇U(x) · v.

The corrected kernel with ψ(s) = (s)+ is given by q(x, v, dv′) = (∇U(x) · v)+ δR(x)v(dv
′), and

we recover the bouncy particle sampler.

3 The Gaussian case

3.1 The process

In this section we consider the particular case where the normalized proposal kernel k0(x, v; dv′)
and the velocity distribution γ are Gaussian. In fact, up to a change of variables, we assume
without loss of generality that γ is the standard Gaussian distribution with mean 0 and
variance Id.
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Given the particular role of the direction ∇U , it is natural to use the following orthogonal
decomposition of the (tangent) space at x. Denote

T (x) = ∇U(x)/|∇U(x)|

if ∇U(x) 6= 0 and T (x) = 0 otherwise. For any w ∈ Rd, we write w = wT + wO where
wT = (w · T (x))T (x) is the projection of w on Vect(T (x)) and wO is orthogonal to T (x).
With this notation, let k0(x, v; ·) be the distribution of the Gaussian random variable V ′,
defined by its decomposition V ′ = V ′T + V ′O:

V ′T = ρT (x)vT +
√

1− ρ2
T (x)GT (3.1)

V ′O = ρO(x)vO +
√

1− ρ2
O(x)GO

where ρT (x), ρO(x) are scalars in [−1, 1], and G = GT +GO is a d-dimensional standard unit
Gaussian. Recall that k0(x, v; ·) = Law(V ′) is (up to an intensity λ0, see below) the proposal
kernel for jumps in the velocity. One may therefore interpret the parameters ρT and ρO as
follows:

• the sign of ρT encodes whether or not there is a "bounce", that is, a reflection of the
component of the velocity that is tangent to the gradient of the log-density;

• |ρT | encodes the strength of the memory for this tangential component: if |ρT | = 1, the
memory is perfect (the new tangential component being either equal to the old one or
to its opposite); on the contrary, ρT (x) = 0 means a full resampling without memory
(which is called forward event-chain algorithm in [15]);

• similarly |ρO| and the sign of ρO encodes respectively the balance between full memory
and full resampling, and whether or not the orthogonal component of the velocity
"bounces".

It is then easy to remark:

Lemma 3.1. Let q0(x, v; dv′) = λ0(x, v)k0(x, v; dv′) where k0 is defined above by (3.1). For
any x, v ∈ Rd, the average condition (A) (equivalently (2.10)) holds if

λ0(x, v) =
2

1− ρT (x)
;

and this latter condition is necessary when v · ∇U(x) 6= 0. Moreover, if λ0 does not depend
on v, then q0 is reversible with respect to γ (condition (R))).

Proof. To check the second form (2.10) of the average condition, we compute for x, v ∈ Rd

∇U(x) ·
(∫

v′k0(x, v; dv′)

)
= ∇U(x) · (ρT (x)vT + ρO(x)v0)

= ρT (x)∇U(x) · v.

Then, if v · ∇U(x) 6= 0, (2.10) holds iff 1− 2/λ0(x, v) = ρT (x).

10



Now, if λ0 does not depend on v, the reversibility of q0 is a consequence of the reversibility
of k0. Remark that the (density of the) kernel k0 admits a decomposition k0(x, v; v′) =
kT0 (x, vT ; v′T )kO0 (x, vO; v′O), and similarly γ(v) = γ(vT )γ(vO), with

kT0 (x, vT ; v′T )γ(vT ) =
1

2π
√

1− ρ2
T (x)

exp

(
−|v

′
T − ρ(x)vT |2

2(1− ρ2
T (x))

− |vT |
2

2

)
= kT0 (x, v′T ; vT )γ(v′T )

and similarly for the orthogonal part, which concludes the proof of the reversibility.

Remark 3.2 (Return of the bouncy sampler). The degenerate, deterministic case ρT = −1,
ρO = 1 gives λ0 = 1 and we get back the bouncy sampler.

From now on we assume that there is no noise on the orthogonal part, that is, ρO(x) = 1,
and that λ0(x, v) = λ0(x) = 2/(1 − ρT (x)) for all x, v ∈ Rd and ψ(s) = (s)+ for all s ∈ R.
Introducing the notation

ε(x) :=
1− ρT (x)

1 + ρT (x)
∈ [0,+∞] (3.2)

we can express (dropping the x dependence notation in the following for simplicity)

ρT =
1− ε2

1 + ε2
,

√
1− ρ2

T =
2ε

1 + ε2
, λ0 =

1 + ε2

ε2
.

The consequences of the previous discussion are gathered in the following result.

Lemma 3.3 (Velocity-jump sampler). Let ε = ε(x) > 0 denote a strictly positive function
on Rd. Let q0 be the proposal kernel given by∫

ϕ(v′)q0(x, v, dv′) =
1 + ε2

ε2
E (ϕ(V ′)) ,

where the random variable V ′ is constructed from the tangent vector T = T (x) = ∇U(x)/|∇U(x)|
(if ∇U(x) 6= 0, and 0 otherwise), and a standard one-dimensional Gaussian G by the formula:

V ′ = v − 2ε

1 + ε2
(εv · T +G)T. (3.3)

Consider the PDMP generator L = T + F where T = v · ∇x and F is the velocity jump
operator given by correcting q0:

F(ϕ)(x, v) =

∫
(ϕ(v′)− ϕ(v)) q(x, v, dv′) =

1

2

∫
(ϕ(v′)− ϕ(v)) (∇xU · (v − v′))+ q0(x, v, dv′).

We have the following properties:

1. the proposal kernel q0 satisfies the average condition (A) and is reversible with respect
to the unit Gaussian distribution in velocity variables.

2. Consequently, the process with generator L leaves the target distribution π invariant.

11



In particular, ε = +∞ is the full bouncy particle, ε = 1 the full resampling, ε < 1 a
partial memory, and ε→ 0 corresponds to small changes at an increasing jump rate.

For theoretical and practical reasons, it is interesting to derive a more explicit formula
for the corrected kernel.

Theorem 3.4 (Corrected jump rate). The corrected kernel associated with the velocity jumps
process of Lemma 3.3 is given by∫

ϕ(v′)q(x, v, dv′) =
|∇U |
ε

E
[
ϕ

(
x, v − 2ε

1 + ε2
(εv · T +G)T

)
(εv · T +G)+

]
.

As a consequence, the corrected jump rate λ is given by

λ(x, v) =
|∇U(x)|
ε(x)

E
[
(v · T (x)ε(x) +G)+

]
=
|∇U(x)|
ε(x)

Θ(ε(x)v · T (x))

where
Θ(u) := E

[
(u+G)+

]
= uP(G > −u) +

1√
2π

e−u
2/2.

Proof. By definition,∫
ϕ(v′)q(x, v, dv′) =

1

2
λ0(x)E

[
ϕ (x, V ′) (∇U · (v − V ′))+

]
.

Replacing V ′ by its expression given by (3.3) concludes.

3.2 Convergence toward the Hamiltonian dynamics

From now on, we denote by Lε the generator of the velocity jump process with kernel q = qε
given by Theorem 3.4 for some positive function ε on Rd, i.e.

Lεϕ(x, v) = v · ∇xϕ(x, v) +

∫
v′∈Rd

(ϕ(x, v′)− ϕ(x, v)) qε(x, v; dv′) . (3.4)

It can then be formally expanded using Taylor’s formula as

Lε(ϕ) = v · ∇xϕ+
+∞∑
n=1

|∇U |
n!

Dn
vϕ (T, . . . , T ) εn−1

(
−2

1 + ε2

)n
E
[
(εv · T +G)n+1

+

]
. (3.5)

For n > 1,
E
[
(u+G)n+1

+

]
= E

[
Gn+1

+

]
+ (n+ 1)uE

[
Gn

+

]
+ O

u→0
(u2) ,

with
E(G+) = 1/

√
2π , E(G2

+) = 1/2 , E(G3
+) =

√
2/π .

As a consequence, as ε vanishes, we formally get back the Hamiltonian dynamics

Lε(ϕ) = v · ∇xϕ−∇U · ∇yϕ+O(ε) ,

12



and at first order in ε, we obtain a (degenerate) Langevin diffusion

Lε(ϕ) = v · ∇xϕ−∇U · ∇yϕ+ ε
4|∇U |√

2π

[
−(v · T )T · ∇vϕ+D2

vϕ(T, T )
]

+O(ε2)

= v · ∇xϕ−∇U · ∇yϕ+ ε
4|∇U |√

2π

[
e
|v|2
2 T · ∇v

(
e−
|v|2
2 T · ∇vϕ

)]
+O(ε2) ,

which can be interpreted as the Langevin process that is degenerate along the force direction;
is reversible (up to velocity reversal) with respect to the target distribution π, and has a
typical relaxation time of order 1/(|∇xU | ε).

We now give conditions under which the convergence of the velocity jump process towards
an Hamiltonian dynamics can be proven rigorously. It is remarkable that the limit can be
identified as soon as the martingale problem for the deterministic Hamiltonian dynamics
is well-posed. If ∇U is Lipschitz, this is a consequence of the standard Cauchy-Lipschitz
theory; the minimal conditions on∇U being still an open problem. We define first martingale
problems in Rd.

Definition 3.5. A càdlàg random process (Zt)t≥0 in Rd with initial distribution µ is solution
to the martingale problem associated with (µ, L,C∞c (Rd)), where L is a Markov generator, if
for any ϕ ∈ C∞c (Rd) the process

t 7→ ϕ(Zt)−
∫ t

0

Lϕ(Zs)ds

is a martingale with respect to the natural filtration of Z. We say that uniqueness holds
if all solutions have the same probability distribution on the usual Polish space of càdlàg
trajectories.

Theorem 3.6. Let (εn)n∈N be a sequence of strictly positive measurable functions on Rd

that vanishes uniformly on all compact sets as n → +∞. Denote Lεn the associated PDMP
generator and denote

L0
def
= v · ∇x −∇U · ∇v ,

and consider µ ∈ P(R2d) an initial distribution. Assume that

• For each n, the velocity jump process associated to Lεn is defined for all time (the
sequence of jump times converges to +∞).

• ∇U is continuous and the martingale problem associated with (µ,L0, C
∞
c (R2d)) is well-

posed on R2d.

Then, as n → +∞, the velocity jump process associated to Lεn converges in distribution
in the space of càdlàg trajectories endowed with the Skorohod topology towards the unique
martingale solution of the Hamiltonian dynamics L0.

Proof. The proof follows from a general result, Theorem 7.1, postponed to an Appendix
section. Indeed, according to Theorem 7.1, it is sufficient to check that for any ϕ ∈ C∞c (R2d)
and any compact K ⊂ R2d

lim
n→+∞

sup
K
|Lεnϕ− L0ϕ| = 0.
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Using the definition of Lεn from Equation (3.4), and denoting by un = un(x, v) = εn(x)v ·
T (x)+G, (where T (x) = ∇U(x)/ |∇U(x)|), the difference (Lεnϕ−L0ϕ)(x, v) may be rewrit-
ten as:

E
[
|∇U(x)| (un)+

εn(x)

(
ϕ

(
v − 2εnun(x)

1 + εn(x)2
T (x)

)
− ϕ(v)

)
+∇U(x) · ∇vϕ(v)

]
.

Omitting the dependency in x in the notations for legibility, we may apply Taylor’s theorem
at the first order on the difference (ϕ

(
v − 2εnun

1+ε2n
T
)
− ϕ(v)) to get:

|(Lεϕ− L0ϕ)(x, v)| 6

∣∣∣∣∣1− 2E
[
(un)2

+

]
1 + ε2

n

∣∣∣∣∣ |∇U · ∇vϕ(v)|+ |∇U |‖∇2ϕ‖∞εnE
[
(un)3

+

]
.

Since E
[
(un)2

+

]
converges to 1/2 uniformly on all compact sets and E

[
(un)3

+

]
is uniformly

bounded in n on all compact sets, the right hand side vanishes uniformly on all compact sets
of R2d as n→ +∞.

Remark 3.7. More generally, considering a limit generator L0 +D0 for some dissipative D0,
the proof of Theorem 3.6 is straightforwardly adapted to get the convergence of the processes
associated to generators Lεn + Dεn with Dεnϕ → D0ϕ for all ϕ ∈ C∞c (R2d). For instance,
that way we can design velocity jump processes that converge toward the Langevin diffusion
or the HMC process.

3.3 Drift limit and factorization

As discussed in Section 2.1, if the forces are decomposed as ∇U(x) =
∑N

i=1 ξi(x) for some
vector fields ξi, then we can consider the operators given by

Fiϕ(x, v) =

∫
v′∈Rd

(ϕ(x, v′)− ϕ(x, v)) qi(x, v; dv′),

with ∫
ϕ(v′)qi(x, v, dv

′) =
|ξi|
εi

E
[
ϕ

(
v − 2εi

1 + ε2
i

(εiv · Ti +G)Ti

)
(εiv · Ti +G)+

]
where G is a one-dimensional standard Gaussian variable, x 7→ εi(x) is a positive function and
Ti(x) = ξi(x)/|ξi(x)| if ξi(x) 6= 0 and Ti(x) = 0 otherwise. In other words, the process with
generator T +Fi is exactly the velocity jump process introduced in Section 3.1, except that
∇U is replaced everywhere by ξi. In particular, the previous results are straightforwardly
extended: from Lemma 3.1, the generators Fi satisfy (2.8) (and more precisely (2.14) with
∇U replaced by ξi), so that L = T +

∑N
i=1Fi satisfies

∫
Lϕdπ = 0 for all ϕ ∈ C∞c (R2d).

Similarly, from the computations of Section 3.2,

Fi(ϕ) = −ξi · ∇yϕ+O(εi) ,

and thus we still get the convergence toward the Hamiltonian dynamics, since

L(ϕ) = v · ∇xϕ−∇U · ∇yϕ+O( max
16i6N

εi) .

Let us give two examples of such a factorization.
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3.3.1 Gibbs velocity jump processes

For i ∈ J1, dK, set ξi(x) = ∂xiU(x)ei, where ei is the ith vector of the canonical basis and

L = T +
d∑
i=1

Fi =
d∑
i=1

(vi∂xi + Fi)

where Fi is defined as above, with some εi. The corresponding process can be seen as a
(kinetic) Gibbs sampler: indeed, each generator vi∂xi + Fi leaves invariant the conditional
law (xi, vi) 7→ π(dxdv). When εi(x) = +∞ for all i, we recover the zig-zag process, which
may thus be seen as a Gibbs version of the bouncy sampler (remark that, when ε = +∞,
the norm of the velocity is unchanged at jump times, so that although π = ν ⊗ γ is indeed
invariant for L with a a Gaussian distribution γ, it won’t be ergodic).

For a general choice of εi, this factorization ensures the following property: in the case
where the target law is a tensor product of one-dimensional laws, i.e. if U(x) =

∑d
i=1 Ui(xi)

for some one-dimensional potentials Ui, then the coordinates of the corresponding kinetic
Gibbs process are independent one-dimensional processes.

Note that

Lε(ϕ) = v · ∇xϕ−∇U · ∇yϕ+
d∑
i=1

εi
4|∂xiU |√

2π

[
−vi∂viϕ+ ∂2

vi
ϕ
]

+O( max
16i6N

ε2
i ) .

The fact that, in that case, the order one term is a non-degenerate Langevin diffusion is
reminiscent of the fact the Zig-Zag process is irreducible in cases where the bouncy sampler
is not, see [5].

3.3.2 Multi-time-stepping

Suppose that∇U = ξ1+ξ2 where ξ1 is large and numerically cheap to compute by comparison
with ξ2, smaller but numerically more intensive. To fix ideas, suppose that ‖ξi‖∞ 6 Li for
i = 1, 2 with known constants L1 � L2. For i = 1, 2, take εi(x) = ε0 for some ε0 > 0. Then,
in order to sample a trajectory of the process corresponding to the splitting ∇U = ξ1 + ξ2,
as detailed in Section 5, ξi will be computed at a rate Li/ε0. Hence, the splitting reduces the
number of computations of ξ2. This extends the strategy of [18] where ε1 = 0 and ε2 = +∞
(bounce/drift process).

3.4 Non-irreducibility

The bouncy particle sampler and the Hamiltonian dynamics are well-known to be both non-
irreducible in general. There are in fact non-irreducible counterexamples for all the processes
with generator Lε = T +Fε, ε > 0 in the case with no additional noise (D = 0). For instance,
for a symmetric Gaussian target (or more generally any target with radial potential, i.e. that
is invariant by isometries preserving the origin) in dimension larger than one, ∇U(Xt) being
collinear to Xt, note that Xt, Vt ∈ span(X0, V0) for all t > 0. Moreover, assuming that X0 and
V0 are not collinear, even within this two-dimensional plane, the process is not irreducible.
Indeed, in the following, still for a symmetric Gaussian target, suppose that d = 2 and
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(x0, v0) ∈ R2×R2 with span(x0, v0) = R2. Remark thatXt∧Vt := X1
t V

2
t −X2

t V
1
t is unchanged

by the free transport and by the jumps, hence is constant along time. In particular, starting
from a deterministic condition (x0, v0) the law of the process will never converge to the
Gaussian target measure. More precisely, we expect the law of the process to converge to
the law of a standard Gaussian variable (X, V ) on R4 conditioned to X ∧ V = x0 ∧ v0 (since
the standard Gaussian on R4 is invariant for the process, so is this conditional law). Even if
we are only concerned with the law of X, this induces a bias (see the numerical section).

4 Hypocoercivity
The question of long-time convergence and ergodicity for velocity jump samplers have been
addressed in various cases in [5, 8, 11] with a Meyn-Tweedie approach and in [2] with the L2

hypocoercivity method of Dolbeault-Mouhot-Schmeiser [10]. Our approach will be similar
to the latter. Since the process is not irreducible in general, a dissipative part is added for
the velocities. In all this section, the target measure π is given by (2.1) with γ the standard
(mean 0, variance Id) Gaussian distribution on Rd and we consider a kinetic process with
generator L = T + F +D as in Section 2.1 and F is the operator defined in Lemma 3.3 for
some non-negative function ε on Rd.

We would like to emphasize that we will only conduct a formal study, disregarding in
particular the question of domains and extensions of the operators involved. The technical
arguments to make the proofs valid would be exactly those of [2], and thus we omit them for
the sake of clarity and in order to focus on the (formal) computations.

Assumption 4.1. The dissipative part D may be written as D = η(x)D0, where η : Rd → R+

is such that
∀x ∈ Rd , 0 < η < η(x) < η (1 + |∇U(x)|) ,

for some η > η > 0, and D0 is a self-adjoint operator on L2(γ) such that D0(v) = −v and
with a spectral gap of 1, in the sense that, for all nice g ∈ L2(γ),

〈D0g, g〉L2(γ) 6 −‖g −
∫
gdγ‖2

L2(γ) .

Moreover, U ∈ C2(Rd) and there exists C1 > 0 such that

∇2U(x) � −C1I (C1)

(in the sense of positive symmetric matrices) for all x ∈ Rd and

lim inf
|x|→∞

(
1

2
|∇U |2 −∆U

)
> 0 . (4.1)

Finally, T = v · ∇x and F belongs to the class of operators defined in Lemma 3.3.

Remark 4.2. The three classical dissipative operators D0 given by (2.5), (2.6) and (2.7) are
all self-adjoint in L2(γ) with a spectral gap of 1 and with D0(v) = −v.
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The condition (4.1) classically implies that the measure ν satisfies a Poincaré inequality
with some constant cP > 0: for all f ∈ H1(ν),

‖f − νf‖2
L2(ν) 6

1

cP
‖∇xf‖2

L2(ν) . (cP )

It also implies that there exist C2 > 0 such that

∀x ∈ Rd , ∆U(x) 6 C2 + |∇U(x)|2/2 . (C2)

In the following, ‖·‖ and 〈·〉 stands respectively for the norm and scalar product in L2(π).
We denote by m2 (respectively m4) the second (respectively fourth) moment of γ:

m2 =

∫
|v|2 dγ(v) = d, m4 =

∫
|v|4 dγ(v) = d(d+ 2).

Let (Pt)t>0 be the Markov semi-group with generator L.

Theorem 4.3 (Exponential convergence in L2). Under Assumption 4.1, for all f ∈ L2(π)
and all t > 0,

‖(Pt − π)f‖2 6
4

3
e−κt‖(I − π)f‖2 ,

where κ is given by:

1

κ
=

6

η

(
1 +

1

c2
P

(
1 +

C1

2cP

)(
1 + 4C2 + 16c2

P

) (
η/
√
d+ 5

√
1 + 2/d2 + 4/d

)2
)
.

Remark 4.4. The main point here is that κ does not depend on ε. Also note that, as a
function of η, the convergence rate scales for large η as η/max(1, η2), which is well-known
for the Langevin dynamics with a constant η and suggests that the constant remains finite in
the overdamped regime under proper rescaling (albeit with a sub-optimal constant of order
c3
P instead of cP ). For cP � 1 and d� 1 we obtain

1

κ
∼ 3

c3
P

(2cP + C1) (1 + 4C2)
1

η

(
η/
√
d+ 5

)2

.

Alternatively, if U is ρ-convex for some ρ > 0 independent from the dimension (so that
C1 = 0 and cP = ρ), choosing a constant η =

√
d, we get κ = O(C2/

√
d). For instance, for a

standard d-dimensional Gaussian target, C2 = d.

Denote M∗ the dual of an operator M in L2(π), S = (L + L∗)/2 and A = (L − L∗)/2
the symmetric and skew symmetric parts of L and

Πvf(x, v) =

∫
f(x, v′)γ(dv′) .

The Dolbeault-Mouhot-Schmeiser method [10] relies on the modified norm

H(f) =
1

2
‖f‖2 + δ 〈Bf, f〉 ,

17



where B is defined by

B = − (mI + (AΠv)
∗AΠv)

−1
(AΠv)

∗ ,

for some scalar parameters δ,m > 0 to be chosen later on. From [2, Proposition 26-(d)]
(applied to the operator −AΠv/

√
m) , ‖B‖ 6 1/

√
m so that H is equivalent to the L2(π)

norm for δ <
√
m/2. The aim is thus to prove that H decays exponentially fast along the

semi-group (Pt)t>0, which proves the hypocoercive decay in L2(π) (in the sense of [23], that
is: exponential decay up to a constant factor C > 1). Formally, the general result is the
following:

Theorem 4.5. Assume that
SΠv = 0 ΠvAΠv = 0

and that there exist cv, R(m) = R > 0 and cx(m) = cx ∈ (0, 1] such that, for all nice
f ∈ L2(π) with πf = 0, it holds:

(microscopic coercivity) 〈Sf, f〉 6 −cv‖(I − Πv)f‖2 (4.2)
(macroscopic coercivity) 〈BAΠvf, f〉 6 −cx‖Πvf‖2 (4.3)
(auxiliary bound) 〈BL(1− Πv)f, f〉 6 R‖Πvf‖‖(I − Πv)f‖ . (4.4)

Then, for all f ∈ L2(π) and all t > 0,

‖(Pt − π)f‖2 6
4

3
e−κt‖(I − π)f‖2 ,

where
κ = cx inf

m>0
min

(√
m

6
,

2cv
6 + 3R2/cx

)
.

Remark 4.6. Typically, the macroscopic coercivity amounts to a spectral gap of the operator
(AΠv)

∗AΠv restricted to functions of space variables. In that case (which indeed occurs for
our PDMP), one has

cx =
c

m+ c
,

where c is the spectral gap of (AΠv)
∗AΠv. Then one can choose m = c to get

κ = min

(√
c

12
,

cv
6 + 6R2

)
.

Proof. We only recall the main steps and refer to [10, 2] for details. Denoting ft = Ptf −∫
fdπ, from ∂tft = Lft we get that

∂tH(ft) = 〈ft,Lft〉+ δ 〈Bft,Lft〉+ δ 〈BLft, ft〉 .

The microscopic coercivity condition (4.2) intervenes in the first term

〈f,Lf〉 = 〈f,Sf〉 6 −cv‖(I − Πv)f‖2 .
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Under the condition ΠvAΠv = 0, the second term is bounded as

〈Bf,Lf〉 6 ‖(I − Πv)f‖2 ,

see [2, Lemma 5]. From the macroscopic coercivity and auxiliary bounds conditions (4.3)
and (4.4), the third term gives

〈BLf, f〉 = 〈BLΠvf, f〉+ 〈BL(1− Πv)f, f〉 6 −cx‖Πvf‖2 +R‖(I − Πv)f‖‖Πvf‖ ,

where we used that SΠv = 0. Denoting α = ‖Πvft‖2/‖ft‖2 ∈ [0, 1], we have thus obtained

∂tH(ft)

‖ft‖2
6 (δ − cv)(1− α)− cxδα + δR

√
α(1− α)

6

(
δ

(
1 +

R2

2cx

)
− cv

)
(1− α)− 1

2
cxδα .

In particular, if δ 6 cv/(2 +R2/cx), we get that

∂tH(ft)

‖ft‖2
6 −1

2
cv(1− α)− 1

2
cxδα 6 −1

2
cxδ

for all α ∈ [0, 1], where we used that cx 6 1 and δ 6 cv. If moreover δ 6
√
m/4 we get that

‖f‖2 6 4H(f) 6 3‖f‖2 and

∂tH(ft) 6 −1

2
cxδ‖ft‖2 6 −2

3
cxδH(ft) .

We may then apply Gronwall’s Lemma to conclude: for all δ 6 min(
√
m/4, cv/(2 +R2/cx)),

‖ft‖2 6 4H(ft) 6 4e−2cxδt/3H(f0) 6
4

3
e−2cxδt/3|f0‖2 .

We now have to check that the conditions of Theorem 4.5 are met under Assumption 4.1.
This is usually done by computing explicitly S and A for particular processes. In fact we will
only need the following information, which is obtained from the condition (2.14), satisfied by
all usual kinetic samplers:

Lemma 4.7. Under Assumption 4.1,

SΠv = 0 , AΠv = T Πv , ΠvAΠv = 0 . (4.5)

Proof. Since F and D only act on the v variable and Πvf only depends on x for all f ,
DΠv = FΠv = 0. Moreover, from condition (2.14), for all f, g ∈ C∞c (R2d),

〈F∗Πvf, g〉 =

∫
R2d

Fg(x, v)Πvf(x, v)π(dxdv)

=

∫
Rd

∫
Rd

f(x,w)γ(dw)

∫
Rd

Fg(x, v)γ(dv)ν(dx)

= −
∫
R2d

(v · U(x))g(x, v)Πvf(x, v)π(dxdv) .
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In other words, F∗Πvf(x, v) = −v · ∇U(x)Πvf(x, v). Besides, D∗ = D by assumption and,
integrating by parts, T ∗f(x, v) = −T f(x, v) + v · ∇U(x)f(x, v). As a consequence,

2SΠv = (T + T ∗ + F + F∗ +D +D∗)Πv = 0

and
2AΠv = (T − T ∗ + F − F∗ +D −D∗)Πv = 2T ΠV .

Finally, for all f ∈ C∞c (R2d),

ΠvT Πvf(x, v) =

∫
Rd

wγ(dw) · ∇x

∫
Rd

f(x,w)γ(dw) = 0 .

In particular, the operator B being defined from the operator AΠv = T Πv, it is the same
in our case and in [2] (up to the choice of the parameter m, which is m = m2 in [2]). From
[2, Lemma 9], (AΠv)

∗AΠvf = m2∇∗x∇xΠvf and thus

B∗f = −T u , where u = (mI +m2∇∗x∇x)
−1 Πvf . (4.6)

Remark that u is a function of x alone.

Lemma 4.8. Under Assumption 4.1, the microscopic and macroscopic coercivity conditions
(4.2) and (4.3) respectively hold with cv = η and cx = m2cP/(m+m2cP ).

Proof. To get the microscopic coercivity estimate, we remark that T +F is the generator of
a Markov semigroup that fixes π, so that

0 >
∫
f(T + F)fπ =

1

2

∫
f(T + F + T ∗ + F∗f)π ,

and thus

〈Sf, f〉 6 〈Df, f〉 =

∫
η(x)

∫
f(x, v)D0f(x, v)γ(dv)ν(dx)

6 −
∫
η(x)

∫
(f(x, v)− Πvf(x, v))2 γ(dv)ν(dx) 6 −η‖f − Πvf‖2 .

For the macroscopic condition, remark that

BAΠvf = −Φ ((AΠv)
∗AΠv) f

with Φ(z) = z/(m + z), which is a non-decreasing function from R+ to [0, 1]. Moreover,
(AΠv)

∗AΠv is self-adjoint and for all f ∈ L2(π) such that πf = 0 (so that νΠvf = 0),

〈(AΠv)
∗AΠvf, f〉 = m2 〈∇∗x∇xΠvf,Πvf〉 = m2‖∇xΠvf‖2 > m2cP‖Πvf‖2 .

From the spectral mapping theorem [7, Theorem 2.5.1, Corollary 2.5.4], Φ ((AΠv)
∗AΠv) is

self-adjoint with a spectral gap bounded by Φ(m2cP ), which concludes.

The previous results have been established using only the general condition (2.14). By
contrast, the proof of the auxiliary bound (4.4) is based on the particular form of L.
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Lemma 4.9. Under Assumption 4.1,

〈BL(1− Πv)f, f〉 6 R‖Πvf‖‖f − Πvf‖ ,

where R is given by

R2 =
1

m2

(
1

m2

+
C1

2m

)
1 + 4C2 + 16c2

P

c2
P

(η
√
m2 + 5

√
m4 + 4)

2
.

Proof. First, we bound

〈BL(1− Πv)f, f〉 = 〈(1− Πv)f,L∗B∗f〉 6 ‖(I − Πv)f‖‖L∗B∗f‖ .

Let u be defined by (4.6). Using the process definition in Lemma 3.3, we first remark that
since i) T + F conserves the target distribution π and ii) q0 is reversible, one has:

(T + F)∗ ϕ(x, v) = −v · ∇xϕ+

∫
(ϕ(x, v′)− ϕ(x, v)) (∇U · (v′ − v))+ q0(x, v, dv′).

Using that D0(v) = −v and that (∇U · T )(∇xu · T ) = ∇U · ∇xu,

L∗B∗f = −T 2u−∇xu · D(v) +
1

2
∇xu ·

∫
(∇U · (v′ − v))+ (v′ − v)q0(x, v; dv′)

= −v · ∇2
xu v + ηv∇xu−

2

1 + ε2
(∇U · ∇xu)

∫
(εv · T + w)2

− e
−w2/2 dw√

2π

=: −v · ∇2
xu v + ηv∇xu− (∇U · ∇xu)H(v, x)

(Recall that ε, hence H, can depend on x). We bound

H(v) 6
2

1 + ε2

∫
(εv · T + w)2

− e
−w2/2 dw√

2π
6 4|v|2 + 4 .

As a consequence,

|L∗B∗f | 6 |v|2|∇2
xu|+ η|v||∇xu|

√
1 + |∇U |2 +

(
4|v|2 + 4

)
|∇U ||∇xu| ,

and
‖L∗B∗f‖ 6

√
m4‖∇2

xu‖+ (η
√
m2 + 4

√
m4 + 4) ‖

√
1 + |∇U |2∇xu‖ .

Finally, the following elliptic regularity estimates are proven in [2, Corollary 35 and
Proposition 33]:

‖∇2
xu‖2 6

(
1

m2
2

+
C1

2mm2

)
‖Πvf‖2

‖
√

1 + |∇U |2∇xu‖2 6

(
1

m2
2

+
C1

2mm2

)
1 + 4C2 + 16c2

P

c2
P

‖Πvf‖2 ,

which concludes using 1+4C2+16c2P
c2P

≥ 1.
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We may now conclude the proof.

Proof of Theorem 4.3. By (4.5) and Lemmas 4.8 and 4.9, Theorem 4.5 applies with any
choice of m > 0. We take m = m2cP , so that cx = 1/2 in Lemma 4.8, R2 given in Lemma 4.9
is

R2 =
1

m2
2c

3
P

(
cP +

C1

2

)(
1 + 4C2 + 16c2

P

)
(η
√
m2 + 5

√
m4 + 4)

2

while one has from Theorem 4.5

κ = min

(√
m2cP
12

,
η

6(1 +R2)

)
.

Recall m2 = d and m4 = d(d + 2). Let us show that the minimum is always given by the
second term. Using that C1, C2 > 0, we simply bound

6(1 +R2)

η
>

6R2

η
>

6 (1 + 16c2
P )
(
η/
√
d+ 5

)2

c2
Pη

.

Optimizing with respect to η we remark that (η/
√
d+ 5)2/η > 20/

√
d. Moreover, we always

have (1 + 16c2
P )/c2

P > 1/
√
cP , and thus 6(1 + R2)/η > 120/

√
dcP . As a conclusion, κ =

η/(6 + 6R2).

5 Simulation of velocity-jump processes

5.1 General strategy

The practical implementation of our velocity jumps processes rely on two assumptions:

i) the gradient ∇U(x) of the log-density can be computed numerically,

ii) some prior estimates on ∇U are given, typically its uniform norm or global Lipshitz
constant.

For the sake of simplicity we only consider the case ψ(s) = (s)+, although the extension to
other cases is straightforward.

In order to simulate exactly a velocity jump-process we need some a priori information
on the jump rate evolution.

Definition 5.1. Let λ(x, v) =
∫
v′
q(x, v; dv′) be the total jump rate of a velocity jump process.

A function λ̄ : Rd × Rd × R+ → R+ is called a prior rate upper bound if

λ(x+ tv, v) ≤ λ̄(x, v, t) ∀x, v ∈ Rd, t ∈ R+.

The simulation of the process is based on increasing the number of jumps at the price of
adding uneffective (also called ghost) jumps. The jump times and velocities at those jump
times, which determine the whole trajectory, are defined by induction. The simulation of the
jumps then follows the algorithmic rules:
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(i) At time t, compute t+ S the next jump time so that∫ S

0

λ̄(Xt, Vt, s)ds = E,

where E is independent unit exponentially distributed. The expression of the prior rate
bound λ̄ shall be sufficiently simple to compute S cheaply and exactly (up to round-off).

(ii) Note that X(t+S)− = Xt + SVt and V(t+S)− = Vt. With probability

λ(Xt + SVt, Vt)

λ̄(Xt, Vt, S)

sample a new velocity Vt+S according to the probability kernel k(Xt +SVt, Vt; dv′); else
do not change velocity.

In the rest of this section, we present how a suitable prior rate upper bound can be
established and how to sample according to k in the case of the Gaussian velocity jump
samplers introduced in Theorem 3.4.

5.2 Bounds on the corrected rate

Consider the jump rate λ defined in Theorem 3.4. The bound E[(a+ bG)+] ≤ (a)+ + b/
√

2π
yields

λ(x, v) 6 (v · ∇U(x))+ +
|∇U(x)|√

2πε(x)
.

Natural choices for ε(x) are ε(x) = ε0|∇U(x)| (as this gives a uniform bound on the second
part of the jump rate), ε(x) = ε0 and ε(x) = ε0/(1 + |∇U(x)|) (for which, according to the
discussion in Section 3.2, the degenerate Langevin term that appears as the first order error
with respect to the Hamiltonian dynamics as ε→ 0 is then uniformly bounded in x). In any
of those cases, a prior rate upper bound can be obtained from bounds on v · ∇U(x+ tv) and
|∇U(x + t)|. Such bounds are easily obtained if ∇U is uniformly bounded by some known
constant L, or if the the Hessian H of U is globally bounded in the Euclidean matrix norm,
i.e. M := supx∈Rd ‖H(x)‖2 <∞, in which case

v · ∇U(x+ vt) 6 v · ∇U(x) +M |v|2t , |∇U(x+ t)| 6 |∇U(x)|+M |v|t .

Each of the three choices of ε above yields a bound of the form

λ(x+ tv, v) 6 λ̄(x, v, t) := M |v|2(t− t0(x, v))+ + a(x, v) + b(x, v)tk

for some k ∈ {1, 2} and a, b, t0 > 0. Remark that, from the properties of the exponential law,
then

S := inf

{
s > 0,

∫ s

0

λ̄(Xt, Vt, s)ds > E

}
has the same law as S1 ∧ S2 ∧ S3 where, denoting λ̄1 = M |v|2(t− t0)+, λ̄2 = a and λ̄3 = btk,

Si := inf

{
s > 0,

∫ s

0

λ̄i(Xt, Vt, s)ds > Ei

}
,
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for i = 1, 2, 3, where E1, E2, E3 are independent with unit exponential distribution. Here,

S1 = t0 +

√
2E1

M |v|2
, S2 =

E2

a
, S3 =

(
(k + 1)E3

b

) 1
k+1

.

5.3 Sampling according to the corrected kernel

5.3.1 General strategy

Consider the process defined in Theorem 3.4. Then, omitting in the notation the dependency
of ε and T on x, the velocity after jump is v − 2ε(εv · T + G̃)T/(1 + ε2) where G̃ is a one-
dimensional random variable with density

fm(y) =
1

Θ(m)
√

2π
(m+ y)+ exp

(
−y2/2

)
,

wherem = εv ·T . We sample G̃ using rejection sampling, with various proposal distributions,
depending on the value of the parameter m. In order to fix notations, we briefly recall the
procedure. We look for a function gm satisfying the two requirements:

1. gm is a probability density from which we know how to sample;

2. there exists Cm > 0 such that for all x, fm(x) ≤ Cmgm(x) and the ratio fm(x)/(Cmgm(x))
is computable.

The rejection sampling then consists in drawing Y according to gm, and accepting it with
probability fm(Y )/(Cmgm(Y )), and repeating until a proposal is accepted. It is well-known
that this leads to a sample distributed according to fm, and that the number of proposals
needed is geometrically distributed with mean Cm.

5.3.2 Proposal distributions

We now list various choices for the proposal distribution with the corresponding computa-
tions; these choices are compared in terms of the expected number of trials and the CPU
time in our implementation below.

Gamma proposal For m < 0, one can choose a Γ(2,−m) proposal, shifted by (−m):

gm(y) = (y +m)+(−m)2 exp (−(−m)(y +m)) ,

which is the distribution of (−m)+(E1+E2)/(−m), where E1 and E2 are standard exponential
random variables. This choice yields

fm(y)

gm(y)
=

1√
2πm2Θ(m)

exp
(
−y2/2−m(y +m)

)
=

1√
2πm2Θ(m)

exp
(
−(y +m)2/2−m2/2

)
,

which is less than Cm = exp(−m2/2)/(
√

2πm2Θ(m)). A proposed value y is accepted with
probability exp(−(y +m)2/2), and the expected number of trials Cm → 1 for m→ −∞.
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Exponential proposal Still for m < 0, we can use an exponentially distributed proposal,
shifted by (−m):

gm(y) = λ exp (−λ(y +m)) lly>−m.

The choice λ = −m leads to simple bounds:

fm(y)

gm(y)
=

1

(−m)Θ(m)
√

2π
(m+ y)+ exp

(
−y2/2−m(y +m)

)
is maximized for y = (−m) + 1, so fm(y) ≤ Cmg(y) where

Cm =
1

(−m)Θ(m)
√

2π
exp

(
−1/2−m2/2

)
.

The acceptance probability in y is

f(y)

Cmg(y)
= (−m)(m+ y) exp

(
−y2/2−my −m2 + 1/2 +m2/2

)
= (−m)(m+ y) exp(1/2) exp

(
−(y +m)2/2

)
.

The constant Cm ∼ exp(−1/2)(−m) is unbounded for m→ −∞. However it behaves better
than the Gamma proposal for small values of |m|.

Shifted Rayleigh proposal Consider once more the case m < 0. In the density fm,
(m+ y)+ is then bounded above by ylly>−m, leading to the bound

fm(y) ≤ 1

Θ(m)
√

2π
lly>−my exp

(
−y2/2

)
= Cmgm(y),

where

Cm =
exp(−m2/2)√

2πΘ(m)
, gm(y) = lly>−my exp

(
m2/2− y2/2

)
It is easily checked that gm is the distribution of

√
m2 + 2E for E an exponentially distributed

random variable.
From the expansion P(G > x) ' exp(−x2/2)(1/x − 1/x3)/

√
2π as x → ∞, we get the

asymptotic behaviour
Cm = m2 + o

m→−∞
(m2)

implying that this choice is bad when |m| is large. On the contrary, Cm converges to the
optimal value 1 when m goes to 0−.

Mixture between Rayleigh and Gaussian distribution We now turn to the case
m > 0 and bound (m+ y)+ from above by m+ ylly>0.

fm(y) ≤ 1

Θ(m)
√

2π
(m+ ylly>0) exp

(
−y2/2

)
:= Cmgm(y)
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where Cm = (m+ 1/
√

2π)/Θ(m) and gm is a probability density. One easily checks that gm
is the density of the mixture

Ỹ = G llU6m/(m+1/
√

2π) +
√

2E llU>m/(m+1/
√

2π)

where G, E and U are independent and respectively distributed according to the standard
Gaussian law, the standard exponential distribution and the uniform law over [0, 1]; it is
therefore easy to sample. The proposal is accepted with probability (m+ Y )+/(m+ Y llY≥0).

The bound
Θ(m) ≥ E((m+G)llG≥0) =

m

2
+

1√
2π

shows that Cm is always less than 2 and converges to 1 when m vanishes. For m → ∞,
Θ(m) ∼ m and Cm → 1.

Gaussian proposal If m > 0, the mode of fm is α = (
√
m2 + 4 −m)/2. Let gm be the

density of the Gaussian random variable N (α, 1). Then

f(x)

g(x)
=

1

Θ(m)
(m+ y)+ exp

(
−y2/2 + (y − α)2/2

)
=

1

Θ(m)
(m+ y)+ exp

(
−αy + α2/2

)
.

This is maximized for y +m = 1/α, leading to the bound

fm(x)

gm(x)
≤ Cm =

1

Θ(m)α
exp

(
−α2/2

)
.

The algorithm then consists in sampling from gm and accepting with probability

f(x)

Cmgm(x)
= α(m+ y)+ exp

(
−αy + α2

)
.

If m goes to infinity, α ∼ 1/m, so Cm ∼ m/Θ(m) → 1. If m goes to zero, α goes to 1,
and Cm to exp(−1/2) 1

Θ(0)
=
√

2π exp(−1/2) ≈ 1.52.

5.3.3 Choice of the proposal

We compare in Figure 1 the various choices for the proposal distributions, both theoretically
and empirically. The best method depending on m will of course depend on implementation
details; the important point is that by choosing an appropriate proposal we are able to keep
the expected number of samples before acceptance Cm bounded. For our implementation we
are led to the following choices.

m Best proposal

m . 2.5 Gamma
−2.5 . m . −1 Exponential
−1 . m . 0 Rayleigh

0 . m Mixed Rayleigh/Gaussian
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On the left, we plot the value of Cm, the expected number of samples before acceptance, as a function of m, for the five
proposal distributions discussed above. On the right we plot the empirical time (in nanoseconds) used by our implementation

of the various methods. Note that the Gaussian proposal is in practice, for our implementation, a little slower than its
competitors. From both point of views, the minimum of the curves stays uniformly bounded.

Figure 1: Comparison of proposal distributions

6 Numerical experiments
We provide in this section a numerical illustration for the very simple case of the two di-
mensional unit Gaussian distribution. We choose the precision parameter to be constant
ε(x) = ε, and the simulated process is the velocity-jump process described in Lemma 3.3,
without any additional noise on velocity.

Motivation Although this example may seem a priori naïve, it is motivated by the prac-
tical problem of sampling according to distributions with “multiscale” densities in Euclidean
space. Indeed, near a local minimum, the potential (log-density) is approximately quadratic,
which justifies the choice of the potential. Moreover, the few fastest time scales of the process
– corresponding to stiffest directions of the local minimum – typically cannot be identified,
and may be considered decoupled from: i) other degrees of freedom, and ii) additional noise
on velocity which is usually restricted to the slowest time-scale. Those fastest degrees of
freedom are the ones we arguably emulate here.

Simulation parameters Simulations are carried out with the following parameters:

• An initial condition (x0, v0) ∈ R4.

• A number of force evaluations n ≥ 1.

• A quadratic potential of the form:

V (x) = x2
1/2 + λx2

2/2

with asymmetry parameter λ ≥ 1. λ = 1 corresponds to the potential with (vectorial)
isometry symmetry.

• A constant dynamical precision parameter ε(x) = ε (see Lemma 3.3).
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Figure 2: Examples of trajectories with the same (approximate) time length. The velocity-
jump process is compared to the Hamiltonian limit computed with a Verlet scheme. Various
ε are compared.

Irreducibility issues Without additional noise (which provides not only ergodicity but
also exponentially fast mixing, see Section 4), the simulated velocity-jump process may not
be irreducible with respect to the normal distribution (see Section 3.4). In the present section,
we will observe the following two cases.

• The invariant distribution is the unit normal distribution, hence it is invariant by origin
preserving isometries. In that case, the process is not irreductible, and it is easy to
check that t 7→ Xt∧Vt is constant through time (x∧v = x1v2−x2v1 in an orthonormal
basis so that x ∧ v = 0 if and only if x and v are collinear). The process seems to be
irreducible with respect to the unit normal (X, V ) conditioned by X ∧V = x0 ∧ v0 and
X, V ∈ Vect(x0, v0) where (x0, v0) are the initial conditions of the process.

• The invariant distribution is an asymmetric normal distribution, and the process seems
to be irreducible in dimension 2 in that case.

Rigorous analysis of irreducibility issues without additional noise is left for future work.

Results — short trajectories In Fig.2 and 3 we plot short/medium time trajectories
for λ = 1 (the unit, symmetric quadratic potential |x|2) and initial condition is x0 = (1, 0),
v0 = (1, 1). Total physical time is (roughly) constant, so that the number of force evaluations
increases with the precision parameter ε. We observe that when ε → 0, trajectories indeed
converge to the expected Hamiltonian dynamics of a two dimensional harmonic oscillator
(integrated with a Verlet scheme here).
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Figure 3: Same as 2 but for a longer trajectory

Figure 4: Examples of long trajectories for the (non-irreducible) unit Gaussian for, from left
to right, ε ∈ {.01, 1, 100}.

Results — long non-ergodic trajectories In Fig.4 we plot long time trajectories for λ =
1 (the unit, symmetric quadratic potential |x|2), initial condition x0 = (0, 0.5), v0 = (0.5, 0),
and total number of force evaluations n = 105. The expected non-ergodicity is observed.

Results – mixing In Fig.5, we fix the initial condition x0 = (0, 0.5), v0 = (0.5, 0), and the
number of force evaluations n = 105. We consider the position observable given by the time
average of the square distance to the origin

1

T

∫ T

0

|Xt|2 dt.

For this observable, we compare the mixing efficiency for various ε ∈ {10−2, 10−1, 1, 10, 102}
and λ ∈ {1, 1.05, 5} using various independent samples obtained by simulating the velocity-
jump process. Let us recall that ε = 0 corresponds to the Hamiltonian dynamics, while
ε = +∞ is exactly the bouncy sampler. The figure consists of three (left, right, bottom)
groups of box plots of those samples (each corresponding to a value of λ), the horizontal axis
being ln ε.

Several remark and results:

• As expected, for λ = 1 (and in this case only), the process is not irreducible and the
sample is biased. A quick calculation shows that if (X, V ) ∈ R4 is unit Gaussian then

E(|X|2|X ∧ V = c) = 1 + cK1(c)/K0(c)
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λ = 1

λ = 1.05 λ = 5

Figure 5: Box plots of samples obtained with fixed number of force evaluation n = 105.
Comparison between: ε ∈ {10−2, 10−1, 1, 10, 102} on the horizontal axis, as well as symmetric
versus asymmetric potentials — eigenvalues ratio 1 (up chart), 1.05 (left chart) and 5 (right
chart). Observe: i) the bias due to lack of ergodicity in the symmetric case, iii) a decrease
of variance in the λ = 5 very asymmetric case, and iii) an efficiency which seems optimal for
various non-extremal values of ε.
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where K denotes the modified Bessel special function of the second kind. With our
choice of initial conditions, c = 1/4 and the above quantity is roughly 1.224 which is
consistent with the observed bias.

• For λ = 1.05, the proximity to λ = 1 where the breakdown of irreducibility (conserva-
tion law) occurs, seems to result in a larger variance than the other cases.

• For very small value of ε, the process: i) is simulated on comparatively shorter timescale
due to the required precision, ii) is closed to an Hamiltonian dynamics which possesses
additional conserved quantities (in particular energy). This translates into a poor
mixing and thus a larger variance.

• We observe that the optimal sample quality is obtained for various intermediate values
of ε ( ε = 1 or even lower, that is full tangential resampling or closer to the Hamiltonian
limit). These intermediate cases seems to consistently outperform the bouncy sampler
(ε = +∞).

Conclusion The process exhibits irreducibility issues in the presence of radial symmetries
that are similar to the ones of the bouncy sampler. A moderate addition of velocity noise
is thus recommended in general. The optimal sampling efficiency seems to be obtained for
intermediate values of ε, around 1 or a bit lower (closer to the Hamiltonian limit than the
full resampling, but not too much). However, this particular optimal value seems to vary
with the target model and requires further and more exhaustive analysis.

7 Supplementary material
In this section, we establish a general result on the convergence of a family of Markov pro-
cesses, Theorem 7.1, which is used in the proof of Theorem 3.6.

Consider a family (Lε)ε>0 of Markov generators on Rd, and Markov processes (Xε
t ) asso-

ciated to these generators by a martingale problem. There is a large literature (a reference
monograph we will abundantly use here is [13]) linking convergence properties of (Lε) with a
convergence at the level of stochastic processes. Our purpose is to provide a simple generic
setting in which checking the convergence of Lε to a limiting generator L locally is enough
to imply weak convergence at the process level. The classical ’weak’ (convergence in dis-
tribution) approach of [13] relies on characterization of Markov processes by their generator
through martingale problems (see below). Applying the convergence of generators at the level
of the martingale problem typically enables to obtain tightness of the process distributions,
extract a limit from them, and identify it.

In order to state the result, let us briefly recall that if E is a Polish state space, the set
of càdlàg trajectories indexed by R+ may be equipped with the Skorokhod topology, forming
a Polish space denoted by DE (Section 5 and 6, Chapter 3 of [13]). We also recall that a
sequence of càdlàg trajectories xn converges to x in DE if, on any finite time interval, it
converges uniformly up to a uniformly small time change.

Theorem 7.1. Let
(
(Xε

t )t≥0

)
ε>0

denotes a family of càdlàg processes in Rd with initial dis-
tribution µ. Assume the following:
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• For each ε, (Xε
t )t≥0 solves the martingale problem associated with

(
µ, Lε, C

∞
c (Rd)

)
.

• For all ϕ ∈ C∞c (Rd), Lεϕ converges to Lϕ uniformly on compacts.

• Lϕ is continuous and the martingale problem associated with
(
µ, L,C∞c (Rd)

)
is well-

posed in Rd (in particular the solution exists for all time) for any initial probability
distribution µ.

Then Xε converges in distribution in the Skorohod space towards the unique solution of the
limiting martingale problem.

Remark 7.2. The case of Rd could be easily generalized to any locally compact Polish space.

Proof. The proof uses heavily the classical technical apparatus developed in [13]. Let us first
give an outline of the strategy before going into details.

The key point in order to use the “local” convergence of Lε to L is to stop the processes
when they leave large compact sets of Rd, say balls defined by

Br
def
= {x, |x| ≤ r} ,

and to remark that the family of stopped processes is tight with respect to the Skorohod
topology. Using the convergence of Lε to L, any limit of extracted ε-sequences is then
shown to coincide, when stopped, with the unique solution of a stopped martingale problem
associated with L. In the last step, stopping the processes outside an appropriate ball, the
global convergence is established.

Let us now give details on these three steps.

Tightness for stopped processes. If F ⊂ E is closed, and x ∈ DE we consider the hitting
time

τ(F ) = τ(F, x)
def
= inf {t ≥ 0, |xt| ∈ F orxt− ∈ F} ∈ [0,+∞],

which is a stopping time for the canonical natural filtration of the Borel sets of DE. We fix
an r > 0, let F = {x : |x| ≥ r} and consider Xε,F the stopped process

Xε,F (t) = Xε(t ∧ τ(F )).

The goal of this first step is to prove that (Xε,F )ε>0, whose trajectories stay in the bounded
set {x : |x| ≤ r}, is tight. The proof follows a very classical pattern; we sketch it using [13]
as reference for the sake of completeness. Details can be found in [21], Section 3.2.

Using [13, Theorem 9.1, Chapter 3, p.142], tightness is equivalent to the tightness in DR
of
(
ϕ(Xε,F )

)
ε>0

for each ϕ ∈ C∞c (Rd). Fix ϕ ∈ C∞c (Rd). Classically: i) expand squares

of the form
(
ϕ(Xε,F

t+h)− ϕ(Xε,F
t )
)2

; ii) consider the two (stopped) martingales associated

with ϕ(Xε,F
t ) and ϕ2(Xε,F

t ); and iii) use the uniform boundedness on compacts of Lεϕ and
Lεϕ

2 (which follows from the convergence assumption). Standard tightness criteria like [13,
Theorem 8.6, Chapter 4, p.137] enables to conclude.

Identification of the limit through a stopped martingale problem. Let Xn = Xεn,F be an
arbitrary convergent subsequence of Xε,F , and call its limit Y . Call X a solution of the limit
martingale problem; recall that we assume well-posedness so X is unique in distribution.
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We claim that the stopped process Y τ = Y (t∧ τ(F )) solves a stopped martingale problem
([13, Section 6, Chapter 4]): for any ϕ,

ϕ(Y (t ∧ τ(F )))− ϕ(Y (0))−
∫ t∧τ(F )

0

Lϕ(Y (s))ds (7.1)

is a martingale with respect to the natural filtration of Y . By [13, Theorem 6.1 p. 217 Ch.4],
there is a unique solution of this stopped martingale problem, namely the distribution of X
stopped at F , so that:

Y τ (d)
= Xτ def

= X(· ∧ τ(X,F )). (7.2)

Let us now justify the claim. By Lemma 7.4 below, there exists a sequence δn such that,
denoting by Fn the δn-neighborhood F (δn) of F , the sequence (Xn, τ(Fn, X

n)) converges in
distribution towards (Y, τ(F, Y )). In particular, as can be seen by a Skorohod almost sure
representation of the latter convergence, we get the convergence in distribution of X̃n(·) =
Xn(· ∧ τ(Fn, X

n)):
(X̃n, τ(Fn, X̃n)) −→

(d)
(Y τ , τ(F, Y )).

Now X̃n solves the martingale problem associated to Lεn , stopped at time τ(Fn): let us
briefly see how to send n to infinity and justify the claim.

By [13, Lemma 7.7, Chapter 3, p. 131] there exists a dense subset of times C ⊂ R where
the limit Y τ is continuous with probability one. Let t1,... tK+1 be arbitrary times in C and
ϕ, ϕ1, ... ϕK be bounded test functions. By definition of the stopped martingale problem
solved by X̃n and the characterization of martingales given in [13, p.174],

E

[(
ϕ(X̃n(tK+1))− ϕ(X̃n(tK))−

∫ tK+1∧τ(Fn,X̃n)

tK∧τ(Fn,X̃n)

Lεnϕ(X̃n(s))ds

)
K∏
k=1

ϕk(X̃
n(tk))

]
= 0.

(7.3)
The left-hand side may be written as E

[
Φ(X̃n, τ(Fn, X̃

n))
]
for some function Φ. Remarking

by dominated convergence that since Lϕ is continuous, integrals of the form x 7→
∫ t

0
Lϕ(xs)ds

are continuous with respect to the Skorokhod topology, and since the tk are in C, Φ is almost
surely continuous at the limit (Y τ , τ(F, Y )). This justifies taking the limit in (7.3), which
yields

E

[(
ϕ(Y τ (tK+1))− ϕ(Y τ (tK))−

∫ tK+1∧τ(F,Y )

tK∧τ(F,Y )

Lϕ(Y τ (s))ds

)
K∏
k=1

ϕk(Y
τ (tk))

]
= 0.

Using again the previously mentioned characterization of martingales, this entails that Y τ

indeed satisfies the martingale problem with generator L, stopped at time τ = τ(F, Y ).

Convergence of the original processes. We fix a bounded continuous observable Ψ(x) =
Ψ(xs, 0 ≤ s ≤ T ) on DE mesurable with respect to paths restricted to a given finite time
interval [0, T ]. Since the limit martingale problem is assumed to be well-posed in Rd, the
solution X exists for all time, and thus for each η > 0 there exists a r = r(T, η) such that
denoting F = {x, |x| ≥ r},

P(τ(F,X) ≤ 2T ) ≤ η.
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Our goal is to prove that |E [Ψ(Xε)]− E [Ψ(X)]| → 0, or in other words that

D
def
= lim sup

ε→0
|E [Ψ(Xε)]− E [Ψ(X)]|

is zero. Let us extract a sequence Xn = Xεn such that D = limn |E [Ψ(Xn)]− E [Ψ(X)]|;
up to extracting a further subsequence we may assume by tightness that Xn,F converges in
distribution. By (7.1) and (7.2) from the previous step, there exists a sequence (δn) such
that, for Fn = F (δn),

(X̃n, τ(Fn, X̃
n))

(d)−→ (Xτ , τ(F,X)), (7.4)

where X̃n = Xn,Fn is the process stopped when it reaches Fn. Since Xn(t) = X̃n(t) when
t < τ(Fn, Xn),

|E [Ψ(Xn)]− E [Ψ(X)]| ≤
∣∣∣E [Ψ(X̃n)llτ(Fn,X̃n)>T

]
− E

[
Ψ(Xτ )llτ(F,X)>T

]∣∣∣
+ ‖Ψ‖∞ P(τ(Fn, X̃

n) ≤ T )

+ ‖Ψ‖∞ P(τ(F,X) ≤ T )

By (7.4), the first term vanishes in the limit so D ≤ 2 ‖Ψ‖∞ η. Since η is arbitrary, D must
be zero, concluding the proof of convergence.

The above proof uses a technical result to handle the fact that, for a given closed set F ,
the map x 7→ τ(F, x) is only lower semicontinuous with respect to the Skorokhod topology.
To understand what may go wrong, consider Xn the deterministic motion in R that goes
upwards or downwards at speed one and is reflected on the boundary of [−1 + 1/n, 1− 1/n]:
for F = R\]−1, 1[, the hitting time of F is infinite forXn but finite for the limiting processX;
in particular, the stopped process Xn(t ∧ τ({−1, 1}, Xn)) = Xn(t) does not converge to
X (t ∧ τ ({−1, 1} , X)).

We first prove a deterministic result showing that we may almost recover continuity by
considering δ-neighborhoods of F , F (δ) = {x : d(x, F ) ≤ δ}.

Lemma 7.3. Suppose that xn → x in DE and let F be a closed set. Then δ 7→ τ(F (δ), x) is
decreasing and

lim sup
n

τ(F (δ), xn) ≤ τ(F, x) ≤ lim inf
n

τ(F, xn), (7.5)

τ(F (δ), x) −−→
δ→0

τ(F, x). (7.6)

Consequently for any sequence δn → 0,

lim inf
n

τ(F (δn), xn) ≥ τ(F, x). (7.7)

Note that we can only expect to get a statement on the liminf if the sequence δn is
arbitrary: indeed,in the example detailed above, whether lim supn τ(F (δn), Xn) ≤ τ(F,X)
depends on how δn compares to 1/n.
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Proof. If τ(F, x) > t then the compactified trajectory Γ = x([0, t]) is entirely contained in F c;
by compactness Γ(δ) is also contained in F c for δ small enough. For any t′ < t, by definition
of the Skorokhod topology the compactified trajectory Γn = xn([0, t′]) is included in Γ(δ) for
n large enough, so τ(F, xn) ≥ t′ for n large enough, proving the second inequality in (7.5).

Similarly, fixing δ and t > τ(F, x), we get that x(τ(F, x)) ∈ F so that for n large enough,
xn(tn) ∈ F (δ) for some tn ≤ t; in other words τ(F (δ), xn) ≤ t for n large enough. Therefore
lim sup τ(F (δ), xn) ≤ τ , completing the proof of (7.5) since t > τ(F, x) is arbitrary.

We now prove (7.6). Clearly if F ⊂ G then τ(F, x) ≥ τ(G, x), so δ 7→ τ(F (δ), x) decreases.
Let δn be a sequence decreasing to zero: τn = τ(F (δn), x) is increasing. Let τ∞ be its limit;
since τn ≤ τ(F, x), τ∞ ≤ τ(F, x). If τ∞ =∞ then τ∞ = τ(F, x). If τ∞ is finite, for each n one
of x(τn) or x((τn)−) is in F (δn): call it yn. By compactness of x([0, τ∞]) yn must converge;
its limit is in ∩nF (δn) = F , and is either x(τ∞) or x((τ∞)−), so τ(F, x) ≤ τ∞ and once more
they are equal.

Suppose δn converges to 0. Fix a δ > 0. For n large enough, δn ≤ δ so τ(F (δn), xn) ≥
τ(F (δ), xn). Taking limits we get

lim inf τ(F (δn), xn) ≥ lim inf τ(F (δ), xn) ≥ τ(F (δ), x),

using (7.5). Taking δ to zero and using (7.6) yields Equation (7.7).

The following probabilistic corollary shows that δn may be chosen to decay slowly enough
so that the hitting times converge.

Lemma 7.4. Suppose that Xn converges in distribution to X. For any closed set F , there
exists a sequence of radii (δn)n≥0 such that

(Xn, τ(F (δn), Xn))
(d)−−−→

n→∞
(X, τ(F,X)).

Proof. By the Skorokhod representation theorem we may assume without loss of generality
that Xn converges almost surely to X; it is then enough to construct (δn)n≥0 such that
τ(F (δn), Xn) converges in probability to τ(F,X). By Lemma 7.3, we have almost surely,
for any sequence (δn)n≥0, lim inf τ(F (δn), Xn) ≥ τ(F,X). To prove the upper bound, we fix
ε > 0, and it remains to show that we can construct a sequence (δn) with

lim
n

P [τ(F (δn, X
n)) > τ(F,X) + ε] = 0.

Define the events

A(n, δ)
def
= {τ(F (δ), Xm) ≤ τ(F,X) + δ, ∀m ≥ n} ,

and say that (n, δ) is good if P(A(n, δ)) ≥ 1− δ. It is easily checked that goodness is doubly
monotonous:

(n′ ≥ n, δ′ ≥ δ, (n, δ) good ) =⇒ (n′, δ′) good.

Now, for any fixed δ > 0, the events {An,δ}n≥1 form an increasing sequence, and

⋃
n≥0

An,δ =

{
lim sup
n≥0

τ(F (δ), Xn) ≤ τ(F,X) + δ

}
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has probability one by (7.5). As a consequence, for each δ > 0, there is a finite n(δ) such that
(n(δ), δ) is good, for instance, n(δ) = min {n ≥ 1|(n, δ) is good}; and using the monotony of
goodness, one can then easily construct a decreasing sequence (δ(n))n≥0 that decreases to
zero and such that (n, δn) is good for each n ≥ 1.

Finally, on A(n, δn), τ(F (δn, X
n)) ≤ τ(F,X)+δn, so for any ε > 0, and for n large enough

to ensure δn ≤ ε,

P [τ(F (δn, X
n)) > τ(F,X) + ε] ≤ P [A(n, δn)c] ≤ δn −−−→

n→∞
0,

concluding the proof that τ(F (δn), Xn) converges to τ(F,X) in probability.
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