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Parameter estimation procedure based on input-output
integro-differential polynomials. Application to the Hindmarsh-Rose

model.

Nathalie Verdière1 and Carine Jauberthie2

Abstract— This paper deals with a parameter estimation
method based on input-output integro-differential polynomials.
From the Rosenfeld-Groebner algorithm, some differential
relations depending only on the inputs, the outputs and the
parameters of the model are obtained. A pretreatment consist-
ing in some integrations of these relations permits to obtain new
ones. The latter contain essentially integrals depending only on
the model inputs/outputs and their higher order derivatives
are lower than the initial relations. Therefore, they are less
sensitive to the noise on the measurements compared to the
initial ones. Integrating permits also to attenuate the effect
of the noise improving by the same the parameter estimates.
However, even if the numerical estimation algorithm provides
a very good value of the parameters, the latter can lead to an
incorrect behavior of the model output. Indeed, in biological
or physical applications, a little change of some parameter
values can lead to a radical change of the model behavior
as for the Hopf bifurcation. A Hopf bifurcation refers to a
radical change of the model output dynamic due to a parameter
crossing a reference value. Therefore, an algorithm is proposed
in this paper to test the reliability of any parameter estimation
procedure with respect to the dynamic of the system. More
precisely, from a given noise on the output(s), it consists in
calculating the probability that the result of a parameter
estimation algorithm will permit to reproduce the correct
behavior of the model output. Finally, this algorithm is applied
on the estimation procedure based on the input-output integro-
differential polynomials and on the Hindmarsh-Rose model,
a slow-fast model able to reproduce the main behaviors of a
neuron and presenting a Hopf bifurcation.

I. INTRODUCTION

Parameter estimation of dynamical systems is an important
step in the modeling to make a model usable. Several
global or local methods can be found in the literature [11],
[18]. They are mainly focused on the optimization of some
criterion function over the parameter space and required a
first initial guess or at least a definition interval. This first
initial guess can be obtained by an industrial process or by a
numerical procedure and may determine the convergence of a
local parameter estimation algorithm. This paper proposes to
focus on a parameter estimation method based on differential
polynomials in order to obtain a first initial guess of the
parameters without, a priori, any knowledge of them.
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Afterwards, the general dynamical systems have the follow-
ing form:

Γθ
{
ẋ(t, θ) = f(x(t, θ), θ) + u(t)g(x(t, θ), θ),
y(t, θ) = h(x(t, θ), θ).

Here x(t, θ) ∈ IRn denotes the state variables. The model
outputs are given by y(t, θ) ∈ IRm. The set of model
parameters to be estimated are given by θ ∈ Up the
unknown parameter vector (Up is an open subset in IRs).
The functions f(., θ), g(., θ) and h(., θ) are real, rational
and analytic for every θ ∈ Up on M (a connected open
subset of IRn such that x(t, θ) ∈ M for every θ ∈ Up and
every t ∈ [0, T ]). u(t) ∈ Rl denotes the input variables. In
the case of uncontrolled system, u is equal to 0. We also let
x0 = (x0,i)i=1,...,n the vector of initial conditions for x(t, θ)
whose some components can depend on the parameters to
be estimated.
From system Γθ, some differential relations can be obtained
in using the Rosenfeld-Groebner elimination algorithm and
are called input-output (IO) polynomials [2]. From the
latter, an identifiability study of Γθ can be done and is
recommended before putting in place a parameter estimation
procedure. Indeed, this study ensures that the parameters can
be uniquely inferred from the output measurements of the
system. However, IO polynomials may contain sometimes
high-order derivatives which is a factor of instability in
numerical procedures. Indeed, estimate derivatives from
noisy measurements is an ill-posed problem. The main
challenge is also to obtain new relations with lower order
derivatives. Lots of authors have proposed different ways
to obtain integro-differential input-output (ID-IO) relations
since they are less sensitive to the noise compared to
the initial IO polynomials (for example [1], [12], [14],
[17]). Indeed, ID-IO polynomials may contain lower order
derivatives and integrating permits to attenuate the structured
noise whose amplitude is unknown [6]. In order to obtain
ID-IO polynomials, [12] multiplied them by modulating
functions and then integrate the new relation whereas [14]
used iterative integrals in the frequency domain. In [17], a
distribution approach was proposed with a complete study
on the numerical error due to this method. In this paper,
for the parameter estimation, we focus on the simple use of
iterative integrals leading to relations with no derivative in
our case.
Even in the case of a good parameter estimate, measurement
noise is an important factor of uncertainty and error in



parameter estimation procedures. To have the probability
that the parameter estimate captures the dynamic of
the system with respect to the noise on the output(s),
an algorithm is proposed in this paper. To apply these
results, the Hindmarsh-Rose (HR) model resulting from a
simplification and a generalization of the Hodgkin-Huxley
model is considered (see [7], [8] for more details). The aim
of such models is to better understand neuron activity as
presented in [9], [10], [16]. Its particularity is to present a
Hopf bifurcation with respect to its slow-fast parameter. To
estimate parameters of the HR neuron model, methods were
already proposed. In [16], the authors give two approaches.
The first one concerns the synchronization based parameter
estimation and consists in solving a least-square problem
subjects to constraints. The second approach is based on
the adaptive observers as in [15]. This method aims to
find a dynamical system so that it synchronizes with the
measured voltages from a real neuron. In [13], authors use
nonlinear optimization exploiting the particular structure
of the relevant cost function. However, for main of these
methods, a first initial guess is needed. That is why, we
propose to use the approach based on ID-IO polynomials to
obtain this first initial guess.

The paper is organized as follows. In Section II, the param-
eter estimation procedure based on the ID-IO polynomials is
presented as well as the procedure to calculate the probability
that a parameter estimate will permit to reproduce the correct
behavior of the model output with respect to the noise.
Section III concerns the HR model. Its first part presents this
slow-fast model and its bifurcation. In the second part, an
identifiability study and a parameter estimation are achieved
on it. The end of Section III ends with an analysis of
the effect of the noise on the estimation of its bifurcation
parameter. Finally, Section IV concludes the paper.

II. PARAMETER ESTIMATION METHOD

A. Differential Algebra and identifiability

An identifiability study ensures that two different param-
eter vectors will lead to two different model outputs. The
definition can be formalized as follows:

Definition 1: The model Γθ is said globally identifiable at
θ if a time t1 ∈ [0, T ] exists such that for all t ∈ [0, t1], for
all θ̃ ∈ U , θ̃ 6= θ then y(t, θ) and y(t, θ̃) are different.
The identifiability study can be analyzed through relations
linking input, output and parameters of model Γθ. They
are obtained using the Rosenfeld-Groebner algorithm im-
plemented in the package DifferentialAlgebra of Maple [2].
From the elimination order consisting in eliminating unob-
servable variables, the algorithm provides IO polynomials
having the following form (See [5]):

Pi(y, u, θ) = mi
0(y, u) +

qi∑
j=1

γij(θ)mj,i(y, u) = 0 (1)

where (γij)1≤j≤qi are rational in θ, γiu 6= γiv (u 6= v),
(mj,i)1≤j≤qi are differential polynomials with respect to y

and u. mi
0 6= 0 and i from 1 to m.

According to [5], the number of relations is the number of
observations.
Afterwards, to lighten the notations, only one output is
considered so that the index i is omitted. Let us denote s
the time derivative of highest order of y in P .

From the coefficients of the IO polynomial P and
the initial conditions (if any), we can define the
real-valued function φ by φ : θ = (θ1, . . . , θp) 7→
(γ1, . . . , γq, y(0, θ), . . . . . . , y(s−1)(0, θ)). Under some
technical conditions omitted in this paper (for more details,
the interested reader can refer to [5]), the identifiability
result is the following:

Proposition 1: Assume that the functional determinant
4P (y, u, θ) = det(mj(y, u), j = 1, . . . , q) 6≡ 01 and the
coefficient of y(s) is not equal to zero at t = 0. The model
Γθ is globally identifiable if and only if the function φ is
injective on Up.

B. Estimation procedure

The measurement noise is taken into account by assuming
that the output y is disturbed by a centered Gaussian noise
η so that the measurement z of y has the following form:
z(t) = y(t, θ̄)+η(t) where θ̄ represents the "true" parameter
vector value. If (tk)1≤k≤N is a sequence of discrete times,
we denote {zk = z(tk), k = 1, . . . , N} the set of measure-
ments at (tk)1≤k≤N and uk = u(tk) the associated inputs.
Let f a real-valued function and Iν(f), ν ∈ IN, the integrated
function such that

Iν(f) =

∫ t

t−τ

∫ τ1

τ1−τ
. . .

∫ τν

τν−1−τ
f(τν)dτν . . . dτ1.

Its approximated value by a numerical procedure from the
measurements zk, k = 1, . . . , N will be denoted Iestν (f).
Due to the linearity of the integral, a new relation is obtained
from P and can be rewritten:

Iν(P ) = Iν(m̃0(y, u)) +

q∑
j=1

γ̃j(θ)Iν(m̃j(y, u)).

Afterwards, Iν(P ) is called the ID-IO polynomial.
Evaluating the expression Iν(P ) at each tk leads to a linear
system whose unknown are the coefficients γ̃j(θ), j =
1, . . . , q. Indeed, Iν(P ) is linear with respect to the parameter
blocks γ̃1(θ), . . . , γ̃q(θ). The following system can also be
deduced:

AΘ̃ = b

1To verify this assumption, it is sufficient to verify the linear independence
of the mj(y, u), j = 1, . . . , q by checking the functional determinant given
by the Wronskian [4]∣∣∣∣∣∣∣∣∣


m1(y, u) . . . mq(y, u)

m1(y, u)(1) . . . mq(y, u)(1)

. . .
m1(y, u)(q−1) . . . mq(y, u)(q−1)


∣∣∣∣∣∣∣∣∣ (2)

is not identically equal to zero. In fact, the monomials are linearly indepen-
dent if there exists a time point at which the Wronskian is non-zero.



where Θ̃ = (γ̃1(θ), . . . , γ̃q(θ))
T . The kth line of A and b are

respectively given by (A)k = (Iestν (m̃j(y, u)))j=1,...,q and
bk = −Iestν (m̃0(y, u)).

Remark 1: The linear system that can be deduced directly
from P may contain derivatives of high order. Indeed, the
elimination algorithm of Rosenfeld-Groebner is based on
addition, differentiation in time and multiplication by any
polynomials in x, u, y and θ. Or, integrating permits to de-
crease the order of some derivatives but also to attenuate the
structured noise whose amplitude is unknown. By definition,
a structured noise is solution of a given homogeneous linear
differential equation (See [6] for more detailed). Finally,
whatever the integral method applied on P , the new relation
has always given better results in the case of the parameter
estimation (See [12], [14], [17] for some examples). Remark
that the estimated parameters obtained by this way may be
used as an initial guess for a local algorithm to improve the
results.
Even in the case of a good relative error between the exact
and the estimated parameters, the behavior of the output and
the simulated output may not be the same. For example, if
the model has a Hopf bifurcation, near the critical point, the
model output can either tend to a stable equilibrium point
or be periodic. Thus, the estimated parameter vector can
lead to a deterioration of the dynamic of the model output
during the time as it will be seen at section III-C. Remark
too that we can not guarantee the result obtained by a local
algorithm with a first initial guess for which the system does
not present the good dynamic (see Remark 2). In order to
test the reliability of any parameter estimation procedure, we
propose, in the following section, an algorithm to calculate
the probability to have an estimated parameter providing the
correct behavior of the model output.

C. Probability of obtaining the correct behavior

Let θ the parameter vector of Model Γθ to estimate. Sup-
pose that its kth component, θk, is a bifurcation parameter.
With no restriction, we can suppose that k = 1. Let θc1 its
bifurcation value that is the value for which a little change
leads to a complete different behavior of Model Γθ. For
a given error level, to determine the probability for the
estimated value of θ1 not being in the accepted behavioral
interval, 1000 simulated data are generated from the output
model. For each simulated data, a parameter estimation
procedure is used so that the parameter vector θ̂ containing
the estimated value θ̂1 of θ1 is calculated. The comparison
between θc1 and θ̂1 permits to conclude if θ̂1 is in the accepted
behavioral interval. The procedure is summed up below.

1) Use the nominal parameter values to numerically solve
the ODE model to get the solution of the output or
measurement variables at the experimental design time
points.

2) Generate M sets (e.g., 1000) of simulated data from
the output or measurement model with a given mea-
surement error level.

3) For each of the M simulated data sets, estimate param-
eter vector θ̂ using the method developed at section II

for example.
4) Count the number of estimates θ̂ that are in the

accepted behavioral interval.

III. HINDMARSH-ROSE MODEL

The model of Hindmarsh-Rose (HR) results from a simpli-
fication and a generalization of the Hodgkin-Huxley model
[7], [8]. This model is a slow-fast model and is able to
reproduce the rich dynamics of a neuron, such as spiking,
bursting and chaotic behaviors. The aim of such models is
to better understand neuron activity [9], [10], [16]. The HR
model [8] reads as follows (where θ = (a, b, d, ε)T ):

ẋ1(t, θ) = x2(t, θ) + ax1(t, θ)2 − x1(t, θ)3

−x3(t, θ) + I(t),
ẋ2(t, θ) = 1− dx1(t, θ)2 − x2(t, θ),
ẋ3(t, θ) = ε(b(x1(t, θ)− cx1

)− x3(t, θ)).

(3)

x1 represents the membrane potential and is the output
y := x1 of the HR model, x2 the recovery variable associated
with the fast current due to the passage of the Na+ or K+

ions and x3 the adaptation current associated with the slow
current due to the passage of the Ca+ ions. Parameters a, b,
d and ε are experimentally determined from measurements
of membrane potentials, while cx1 is the x1-coordinate
of the leftmost equilibrium of the two-dimensional system
given by the first two equations of (3) when I(t) = 0
and x3(t, θ) = 0. I corresponds to the applied current (in
Ampere) and afterwards it is supposed constant. Finally,
parameter ε represents the ratio of time scales between fast
and slow fluxes across the membrane of a neuron.

The authors in [3] show that the parameter ε presents a
Hopf bifurcation. A Hopf bifurcation refers to the local birth
or death of a periodic solution near an equilibrium point
due to a change of one parameter value. Therefore, the HR
model can present different dynamics with respect to the
value of ε. Let εc its bifurcation value. In [3], authors give an
explicit formula of the bifurcation parameter εc in function
of a, b and d. For example, for a = 3 , b = 4 , d =
5 , I(t) = 3.25A, System (3) admits one equilibrium point
and the constant bifurcation parameter εc is approximatively
equal to 0.125912.
Fig. 1 and 2 represent the (x1, x2, x3) view of the phase
portrait for two different values of ε, before and after the
Hopf bifurcation. For ε greater than εc the solution is peri-
odic and disappears when ε increases such that the system
has a stable equilibrium point. The time series of system (3)
for the two previous parameters of ε are represented at Fig.
3 and 4 respectively.

A. Identifiability study of the HR model

To obtain the IO polynomial of the HR model, the package
DifferentialAlgebra of Maple is used.
I being an input of the system, the elimination order [θ] ≺
[y, I] ≺ [x1, x2, x3] is chosen. It consists in eliminating x1,
x2, x3 in order to obtain a polynomial depending only on y,
θ and I . The Rosenfeld-Groebner algorithm provides a poly-
nomial with a derivative of order 3 and with 24 expressions.



Fig. 1. (x1, x2, x3) view of the phase portrait of system (3) when ε =
0.12 < εc.

Fig. 2. (x1, x2, x3) view of the phase portrait of system (3) when ε =
0.13 > εc.

Fig. 3. Time series of system (3) when ε = 0.12 < εc.

Fig. 4. Time series of system (3) when ε = 0.13 > εc.

To obtain a simpler polynomial, let u1(t) = e−t, v1(t) =

e−t
∫ t

0

x21(s, θ)esds. In integrating the second Equation of

(3), one gets x2(t, θ) = (x2(0, θ) − 1)u1(t) + 1 − dv1(t).

Consider now the following system:

ẋ1(t, θ) = x2(t, θ) + ax21(t, θ)− x31(t, θ)
−x3(t, θ) + I(t),

x2(t, θ) = (x2(0, θ)− 1)u1(t) + 1− dv1(t),
ẋ3(t, θ) = ε(b(x1(t, θ)− cx1)− x3(t, θ)),
u̇1(t) = −u1(t),
v̇1(t) = −v1(t) + x21(t).

(4)

System (3) completed with the initial conditions
(x1(0, θ), x2(0, θ), x3(0, θ)) is equivalent to System (4) com-
pleted with (x1(0, θ), x2(0, θ), x3(0, θ), 1, 0). Considering
now the elimination order [θ] < [y, u1, v1, I] ≺ [x1, x2, x3],
we obtain (the time variable t is omitted):

P := ÿ + 3 y2 ẏ + (−ε y0 + ε+ y0 − 1)u1
+(d ε− d) v1 + ε (x3 + ẏ) + (−a ε+ d) y2

−2 a y ẏ + b ε y − b cy ε− ε(1 + I) = 0.
(5)

The function φ is defined by: φ : θ 7→ (−ε y0 + ε + y0 −
1, d ε−d, ε,−a ε+d,−2 a, b ε,−b cx ε−ε(1+ I)) is clearly
injective so the model (3) with y = x1 is identifiable.
Remark that y0 can be estimated too using the polynomial
P .

B. ID-IO polynomial

In order to decrease the derivative order of polynomial
P defined by (5), P is integrated twice given the following
relation (the variable θ is omitted):

I2(P ) :=

∫ t

t−τ

∫ τ1

τ1−τ
ÿ(τ2)dτ2dτ1

+3

∫ t

t−τ

∫ τ1

τ1−τ
y(τ2)

2 ẏ(τ2)dτ2dτ1

+(−ε y0 + ε+ y0 − 1)

∫ t

t−τ

∫ τ1

τ1−τ
u1(τ2)dτ2dτ1

+(d ε− d)
∫ t

t−τ

∫ τ1

τ1−τ
v1(τ2)dτ2dτ1

−ε
∫ t

t−τ

∫ τ1

τ1−τ
(−y(τ2)3 − ẏ(τ2))dτ2dτ1

+(−a ε+ d)

∫ t

t−τ

∫ τ1

τ1−τ
y(τ2)

2dτ2dτ1

−2 a
∫ t

t−τ

∫ τ1

τ1−τ
y(τ2) ẏ(τ2)dτ2dτ1

+b ε

∫ t

t−τ

∫ τ1

τ1−τ
y(τ2)dτ2dτ1

−(I ε+ b cy ε+ ε)

∫ t

t−τ

∫ τ1

τ1−τ
1dτ2dτ1.

(6)

Some double integrals can be simplified:∫ t

t−τ

∫ τ1

τ1−τ
ẏ(τ2)dτ2dτ1

=

∫ t

t−τ
(y(τ1)− y(τ1 − τ))dτ1,∫ t

t−τ

∫ τ1

τ1−τ
ÿ(τ2)dτ2dτ1 =

y(t)− 2 y(t− τ) + y(t− 2τ),



3

∫ t

t−τ

∫ τ1

τ1−τ
y(τ2)

2 ẏ(τ2)dτ2dτ1 =∫ t

t−τ
(y(τ1)

3 − y(τ1 − τ)3)dτ1,

2

∫ t

t−τ

∫ τ1

τ1−τ
ẏ(τ2)y(τ2)dτ2dτ1

=

∫ t

t−τ
(y(τ1)

2 − y(τ1 − τ)2)dτ1,∫ t

t−τ

∫ τ1

τ1−τ
dτ2dτ1 = τ2.

In substituting these relations in the ID-IO polynomial (6),
the following relation which does not contain no derivative
is obtained:

I2(P ) = y(t)− 2 y(t− τ) + y(t− 2τ)

+

∫ t

t−τ
(y(τ1)

3 − y(τ1 − τ)3)dτ1

+(−ε y0 + ε+ y0 − 1)

∫ t

t−τ

∫ τ1

τ1−τ
u1(τ2)dτ2dτ1

+(d ε− d)
∫ t

t−τ

∫ τ1

τ1−τ
v1(τ2)dτ2dτ1

−ε
(
−
∫ t

t−τ

∫ τ1

τ1−τ
y(τ2)

3dτ2dτ1

+

∫ t

t−τ
(y(τ1)− y(τ1 − τ))dτ1

)
+(−a ε+ d)

∫ t

t−τ

∫ τ1

τ1−τ
y(τ2)

2dτ2dτ1

−a
∫ t

t−τ
(y(τ1)

2 − y(τ1 − τ)2)dτ1

+b ε

∫ t

t−τ

∫ τ1

τ1−τ
y(τ2)dτ2dτ1 − (I ε+ b cy ε

−d+ ε)τ2.

Evaluating this ID-IO polynomial at each tk, k = 1, . . . , N
provides a linear system of the form AΘ̃ = b where
Θ̃ = (−(−ε y0 + ε + y0 − 1),−(d ε − d), ε,−(−a ε +
d), a,−b ε, I ε+ b cy ε− d+ ε) and

bk = zk − 2 zk−τ + zk−2τ + Iest1 (y(.)3 − y(.− τ)3),
Ak =

(
Iest2 (u1), Iest2 (v1),−Iest2 (y3)

+Iest1 (y(.)− y(.− τ)), Iest2 (y2),
Iest1 (y(.)2 − y(.− τ)2), Iest2 (y), τ2

)
,

Ak and bk represent the kth line of A and b respectively
(k from 1 to 7). System AΘ̃ = b is solved using the QR
factorization that does not necessitate an initial guess of the
unknown parameters.

C. Parameter estimation

The trapezoidal formulas are used to estimate the previous
integrals. Let (tk)k=1,...,N the discretization points of the
time interval [0, T ], h = T/(N − 1). Then, for a simple
integral, one gets:∫ T

0

f(s)ds = h

(
1

2
f(t1) +

1

2
f(tN ) +

N−1∑
i=2

f(ti)

)

and for a double integral∫ b

a

∫ φ2(t)

φ1(t)

f(s)dsdt = h

(
1

2

∫ φ2(a)

φ1(a)

f(s)ds

+
1

2

∫ φ2(b)

φ1(b)

f(s)ds+

N−1∑
i=2

∫ φ2(ti)

φ1(ti)

f(s)ds

) (7)

For the simulations, the following values are taken:
a = 3, b = 4, d = 5, I = 3.25A, ε = 0.12,
(x1(0, θ), x2(0, θ), x3(0, θ)) = (0.2; 0.7; 4). The time inter-
val is [0, 100] with a step size h = 0.01s. The integrals
are evaluated in using 29 points. This number gave the
best results after several numerical tests. The outputs are
perturbed by an additive white centered Gaussian noise
with a standard deviation σ given by the three successive
values: 0.0001, 0.0005, 0.001. For each of this value, the
estimate of â, b̂, d̂, ε̂ are given in Table 1. Table 2 provides
first, the relative errors between the exact and the estimated
parameters, that is between θ = (ε, a, b, c) and θ̂ = (ε̂, â, b̂, ĉ)
then, the relative errors between the measured output and the
simulated output obtained with θ̂.

σ ε̂ â b̂ d̂
0.0001 0.1204 3.0013 3.9712 4.9757
0.0005 0.1390 2.9371 3.9790 5.0537
0.001 0.15437 2.8076 4.4480 5.1488

Table 1: Parameter values obtained with the method presented at
Section II.

σ Relative errors Relative errors
on the parameters on the outputs

0.0001 0.005 0.0161
0.0005 0.012 0.1949
0.001 0.072 0.4923

Table 2: Relative errors between θ and θ̂ (that is
‖ θ̂ − θ ‖2 / ‖ θ ‖2) obtained with the method presented at

Section II.

The standard deviation of the Gaussian noise is given by
a factor of the model output. Model outputs obtained with
the different estimated parameter values given in Table 1 are
represented at Figure 5.

For the three deviations, the relative error on the estimated
parameters is good contrary to the relative error on the
outputs. For the two standard deviations 0.0005 and 0.001,
the behavior of the system with the approximated value ε̂
does not correspond to the one with the initial value ε (for
the first one, a longer time interval is required). Indeed, while
initial system presents a periodic behavior, the simulated
outputs obtained with ε̂ tend to a stable equilibrium point.

Remark 2: The use of the local Levenberg-Marquard al-
gorithm implemented in scilab did not permit to obtain a
value of ε in the accepted behavioral interval in the case
of σ = 0.001. Indeed, we obtain the approximated value
ε̌ = 0.128 and ε̌ > εc > ε.

In order to calculate the probability that the approximated
value gives the correct behavior of the system, the algorithm
given at Section II-C is applied. The results are gathered in
Figure 6. For example, for ε = 0.10, 100% of estimates are
in the accepted behavioral interval when σ ≤ 0.0002. If



Fig. 5. Outputs of the model obtained with the parameter values given
at Table 1. The black solid line represents the measured output. The light
blue dash line, dark blue line and red dash line represent respectively the
outputs obtained with σ = 0.0001, σ = 0.005 and σ = 0.001.

Fig. 6. Percentage of estimated values ε out of the accepted behavioral
interval. In blue points, 0% of estimated values are out of the accepted
behavioral interval. In blue plus, between 0 (excluded) and 5 percents of
estimated values are not in the accepted behavioral interval. In blue cross,
between 5 and 10 percents of estimated values are not in the accepted
behavioral interval. In red asterisk, between 10 and 30 percents of estimated
values are not in the accepted behavioral interval. In red circle, between
30 and 50 percents of estimated values are not in the accepted behavioral
interval. Finally, in red square, more than 50% are not in the accepted
behavioral interval.

σ ∈ [0.0003; 0.0004[, less than 5% of estimated parameters
are not accepted behavioral values. Then, the percentage
of accepted behavioral values decreases until σ = 0.001
for which more that 50% of estimated parameters are not
accepted behavioral values. For a value ε equal to 0.12, as
soon as there is some noise, more than 30% of estimated
values are not in the accepted behavioral interval.

IV. CONCLUSION

The numerical method proposes in this paper permits to
obtain a very good first initial guess without any knowledge
of the parameter values. However, even if the relative error
on the parameters is small, the relative error between the

measured outputs and the simulated ones can be important
due to a change of the output behavior as seen as for the
Hindmarsh Rose model. Indeed, it appears that the effect
of the standard deviation influences the expected behavior.
More generally, it appears that the consideration of the noise
is essential for some particular parametric models since a
little error on the parameter values can lead to a completely
different behavior of the model. Future works concern the
study of i) a similar analysis using other forms of noise,
ii) the theoretical evaluations of upper bounds of bias and
variance of parameter estimates with respect to intensity of
the noise.
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