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Abstract Epibenthic foraminifer δ13C measurements are valuable for reconstructing past bottom water
dissolved inorganic carbon δ13C (δ13CDIC), which are used to infer global ocean circulation patterns.
Epibenthic δ13C, however, may also reflect the influence of 13C-depleted phytodetritus, microhabitat
changes, and/or variations in carbonate ion concentrations. Here we compare the δ13C of two benthic
foraminifer species, Cibicides kullenbergi and Cibicides wuellerstorfi, and their morphotypes, in three
sub-Antarctic Atlantic sediment cores over several glacial-interglacial transitions. These species are
commonly assumed to be epibenthic, living above or directly below the sediment-water interface. While this
might be consistent with the small δ13C offset that we observe between these species during late Pleistocene
interglacial periods (Δδ13C=−0.19±0.31‰, N=63), it is more difficult to reconcile with the significant δ13C
offset that is found between these species during glacial periods (Δδ13C=−0.76±0.44‰, N=44). We test
possible scenarios by analyzing Uvigerina spp. δ13C and benthic foraminifer abundances: (1) C. kullenbergi
δ13C is biased to light values either due to microhabitat shifts or phytodetritus effects and (2) C. wuellerstorfi
δ13C is biased to heavy values, relative to long-term average conditions, for instance by recording the
sporadic occurrence of less depleted deepwater δ13CDIC. Neither of these scenarios can be ruled out
unequivocally. However, our findings emphasize that supposedly epibenthic foraminifer δ13C in the
sub-Antarctic Atlantic may reflect several factors rather than being solely a function of bottom water δ13CDIC.
This could have a direct bearing on the interpretation of extremely light South Atlantic δ13C values at the Last
Glacial Maximum.

1. Introduction

Most species of the benthic foraminifer genera Cibicides and Cibicidoides are generally believed to dwell in
an epibenthic habitat [Lutze and Thiel, 1989; Jorissen et al., 1995]. The term “epibenthic” denotes a habitat
directly above the sediment (sometimes referred to as “real epibenthic”) and within the sediment near
the sediment-water interface [Jorissen et al., 1995]. Despite ambiguities regarding the exact average
living depth that is represented by an epibenthic habitat, the term is useful to make a distinction to
(infaunal/endobenthic) species living within the sediment that may have a marked subsurface abundance
maximum [Jorissen et al., 1995]. Epibenthic foraminifera are often assumed to record the δ13C of dissolved
inorganic carbon (DIC) of the ambient (i.e., bottom) water in a roughly one-to-one relationship [Woodruff
et al., 1980; Belanger et al., 1981; Graham et al., 1981; Duplessy et al., 1984; Zahn et al., 1986]. This assumption
forms the basis for spatiotemporal reconstructions of DIC δ13C (δ13CDIC) of bottom waters that are used to
infer past global ocean circulation [e.g., Duplessy et al., 1988; Sarnthein et al., 1994; Ravelo and Andreasen,
2000; Bickert and Mackensen, 2003; Curry and Oppo, 2005; Gebhardt et al., 2008; Waelbroeck et al., 2011].

Past-ocean δ13CDIC reconstructions have shown much lower benthic δ13C in the deep sub-Antarctic Atlantic
than in the deep Pacific Ocean during the last glacial period (Figure 1) [Curry et al., 1988; Charles et al., 1996;
Mackensen et al., 2001; Ninnemann and Charles, 2002; Hodell et al., 2003a]. The modern ocean, however, is
generally characterized by a progressive decrease of δ13CDIC and an increase of deepwater DIC concentra-
tions from the North Atlantic toward the North Pacific related to the steady accumulation of respired organic
carbon along the flow path of deep water [Kroopnick, 1985]. The very negative benthic δ13C values in the
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Figure 1. Deglacial benthic δ13C records: (a) Cibicides/Cibicidoides δ13C records (circles: C. kullenbergi; triangles: C. wuellerstorfi; diamonds: mixed Cibicides/
Cibicidoides samples) from the North Atlantic (MD99‐2334 [Skinner et al., 2007] and GeoB9526‐5 [Zarriess and Mackensen, 2011]), the Indian Ocean (SK129‐CR2
[Piotrowski et al., 2009]), the North Pacific (W8709A‐13PC [Lund and Mix, 1998] and MD02‐2489 [Gebhardt et al., 2008]), and the sub‐Antarctic Atlantic (TN057‐21
[Ninnemann et al., 1999], ODP site 1090 [Hodell et al., 2003a] (symbols only), MD07‐3076Q [Waelbroeck et al., 2011], and MD02‐2588 [Ziegler et al., 2013]). The
numbers in the parentheses indicate the water depth at the core sites. The solid lines represent the 1000 year running averages. (b) Locations of sediment cores
(Table S3 in the supporting information). The grey bars on the top indicate the Last Glacial Maximum (LGM), the deglaciation, and the Holocene periods. The benthic
δ13C records are shown on their previously published (14C‐based) age scales, except for TN057‐21 [Barker and Diz, 2014] and MD99‐2334 (transferred to the GICC05
chronology [Svensson et al., 2008]).
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deep South Atlantic during the Last Glacial Maximum (LGM) may thus imply much higher respired carbon
levels [Kroopnick, 1985], if the processes governing seawater δ13CDIC remained the same over glacial-intergla-
cial cycles. This observation is important because it would imply different glacial ocean circulation patterns
and/or changes in ocean carbon sequestration [Curry et al., 1988; Michel et al., 1995; Charles et al., 1996;
Ninnemann et al., 1999] that may be associated with glacial atmospheric CO2 minima [e.g., Toggweiler
et al., 2006]. However, the interpretation of very high respired carbon levels in the deep Southern Ocean
has proven difficult to reconcile with nutrient proxy data such as benthic Cd/Ca ratios, which show little or
no change in nutrient concentrations compared to Holocene levels [Boyle, 1992; Martínez-Méndez et al.,
2009]. Although benthic Cd/Ca ratios may also be affected by additional processes [e.g., McCorkle et al.,
1995], the apparent discrepancy between benthic Cd/Ca and carbon isotope ratios in the deep Southern
Ocean may suggest that the mechanisms influencing deep South Atlantic δ13CDIC and/or benthic δ

13C have
changed over glacial-interglacial time scales [e.g., Martínez-Méndez et al., 2009; Mackensen, 2012]. However,
the causes of low glacial South Atlantic benthic δ13C values remain not fully understood.

Other ocean circulation proxies have been used to shed light on this conundrum and have highlighted the
complexity of benthic δ13C as a paleoceanographic proxy that incorporates the effects of ocean transport
rates, biological export productivity, and air-sea gas exchange [e.g., Charles and Fairbanks, 1990; Lynch-
Stieglitz et al., 1995]. For instance, despite general agreement of millennial-scale variations in benthic δ13C
and the water mass provenance indicator εNd, measured in sediment core TN057-21 from the Cape Basin,
slight deviations between these proxies have been attributed to thermodynamic and kinetic fractionation
effects on δ13C during air-sea exchange of CO2 [Piotrowski et al., 2008]. These processes would have changed
the preformed δ13C signature of the water mass, producing changes in benthic δ13C unrelated to respired
carbon accumulation [Charles et al., 1993; Lynch-Stieglitz et al., 1995; Mackensen et al., 2001]. In addition,
Mackensen et al. [1993] demonstrated negative deviations of epibenthic δ13C from bottom water δ13CDIC in
environments with strong seasonal phytodetrital organic carbon input as the result of the incorporation of
13C-depleted CO2 into foraminiferal carbonates. It has further been suggested that benthic δ13C does not
only reflect changes in δ13CDIC of bottom waters but also variations in carbonate ion concentrations [Spero
et al., 1997; Mackensen and Licari, 2004]. Benthic foraminiferal δ13C may also be biased if epibenthic forami-
nifera migrate from an elevated habitat above the sediment into the sediment and adopt a 13C-depleted
infaunal habitat [Corliss, 1985; McCorkle et al., 1990; Rathburn et al., 1996; Tachikawa and Elderfield, 2002;
Hodell et al., 2003a].

Here we present δ13C and δ18O records obtained from Cibicides kullenbergi and Cibicides wuellerstorfi during
past glacial-interglacial transitions from sub-Antarctic Atlantic sediment core MD07-3076Q (44°9.19′S, 14°
13.70′W; 3777m water depth) and the long piston core MD07-3077 retrieved at the same site (44°9.20′S,
14°13.69′W; 3776m water depth), as well as core TN057-6GC (42°52.7′S, 8°57.4′E; 3750m water depth). The
core sites are currently bathed in Lower Circumpolar Deep Water, which is a transition zone between
northern and southern sourced water masses. The goal of this study is to assess the consistency of stable
isotope data for epibenthic foraminifer species and to test possible overprints. In our samples, we identify,
analyze, and compare the records of distinct morphotypes of each of the species, and compare these with
the δ13C and δ18O signature of Uvigerina spp., which we consider to consistently monitor δ13CDIC variations
in an infaunal habitat. We discuss the general applicability of C. kullenbergi, C. wuellerstorfi, and Cibicides/
Cibicidoides spp. δ13C analyses for ocean circulation reconstructions, in particular in the Atlantic sector of
the Southern Ocean.

2. Modern Habitats and Morphologies

A variety of authors use different nomenclatures when referring to benthic species of the Cibicides and
Cibicidoides genera. Although Cibicides and Cibicidoides species have been traditionally classified on the basis
of their test convexity (planoconvex versus biconvex), along with wall structure and/or apertural shape
[Mead, 1985; Loeblich and Tappan, 1988; Sen Gupta, 1989; Gupta, 1994], phylogenetic support for such
placements is lacking [Schweizer et al., 2009]. Test shape is also believed to be the expression of intraspecies
ecophenotypic variations [Gupta, 1994]. We follow this notion and group both species into the single genus
Cibicides de Montfort 1808 [de Montfort, 1808], where they were first described [Sen Gupta, 1989; Schweizer,
2006]. However, we note that Cibicidoides is also a commonly used genus denomination (see Appendix A
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for taxonomic details). Cibicides kullenbergi Parker is generally considered a synonym for Cibicidoides mundu-
lus (Brady, Parker, and Jones) [Van Morkhoven et al., 1986; Holbourn et al., 2013].

Cibicides wuellerstorfi and C. kullenbergi may present different morphological varieties (“morphotypes”) [e.g.,
Van Morkhoven et al., 1986; Hayward et al., 2010; Rae et al., 2011], which is a common feature of benthic for-
aminifer species (Figure 2). The subtle differences among species and morphotypes, and the occurrence of
anomalous features, challenge their identification, with specimens often presenting morphological charac-
teristics that are “intermediate” between two species [Van Morkhoven et al., 1986]. Unequivocal identification
of different species from the Cibicides and Cibicidoides groups is thus difficult and, in part, subjective. We
summarize the most important morphological features of C. wuellerstorfi and C. kullenbergi and of the

Figure 2. (left) Umbilical, (middle) lateral, and (right) spiral view of type specimens of (a) C. kullenbergi sensu stricto; (b) C.
kullenbergi sensu lato; (c) C. wuellerstorfi sensu lato, referred to as C. cf. wuellerstorfi in this study; and (d) C. wuellerstorfi
sensu stricto, photographed with the digital microscope ShuttlePix by Nikon®. These strongly resemble type specimens of C.
wuellerstorfi and C. kullenbergi (called C. mundulus) and their morphotypes shown in Rae et al. [2011].
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morphotypes we have identified in our sub-Antarctic Atlantic sediment samples and outline their main
habitats (although these are not exclusive to the individual benthic foraminifer species).

2.1. Cibicides wuellerstorfi (Schwager), 1866

The typical features of the morphology of C. wuellerstorfi are shown in Figure 2 and have been described in
Loeblich and Tappan [1988]. Its most important features include a low trochospiral and planoconvex test, 8 to
12 chambers visible in the final whorl that curve back at the periphery, strongly arched sutures, and an
interiomarginal aperture (see also Figure S1 in the supporting information).

We have identified a sensu latomorphotype of C. wuellerstorfi commonly found in Southern Ocean sediments
(hereafter referred to as C. cf. wuellerstorfi), shown in Figure 2c. The test of C. cf. wuellerstorfi is subcircular and
planoconvex with a flat spiral side and convex umbilical side. The last whorl shows 7 to 9 chambers, which are
generally wider and slightly more inflated than those of C. wuellerstorfi. The intercameral sutures are curved
and bending toward the periphery, although not as strongly as in C. wuellerstorfi, and are slightly depressed.
The shell has a dull reflectance (that may be an effect of preservation) and little perforation on the umbilical
and spiral sides but tends to have a coarser perforation on the spiral side. The aperture may extend on the
spiral side along the base of the final chambers. The morphology of C. cf. wuellerstorfi resembles very closely
that of one holotype figure of Anomalina wuellerstorfi Schwager, 1866 in Ellis and Messina [1940].

Cibicides wuellerstorfi can live attached to benthic animals, plants, rocks, and hard substrates and is a “suspen-
sion feeder” [Lutze and Thiel, 1989]. This “real” epibenthic habitat makes C. wuellerstorfi a faithful recorder of
bottom water δ13CDIC [Belanger et al., 1981; Graham et al., 1981; Duplessy et al., 1984; Zahn et al., 1986; Lutze
and Thiel, 1989; Mackensen and Licari, 2004]. However, live (Rose Bengal stained) C. wuellerstorfi have also
been found within the topmost centimeters of the sediment, suggesting that its habitat may not be restricted
to an above-seafloor habitat, but may also be within the sediment [Corliss, 1985; Corliss and Emerson, 1990;
Rathburn and Corliss, 1994; Jorissen et al., 1998; Wollenburg and Mackensen, 1998b; Fontanier et al., 2002].
This species is often associated with strong bottom water currents [Linke and Lutze, 1993; Mackensen et al.,
1995]. It prefers a low organic carbon flux to the seafloor but withstands seasonally pulsed phytodetrital
(labile) food supply [Mackensen et al., 1993, 2001; Jorissen et al., 1998]. As such, it is considered an indicator
of oligotrophic conditions [Wollenburg and Mackensen, 1998a, 1998b]. Cibicides wuellerstorfi does not gener-
ally withstand high and sustained annual fluxes of organic carbon or perennial oxygen depletion in bottom
waters [Mackensen et al., 1995]. Although C. wuellerstorfi specimens can be found in association with the (epi-
sodic) arrival of young, well-oxygenated water masses, as observed in the South Atlantic [Mackensen et al.,
1995; Schmiedl and Mackensen, 1997], they have also been found in oxygen-poor seep environments [e.g.,
Rathburn et al., 2000; Burkett et al., 2015].

2.2. Cibicides kullenbergi Parker, 1953

The sensu stricto morphology of C. kullenbergi is shown in Figure 2a and has been described by Loeblich
and Tappan [1988]. Important characteristics are a trochospiral and biconvex test (2.5 to 3 whorls are
generally visible), 10 to 11 chambers in the final whorl, arched sutures on the spiral side, almost straight
and radial sutures on the umbilical side, and a low interiomarginal aperture (see also Figure S1, in the
supporting information).

In most of our sub-Antarctic Atlantic sediment samples, the morphology of C. kullenbergi deviates from the
sensu stricto morphotype. This sensu lato morphotype of C. kullenbergi appears mostly convex on the
umbilical side but tends to be rather flat on the spiral side and has a more subcircular test compared to
C. kullenbergi sensu stricto (Figure 2). The chamber length-to-width ratio is also slightly greater in compar-
ison to C. kullenbergi sensu stricto (Figure 2b). The spiral side of C. kullenbergi sensu lato is coarsely
perforated, whereas perforation on the umbilical side is sparse. Furthermore, the sutures of C. kullenbergi
sensu lato may be slightly depressed and marginally arched toward the periphery both on the spiral and
umbilical sides (Figure 2b).

Cibicides kullenbergi has been suggested to dwell at the sediment-water interface and has been considered a
“mud dweller” [Corliss and Emerson, 1990; Schweizer, 2006]. Live (stained) specimens are generally found in
the first centimeter of the sediment [Rathburn and Corliss, 1994; Jorissen et al., 1998] and have also been
extensively used to reconstruct bottom water δ13CDIC [e.g., Duplessy et al., 1988; Charles et al., 1996;
Gebhardt et al., 2008]. In contrast to C. wuellerstorfi, C. kullenbergi is adapted to various modes of organic
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carbon food supply [Lutze and Coulbourn, 1984; Jorissen et al., 1998; Eberwein and Mackensen, 2006]. Although
it prefers oligotrophic conditions, similar to C. wuellerstorfi [Fariduddin and Loubere, 1997], it may withstand a
much more continuous organic carbon supply to the seafloor [Eberwein and Mackensen, 2006].

3. Methods
3.1. Stable Isotope Measurements

Stable isotope analyses in sediment cores MD07-3076Q and MD07-3077 have been performed on 1 to 4
specimens of C. kullenbergi (212–500µm), C. wuellerstorfi (150–500µm), and C. cf. wuellerstorfi (150–500µm)
as well as of Uvigerina spp. (mostly U. peregrina; 212–350µm) on Finnigan Δ+ and Elementar Isoprime mass
spectrometers at the Laboratoire des Sciences du Climat et de lˈEnvironnement (LSCE) in Gif-sur-Yvette,

Figure 3. Mean benthic foraminifer δ18O and δ13C during the last deglaciation in sediment core (left) MD07-3076Q, as well as (middle) marine isotope stage (MIS)
6–5 and (right) MIS 12–11 in sediment core MD07-3077. (a) The δ13C of Uvigerina spp. (green), C. wuellerstorfi sensu stricto (orange), C. cf. wuellerstorfi (i.e., C. wuel-
lerstorfi sensu lato; red), and C. kullenbergi sensu lato (grey); (b) δ13C gradient between C. kullenbergi and C. wuellerstorfi (s.l.) (orange), as well as betweenUvigerina spp.
and C. kullenbergi (green); (c) benthic δ18O as in Figure 3a, shownwith the global benthic δ18O stack (and its standard error) of Lisiecki and Raymo [2005] for reference
(grey); and (d) benthic δ18O gradient as in Figure 3b; C. (cf.) wuellerstorfi and C. kullenbergi δ18O data are adjusted by 0.64‰ [Shackleton and Opdyke, 1973; Duplessy
et al., 1984], the stippled line in Figure 3a indicates the present-day bottomwater δ13CDIC at the core site (~0.36‰ VPDB) afterMackensen [2012], and the dotted lines
and envelopes in Figures 3b and 3d show the mean interglacial and glacial values and their 1σ errors, respectively (Table 1).
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France. Small size fractions (<212µm)
were analyzed when benthic foramini-
fera (in particular, C. wuellerstorfi and
C. cf. wuellerstorfi) were absent in the
212–500µm fraction. Stable isotope ana-
lyses of C. kullenbergi in MD07-3076Q
andMD07-3077weremade on the sensu
lato morphotype (Figure 2b) because of
its predominant occurrence in these
cores. Benthic foraminifer stable iso-
topes in sediment core TN057-6GC
(same size fractions as above) have been
measured on ThermoFisher MAT253
mass spectrometer with an automated
Kiel Device at the Godwin Laboratory
for Palaeoclimate Research at the
University of Cambridge (UK). Both
morphotypes of C. kullenbergi were
identified in the 212–500µm size frac-
tion and were measured separately.

In all cores, stable isotope analyses
have been performed separately on C.
wuellerstorfi and C. cf. wuellerstorfi
(Figures 3–5). Paired stable isotope ana-
lyses on C. wuellerstorfi and C. cf.wueller-
storfi could not be performed, as they
hardly coexist in exactly the same depth
levels in our sediment cores. Cibicides cf.
wuellerstorfi seems to be more common
during glacial periods, whereas C. wuel-
lerstorfi is abundant during interglacials.
Although this needs to be verified by
genetic characterization [e.g., Schweizer
et al., 2009], we treat C. wuellerstorfi
and C. cf. wuellerstorfi as the same
species for our purposes, hereafter
abbreviated as C. wuellerstorfi (in a sensu
lato; s.l.), owing to their close morpholo-
gies (section 2.1.) and the generally
lower abundance of these foraminifera
in sub-Antarctic Atlantic sediments.
However, whether these two benthic
foraminifera represent different species
or different morphotypes does not
matter for the conclusion of this study,
because in practice they can be (and
often are) considered as equivalents of
the sensu stricto form.

Prior to stable isotope analyses, foraminifera were cleaned to remove organic matter and extraneous
carbonates that are adsorbed or attached to the foraminiferal shells. Foraminifer samples from MD07-
3076Q and MD07-3077 were rinsed with methanol, ultrasonicated for ~10s, dried at room temperature,
and finally roasted under vacuum at ~380°C for 45min. Foraminifer samples from TN057-6GC were crushed,
soaked in ~15% hydrogen peroxide for 30min at room temperature, rinsed in acetone, ultrasonicated for a

Figure 4. Benthic foraminifer δ18O and δ13C during the last deglaciation
in sediment core TN057‐6GC (symbols and lines as in Figure 3); encircled
data points show the measurements on C. kullenbergi sensu stricto (see
discussion in section 2.2), and stippled line in Figure 4a indicates the
present‐day bottom water δ13CDIC at the core site (~0.47‰ VPDB) after
Mackensen [2012].

Paleoceanography 10.1002/2016PA003029

GOTTSCHALK ET AL. EPIBENTHIC STABLE CARBON ISOTOPE OFFSETS 1589



few seconds, and dried in an oven at
50°C. All foraminifer samples in each
individual core were pretreated equally.

The mean external reproducibility of
carbonate standards of LSCE Finnigan
Δ+ and Elementar Isoprime mass
spectrometers (Godwin Laboratory
ThermoFisher MAT253 mass spectro-
meter) is σ=0.05‰ (0.08‰) for δ18O
and σ=0.03‰ (0.06‰) for δ13C. The
results are reported with reference to
the international Vienna Peedee
Belemnite (VPDB) standard, defined
with respect to the National Bureau of
Standards (NBS)-19 calcite standard
(δ18O=−2.20‰ and δ13C=+1.95‰)
[Coplen, 1988]. Stable isotope analyses
of the NBS-19 calcite standard and of
an internal carbonate standard for the
purpose of an interlaboratory compari-
son between Gif and Cambridge have
indicated good reproducibility (Gif
δ18O: −5.50±0.05‰, N=40; Cambridge
δ18O: −5.52±0.07‰, N=20; Gif δ13C:
1.45±0.03‰, N=40; Cambridge δ13C:
1.44±0.02‰, N=20) and thus support
consistency of stable isotope measure-
ments between the laboratories.

Replicate measurements indicate an
average intraspecies δ18O variability of
0.07±0.05‰ (N=87) for C. kullenbergi
and 0.09±0.08‰ (N=21) for C. wuel-

lerstorfi and an intraspecies δ13C variability of 0.15±0.14‰ (N=87) for C. kullenbergi and 0.09±0.08‰
(N=21) for C. wuellerstorfi. Replicated stable isotope values are reported as mean values in our study.

Interspecies δ18O and δ13C offsets were estimated for interglacial periods (Holocene: last 10ka before present
(B.P.), marine isotope stage (MIS) 11: 419–395ka B.P.) and for glacial periods (LGM: 25–18ka B.P., MIS 6:
149–132ka B.P., MIS 12: 448–425ka B.P.; Figures 3 and 4 and Table 1). Interspecies δ18O and δ13C offsets
between C. kullenbergi and C. wuellerstorfi (s.l.) (Δδ18OCk-Cw and Δδ13CCk-Cw, respectively) and between
Uvigerina spp. and C. kullenbergi (Δδ18OUvi-Ck and Δδ13CUvi-Ck, respectively) were calculated based on paired
measurements from the same sediment sample and in sediment core MD07-3076Q also from consecutive
sediment samples within 2cm (or <400years) of each other. The benthic interspecies δ18OCk-Cw difference
obtained from adjacent sediment samples fromwithin 2cm inMD07-3076Q is −0.01±0.13‰ (N=11) on aver-
age, which is statistically indistinguishable from the average Δδ18OCk-Cw value of 0.03±0.12‰ (N=19)
obtained from the same sediment sample. We argue that this correspondence justifies the calculation of
Δδ13CCk-Cw from adjacent sediment samples within 2cm spacing that was necessary because of low benthic
foraminifer abundances in MD07-3076Q.

3.2. Benthic Foraminifer Abundances in MD07-3076Q

To quantify the abundance of C. wuellerstorfi, C. cf. wuellerstorfi, and C. kullenbergi during the last deglaciation
in sediment core MD07-3076Q, we determined the number of specimens per gram of dry bulk sediment in
discrete 8cm3 volume samples obtained from 1cm thick sediment slices. The benthic foraminifer accumula-
tion rate (BFAR) was calculated as BFAR=#foraminifera×LSR×ρdry, where #foraminifera is the number of

Figure 5. Benthic foraminifer accumulation rates during Termination I in
core MD07‐3076Q. (a) Accumulation rate of C. kullenbergi in grey, C. cf.
wuellerstorfi in red, and C. wuellerstorfi in orange (the grey shaded area
indicates the detection limit of the analyses, i.e., one foraminifer per gram
dry bulk sediment times the linear sedimentation rate times the dry bulk
sediment density of the 8cm3 samples). (b) The δ13C of C. wuellerstorfi
(orange), C. cf. wuellerstorfi (red), and C. kullenbergi (grey) with the global
benthic δ18O stack (and its standard error) of Lisiecki and Raymo [2005] for
reference in light grey.

Paleoceanography 10.1002/2016PA003029

GOTTSCHALK ET AL. EPIBENTHIC STABLE CARBON ISOTOPE OFFSETS 1590



benthic foraminifera per gram of dry bulk sediment, LSR is the linear sedimentation rate in cmka−1, and ρdry is
the dry bulk sediment density in gcm−3 [Herguera and Berger, 1991]. The ρdry was calculated from the dry
sediment weight of the discrete 8cm3 samples.

3.3. Core Chronologies

The age model of sediment core MD07-3076Q is based on calibrated radiocarbon ages corrected for surface
ocean reservoir age variations [Skinner et al., 2010]. Our deglacial age model applies a linear interpolation
between the radiocarbon-derived age-depth tie points [Gottschalk et al., 2015] to be consistent with the
age model approach used for core MD07-3077 [Vázquez Riveiros et al., 2010, 2013; this study]. However,
the difference between the age models for the last 25ka B.P. using a Monte Carlo-based approach [Skinner
et al., 2010] and a piecewise linear interpolation [Gottschalk et al., 2015] is small (2±38years).

The chronology of sediment core MD07-3077 during MIS 12–11 is based on the stratigraphic alignment of
abundance variations of the cold-water planktonic foraminifer Neogloboquadrina pachyderma (sinistral) with
Antarctic temperature variations [Vázquez Riveiros et al., 2010, 2013] approximated by the δD record of
the Antarctic Dome C ice core (European Project for Ice Coring in Antarctica) [Jouzel et al., 2007] on the newest
Antarctic Ice Core Chronology (AICC) 2012 [Bazin et al., 2013]. Six additional age-depthmarkers were obtained
using the same approach in the MIS 6–5 interval (Figure S2 and Table S1 in the supporting information). The
final chronology is based on linear interpolation between tie points.

The age model of sediment core TN057-6GC is based on the alignment of the benthic δ18O record of
MD07-3076Q to that of TN057-6GC (Figure S3 and Table S2 in the supporting information), justified because
the cores are located in close proximity to each other. Although this provides only a rough age model, it is
sufficient for comparing benthic δ13C and δ18O values between interglacial and glacial periods, which is
the aim of our study.

4. Results
4.1. Downcore δ13C and δ18O Variabilities
4.1.1. MD07-3076Q/MD07-3077
We observe a δ13C offset between C. wuellerstorfi (s.l.) and C. kullenbergi in the sub-Antarctic Atlantic that is
consistently larger during the glacial than during the succeeding interglacial periods (Figure 3 and
Table 1). Also, the average Holocene C. wuellerstorfi (s.l.) δ13C value is higher than present-day δ13CDIC at
the core site, whereas the average C. kullenbergi δ13C value is lower (Figure 3).

In MD07-3077, C. wuellerstorfi (s.l.) δ13C and C. kullenbergi δ13C values are statistically identical during MIS 11
(Δδ13C=−0.09±0.19‰, N=52; Figure 3). The offset between C. kullenbergi δ13C and C. wuellerstorfi (s.l.) δ13C
during MIS 12 (Δδ13CCk-Cw=−0.57±0.37‰, N=10) is significantly different from the MIS 11 offset within 95%
uncertainties (p<0.05). The scarcity of C. kullenbergi during MIS 5 does not permit an estimate of
Δδ13CCk-Cw for this period. However, Δδ13CCk-Cw values during MIS 6 (−0.67±0.22‰, N=16) are similar to

Table 1. Summary of Observed δ18O and δ13C Offsets (±1σ Standard Deviation) Between C. kullenbergi (Ck), C. wuellerstorfi and C. wuellerstorfi s.l. (Cw), and
Uvigerina spp. (Uvi) During Interglacial and Glacial Periods in Sediment Cores MD07‐3076Q, MD07‐3077, and TN057‐6GC (N: Number of Observations)a

MD07‐3076Q LGM‐Hol MD07‐3077 MIS 6‐MIS 5 MD07‐3077 MIS 12‐MIS 11 TN057‐6GC LGM‐Hol Average

Δδ18OCk‐Cw (‰VPDB) Interglacial −0.04±0.09 (N=8) ‐ 0.04±0.08 (N=52) −0.26±0.48 (N=3) 0.01±0.13 (N=63)
Glacial 0.04±0.12 (N=10) 0.00±0.13 (N=16) 0.01±0.05 (N=10) 0.03±0.17 (N=8) 0.02±0.12 (N=44)

Δδ18OUvi‐Ck (‰VPDB) Interglacial −0.07±0.23 (N=19) ‐ −0.14±0.14 (N=16) −0.28±0.32 (N=5) −0.13±0.22 (N=40)
Glacial 0.07±0.14 (N=11) −0.04±0.11 (N=13) 0.05±0.08 (N=9) −0.38±0.17 (N=4) −0.02±0.18 (N=37)

Δδ13CCk‐Cw (‰VPDB) Interglacial −0.72±0.35 (N=8) ‐ −0.09±0.19 (N=52) −0.42±0.43 (N=3) −0.19±0.31 (N=63)
Glacial −1.21±0.14 (N=10) −0.67±0.22 (N=16) −0.57±0.37 (N=10) −0.61±0.18 (N=8) −0.76±0.44 (N=44)

Δδ13CUvi‐Ck (‰VPDB) Interglacial −0.55±0.26 (N=19) ‐ −0.83±0.23 (N=16) −0.53±0.39 (N=5) −0.66±0.29 (N=40)
Glacial −0.31±0.20 (N=11) −0.46±0.19 (N=13) −0.56±0.12 (N=9) −0.59±0.23 (N=4) −0.45±0.21 (N=37)

aThe interglacial and glacial periods associated with Termination (T) I refer to the Holocene (last 10ka B.P.; Hol) and the LGM (25–18ka B.P.), respectively. The
glacial interval prior to TII used for our calculations is 149–132ka B.P. (within marine isotope stage (MIS) 6), whereas the intervals 419–395ka B.P. (within MIS 11)
and 448–425 B.P. (within MIS 12) were chosen for the interglacial and glacial periods after and prior to TV (compare stippled lines in Figures 3 and 4). Averages
were calculated based on all data from our three study cores. Benthic δ18O data (excluding that of Uvigerina spp.) are adjusted by +0.64‰ [Shackleton and
Opdyke, 1973; Duplessy et al., 1984].
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those observed during MIS 12. During the Holocene, the δ13C offset between C. wuellerstorfi (s.l.) and C.
kullenbergi is Δδ13CCk-Cw=−0.72±0.35‰ (N=8) on average, which is lower than last glacial values in
MD07-3076Q (Δδ13CCk-Cw=−1.21±0.14‰, N=10), but similar to those of MIS 6 and MIS 12 in MD07-3077
(Figure 3 and Table 1). Again, a statistical t test shows that the observed LGM Δδ13CCk-Cw values are signifi-
cantly different from Holocene Δδ13CCk-Cw estimates within 95% uncertainties (p<0.05).

Despite the significant glacial δ13C offset, C. wuellerstorfi (s.l.) and C. kullenbergi δ18O values in the central
sub-Antarctic Atlantic closely agree with each other throughout the studied time interval (Table 1
and Figure 3).
4.1.2. TN057-6GC
The distinct glacial-interglacial difference between C. kullenbergi δ13C and C. wuellerstorfi (s.l.) δ13C observed
in MD07-3076Q/MD07-3077 agrees with results in Cape Basin sediment core TN057-6GC (Figure 4). Themean
δ13C offset between C. kullenbergi and C. wuellerstorfi (s.l.) in TN057-6GC is Δδ13CCk-Cw=−0.61±0.18‰ (N=8)
during the LGM and Δδ13CCk-Cw=−0.42±0.43‰ (N=3) during the Holocene. Because of the small number of
observations during these two periods, the glacial-interglacial Δδ13CCk-Cw difference observed in TN057-6GC
is not statistically significant and awaits confirmation by further analyses in other Cape Basin sediment cores.
Mean Holocene C. wuellerstorfi (s.l.) and C. kullenbergi δ13C are higher than modern δ13CDIC at the core
site (Figure 4).

The δ18O values of the different Cibicides species are in agreement, although the interspecies δ18O variability
is slightly greater in TN057-6GC than in MD07-3076Q/MD07-3077 (Table 1 and Figure 4).

4.2. Comparison of C. kullenbergi δ13C and Uvigerina spp. δ13C

In sediment cores MD07-3076Q and MD07-3077, Uvigerina spp. and C. kullenbergi δ13C differences are larger
during the interglacial periods than during the glacial periods we have investigated (Table 1 and Figure 3).
Δδ13CUvi-Ck values during MIS 11 (−0.83±0.23‰, N=16) and MIS 12 (−0.56±0.12‰, N=9) are statistically
distinguishable from each other (p<0.05). During MIS 6 (Table 1 and Figure 3), we observe Δδ13CUvi-Ck values
of −0.46±0.19‰ (N=13), consistent with values observed during MIS 12 (−0.56±0.12‰, N=9). During the
Holocene (Table 1 and Figure 3), Δδ13CUvi-Ck is −0.55±0.26‰ (N=19), which is slightly greater although
not significantly different from the LGM offset (Δδ13CUvi-Ck=−0.31±0.20‰, N=11; p<0.05).

In Cape Basin core TN057-6GC, Δδ13CUvi-Ck values during the Holocene (Δδ
13CUvi-Ck=−0.53±0.39‰, N=5) and

during the LGM (Δδ13CUvi-Ck=−0.59±0.23‰, N=4) are similar. A t test shows that these values are not signif-
icantly different from each other within the 95% confidence level.

Uvigerina spp. δ18O agrees with C. kullenbergi δ18O during interglacial (Δδ18OUvi-Ck,mean=−0.13±0.22‰,
N=40) and glacial periods (Δδ18OUvi-Ck,mean=−0.02±0.18‰, N=37; Table 1), provided that an adjustment
of 0.64‰ is applied to account for disequilibrium effects (Figures 3 and 4) [Shackleton and Opdyke, 1973;
Duplessy et al., 1984]. Both mean interglacial and glacial Δδ18OUvi-Ck values are statistically indistinguishable
from zero within 95% confidence level (p<0.05).

4.3. Benthic Foraminiferal Accumulation Rates

Benthic census counts show that C. wuellerstorfi is very rare in MD07-3076Q sediments of the last 22ka
B.P. (Figure 5). Cibicides cf. wuellerstorfi occurs very sporadically, with a mean accumulation rate of 1±1
specimencm−2ka−1, primarily when C. wuellerstorfi is absent (Figure 5). Cibicides kullenbergi is the most
abundant Cibicides species during the last deglaciation, with a mean accumulation rate of 7±5specimens
cm−2ka−1 (Figure 5).

5. Discussion
5.1. Benthic Foraminifer Interspecies δ13C Offsets

Our findings demonstrate a significant δ13C difference between C. kullenbergi and C. wuellerstorfi (s.l.) in the
sub-Antarctic Atlantic. This difference is noticeable during glacial periods (Δδ13CCk-Cw,mean=−0.76±0.44‰,
N=44), while it is smaller during interglacial periods (Δδ13CCk-Cw,mean=−0.19±0.31‰, N=63). In contrast,
δ18O values agree between the species during both glacial and interglacial periods (Δδ18OCk-Cw,mean=0.02
±0.12‰ (N=44) and Δδ18OCk-Cw,mean=0.01±0.13‰ (N=63), respectively; Table 1).
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It has been previously shown that C. kullenbergi and C. wuellerstorfi δ13C values are nearly identical in globally
distributed core tops or in down-core sediments [Graham et al., 1981; Duplessy et al., 1984], which agrees with
paired C. kullenbergi and C. wuellerstorfi (s.l.) δ13C measurements in MIS 11 in core MD07-3077 (Figure 3). In
contrast, core top studies from the upwelling region off the Moroccan margin show a significant δ13C offset
between C. kullenbergi and C. wuellerstorfi [Eberwein and Mackensen, 2006] that has also been observed in a
downcore record from the high-productivity coastal area off Chile over both glacial and interglacial intervals
of the last 1Myr (Δδ13CCk-Cw=−0.16±0.16‰, N=114; statistically significant within 95% confidence, p<0.05)
[Martínez-Méndez et al., 2013]. The glacial offsets we have found aremuch larger and similar to glacial δ13CCk-Cw
offsets in the deep, south Cape Basin [Hodell et al., 2003a] and in the Northeast Atlantic [Hodell et al., 2001].
Our comparison suggests that during interglacials, C. wuellerstorfi (s.l.) and C. kullenbergi δ13C generally reflect
bottom water δ13CDIC with uncertainties of a few tenths of per mil, while during glacial periods C. wuellerstorfi
(s.l.) δ13C and/or C. kullenbergi δ13C may be significantly shifted away from bottom water δ13CDIC.

The fact that specimens of C. kullenbergi and C. wuellerstorfi (s.l.) are neither consistently smaller nor larger
during glacial periods compared to interglacials and that species of the genera Cibicides and Cibicidoides gen-
erally lack a significant δ13C response to varying respiration rates [Corliss et al., 2002; Franco-Fraguas et al.,
2011; Theodor et al., 2016] rules out a bias of observed Δδ13CCk-Cw values due to ontogenetic isotope effects.
We therefore explore two possible scenarios that could explain our data: (1) C. kullenbergi δ13C has been
biased toward light values relative to average deepwater δ13CDIC, either due to a shift to a shallow infaunal
microhabitat or due to phytodetritus effects that do not significantly affect C. wuellerstorfi, and/or (2) C. wuel-
lerstorfi δ13C is biased to heavy values, relative to long-term average conditions, by recording the sporadic
(seasonal to centennial) occurrence of less depleted deepwater δ13CDIC at our core sites or by reflecting
δ13CDIC from a different location.

5.2. Potential Biases of C. kullenbergi δ13C from Bottom Water δ13CDIC

A significant negative offset of glacial C. kullenbergi δ13C from contemporaneous bottom water δ13CDIC may
result from a microhabitat differentiation of C. kullenbergi and C. wuellerstorfi, which has been previously
proposed [Hodell et al., 2001, 2003a], and/or from variations in the pore water δ13CDIC gradient. Even small
microhabitat changes may have a significant influence on epibenthic foraminifer δ13C, because vertical pore
water δ13CDIC gradients in marine sediments are large and vary depending on organic carbon rain rates and
bottomwater oxygen concentrations (Figure 6) [McCorkle and Emerson, 1988;McCorkle et al., 1997; Tachikawa
and Elderfield, 2002]. These gradients may reach up to −1‰cm−1, in particular near the surface [McCorkle
et al., 1985], and can be accompanied by pore water carbonate ion variations that may have an additional
(potentially counteracting) influence on benthic δ13C [Spero et al., 1997; Bemis et al., 1998]; however, a
carbonate ion-dependent carbon isotope effect on benthic foraminifera remains to be demonstrated and
quantified. Small increases in the calcite precipitation depth of C. kullenbergiwithin the sediment may explain
the observed glacial δ13CCk-Cw gradient, if the microhabitat of C. wuellerstorfi (s.l.) did not shift simultaneously
in the same direction (or by a lesser amount) and remained epibenthic.

Benthic faunal analyses off West Africa have suggested that the microhabitat of (epi)benthic foraminifera
may shift deeper into the sediment depending on the availability of food [Linke and Lutze, 1993; Licari and
Mackensen, 2005; Licari, 2006]. These studies indicate that the average living depth of benthic foraminifera,
i.e., Cibicides pachyderma and Cibicides lobatulus, correlates with the δ13C offset from bottom water δ13CDIC,
which ranges between −0.4 and 0‰ and may reach extremes of −0.8‰ owing to the effect of 13C-depleted
pore waters. It is possible that this adaptable behavior also applies to C. kullenbergi in the glacial sub-
Antarctic Atlantic.

In order to test whether C. kullenbergi δ13C reflects the δ13CDIC of an infaunal habitat rather than that of bot-
tom water, we compare C. kullenbergi δ13C with Uvigerina spp. δ13C. Most benthic foraminifera of the genus
Uvigerina, including Uvigerina peregrina, are considered a shallow infaunal species [Zahn et al., 1986;
Mackensen and Licari, 2004; Schweizer, 2006], as their highest abundance often occurs in the first two
centimeters of the sediment [Corliss and Emerson, 1990; McCorkle et al., 1990, 1997; Jorissen et al., 1998;
Fontanier et al., 2002;Mackensen and Licari, 2004]. These benthic foraminifera prefer moderate and perennial
fluxes of organic matter [Lutze and Coulbourn, 1984; Zahn et al., 1986; Rathburn and Corliss, 1994] but have
also been characterized as opportunistic species that may thrive under the supply of labile phytodetritus
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[e.g., Fontanier et al., 2002]. Owing
to their slightly deeper microhabitat,
Uvigerina spp. δ13C shows lower δ13C
values than epibenthic foraminifera
[e.g., Tachikawa and Elderfield, 2002],
and this gradient reflects changes in
the organic carbon supply to the sea-
floor [Zahn et al., 1986; McCorkle et al.,
1990]. Although the exact position of
Uvigerina spp. in the upper sediment
column throughout the intervals inves-
tigated remains unknown, we assume
here that Uvigerina spp. δ13C consis-
tently monitors δ13CDIC of an infaunal
habitat in the sub-Antarctic Atlantic
(i.e., within the upper ~2 to 3cm of the
sediment [e.g., McCorkle et al., 1997;
Jorissen et al., 1998; Fontanier et al.,
2002]) and provides a benchmark of an
Uvigerina-like, endobenthic habitat for
a comparison with C. kullenbergi δ13C.

Our data indicate that C. kullenbergi δ13C
was mostly higher than Uvigerina spp.
δ13C during the studied time intervals.
The δ13C gradient between C. kullen-
bergi and Uvigerina spp. remained con-
stant during glacial and interglacial
periods (Figures 3 and 4 and Table 1);
only during MIS 12 Δδ13CUvi-Ck was
significantly smaller than during MIS 11
(p=0.01). Although the uncertainty of
our Uvigerina spp. δ13C record owing
to possible ontogenetic size effects
within our narrow fraction of 212–350
µm may be up to 0.4‰ [Schumacher
et al., 2010; Theodor et al., 2016] and
benthic foraminifera of the genus
Uvigerina may have species-specific

δ13C offsets despite a common microhabitat [Schmiedl et al., 2004; Theodor et al., 2016], a significant glacial
Δδ13CUvi-Ck value is consistent among our core sites and over several past glacial periods (Figures 3 and 4).
We therefore conclude that if C. kullenbergi had an endobenthic habitat during glacials, it would have been
shallower than that of Uvigerina spp., limiting the possible microhabitat effect, and thus the offset from
δ13CDIC of the overlying bottom water during these time intervals. A negative bias due to 13C-depleted pore
water is supported by the observation of lower Holocene C. kullenbergi δ13C than modern δ13CDIC at the
MD07-3076Q core site (Figure 3), which may have been larger during last glacial periods, for instance as a
response to enhanced glacial organic carbon fluxes [Anderson et al., 2014; Gottschalk et al., 2016]. However,
a close match of C. kullenbergi and C. wuellerstorfi δ13C during MIS11 (−0.09±0.19, N=52) suggest that this
bias was negligible during some interglacials.

Cibicides kullenbergi δ13Cmay also significantly deviate from bottomwater δ13CDIC during glacials if it calcified
in a 13C-depleted phytodetritus layer forming at the seafloor [Mackensen et al., 1993]. This would explain
observed glacial Δδ13CCk-Cw, provided that C. wuellerstorfi (s.l.) was not affected by it (for instance owing to
having an habitat above the phytodetritus layer and/or living at a time different from C. kullenbergi within
the ~200–400year time span that one sediment sample represents). The overprint of epibenthic foraminifer

Figure 6. Potential scenarios of foraminiferal habitat shifts over glacial‐
interglacial cycles and the associated effects on their shell δ13C values
in the sub‐Antarctic Atlantic. The symbols represent the average living
depth (ALD) of the discussed benthic foraminifera (the microhabitat
distribution of infaunal species likely resembles a Gaussian distribution).
Glacial (blue) and interglacial (orange) pore water δ13CDIC gradients
that would be caused by changes in bottom water δ13CDIC due to
variations in bottom water oxygenation and changes in organic carbon
fluxes are schematized after McCorkle and Emerson [1988]. Shifts of the
calcification depth/ALD of C. kullenbergi (toward that of Uvigerina spp.)
may be one explanation of observed glacial interspecies δ13C offsets in
the deep sub‐Antarctic Atlantic. It is equally likely that significant
offsets of C. kullenbergi δ13C from bottom water δ13CDIC are caused by
glacial‐interglacial changes of the pore water δ13CDIC gradient with no
change of an infaunal habitat depth of C. kullenbergi.
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δ13C caused by the incorporation of 13C-depleted CO2 that accumulates in these phytodetritus layers is sug-
gested to be 0.4‰ on average, but negative deviations of up to 0.9‰ have also been observed [Mackensen
et al., 1993; Mackensen and Bickert, 1999]. Although the average phytodetritus effect of 0.4‰ is smaller than
the mean glacial difference between C. kullenbergi and C. wuellerstorfi (s.l.) δ13C and was primarily shown for
C. wuellerstorfi in the South Atlantic [e.g.,Mackensen et al., 1993], we cannot rule out that it was not exception-
ally strong (unprecedented) for C. kullenbergi at our core sites during past glacials, explaining deviations of up
to −1.21±0.14‰ (Table 1).

5.3. Potential Bias of C. wuellerstorfi (s.l.) δ13C from Bottom Water δ13CDIC

We now assess the possibility that glacial C. wuellerstorfi (s.l.) δ13C is positively offset from average bottom
water δ13CDIC due to an allochthonous nature of C. wuellerstorfi (s.l.) specimens or due to calcification in a
short-term 13C-enriched environment. We make use of benthic foraminifer abundance variations to discuss
these two effects.

As Figure 5 shows, C. wuellerstorfi (s.l.) is scarce in MD07-3076Q. This may be an indication that specimens
found in this core are allochthonous, being transported post mortem to our study site via bottom water
currents or nepheloid layers along the mid-ocean ridge from shallower water levels. If C. wuellerstorfi (s.l.) lives
elevated above the sediment [Lutze and Thiel, 1989], it may be particularly sensitive to these processes. This
scenario is in line with similar benthic foraminifer δ18O and higher δ13C found at the crest of the sub-Antarctic
mid-ocean ridge (~2.7km water depth) [Mackensen et al., 2001], from where we would expect allochthonous
C. wuellerstorfi (s.l.) in MD07-3076Q and MD07-3077 to originate. However, this explanation requires a very
fortuitous situation both in the central and southeast sub-Antarctic Atlantic, i.e., net volume transport by
bottom currents toward our core sites, very high current velocities, and a sufficient number of specimens with
elevated habitat to be transported downslope. Although the impact of this scenario on observed Δδ13CCk-Cw
during past glacials is therefore likely small, it may be relevant for other study sites, in particular near or at
continental slopes [e.g., Duros et al., 2012].

Abundances of benthic foraminifera in marine sediments also reflect the extent to what they are adapted to
the prevailing ecological and hydrographic conditions [Loubere and Fariduddin, 2003]. High accumulation
rates of C. kullenbergi in MD07-3076Q imply that this species may cope best with the prevailing seasonal
to multidecadal ecological conditions, e.g., higher export production rates during glacial periods, which
may have been unfavorable for C. wuellerstorfi (s.l.) at our core sites (Figure 5). The sparse occurrence of C.
wuellerstorfi and C. cf. wuellerstorfi in core MD07-3076Q (Figure 5) might therefore indicate that its δ13C
reflects only short-term (annual or seasonal) environmental conditions that deviate from average (long-term)
bottom water δ13CDIC. Such temporally constrained conditions may be related to short-term (seasonal)
changes in the amount or quality of carbon exported [Diz and Barker, 2016] and with higher bottom water
oxygen levels, for instance during the incursion of well-ventilated water masses, such as North Atlantic
Deep Water (NADW) or unmixed Antarctic Bottom Water [e.g., Mackensen and Bickert, 1999], induced by
turbulent mixing or frontal instabilities in this region [e.g., Naveira Garabato et al., 2004; Sheen et al., 2012,
2014]. The latter is only suitable to explain Δδ13CCk-Cw if the δ18O of the sporadically admixed waters was
not very different from the waters that bathed our core sites in the long-term (Figures 3 and 4), making
temporal changes in the carbon export explaining our data more likely. These effects may also explain the
deviation of Holocene C. wuellerstorfi (s.l.) δ13C from modern δ13CDIC at the MD07-3076Q core site
(Figure 3) and may have been more pronounced during glacial intervals. However, as short-term environ-
ments are difficult to reconstruct from the available sedimentary records, their impact on sub-Antarctic
Atlantic glacial Δδ13CCk-Cw values remains to be shown.

6. Implications for Paleoceanographic Reconstructions
6.1. Bottom Water δ13CDIC Reconstructions Based on Cibicidoides spp. δ13C

Many paleoceanographic reconstructions rely on a combination of different species of the Cibicidoides
and Cibicides genera (e.g., “Cibicidoides spp.”) to compensate for the scarcity of each species in marine
sediment cores (Figure 7) [e.g., Mackensen et al., 2001; Hodell et al., 2003a; Gebhardt et al., 2008; Hoffman
and Lund, 2012]. For example, Cibicidoides spp. δ13C data from the Brazil margin (~30°S) below 3.5km
water depth [Hoffman and Lund, 2012] show a mean 1σ standard deviation of replicate measurements

Paleoceanography 10.1002/2016PA003029

GOTTSCHALK ET AL. EPIBENTHIC STABLE CARBON ISOTOPE OFFSETS 1595



(KNR159-5-22GGC: 0.31±0.19‰, N=12; KNR159-5-54GGC: 0.35±0.24‰, N=11) that exceeds the intraspecies
C. kullenbergi (0.15±0.13‰, N=129) and C. wuellerstorfi δ13C variability (0.09±0.08‰, N=21) observed in
MD07-3076Q and MD07-3077 by more than a factor of 2 (Figure 7b). The upper limit of these Brazil margin
δ13C data broadly coincides with the composite C. wuellerstorfi (s.l.) δ13C record of the deep sub-Antarctic
Atlantic, whereas the lower limit broadly matches C. kullenbergi δ13C from the deep sub-Antarctic Atlantic
(Figure 7b). The large spread of Brazil margin δ13C values may be significantly influenced by mixed analyses
of “low-δ13C” C. kullenbergi and/or “high-δ13C” C. wuellerstorfi (s.l.), as well as by bioturbational sediment
mixing and variations in bottom water δ13CDIC. Marked interspecies offsets may increase the uncertainty of
Atlantic seawater δ13CDIC reconstructions based on benthic δ13C compilations that incorporate mixed-species
(Cibicides/Cibicidoides spp.) δ13C [e.g., Duplessy et al., 1988; Sarnthein et al., 1994; Curry and Oppo, 2005; Oliver
et al., 2010; Hesse et al., 2011; Peterson et al., 2014].

6.2. Bottom Water δ13CDIC Reconstructions Based on C. wuellerstorfi and C. cf. wuellerstorfi δ13C

High glacial C. wuellerstorfi (s.l.) δ13C values of a deep sub-Antarctic Atlantic composite record combining
MD07-3076Q and TN057-6GC records are broadly consistent with data from the deep Brazil Margin (not
shown) [Oppo and Horowitz, 2000; Lund et al., 2015], the central South Atlantic (not shown) [Jonkers et al.,
2015], the deep northern Cape Basin (not shown) [Bickert and Wefer, 1999; Wei et al., 2015], the deep
Iberian Margin [Shackleton et al., 2000; Skinner et al., 2007], and the Agulhas Plateau [Ziegler et al., 2013]
(Figure 7a). The similarity of the deep sub-Antarctic Atlantic C. wuellerstorfi (s.l.) δ13C and data from north
of the sub-Antarctic Front, in particular from the Iberian Margin, may support the notion that occasional
southward incursions of well-ventilated and 13C-rich water masses, such as NADW from just north of the core
sites, may influence the C. wuellerstorfi (s.l.) δ13C records, although it falls short of proving it. The assumption
that C. wuellerstorfi (s.l.) may respond to a particular (seasonal) flux or quality of carbon exported and/or to a

Figure 7. (a) Composite C. wuellerstorfi and C. cf. wuellerstorfi δ13C record obtained from TN057‐6GC (light grey) and MD07‐3076Q (dark grey) (the black line
represents the 1000year running average) in comparison to benthic δ13C from other ocean regions as in Figure 1 (only 1000year running averages are shown).
(b) Comparison of the Cibicidoides spp. δ13C record from TN057‐21 (dark red) [Ninnemann et al., 1999], C. kullenbergi δ13C from MD07‐3076Q (red) [Waelbroeck et al.,
2011], the composite C. wuellerstorfi (s.l.) δ13C record obtained from TN057‐6GC andMD07‐3076Q (black lines and grey symbols as in Figure 7a), and Cibicidoides spp.
δ13C data from the Brazil margin (light to dark blue) [Hoffman and Lund, 2012]; locations of the cores are given in Table S3 in the supporting information.
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particular oceanographic settingmay be an explanation for its relative low abundance in the sediment during
the last deglaciation and calls for caution in interpreting δ13C of very low abundant benthic foraminifer
species in general.

6.3. Bottom Water δ13CDIC Reconstructions Based on C. kullenbergi δ13C

Negative “Cibicidoides spp.” δ13C values similar to C. kullenbergi δ13C in our study cores have been observed in
last glacial sediments throughout the sub-Antarctic zone (between the sub-Antarctic and sub-Tropical Fronts;
Figure S4 in the supporting information) [e.g., Charles et al., 1996; Ninnemann et al., 1999; Mackensen et al.,
2001]. These values remain among the most negative values observed in the entire last glacial ocean [e.g.,
Hesse et al., 2011; Peterson et al., 2014]. Possible explanations for lower δ13CDIC reconstructed in the deep
sub-Antarctic Atlantic than in the North Pacific include (i) glacial changes in ocean circulation and in deep-
water formation sites [Michel et al., 1995; Ninnemann and Charles, 2002; Toggweiler et al., 2006], (ii) a strong
glacial density stratification of the ocean interior in the southern high-latitude Atlantic [Adkins et al., 2002;
Bouttes et al., 2011], (iii) significant preformed bottom water δ13C variations due to alternating modes of for-
mation of Southern Ocean deepwaters [Mackensen et al., 2001;Martínez-Méndez et al., 2009;Mackensen, 2012]
or different source regions of southern sourced deep waters along the Antarctic coast [McCave et al., 2008],
and (iv) a large interbasin redistribution of DIC from the Pacific to the Atlantic Ocean over glacial-interglacial
transitions [Schmittner et al., 2007]. However, these explanations assume a reliable representation of bottom
water δ13CDIC by Cibicidoides spp. and C. kullenbergi δ13C. Above we have discussed some hypotheses why
this one-to-one representation may be flawed—some of which have been discussed earlier [Ninnemann
and Charles, 2002]. We conclude that the magnitude and significance of a bias of C. kullenbergi δ13C and/or
C. wuellerstorfi (s.l.) δ13C from bottom water δ13CDIC cannot be unambiguously resolved based on presented
data from our study cores.

Two arguments have been previously advanced to emphasize the validity of South Atlantic C. kullenbergi (or
synonymously, C. mundulus) and Cibicides/Cibicidoides spp. δ13C as an indicator of low glacial bottom water
δ13CDIC [Ninnemann and Charles, 2002], although other influences have been acknowledged [Charles et al.,
1996]. First, low last glacial benthic δ13C values can be reproduced spatially (Figure S4 in the supporting infor-
mation) and also temporally during older glacial Pleistocene periods [e.g.,Oppo et al., 1990;Hodell et al., 2003a].
Second, the characteristic low glacial C. kullenbergi δ13C is alsomirrored in planktonic (N. pachyderma s.) δ13C in
the Cape Basin [Hodell et al., 2003a], suggesting that the planktonic record reflects bottomwater δ13CDIC that is
recorded in benthic foraminifer δ13C [Ninnemann and Charles, 2002]. We discuss these arguments below.

Most core sites with low benthic δ13C during the last glacial period are located near or within the sub-
Antarctic zone (Figure S4 in the supporting information). North of this zone, higher glacial benthic δ13C values
(>−0.6‰) are observed [e.g., Oppo et al., 1990; Bickert and Wefer, 1999; Hodell et al., 2003a; Martínez-Méndez
et al., 2009; Hoffman and Lund, 2012]. Proxy data indicate that increases in aeolian dust supply caused an
increase in organic carbon fluxes throughout the sub-Antarctic Atlantic during the LGM [e.g., Anderson
et al., 2014], and bottom water oxygen levels have declined in the southern high-latitude Atlantic during this
interval [Gottschalk et al., 2016]. If active shifts of the microhabitat or changes within the (infaunal) microha-
bitat of C. kullenbergi are ecologically motivated (for instance, as a response to increased organic carbon
fluxes or the seasonal supply of labile food sources) [e.g., Licari, 2006] and C. kullenbergi dominates the
Cibicides/Cibicidoides population, a bias of C. kullenbergi and Cibicides/Cibicidoides spp. δ13C may be possible
during glacial periods throughout the (sub-)Antarctic zone. This contention, however, remains to be tested.

Planktonic δ13C records have been used to suggest that the benthic δ13C signal in the sub-Antarctic Atlantic is
not spurious [Ninnemann and Charles, 2002; Hodell et al., 2003a], although vital effects render a direct com-
parison of planktonic δ13C and benthic δ13C difficult [Kohfeld et al., 2000; Gottschalk et al., 2015]. However,
two observations may support this suggestion: (1) benthic and planktonic δ13C values in the Cape Basin
resemble each other, reflecting the influence of bottom water δ13CDIC, and (2) the relativemagnitude of gla-
cial-interglacial changes in planktonic δ13C south of the Polar Front in the Antarctic divergence zone, where
vertical mixing of the water column is expected and deep waters may reach the surface [Mackensen et al.,
1994; Hodell et al., 2003b], is close to glacial-interglacial C. kullenbergi (or Cibicidides spp.) δ13C changes in
the sub-Antarctic [Ninnemann and Charles, 2002; this study]. However, planktonic δ13C records do not repro-
duce the low benthic δ13C values at all sites [e.g.,Michel et al., 1995; Charles et al., 1996; Gottschalk et al., 2015],
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and in MD07-3076Q, N. pachyderma (s.) δ13C closely resembles high C. wuellerstorfi (s.l.) δ13C rather than the
low C. kullenbergi δ13C record [Gottschalk et al., 2015]. This shows that a better understanding of the controls
governing sub-Antarctic Atlantic planktonic foraminifer δ13C (e.g., export production, air-sea gas exchange,
and vertical mixing) is required to reconcile the observed benthic δ13C patterns and to validate low glacial
sub-Antarctic bottom water δ13CDIC.

7. Conclusions

Paired C. kullenbergi and C. wuellerstorfi (s.l.) δ13C analyses in several sub-Antarctic Atlantic sediment cores
over three glacial-interglacial cycles show a significant δ13C difference during glacial periods of Δδ13CCk-Cw
=−0.76±0.44‰, despite a very close agreement of their δ18O values. This offset is significantly higher than
the average interglacial offset (Δδ13CCk-Cw=−0.19±0.31‰). We have ruled out ontogenetic effects as cause
of our observations and have subsequently discussed several possible scenarios: (1) C. kullenbergi δ13C is
biased toward lighter values owing to the influence of low δ13CDIC in an infaunal microhabitat or in a benthic
phytodetritus layer, while C. wuellerstorfi (s.l.) is not affected, and (2) C. wuellerstorfi (s.l.) δ13C is biased to heavy
values, by being transported from elsewhere (downslope) or by recording the sporadic occurrence of a
microenvironment with higher δ13CDIC, while C. kullenbergi is not affected. We found that neither of these
explanations can be ruled out unequivocally. However, our observations are important for glacial δ13C inter-
pretations and raise important questions on the universal consistency of benthic δ13C as indicator of long-
term average bottom water δ13CDIC.

Due to the complexity of Cibicidesmorphotypes presented here, and the inherent subjectivity of the process
of picking foraminifera, we recommend the careful documentation of selected specimens of a given species
or morphotype, when possible, for example by supplying photographs together with the respective δ13C
data or a detailed taxonomic list. The observed divergence of δ13C measured in apparently epibenthic fora-
minifera in the sub-Antarctic Atlantic underscores the need for multiproxy approaches for the reconstruction
of ocean circulation changes in the past. In order to avoid adding different biases, stable δ18O and δ13C
measurements should be performed on monospecific benthic foraminifer samples only, whenever
possible. This will allow a clearer picture of the reconstructed benthic and/or bottom water δ13C variability.

Notwithstanding the possible caveats of benthic δ13C in the cores we have studied, we suggest that benthic
δ13C of abundant Cibicides species likely remains a good proxy for bottom water δ13CDIC in the deep sub-
Antarctic Atlantic, although it may be associated with a larger uncertainty than previously assumed. It
remains to be shown which benthic foraminifer species is the most trustworthy in representing bottomwater
δ13CDIC, in particular in the sub-Antarctic Atlantic.

Appendix A

Cibicides wuellerstorfi (Schwager), 1866

• Anomalina wuellerstorfi Schwager, 1866, p. 258, pl. 7, Figures 105 and 107.
• Truncatulina wuellerstorfi (Schwager) [Brady, 1884], p. 662, pl. 93, Figure 9.
• Planulina wuellerstorfi (Schwager) [Phleger and Parker, 1951], p. 33, pl. 18, Figure 11.
• Planulina wuellerstorfi (Schwager) [Phleger et al., 1953], p. 49, pl. 11, Figures 1 and 2.
• Cibicides wuellerstorfi (Schwager) [Parker, 1958], p. 275, pl. 4, Figures 41 and 42.
• Cibicidoides wuellerstorfi (Schwager) [Parker, 1964], pp. 624–625, pl. 100, Figure 29.
• Cibicides wuellerstorfi (Schwager) [Boltovskoy, 1978], pl. 3, Figures 19–21.
• Planulina wuellerstorfi (Schwager) [Corliss, 1979], pp. 7–8, pl. 2, Figures 13–16.
• Cibicidoides wuellerstorfi (Schwager) [Mead, 1985], pl. 6, Figures 1 and 2.
• Planulina wuellerstorfi (Schwager) [Van Morkhoven et al., 1986], pp. 48, 50, pl. 14, Figures 1 and 2.
• Fontbotia wuellerstorfi (Schwager) [Loeblich and Tappan, 1988], p. 583, pl. 634, Figures 10–12; pl. 635,
Figures 1–3.

• Cibicides wuellerstorfi (Schwager) [Sen Gupta, 1989], p. 706, Figures 1–7.
• Planulina wuellerstorfi (Schwager) [Corliss, 1991], pl. 1, Figures 1, 2, and 5.
• Cibicides wuellerstorfi (Schwager) [Gupta, 1994], pl. 5, Figures 8 and 9.
• Cibicides wuellerstorfi (Schwager) [Schweizer, 2006], pl. 11a–11l.
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Cibicides kullenbergi Parker, 1953

• Cibicides kullenbergi Parker [Phleger et al., 1953], p. 49, pl. 11, Figures 7 and 8.
• Cibicides kullenbergi Parker [Pflum and Frerichs, 1976], pl. 2, Figures 6–8.
• Cibicidoides kullenbergi (Parker) [Lohmann, 1978], p. 29, pl. 2, Figures 5–7.
• Cibicidoides kullenbergi (Parker) [Corliss, 1979], p. 10, pl. 3, Figures 4–6.
• Cibicidoides cf. kullenbergi (Parker) [Mead, 1985], p. 242, pl. 6, Figures 6a and 6b.
• Cibicidoides mundulus (Brady, Parker, and Jones) [Loeblich and Tappan, 1988], p. 572, pl. 626, Figures 1–3.
• Cibicidoides kullenbergi (Parker) [Corliss, 1991], pl. 1, Figures 6, 8, and 9.
• Cibicides kullenbergi Parker [Gupta, 1994], pl. 1, Figures 6, 8, and 9.
• Cibicides kullenbergi Parker [Schweizer, 2006], pl. 4a–4m.
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