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Genetic diversity of the African malaria vector Anopheles 
gambiae

The Anopheles gambiae 1000 Genomes Consortium*

*Lists of participants and their affiliations appear at the end of the paper

Abstract

The sustainability of malaria control in Africa is threatened by the rise of insecticide resistance in 

Anopheles mosquitoes that transmit the disease1. To gain a deeper understanding of how mosquito 

populations are evolving, we sequenced the genomes of 765 specimens of Anopheles gambiae and 

Anopheles coluzzii sampled from 15 locations across Africa, identifying over 50 million single 

nucleotide polymorphisms within the accessible genome. These data revealed complex population 

structure and patterns of gene flow, with evidence of ancient expansions, recent bottlenecks, and 

local variation in effective population size. Strong signals of recent selection were observed in 

insecticide resistance genes, with multiple sweeps spreading over large geographical distances and 

between species. The design of novel tools for mosquito control using gene drive will need to take 

account of high levels of genetic diversity in natural mosquito populations.

Blood-sucking mosquitoes of the Anopheles gambiae species complex are the principal 

vectors of Plasmodium falciparum malaria in Africa. Substantial reductions in malaria 

morbidity and mortality have been achieved by the use of insecticide-based interventions2, 

but increasing levels of insecticide resistance and other adaptive changes in mosquito 

populations threaten to reverse these gains1. A better understanding of the molecular, 

ecological and evolutionary processes driving these changes is essential to maximize the 

active lifespan of existing insecticides, and to accelerate the development of new strategies 

and tools for vector control. The Anopheles gambiae 1000 Genomes Project* (Ag1000G) 

was established to provide a foundation for detailed investigation of mosquito genome 

variation and evolution. Here we report the first phase of the project which analysed 765 

wild-caught specimens of Anopheles gambiae sensu stricto and Anopheles coluzzii. These 

two species account for the majority of malaria transmission in Africa, and are 

morphologically indistinguishable and often sympatric, but are genetically distinct3,4 and 

differ in geographical range5, larval ecology6, behaviour7 and strategies for surviving the dry 

season8. The specimens were collected at 15 locations across 8 African countries, spanning a 

range of ecologies including rainforest, inland savanna and coastal biomes, and thus provide 

a broad sample in which to explore factors shaping mosquito population variation (Extended 

Data Fig. 1; Supplementary Text 1).

Specimens were sequenced using the Illumina HiSeq platform and single nucleotide 

polymorphisms (SNPs) were identified by alignment against the AgamP3 reference genome 

(Methods; Supplementary Text 2). A rigorous evaluation of data quality, including the use of 

*http://www.malariagen.net/ag1000g
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experimental genetic crosses to quantify error rates, identified genomic regions totaling 141 

Mbp (61% of the reference genome) that were accessible for analysis of population variation 

(Supplementary Text 3; Extended Data Fig. 2). We identified 52,525,957 high-quality SNPs, 

of which 21% had three or more alleles, an average of one variant allele every 2.2 bases of 

the accessible genome (Fig. 1a). Individual mosquitoes carried between 1.7 and 2.7 million 

variant alleles, with no systematic difference observed between the two species (Extended 

Data Fig. 3a). In most populations, nucleotide diversity was 1.5% on average (Extended 

Data Fig. 3b) and >3% at synonymous coding sites (Extended Data Fig. 3c), confirming 

these are among the most genetically diverse eukaryotic species9.

High levels of natural diversity have practical implications for the development of gene drive 

technologies for mosquito control10. CRISPR/Cas9 gene drives can be designed to edit a 

specific gene and confer a phenotype such as female sterility, which could suppress 

mosquito populations and thereby reduce disease transmission. However, naturally occurring 

polymorphisms within the ~21 bp Cas9 target site could prevent target recognition, and thus 

undermine gene drive efficacy in the field. We found viable Cas9 targets in 11,625 protein-

coding genes, but only 5,474 genes remained after excluding target sites with nucleotide 

variation in any of the 765 genomes sequenced here (Extended Data Fig. 3d; Supplementary 

Text 5). Resistance to gene drive could be countered by designing constructs that target 

multiple sites within the same gene, and we identified 863 genes that each contain at least 10 

non-overlapping conserved target sites, including 13 putative sterility genes10 

(Supplementary Text 5.2). However, clearly more variants remain to be discovered 

(Extended Data Fig. 3d) and extensive sampling of multiple populations will be needed to 

inform the design of gene drives that are robust to natural genetic variation.

An. gambiae and An. coluzzii have a geographical range spanning sub-Saharan Africa and 

encompassing a variety of ecological settings5. Previous studies have found evidence that 

populations are locally adapted, and that migration between populations is limited both by 

geographical distance and major ecological discontinuities, notably the Congo Basin tropical 

rainforest and the East African rift system11–14. As a starting point for analysis of population 

structure, we constructed neighbour-joining trees to explore patterns of genetic similarity 

between individuals (Fig. 1b; Supplementary Text 6.1). We observed four contrasting 

patterns of relatedness, associated with different regions of the genome. Within 

pericentromeric regions of chromosomes X, 3 and arm 2R, mosquitoes segregated into two 

highly distinct clades, largely corresponding to the two species as determined by 

conventional molecular diagnostics, consistent with previous studies finding that genome 

regions of reduced recombination are associated with stronger differentiation between 

closely-related species15. The large chromosomal inversions 2La and 2Rb were each 

associated with a distinct pattern of relatedness, as expected if recombination is reduced 

between inversion karyotypes. In most of the remaining genome, there was evidence of 

clustering by geographical region but not by species. There were also some genome regions 

where we found unusually short genetic distances between individuals from different 

populations and species, indicating the influence of recent selective sweeps and adaptive 

gene flow.
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To investigate geographical sub-divisions in more detail, we focused on euchromatic regions 

of Chromosome 3, which are free from polymorphic inversions and regions of reduced 

recombination (Supplementary Text 6). ADMIXTURE models and principal components 

analysis (PCA) supported five major ancestral populations, corresponding to: (i) An. 
gambiae from Guinea, Burkina Faso, Cameroon and Uganda; (ii) An. gambiae from Gabon; 

(iii) Kenya; (iv) Angola An. coluzzii; (v) Burkina Faso An. coluzzii and Guinea-Bissau (Fig. 

2; Extended Data Figs. 4, 5). Within each species, we found relatively high allele frequency 

differentiation across the Congo Basin rainforest, exceeding differentiation between the two 

species at a single location (Extended Data Fig. 5b). There were also more subtle 

distinctions within and between populations. For example, in Cameroon mosquitoes were 

sampled along a cline from savanna into forest, and there was some population structure 

associated with these different ecologies. However, among An. gambiae populations north of 

the Congo Basin, differentiation was extremely weak overall, despite considerable distances 

between populations, suggesting substantial gene flow.

Earlier studies concluded that purposeful movement of Anopheles mosquitoes is limited to 

short-range dispersal up to 5 km16; however, recent evidence has emerged for long-distance 

seasonal migration in An. gambiae8. To explore evidence for migration, we computed joint 

site frequency spectra for selected population pairs and fitted models of population history 

(Methods; Supplementary Text 8). For all pairs examined, models with migration provided a 

better fit than models without migration (Supplementary Table 2). The inferred rate of 

migration was high between An. gambiae savanna populations, but some migration was also 

inferred between species and across both the Congo Basin rainforest and the East African 

rift. Although these analyses do not allow us to infer the timing or direction of gene flow 

events, they suggest that mosquito migration between different parts of the continent could 

impact on the spread of insecticide resistance and dynamics of disease transmission.

A key question in mosquito evolution concerns the extent and impact of gene flow between 

species, and An. gambiae and An. coluzzii are known to undergo hybridization at a rate that 

varies over space and time17. To study this phenomenon, we analyzed 506 SNPs previously 

found to be highly differentiated between the two species18 (Extended Data Fig. 6; 

Supplementary Text 6.6). These ancestry-informative markers (AIMs) showed that a 

genomic region on chromosome arm 2L has introgressed from An. gambiae into An. 
coluzzii in Burkina Faso and Angola. This region spans the Vgsc gene where introgression 

of insecticide resistance alleles has been reported in Ghana19 and Mali20, although this is the 

first evidence that introgressed alleles have spread to An. coluzzii south of the Congo Basin. 

AIMs also highlighted two populations with uncertain species status. In Guinea-Bissau, 

mosquitoes carried a mixture of alleles from both species on all chromosomes. These 

individuals were sampled from the coast, within a region of West Africa that is believed to 

be a zone of secondary contact because previous studies have found evidence for extensive 

introgression21,22. We also found that mosquitoes from coastal Kenya carried a mixture of 

both species’ alleles on all chromosomes. This was unexpected, as the geographical range of 

An. coluzzii is not thought to extend beyond the East African rift. There are several possible 

explanations for the Kenyan data, including historical admixture between species and 

retention of ancestral variation, and further analysis and population sampling are required. 

However, our data demonstrate that a simple gambiae/coluzzii dichotomy is not adequate for 
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describing malaria vector species composition in some parts of Africa, and caution against 

the use of any single marker to infer species ancestry or recent hybridization.

Historical fluctuations in effective population size (Ne) can be inferred from the genomes of 

extant individuals. Analysis of our genome variation data indicated a major expansion in all 

populations north of the Congo Basin and west of the East African rift (Fig. 3a; Extended 

Data Fig. 7; Methods; Supplementary Text 8). Knowledge of the Anopheles mutation rate is 

required to date this expansion, and this has not yet been determined, but assuming it is 

similar to Drosophila then the onset of expansion would be within the range 7,000 to 25,000 

years ago (Fig. 3a; Methods). Since An. gambiae and An. coluzzii are highly anthropophilic, 

mosquito population expansion could be linked to that of humans, and particularly to the 

expansion of agricultural Bantu-speaking groups originating from north of the Congo Basin 

beginning ~5,000 years ago23. It is possible to reconcile this theory with our data if 

Anopheles has a higher mutation rate than Drosophila, causing us to over-estimate the age of 

the expansion, but it is also possible that mosquito populations benefited from earlier human 

population growth, or that other factors such as climate change played a role.

We also observed genomic signatures of a major recent population decline of An. gambiae in 

coastal Kenya. All Kenyan specimens (but no specimens from other locations) had long runs 

of homozygosity comprising 10-60% of the genome, indicating high levels of inbreeding 

consistent with a recent population bottleneck (Fig. 3b). In Kenya, free mass distribution of 

insecticide-treated nets (ITNs) starting in 2006 resulted in a major increase in ITN 

coverage24. The specimens in this study were collected in 2012, raising the question of 

whether the population decline of An. gambiae can be attributed to ITN usage. To address 

this question, we analysed sharing of genome regions that are identical by descent (IBD) 

(Methods; Extended Data Figs. 8a, 8b). We estimated that the An. gambiae population in 

Kenya has fallen in size by at least two orders of magnitude, to Ne <1,000 (Extended Data 

Fig. 8c; Supplementary Text 8.4). The beginning of this inferred decline occurred 

approximately 200 generations before the date of sampling, which would pre-date mass ITN 

distributions, assuming ~11 generations per year. This is consistent with other studies that 

have found evidence for low Ne
11 and changes in mosquito species abundance25 in the 

region prior to high levels of ITN coverage. Nevertheless, our data show that major 

demographic events leave genetic signatures that could be used to gain important 

information about the impact of vector control interventions.

Many genes have been associated with insecticide resistance in Anopheles, but different 

genetic variants may be responsible for resistance in different populations, and it is not yet 

clear where or how resistance is spreading. Genomic data can help address these questions 

by identifying genes with evidence of recent evolutionary adaptation in one or more 

mosquito populations. We found strong signals of recent positive selection at several genes 

that are known to play a role in resistance, including: Vgsc, the target site for DDT and 

pyrethroid insecticides26; Gste, a cluster of glutathione S-transferase genes including Gste2, 

previously implicated in metabolism of DDT and pyrethroids27; and Cyp6p, a cluster of 

genes encoding cytochrome P450 enzymes, including Cyp6p3 which is upregulated in 

permethrin and bendiocarb resistant mosquitoes28 (Extended Data Fig. 9; Supplementary 
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Text 9). We also observed strong signals of selection at multiple loci with no known 

resistance genes, and these merit detailed investigation in future studies.

Mutations in An. gambiae Vgsc codon 995 (orthologous to Musca domestica Vgsc codon 

1014), known as “kdr” due to their knock-down resistance phenotype, reduce susceptibility 

to DDT and pyrethroids26. We found the Leucine→Phenylalanine (L995F) kdr variant at 

high frequency in West and Central Africa (Guinea 100%; Burkina Faso 93%; Cameroon 

53%; Gabon 36%; Angola 86%). A second kdr allele, Leucine→Serine (L995S), was 

present in Central and East Africa (Cameroon 15%; Gabon 65%; Uganda 100%; Kenya 

76%). To investigate the evolution and spread of the two kdr alleles, we analyzed the genetic 

backgrounds on which they were carried (Fig. 4; Supplementary Text 9.3). L995F occurred 

within five distinct haplotype clusters (labeled F1-F5 in Fig. 4), while L995S was found in a 

further 5 haplotype clusters (labeled S1-S5 in Fig. 4). Cluster F1 contained individuals of 

both species and from 4 countries spanning the Congo Basin, proving that recent gene flow 

has carried resistance alleles between these populations. Three kdr haplotypes (F4, F5, S2) 

were found in both Cameroon and Gabon, providing multiple examples of recent gene flow 

between these two populations. The S3 haplotype was present in both Uganda and coastal 

Kenya, thus resistance alleles can reach populations on both sides of the rift system.

While the evolution of resistance in the Vgsc gene is clearly driven primarily by the two kdr 
alleles, we also found 15 other non-synonymous variants at a frequency above 1% in our 

cohort (Fig. 4). 13 of these variants occurred almost exclusively on haplotypes carrying the 

L995F allele (D’ > 0.96). These included N1570Y, previously found on L995F haplotypes in 

West and Central Africa and shown to confer increased resistance29. Overall there was a 

highly significant enrichment for non-synonymous mutations on haplotypes carrying the 

L995F allele, indicating secondary selection on multiple variants that either enhance or 

compensate for the L995F phenotype (Supplementary Text 9.5).

Resistance due to genes that enhance insecticide metabolism is also a serious concern, as it 

has been implicated in extreme resistance phenotypes in some Anopheles populations27,28. 

Although several metabolic genes have been shown to be upregulated in resistant 

mosquitoes, only a single molecular marker of metabolic resistance (Gste2-I114T) has 

previously been identified in An. gambiae or An. coluzzii27. At both Gste and Cyp6p we 

found evidence that resistance has emerged on multiple genetic backgrounds and is 

spreading between species and over considerable distances. At the Gste locus we found at 

least four distinct haplotypes under selection (Extended Data Fig. 10a). One of these 

haplotypes carried the known Gste2-I114T resistance allele, and this haplotype was found in 

all populations except Guinea-Bissau and Uganda, indicating a continent-wide spread. 

However, the other three haplotypes did not carry this allele, thus other genetic variants with 

a resistance phenotype must be present at this locus. At the Cyp6p locus we found at least 

eight distinct haplotypes under selection, but limited spread between populations (Extended 

Data Fig. 10b). At both loci, we found multiple SNPs associated with haplotypes under 

selection which could be used as markers to track the spread of resistance and characterize 

resistance phenotypes (Extended Data Fig. 10).
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In 1899 Ronald Ross proposed that malaria could be controlled by destroying breeding sites 

of the mosquitoes that transmit the disease30. An. gambiae, identified in the same year by 

Ross as a vector of malaria in Africa, has proved resilient to a century of attempts to repress 

it. The vector control armamentarium needs to be expanded, not only with new classes of 

insecticide and novel genetic control strategies, but also with tools for gathering intelligence, 

to enable those responsible for planning and executing interventions to stay ahead of the 

mosquito’s remarkable capacity for rapid evolutionary adaptation. There remain major 

knowledge gaps concerning the ecology and life history of Anopheles mosquitoes, such as 

the rate and range of migration, which are fundamental to understanding both malaria 

transmission and the spread of insecticide resistance, and which will require spatiotemporal 

analysis of mosquito populations. Most importantly, it is essential to start collecting 

population genomic data prospectively as an integral part of vector control interventions, to 

identify which strategies are causing increased insecticide resistance, or what it takes to 

cause a population crash of the magnitude observed in our Kenyan data. By treating each 

intervention as an experiment, and by analyzing its impact on both mosquito and parasite 

populations, we can aim to improve the efficacy and sustainability of future interventions, 

while at the same time learning about basic processes in ecology and evolution.

Methods

Population sampling

Mosquitoes were collected from natural populations at 15 sampling sites in 8 African 

countries (Extended Data Fig. 1). Sampling locations, dates, specimen collection methods 

and DNA extraction methods are given in Supplementary Text 1.1. We also performed 

genetic crosses between adult mosquitoes obtained from lab colonies (Supplementary Text 

1.2). Parents and progeny of four crosses were contributed to Ag1000G phase 1 (Extended 

Data Fig. 1).

Whole genome sequencing

Sequencing was performed on the Illumina HiSeq 2000 platform at the Wellcome Trust 

Sanger Institute. Paired-end multiplex libraries were prepared using the manufacturer’s 

protocol, with the exception that genomic DNA was fragmented using Covaris Adaptive 

Focused Acoustics rather than nebulization. Multiplexes comprised 12 tagged individual 

mosquitoes and three lanes of sequencing were generated for each multiplex to even out 

variation in yield between sequencing runs. Cluster generation and sequencing were 

undertaken per the manufacturer’s protocol for paired-end 100 bp sequence reads with insert 

size in the range 100-200 bp.

Sequence analysis and variant calling

Sequence reads were aligned to the AgamP3 reference genome31 using bwa32 and SNPs 

were discovered using GATK following best practice recommendations33,34 (Supplementary 

Text 3.1, 3.2). After sample quality control, we analyzed data on 765 wild-caught specimens 

and a further 80 specimens comprising parents and progeny from the four lab crosses 

(Supplementary Text 3.3). The alignments were also used to identify genome regions 

accessible to SNP calling, where short reads could be uniquely mapped and there was 
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minimal evidence for structural variation (Supplementary Text 3.4). Mendelian errors in the 

crosses were used to guide the design of filters to remove poor quality variant calls 

(Supplementary Text 3.5). We performed capillary sequencing of five genes in 58 individual 

mosquitoes to provide an estimate for the SNP false discovery rate (FDR), sensitivity and 

genotyping accuracy (Supplementary Text 3.6). We also performed genotyping by primer-

extension mass spectrometry using the Sequenom MassARRAY® platform at 158 SNPs in 

229 individual mosquitoes to provide a second estimate for genotyping accuracy 

(Supplementary Text 3.7).

Haplotype estimation

We used SHAPEIT2 to perform statistical phasing with information from sequence reads35 

for all wild-caught individuals (Supplementary Text 4.1). We assessed phasing performance 

by comparison with haplotypes generated from the crosses and from male X chromosome 

haplotypes (Supplementary Text 4.2; Extended Data Fig. 2b, 2c).

Population structure

To investigate variation in patterns of relatedness along the genome, we performed a 

windowed analysis using genetic distance and neighbour-joining trees (NJT). We divided the 

genome into 1,418 contiguous non-overlapping windows, where each window contained 100 

kbp of accessible positions. Within each window, we computed the city-block distance 

between all pairs of individuals. We used these distance matrices to construct a NJT for each 

window. We then computed the Pearson correlation coefficient between all pairs of distance 

matrices, and performed a singular value decomposition (SVD) on the correlation matrix. 

The resulting SVD components were used to identify major patterns of relatedness 

(Supplementary Text 6.1). We analysed geographical population structure using 

ADMIXTURE36 and PCA37. For these analyses, we used biallelic SNPs from within the 

regions 3R:1-37Mbp and 3L:15-41Mbp and with minor allele frequency >= 1%, then each 

chromosome arm was randomly down-sampled to 100,000 variants using 10 different 

random seeds to provide 10 replicate variant sets, then each set was pruned to remove 

variants in linkage disequilibrium (Supplementary Text 6.2). For each of the 10 replicate 

variant sets, ADMIXTURE was run for K (number of ancestral populations) from 2 to 11 

with 5-fold cross-validation. Each ADMIXTURE analysis was repeated 10 times with 

different seeds, resulting in a total of 100 runs for each value of K. We then used 

CLUMPAK38 to analyse the ADMIXTURE results and compute ancestry proportions 

(Supplementary Text 6.2). Average FST was computed using Hudson’s estimator and the 

ratio of averages, and standard errors were computed using a block-jackknife39 

(Supplementary Text 6.4). Ancestry informative markers (AIMs) were ascertained by 

starting with SNPs previously discovered in Mali18 with an allele frequency difference 

between An. gambiae and An. coluzzii > 0.9, then taking the intersection with biallelic SNPs 

discovered in this study, resulting in 506 AIMs (Supplementary Text 6.6).

Population size history

We inferred the scale and timing of historical changes in Ne using two methods, Stairway 

Plot40 and ∂a∂i41, both using site frequency spectra but taking different modelling 

approaches. To compute site frequency spectra, we used SNPs from within the regions 3R:
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1-37 Mbp and 3L:15-41 Mbp, taking only intergenic SNPs at least 5 kbp from the nearest 

gene (Supplementary Text 8). We modified Stairway Plot to include an additional parameter 

representing the probability of ancestral misclassification for each SNP (Supplementary Text 

8.1). We fitted a three-epoch (two Ne changes) ∂a∂i model for each population singly, and 

fitted joint population models for selected pairs of populations (Supplementary Text 8.2). 

Scaling of parameters assumed that the Anopheles mutation rate is within the range of 

values estimated for Drosophila, where estimates42,43 range from 2.8×10−9 to 5.5×10−9. For 

joint population models, we computed the joint site frequency spectrum for each pair of 

populations from the same set of SNPs used for single-population inferences. Joint 

population models allowed for a phase of exponential size change in the ancestral population 

up until the time of the population split, after which each of the daughter populations 

experienced their own exponential size change until the present. We fitted these models with 

and without the addition of a symmetric, bidirectional migration rate parameter following 

the split. To study recent population history in Kenya we used IBDseq44 to infer genome 

tracts identical by descent (IBD) then ran IBDNe
45 to infer population size history 

(Supplementary Text 8.4).

Recent selection

To scan the genome for signals of recent selection, we computed the H12 haplotype diversity 

statistic46 for each population, and the cross-population extended haplotype homozygosity 

(XP-EHH) score47 for selected pairs of populations. H12 was computed in non-overlapping 

windows over the genome, where each window contained a fixed number of SNPs, and 

window-sizes were calibrated separately for each population to account for differences in the 

extent of linkage disequilibrium (Supplementary Text 9.1). XP-EHH was computed for all 

SNPs with a minor allele frequency ≥ 5% in the union of both populations in each pair, and 

normalized within each chromosome (Supplementary Text 9.2). To study haplotype structure 

at the Vgsc, Gste and Cyp6p loci, we computed the Hamming distance between all pairs of 

haplotypes, then performed hierarchical clustering of haplotypes (Supplementary Text 9.3). 

To identify haplotype clusters resulting from recent selection, we cut the dendrograms at a 

small genetic distance (0.0004 SNP differences per accessible bp) and studied the largest 

clusters obtained after cutting. To look for evidence that the haplotype clusters we identified 

were related via recombination events, we performed the same clustering analysis but in 

non-overlapping windows upstream and downstream of the target region and compared the 

resulting clusters.

Plotting and maps

All figures were produced using the matplotlib package for Python48. The map component 

of Fig. 2 was produced via the matplotlib basemap package, using the NASA Blue Marble 

image as the map background. The map components of Fig. 4 and Extended Data Fig. 10 

were plotted via the cartopy package, using the Natural Earth shaded relief raster as the map 

background. The map in Extended Data Fig. 1 was plotted via the cartopy package, using 

data from the map of standardized terrestrial ecosystems of Africa49 as the map background.
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Extended Data

Extended Data Figure 1. Overview of population sampling
Red circles show sampling locations for wild-caught mosquitoes. Colours in the map 

represent ecosystem classes; dark green represents forest ecosystems, see (49) Fig. 9 for a 

complete colour legend. The Congo Basin tropical rainforest is the large region of dark 

green in Central Africa. Sampling details for each site are shown in light grey boxes, 

including country (two-letter country code), location and year of collection, predominant 

ecosystem classification for the local region, and number and sex of individuals sequenced. 
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For colony crosses, the direction of cross (colony of origin of mother and father) and number 

of offspring is shown. The inset map depicts geological fault lines in the East African rift 

system*. Species assignment for Guinea-Bissau and Kenya specimens is uncertain, see main 

text. Sequencing depth per individual is shown as median (5th – 95th percentile) for each 

population.

*http://pubs.usgs.gov/publications/text/East_Africa.html
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Extended Data Figure 2. Genome accessibility and haplotype validation
a, Percentage of accessible bases in non-overlapping 400 kbp windows. The schematic of 

chromosomes below shows chromatin state predictions from (50). b, Haplotypes inferred in 

the crosses. Each panel shows either maternal or paternal haplotypes from a single cross. 

Each row within a panel represents a single progeny haplotype. Haplotypes are coloured by 

parental inheritance (blue=allele from parent’s first chromosome, red=allele from parent’s 

second chromosome). Switches between colours along a haplotype indicate recombination 

events. Regions that were within a run of homozygosity in the parent and thus not 

informative for haplotype validation are masked in grey. c, Error rate estimates for 

haplotypes inferred in wild-caught individuals. Upper plots show estimates for the mean 

switch distance (red line), compared to the mean switch distance if heterozygotes were 

phased randomly (black line). Lower plots show the switch error rate (probability of a switch 

error occurring between two adjacent heterozygous genotype calls).
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Extended Data Figure 3. Variant discovery and nucleotide diversity
a, Number of variant alleles discovered per individual mosquito. Only females are plotted. b, 

Genetic diversity within populations. Nucleotide diversity (π) and Tajima’s D were 

calculated in non-overlapping 20 kbp genomic windows. SNP density depicts the 

distribution of allele frequencies (site frequency spectrum) for each population, scaled such 

that a population with constant size over time is expected to have a constant SNP density 

over all allele frequencies. c, Average nucleotide diversity (π) and ratio of diversity between 

sex-linked (X) and autosomal (A) chromosomes in relation to gene architecture. d, 
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Relationship between number of individuals sampled and the cumulative number of variant 

sites discovered (left panel), availability of conserved Cas9 target sites within genes (center 

panel), and number of genes containing at least 1 conserved Cas9 target site which could 

thus be “targetable” for gene drive (right panel).

Extended Data Figure 4. ADMIXTURE analysis
a, Ancestry proportions within individual mosquitoes for ADMIXTURE models from K=2 

to K=10 ancestral populations. Each vertical bar represents the proportion of ancestry within 
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a single individual, with colours corresponding to ancestral populations. These data are the 

average of the major q-matrix clusters derived by CLUMPAK analysis. b, Violin plot of 

cross-validation error for each of 100 replicates for each K.

Extended Data Figure 5. Population structure and differentiation
a, Principal components analysis of the 765 wild-caught mosquitoes. b, Average allele 

frequency differentiation (FST) between pairs of populations. The lower left triangle shows 

average FST between each population pair. The upper right triangle shows the Z score for 

each FST value estimated via a block-jackknife procedure. CM*=Cameroon savanna 

sampling site only. c, Allele sharing in doubleton (f2) variants. The height of the coloured 
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bars represent the probability of sharing a doubleton allele between two populations. Heights 

are normalized row-wise for each population.

Extended Data Figure 6. Ancestry informative markers (AIMs)
Rows represent individual mosquitoes (grouped by population) and columns represent SNPs 

(grouped by chromosome arm). Colours represent species genotype. The column at the far 

left shows the species assignment according to the conventional molecular test based on a 

single marker on the X chromosome, which was performed for all individuals except Kenya 

(KE). The column at the far right shows the genotype for kdr variants in Vgsc codon 995. 

Lines at the lower edge show the physical locations of the AIM SNPs.
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Extended Data Figure 7. Population size history
a, Stairway Plot of inferred histories for each population. The shaded area shows the 95% 

confidence interval from 199 bootstrap replicates. b, Inferred histories from ∂a∂i three epoch 

models. The thick line shows the history with the highest likelihood found by optimization; 

thin lines show 100 histories with the highest likelihoods from even sampling of the model 

parameter space. c, Inferred histories from ∂a∂i 2-population models allowing for migration. 

For each population pair, solutions from 5 optimization runs with the highest likelihoods are 

shown, with the thick line showing the history with the highest likelihood. In all panels, time 
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and Ne are scaled assuming 11 generations per year and a mutation rate of μ=3.5×10−9. 

Scaling of time and Ne is proportional to 1/μ, e.g., if the true mutation rate is twice as high 

then estimates of time and Ne would be halved.

Extended Data Figure 8. Identity by descent (IBD) and recent effective population size history
a, Patterns of IBD sharing within populations. Each marker represents a pair of individuals. 

b, The distribution of IBD tract lengths within populations. c, Recent population size history 

for the Kenyan population inferred by IBDNe. d, Comparison of the IBD tract length 
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distribution between Kenya and four simulated demographic scenarios. e, Population size 

histories inferred by IBDNe (red dashed lines) from data generated by simulations (black 

line shows the simulated population size history). f, Comparison of patterns of IBD sharing 

generated by simulations (black contour lines) with Kenyan data (filled blue contours). See 

Supplementary Text 8.4 for details of simulations.

Extended Data Figure 9. Genome scans for signatures of recent selection
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a, Haplotype diversity. Each track plots the H12 statistic in non-overlapping windows over 

the genome. A value of 1 indicates low haplotype diversity within a window, expected if one 

or two haplotypes have risen to high frequency due to recent selection. A value of 0 

indicates high haplotype diversity, expected in neutral regions. b, XP-EHH scans. For each 

population comparison (e.g., BF gambiae versus BF coluzzii), positive scores indicate longer 

haplotypes and therefore recent selection in the first population (e.g., BF gambiae), and 

negative scores indicate selection in the second population (e.g., BF coluzzii).
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Extended Data Figure 10. Haplotype structure at metabolic insecticide resistance loci
Plot components are as described for Fig. 4. For both loci, SNPs shown in the lower panel 

are all either non-synonymous or splice site variants, and are associated with one or more 

haplotypes under selection. a, Haplotype clustering using 1,375 SNPs within the region 3R:

28,591,663-28,602,280 spanning 8 genes (Gste1-Gste8). b, Haplotype clustering using 

1,844 SNPs within the region 2R:28,491,415-28,502,910 spanning 5 genes (Cyp6p1-

Cyp6p5).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Patterns of genomic variation
a, Density of nucleotide variation in 200 kbp windows over the genome. b, Variation in the 

pattern of relatedness between individual mosquitoes over the genome. The three 

chromosomes are painted using colours to represent the major pattern of relatedness found 

within each 100 kbp window. Below, neighbour-joining trees are shown from a selection of 

genomic windows that are representative of the four major patterns of relatedness found, as 

well as for the window spanning the Vgsc gene. AO=Angola; BF=Burkina Faso; 

GW=Guinea-Bissau; GN=Guinea; CM=Cameroon; GA=Gabon; UG=Uganda; KE=Kenya.
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Figure 2. Geographical population structure and migration
In the upper panel, each mosquito is depicted as a vertical bar painted by the proportion of 

the genome inherited from each of K=8 inferred ancestral populations. Pie charts on the map 

depict the same ancestry proportions summed over all individuals for each population. Text 

in white shows average FST followed in parentheses by estimates of the population 

migration rate (2Nm).

Page 25

Nature. Author manuscript; available in PMC 2018 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Population size history
a, Stairway Plot of changes in population size over time. Absolute values of time and Ne are 

shown on alternative axes as a range of values, assuming lower and upper limits for the 

mutation rate μ as 2.8×10−9 and 5.5×10−9 respectively and T=11 generations per year. b, 

Runs of homozygosity (RoH) in individual mosquitoes, highlighting recent inbreeding in 

Kenyan (grey) and colony mosquitoes (black; P=Pimperena, M=Mali, K=Kisumu, 

G=Ghana).
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Figure 4. Evolution and spread of insecticide resistance in the Vgsc gene
The upper panel shows a dendrogram obtained by hierarchical clustering of haplotypes from 

wild-caught individuals. The colour bar below shows the population of origin for each 

haplotype. The lower panel shows alleles carried by each haplotype at 17 non-synonymous 

SNPs with alternate allele frequency > 1% (white=reference allele, black=alternate allele, 

red=previously known resistance allele). At the lower margin, we label 10 haplotype clusters 

carrying a kdr allele (either L995F or L995S). The inset map depicts haplotypes shared 

between populations, demonstrating the spread of insecticide resistance.
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