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6 We demonstrate the existence of conical interface deformations induced by a laser beam that are similar
7 to Taylor cones in the electrical regime. We show that the cone morphology can be manipulated by fluid
8 and laser parameters. A theory is proposed to quantitatively describe these dependences in good agreement
9 with experimental data obtained for different fluid systems with low interfacial tensions. Counterintuitively,

10 the cone angle is proved to be independent of the refractive index contrast at leading order. These results
11 open a new optofluidic route towards optical spraying technology—an analogue of electrospraying—and
12 more generally for the optical shaping of interfaces.
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14 One hundred years ago, in a pioneering work, Zeleny
15 observed the destabilization of a suspended conducting
16 liquid drop submitted to a sufficiently strong electric field
17 [1,2]. The interface takes a conical shape, followed by a jet
18 that usually breaks up into a spray of tiny droplets, a key
19 phenomenon for electrospraying and electrospinning tech-
20 nologies [3–5]. Such conical menisci were theoretically
21 understood by Taylor [6] and are now commonly termed
22 as “Taylor cones.” Beyond the surprising and fascinating
23 elegance of such a simple conical solution for a complex
24 mathematical problem involving deformable boundaries,
25 this Taylor cone is important for applications. Indeed, the
26 finite angle of the cone is a key parameter determining the
27 size of the emitted jet, and thus of the resulting droplets [7].
28 Taylor cones are thus an essential component in processes
29 as varied as the emission ofmonodisperse droplets [8], ink jet
30 printing [3,5], the design of nanostructures [9] and encap-
31 sulation techniques [10]. Taylor cones were naturally gen-
32 eralized to electrically ormagnetically induced deformations
33 of interfaces between fluids presenting different conductiv-
34 ities, dielectric constants or magnetic susceptibilities [11].
35 Depending on these properties, but also on the nature of the
36 field (either ac or dc) [12], the cone angle canvary over awide
37 range. Furthermore, conical shapes of fluid interfaces seem
38 even more general, since portions of cones naturally appear
39 in situations as varied as drops stretching [13], viscous break-
40 up of pendant drops [14], tip streaming by Marangoni stress
41 [15], or inertial jet eruption [16]. This suggests that various
42 types of excitatory fields are able to induce conical defor-
43 mations, as earlier suggested by Taylor himself [13]. In this
44 context, considering the developments on the manipulation
45 of fluids by light [17,18] and previous studies [19–21] where
46 conical shapes could be suspected, a natural and surprisingly
47 unresolved question is whether or not cones can be induced
48 by light as well.
49 The goal of this Letter is to demonstrate the emergence
50 of conical shapes in the optical regime and to characterize

51their geometry. Using very different fluid systems, we show
52indeed that above a critical radiation pressure exerted by a
53continuous laser wave, soft interfaces deform and adopt a
54conical shape. We propose a theory that correctly predicts
55the cone angles for a wide range of fluid and excitation
56parameters. Counterintuitively, we show that the cone angle
57does not depend on the refractive index contrast, while it is at
58the origin of the radiation pressure that induced the conical
59deformation.
60To observe optically induced cones, we consider a
61continuous Gaussian laser wave that impinges a soft fluid
62interface from the liquid of higher refractive index as shown
63in Fig. 1(a). The laser beam is focused on the interface using
64standard optical elements that can be adjusted to vary the
65beamwaist w0 at the interface. At low power, the interface is
66gently deformed into a bell-shaped profile by optical
67radiation pressure [Fig. 1(a)]. This is due to the transfer of
68optical momentum of photons to the interface, as previously
69described [22,23]. Above a critical beam power Pc, the
70interface profile lengthens and sharpens, and a conical
71deformation emerges [Fig. 1(b)].
72To characterize the geometry of the interface, we
73represent the local angle αi in Fig. 1(c) as a function of
74the height z, i.e., the distance to the undeformed interface.
75This curve clearly exhibits a plateau region that is absent in
76the low power regime. This plateau demonstrates the
77existence of an optically induced conical deformation
78and defines its angle. To get insight in the mechanism at
79the origin of the cone formation, we image the optical path
80of the laser wave using specific optical filters [Fig. 1(d)].
81The intense reflection of the laser beam at the cone interface
82tends to show that light is totally reflected inside the conical
83structure, which thus acts as a self-induced funnel guide.
84This is further confirmed in Fig. 1(c) by the fact that the
85incident angle αi is always larger than the total reflection
86angle [αi > αTR ¼ arcsinðn1=n2Þ] in the plateau region. We
87anticipate that this total reflection condition is important to
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88 explain the formation of optically-induced cones in our
89 conditions.
90 To test the generality of optical liquid cones, we consider
91 three main experimental fluid systems that are transparent at
92 the used optical wavelength (optical absorption smaller than
93 3 × 10−4 cm−1) and based on Winsor phases (toluene:
94 S1a–S1b, heptane: S2) and quasicritical microemulsions
95 (S3a–S3e). By varying chemical composition or temper-
96 ature, we obtain in the end eight subsystems denoted by
97 S1a–S1b, S2, S3a–S3e (see Supplemental Material [24–28]
98 for details). This enables us to vary the refractive index
99 contrast involved in the radiation pressure (Δn ¼ n2−

100 n1 ¼ 0.0129–0.1449) and the interfacial tension involved
101 in the restoring capillary pressure (γ ¼ 2 × 410−7 − 1×
102 310−5 N=m) over more than one order of magnitude.
103 Refractive indexes for various systems were measured by
104 standard refractometry methods, while interfacial tensions
105 were determined by analyzing the viscous breakup dynamics

106of liquid thread [29]. As illustrated in Fig. 1, stationary
107optically induced cones are generated for all experimental
108systems. Similar to electrified interfaces, these conical
109shapes are very stable and robust for both turbid (S1, S3)
110and nonturbid (S2) fluid systems. Remarkably, the conical
111structure often emerges togetherwith a jet that emits droplets,
112as illustrated at the bottom in Fig. 1(g). Importantly, as shown
113in Fig. 1, we observe that the cone angle is specific to each
114fluid system, indicating that fluid properties are important to
115define the cone morphology.
116We now quantify the effects of the laser parameters on the
117cone angle. The edge of the cone is detected by a homemade
118image analysis program that measures the cone semiangle
119θc ¼ π=2 − αi in the plateau region [see Fig. 1(c)] after
120averaging over several stationary profile pictures. In Fig. 2,
121we show how θc depends on the incident laser power P at
122various waists w0 for system S1 as an example. To be as
123accurate as possible, we note that increasing P of our laser
124also results in an increase of thewaistw0 ¼ g(P;w0ð0Þ) via a
125function g, which is fully characterized in the Supplemental
126Material [24], with w0ð0Þ as the extrapolated waist at zero
127power. As shown in Fig. 2, the cone semiangle increaseswith
128the beam waist w0 at a given power and slightly decreases
129with the applied power. This indicates that laser parameters
130are crucial for controlling the cone morphology.
131To understand the physical mechanism at the origin of
132the conical deformation, it is useful to start with the force
133balance equation for an axi-symmetric stationary profile
134[22,30]:

γκðrÞ − ΔρghðrÞ ¼ ΠradðrÞ; ð1Þ

(d) (e) (f) (g)

(c)

(b)

(a)

F1:1 FIG. 1. (a) Sketch of the experiment: a laser beam (λ ¼ 532 nm
F1:2 in vacuum) is focused at the interface with the objective O1
F1:3 (Olympus x10) and deforms this interface by radiation pressure.
F1:4 Deformation of the interface for P < Pc (Winsor toluene S1b
F1:5 for w0 ¼ 12.9 μm, P ¼ 1.53 W). (b) Conical deformation by
F1:6 radiation pressure for P > Pc (Winsor toluene S1b for
F1:7 w0 ¼ 12.9 μm, P ¼ 1.55 W). (c) Typical variation of the incident
F1:8 angle αi as a function of the height of deformation for P < PC
F1:9 and P > PC. Note that the curve for P > Pc exhibits a clear

F1:10 plateau. αTR is the total reflection (TR) incident angle. (d) Light
F1:11 path revealing the total reflection mechanism inside the conical
F1:12 deformation (microemulsion S3). (e)–(g) Conical deformations
F1:13 for various experimental systems: (e) Winsor heptane S2 for
F1:14 w0 ¼ 12.2 μm, P ¼ 2.25 W, (f) microemulsion S3e for w0 ¼
F1:15 9.0 μm and P ¼ 2.89 W, and (g) jet and drop emission at the tip
F1:16 of the cone for Winsor toluene S1b system with w0 ¼ 8.8 μm and
F1:17 P ¼ 1.06 W.

-1/2
Total reflection

F2:1FIG. 2. Semiangle θc of the cone for Winsor toluene system
F2:2S1b as a function of the power P and the beam waist w0 of the
F2:3laser. w0ð0Þ represents the laser beam waist extrapolated at zero
F2:4power (see the Supplemental Material [24]). The dashline
F2:5indicates the total reflection value π=2 − αTR. Inset: Cone semi-
F2:6angle rescaled by

ffiffiffiffiffiffi
w0

p
versus laser power P in log-log scale.
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135136 where both the Laplace pressure γκðrÞ and buoyancy
137 ΔρghðrÞ balance the optical radiation pressure ΠradðrÞ.
138 Here, r is the radial distance to the beam axis, h is the
139 height of the profile, g the earth acceleration, and κ is
140 the local curvature. The optical radiation pressure is given
141 for a continuous Gaussian wave (mode TEM00) by the
142 following:

ΠradðrÞ ¼
n2
c

2P
πw2

0

e
−2r2

w2
0 δfðαiÞ; ð2Þ

143144 where c is the light celerity, δ ¼ 2Δn=ðn1 þ n2Þ is the
145 relative index contrast between the two phases, and f is
146 a geometric function that describes the variation of the
147 radiation pressure with the local incident angle αi,
148 fðαiÞ ¼ cos2ðαiÞf1þ RðαiÞ − ½tanðαiÞ= tanðαtÞ�TðαiÞg=δ,
149 R and T being the reflexion and transmission Fresnel
150 coefficients and αt the refracted angle. This function f is
151 plotted in Fig. 3(a). Importantly, it displays a decreasing
152 behavior above the total reflection angle αTR, which means
153 that the more inclined is the interface the less efficient is the
154 radiation pressure. Therefore, above αTR, the intensity of
155 the radiation pressure is directly related to the local
156 inclination of the interface, which will be the determinant
157 to set the value of the cone angle.

158We first describe the interface deformation at moderate
159beam power. As the optical Bond number (defined by
160using the beam waist as the characteristic length scale)
161Bo ¼ ðΔρgw0

2=γÞ ≈ 0.001–0.2 is small, buoyancy can be
162neglected in first approximation. Furthermore, as the
163relative index contrast δ is also a small parameter,
164the radiation pressure can be considered as constant over
165a large range of inclination angles [i.e., f ≈ 1, see Fig. 3(a)].
166With these approximations, the force balance Eq. (1) at low
167powers becomes this:

γ

r
∂
∂r ðr cos θÞ ≈

2PΔn
πcw2

0

e−2r
2=w2

0 : ð3Þ

168169This equation is readily integrated for a closed profile,
170leading to cos θ ¼ ðPΔn=2πcγw0Þð1 − e−2u

2

=uÞ where
171u ¼ r=w0. The self-consistency condition that cos θ
172remains lower than unity for all r leads to the definition
173of a critical power

Pc ≈ 2.2
πcw0γ

Δn
; ð4Þ

174175above which one should observe strongly deformed inter-
176faces, with inclination angles of the order of the total
177reflection angle. This condition is compatible with previous
178analyses [21,31] and is also in good agreement with the
179critical power values measured in our experiments (see
180Fig. S3 in the Supplemental Material [24]).
181Above the critical power Pc, a new region appears where
182total reflection conditions hold, so that f ≈ 2θ2=δ, indicat-
183ing that the radiation pressure depends on the local profile
184slope. Moreover, in this region the opening angles θ are
185small compared to one, a condition which is satisfied in all
186our experiments. Hence, in this region the force-balance
187equation can be considerably simplified and becomes

γ

r
¼ θ2

4n2P
πcw2

0

e−2r
2=w2

0 ; ð5Þ

188189leading to:

θðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
πcγw0

4Pn2

r
Φ
�

r
w0

�
; ΦðXÞ≡ eX

2

ffiffiffiffi
X

p : ð6Þ

190191The local angle in the total reflection region is therefore
192proportional to the dimensionless function Φð·Þ, which is
193plotted in Fig. 3(b). It exhibits a clear plateau characterizing
194the conical deformation in the range r=w0 ≈ 0.3–1. To fully
195predict the cone angle variation with physical parameters,
196we characterize the minimal half-opening angle in Eq. (6),
197which is obtained for r=w0 ¼ 0.5. We find this:

θ�c ¼ β

ffiffiffiffiffiffiffiffiffiffi
cw0γ

Pn2

r
; ð7Þ

(c)

(b)(a)

(d)

F3:1 FIG. 3. (a) Variation of the f function with the incident angle αi
F3:2 for different relative index contrasts δ ¼ 2.Δn=ðn1 þ n2Þ.
F3:3 (b) Variation of the normalized cone angle as a function of the
F3:4 normalized radial position r=w0 for various liquid systems. The
F3:5 solid line indicates the theoretical prediction Φð·Þ [see Eq. (6)].
F3:6 (c) Comparison between a theoretical cone deformation (red line)
F3:7 and an experimental deformation for microemulsion system
F3:8 S3b for P ¼ 0.5 W and w0 ¼ 5.8 μm. (d) Cone angle as a
F3:9 function of γ=n2 for various systems and for a given ratio

F3:10 w0=P ¼ 4.57 μm=W. The line indicates the theoretical prediction
F3:11 [Eq. (7)].
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198199 with β ¼ e1=4
ffiffiffiffiffiffiffiffiffiffiffiffiðπ=2Þp

≈ 1.61. Importantly, this expression
200 predicts that the cone angle θc decreases with the applied
201 power P and increases with the waist w0 as observed
202 experimentally.
203 Corresponding scalings in w0 and P are experimentally
204 confirmed in the inset of Fig. 2 where all the data are
205 rescaled by

ffiffiffiffiffiffi
w0

p
and collapse into a single master curve.

206 In Fig. 3(b), comparisons of the renormalized angle profiles
207 for various fluid systems show a good agreement with the
208 theory even if experimental profiles are more extended than
209 theoretical ones. Note that experimental angle profiles are
210 limited to r=w0 ≥ 0.4 because a jet usually forms at the
211 cone tip, contrary to theoretical modeling which only
212 considers closed deformations. As explained in the
213 Supplemental Material [24], a discussion on the jet that
214 forms at the tip of the conical deformation is beyond the
215 scope of the present work, but we note that breakup and
216 drop formation are not expected to significantly affect the
217 profile in the conical region. For higher r=w0, experimental
218 profiles also display slope discontinuities, corresponding in
219 the theory to the switching point where total reflection is no
220 longer satisfied (see Fig. S5 in the Supplemental Material
221 [24]). We then numerically calculate the full height profile
222 hðrÞ from Eq. (1), and superimpose it with the experimental
223 measurements in Fig. 3(c). In this example, despite the
224 difference at the cone tip, the theoretical profile fits
225 reasonably well the experimental deformation (without
226 any fitting parameters). This demonstrates the ability of
227 our model to describe the radial variation of the cone angle.
228 We then test the scaling with interfacial tension in Fig. 3(d),
229 where we compare predictions to the experimental cone

230angles for all the systems at a given ratio w0=P.
231Remarkably, the model is also in good agreement with
232the experimental data over almost two decades in interfacial
233tension. This strongly supports that the characteristic cone
234angle is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cw0γ=Pn2

p
as suggested by Eq. (7).

235To further confirm this model, we plot in Fig. 4 the cone
236semiangle θc for the eight experimental systems inves-
237tigated here for all the experimental conditions as a function

238of the characteristic cone angle
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cw0γ=Pn2

p
. Over more

239than one decade (see also the same data in linear scale in the
240inset of Fig. 4), all the data collapse into a single master
241curve despite some inherent dispersion of data, in particular
242close to the critical power Pc where the interface sensitivity
243to excitation is the largest. The best fit is θc ¼
2441.86

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cw0γ=Pn2

p
, which is very close to the model pre-

245diction θc ¼ 1.61
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cw0γ=Pn2

p
[see Eq. (7)]. The agreement

246is even reinforced considering that no adjustable parameter
247is used in the model. Consequently, conical deformations
248can be fully controlled with both fluid properties and
249excitation parameters.
250Counterintuitively, the model predicts that the cone angle
251θc does not depend on the relative index contrast δ [see
252Eq. (7)]. Indeed, as shown in Fig. 5(a), as soon as the
253critical power is reached, the minimal deformation angle
254minðθÞ switches to a single behavior independent of δ.
255This is due to the independence of the radiation pressure
256with the refractive index contrast in the total reflection
257regime [see Eq. (5)], as opposed to the normal incidence
258case. However, the refractive index contrast Δn remains
259essential to set the critical power Pc to observe a cone.
260We now investigate whether gravity effects could be
261responsible for deviations between experimental data and
262theory. Gravitational effects can be evaluated by forming
263the ratio between the buoyancy Δρgh and the characteristic
264Laplace pressure γ=w0. Since h ∼ w0=θ�c in the conical
265region, the relevant dimensionless parameter is χ ¼
266Δρgw2

0=ðγθ�cÞ ¼ Bo=θ�c. Intuitively, increasing gravitational
267effects should flatten the deformation and thus increase the
268cone angle θc. As explained in the Supplemental Material
269[24] by a perturbation analysis, the cone semiangle is

F4:1 FIG. 4. Experimental cone angles versus the characteristic cone
F4:2 angle

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cw0γ=Pn2

p
for all the investigated experimental systems.

F4:3 The best fit is θc ¼ 1.86ðcw0γ=Pn2Þ0.5 whereas the dashed line
F4:4 refers to Eq. (7). Inset: same plot in linear scales.

(a)

*

 =0.01
 =0.04
 =0.1

(b)

F5:1FIG. 5. (a) Theoretical minimal angle of the deformation
F5:2without gravity effects for various refractive index constrast.
F5:3(b) Rescaled cone angle θnum=θ�c numerically obtained compared
F5:4with the perturbative result θ ¼ θ�cð1þ νχÞ as a function of the
F5:5χ ¼ Bo=θ�c parameter for P=Pc ¼ 1.35.
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270 expected to vary as θ ¼ θ�cð1þ νχÞ, where ν ≃ 0.14–0.18 is
271 a weakly varying parameter. These results are confirmed in
272 Fig. 5(b) by comparing with the complete numerical reso-
273 lution of the force balance equation [Eq. (1)] for various
274 index ratio. The numerical results in Fig. 5(b) collapse into a
275 singlemaster curve, validating this perturbation analysis.We
276 evaluate the deviations from the analytical results without
277 gravity [Eq. (7)] to be at most 30% for the largest values of
278 χ in our experiments (χ ≈ 10−2 − 2), confirming that gravity
279 can be neglected at leading order.
280 To conclude, we have experimentally and theoretically
281 demonstrated the existence of optically induced conical
282 deformations. The cone morphology is controlled by the
283 fluid properties and laser parameters. The analytical and
284 numerical analyses quantitatively predict an optical cone
285 semiangle in good agreement with measurements over a
286 wide range of parameters for several liquid systems. Such
287 cones can be considered as “optical analogues” of Taylor
288 cones, in the sense that the structure of the electromagnetic
289 field near the interface results from its interference with
290 refracted ray and is strongly coupled to its deformation due
291 to total reflection conditions. As already demonstrated for
292 Taylor cones [7], we anticipate that the properties of these
293 static optical cones will be a key parameter to control the
294 hydrodynamic jet at its tip as suggested by Fig. 1(g). Our
295 results quantitatively establish the first step towards opto-
296 spraying and a new optical control of interfacial properties
297 and interfacial morphologies. This Letter also advances a
298 new example showing that conical shapes corresponds to a
299 universal form when liquid interfaces are stretched beyond
300 linearity [13].
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