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We present a detailed study of the dynamics of soft liquid interfaces undergoing viscous stresses due6

to bulk flows generated by momentum transfer from light to a turbid liquid. Using a continuous laser7

wave, light-induced flow is observed and analyzed through the deformability of very soft interfaces8

up to instability and jet formation. These dynamics are investigated experimentally and numerically9

below and above the interface instability threshold. Below instability, we show that the dynamics10

of the interface deformation at short time scale does not vary with the parameters of the laser11

excitation. We confirm that the mechanism responsible for the interface deformation is a non-local12

effect associated to the viscous stress induced by the bulk flow. Then, we characterize the jetting13

instability regarding the field velocity within the jet, the jet radius and the fluid flow rate. A14

satisfying agreement is obtained when comparing quantitatively experimental results and numerical15

predictions. Our investigation illustrates how light can induce a bulk flow in a turbid liquid, such16

as a suspension, and how this flow can be used to deform an interface and produce well-controlled17

liquid jets.18

Light is able to set fluids in movement transiently or permanently by transfer of energy or momentum. The most19

famous example is thermal Marangoni flow (called optocapillarity when induced by light) due to heat transfer to20

the interface when a liquid layer absorbs light at the used optical wavelength. It was widely studied experimentally,21

theoretically and numerically as it is easily induced by a local laser-heating [1–4]. With the development of microfluidic22

toolboxes on the one hand, and the enhancement of the surface to volume coupling contributions with miniaturization,23

on the other hand, many efforts were concentrated towards the developments of optically induced surface-tension-24

driven flows at the microscale. Among these examples, one can cite the control of the spreading of films [5], the25

production of droplets [6], the manipulation of jets [7], or the actuation of particles floating at a free surface [8]. The26

investigation of flows induced by laser heating was further extended in bulk using absorbing suspensions [9–11] or at27

interfaces considering light-sensitive surfactants [12].28

However, as shown in the present study, light may also transfer momentum isothermally to produce flows. We29

concentrate here on this totally different mechanism where thermal effects are irrelevant. For this purpose the fluid30

system at work, a phase-separated liquid mixtures close to criticality, has an extremely weak optical absorption at31

the used optical wavelength making thermal effects negligible. Pure transfer of light momentum to a fluid can be set32

in a non-absorbing liquid suspension and the mechanism is the following : when the liquid is constituted by randomly33

distributed sub-wavelength particles in suspension or density fluctuations as in critical fluids, these refractive index34

heterogeneities scatter the incident light beam which eventually loses forward momentum during its propagation35

in the medium ; this phenomenon corresponds to the well-known critical opalescence in critical phenomena. As36

a consequence, momentum conservation produces a density force, called scattering force, that sets the liquid in37

permanent motion. As optical absorption is discarded, this density force should be only proportional to the wave38

momentum (nI/c)z and to the beam attenuation $ = (−1/I)dI/dz due to the liquid turbidity, with n the refractive39

index of the medium, I the intensity of the laser beam and c the light celerity ; $ may also be called extinction40

coefficient when dealing with sub-wavelength particle suspensions. The expected scattering force density fscatt(r)41

is then proportional to ($nI/c)z for $L � 1 where L is the thickness of the sample. As illustrated in a recent42

review [13], this scattering force at the level of the suspended particles is at the origin of many theoretical and43

experimental works dedicated to particle manipulations in fluids. A similar physical approach was also described44

to control the advection of small particles at free surfaces efficiently [14]. In the opposite case Savchenko et al.45

[10], theoretically showed for the first time that it should be possible to induce a convective flow, by transfer of46

momentum from light to a liquid crystal. Skipetrov et al. [15, 16] demonstrated that multiple scattering events also47

drive bulk flow and measured the scatterer velocity by determining the temporal autocorrelation function of the48

scattered electromagnetic field. Later Casner and Delville [17] strongly deformed very soft fluid/fluid interfaces in49

near critical thermodynamic conditions using the optical radiation pressure. They evidenced a jetting instability at50

the tip of the interface deformation with droplet production, both unexplained by the surface radiation pressure which51

cannot actuate steady flows. In the absence of optical absorption, this effect was attributed to light scattering [18]52
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as the turbidity of the involved fluid system diverges close to a critical point. This was confirmed analytically in53

the weak interface deformation regime by considering the viscous stress exerted on the interface by the resulting54

bulk flow. This scattering effect was further explored theoretically and experimentally in stationary conditions to55

characterize the induced bulk flow [19]. Nonetheless, in this last study, bulk scattering force and interfacial radiation56

pressure effects were collaborating in the same direction, making difficult to discriminate the importance of each57

mechanism on the resulting interface instability. Consequently a numerical investigation on pure scattering density58

effects, based on a Boundary Element Method (BEM), in the small deformation regime (i.e. when the amplitude of59

the deformed interface is smaller than the beam waist) was developed in order to grasp the properties of the induced60

bulk flow in permanent conditions [20]. Indeed, to discriminate between radiation pressure and scattering bulk flow61

effects, Chräıbi et al. [21] investigated the resulting jetting instability when the radiation pressure and the scattering62

force act in opposite directions. This approach gave the opportunity to observe for the first time, how the interface63

stress induced by the bulk flow due to the scattering force alone can deform an interface, up to instability and jetting.64

Nonetheless, these numerical investigations were limited to the features of the interface without characterizing the65

flows.66

The goal of the present work is to investigate the dynamic features of the flow in terms of interface velocity and fluid67

flow rate as a function of the driving parameters which are the beam power and fluid properties. We describe first68

mechanical forces induced by the laser beam and the experimental setup. Then we study the dynamics of the interface69

in the small deformation regime when scattering forces remain too weak to destabilize this interface. In a third part,70

we analyze the dynamics at and beyond interface instability and we characterize the properties of the induced jets in71

terms of velocity field, radius and flow rate as a function of the excitation. A summary of the physical properties and72

of the dimensionless numbers used in the present study is presented in the appendix B. This investigation gives a first73

opportunity to quantitatively compare experiments and numerical simulations in order to understand how light can74

trigger flow and jetting in non-absorbing liquid suspensions ; the detailed calculation of the scattering force resulting75

from the momentum transfer of the incident light to a turbid media in the Rayleigh scattering regime (i.e. for particles76

or refractive index fluctuations very small compared to the optical wavelength) is presented in the appendix A.77

We may note at the end of this introduction that, even if our investigation is entirely dedicated to liquid flows78

induced by mechanical effects of non-absorbing light, acoustic radiation pressure and streaming, historically known79

well before the laser invention, can as well deform interfaces and produce flows. While mechanisms may be slightly80

different, strictly speaking richer in acoustics because the optical impedance is usually reduced to refractive index81

contrast, the spirit is exactly the same. Interface deformation by the radiation pressure was nicely demonstrated in82

acoustics by Hertz and Mende [22] and much later with lasers by Ashkin and Dziedzic [23]. Thus acoustically-driven83

flow [24, 25], interface instability and jetting [26], and droplet production [27, 28] have for a long time been a subject84

of interest, unveiling universal behaviors triggered by radiation pressure regardless of the nature of the exciting wave,85

whether mechanical and longitudinal (acoustics) or electromagnetic and transverse (optics).86

I. LIGHT-INDUCED FORCES AND EXPERIMENTAL SETUP87

A. Mechanical effects of light in bulk and on interface88

1. Bulk flows driven by light scattering in turbid liquids89

As qualitatively mentioned in the introduction, the density force fscatt(r) should be proportional to the wave90

momentum, (nI/c)z, and to the beam attenuation $ = (−1/I)dI/dz, here corresponding to the turbidity since91

optical absorption is discarded. The main steps of its calculation are the following : first, we need to determine92

the light field scattered by the liquid heterogeneities. It linearly depends on the structure factor S =
〈
|δρ |2

〉
that93

describes the correlation between density fluctuations δρ. Moreover S is calculated within the Ornstein-Zernike94

approximation, usually considered for light scattering in critical fluids. Then, as illustrated in the appendix A, we can95

deduce the fraction of scattered intensity I(q,Ro)/I0 at a distance Ro from the small scattering volume V of interest96

:97

I(q,Ro)

I0
=

(
π2

λ4
0

)(
∂ε

∂Φ

)2

kBTχT

[
1

1 + (qξ)
2

](
V

R2
o

)
sin2 φ. (1)98

In equation (1), I0 is the incident beam intensity, q = |ki − ks| = 2ki sin θ/2 where ki and ks are respectively the99

incident and the scattered optical wave-vectors, λ0 is the optical wavelength in vacuum and θ is the scattering angle.100

ξ and Φ are the size and the concentration of the scatterers, and χT is the isotherm compressibility. (qξ)2 can as well101
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be written as (qξ)2 = α (1− cos θ) with α = 2
(
2π
√
εrξ/λ0

)2
and εr = n2. Finally, φ represents the angle between102

the polarization of the incident wave and the scattering direction ks. When an incident photon, of momentum ~ki is103

elastically scattered by a refractive index heterogeneity with an angle θ, its momentum in the direction ki decreases by104

a factor ~ki (1− cos θ) and the difference is transferred to the fluid, giving birth to the scattering density force fscatt(r)105

that sets the fluid in movement. Integration over a sphere of radius Ro of ~ki (1− cos θ) corrected by the fraction of106

scattered intensity (equation (1)) finally gives the average light momentum lost in the direction of propagation ki.107

Then, from Newton’s second law, we deduce the corresponding scattering force density :108

fscatt(r) =
nI(r)

c

(
π3

λ4
0

)(
∂εr
∂Φ

)2

kBTχT f(α)
ki
|ki|

(2)109

where f(α) = 1/α4
[
8/3α3 + 2α2 + 2α−

(
2α2 + 2α+ 1

)
ln(1 + 2α)

]
. This density force is, as expected, proportional110

to the wave momentum and to the turbidity $ =
(
π3

λ4
0

) (
∂εr
∂Φ

)2
kBTχT f(α). At low Reynolds number, the Stokes111

equation easily sets an order of magnitude of the resulting axial velocity : vscatt = πω2
0f

scatt/η, where η is the112

shear viscosity and ω0 is the laser beam waist. Typical values of vscatt in our near-critical systems are in the range113

vscatt = (10−5 − 10−4) m s−1. When directed normal to a fluid interface, this scattering velocity induces in turn a114

normal viscous stress η∂v/∂z ∼ ηv/Lc ∼ σ/Lc where Lc ∈ [0.1 − 1] mm is the typical lengthscale associated with115

the flow which scales like the smallest dimension of the container [20]. In our two-fluid systems, we typically get116

η∂v/∂z ∼ (10−5−10−3) Pa. As a consequence, observation of micrometric interface deformations by scattering forces117

requires a Laplace pressure (and buoyancy) of the same order of magnitude. Such a balancing condition suggests use118

of low interfacial tension systems and explains the choice of phase-separated near-critical mixture considered in the119

present investigation since tension σ as low as (10−8 − 10−7) N m−1 can be achieved.120

2. Optical radiation pressure at fluid interfaces121

As soon as a fluid interface is present and interface deformation is under investigation, a second unavoidable122

mechanical effect of light is expected to occur experimentally : interface deformation by the optical radiation pressure.123

If this interface separates two dielectric liquids of different index of refraction ni,t (subscripts i and t refer here to124

incidence and transmission), which is almost always the case, then the photon momentum p = ~ki = nihν/c, where125

hν is the photon energy, is not conserved when traveling from one liquid to the other. The resulting mismatch gives126

birth to a radiation pressure applied to the interface in order to conserve momentum. This optical radiation pressure127

is a function of the incident and transmitted angles θi and θt at the interface. The elementary variation of the normal128

and tangent momentum components at the interface [29] is obtained by counting (i) the momentum given to the129

interface by an incident photon (ii) the momentum picked to the interface by a reflected photon, and finally (iii)130

the momentum picked to the interface by a transmitted photon. Then, it can be deduced that (i) in the absence of131

dissipation, there is no momentum transfer parallel to the interface and (ii) for a laser wave incident with an angle132

θi, the expression of the optical radiation pressure is :133

ΠRad = ni cos2 θi

[
1 +R(θi, θt)−

tan θi
tan θt

T (θi, θt)

]
I

c
n (3)134

Where n is a unit vector normal to the interface and, R(θi, θt) and T (θi, θt) = 1−R(θi, θt) are the classical reflection135

and transmission Fresnel coefficients in electromagnetic energy. By developing the expression of R(θi, θt), it appears136

that ΠRad is always normal to the interface and directed towards the liquid of smallest index of refraction whatever137

the direction of beam propagation ; in our case from fluid 2 to fluid 1 (see figure 1). The stationary height h(r) of the138

interface deformed by the optical radiation pressure can as well be found by balancing buoyancy (ρ1 − ρ2)gh(r) and139

Laplace pressure ΠLaplace(r) = −σκ(r) on the one hand, and radiation pressure ΠRad(r) on the other hand. At normal140

incidence, on the beam axis and for close indices of refraction Πrad ≈ (n2−n1)I0/c, where I0 = 2P/(πω2
0) is the beam141

intensity at r = 0 and P and ω0 are respectively the injected power and beam waist. For the typical values of refractive142

index (n2 − n1) = 10−2 − 10−3, power P = 1 W and beam waist ω0 = 10−5 m, we find Πrad ≈ (10−2 − 10−1) Pa.143

While the characteristic length of the flow induced by the scattering force is Lc, i.e. the smallest size of the container,144

the one characterizing the radiation pressure is ω0 the laser beam waist as I(r > ω0) ≈ 0 and thus Πrad(r > ω0) ≈ 0.145

3. Induced effects of the involved forces on the interface and required experimental system.146

Four main conclusions can then be advanced from the previous orders of magnitude. The first two are related to147

the mechanical effects of light. (i) Radiation pressure cannot be avoided experimentally when investigating scattering148
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FIG. 1. (a) Illustration of the experimental setup. Le is a convergent lens with a focal length Fe = 80 cm, M are mirrors and O
is an Olympus 10X objective with long working distance. (b) Schematic coexistance curve of the phase-separated near-critical
microemulsion. (c) Picture of a deformed interface by a laser beam. It shows the deformation inherent to radiation pressure
(downward in the center of the picture), the one induced by the scattering force, and the emergence of a shoulder due to
antagonist effects. The red arrows represent the eddies induced by the scattering force (d) Height variation of the shoulder
with the injected power. The gray region represents the jetting regime.
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effects on interfaces because classically the two phases in contact have different index of refraction. (ii) As radiation149

pressure is expected to be larger than the normal viscous stresses due to scattering forces, even at low refractive index150

contrast, the best way to investigate scattering effects thus needs an experimental configuration where both effects act151

in opposite direction to partly disentangle them. The two other conclusions are important for setting experimental152

conditions. (i) Turbid liquids are necessary for the observation of scattering effects, either real suspensions or fluctu-153

ating systems. (ii) Considering the order of magnitude of the expected induced normal viscous stress on the interface,154

a balance with the Laplace pressure (and possibly buoyancy) necessarily requires very low interfacial tension systems.155

It is not only sufficient to use a turbid liquid such as a suspension but it also has to be easily deformable. Fulfillment156

of both conditions led us to choose phase-separated liquid mixtures close to criticality described in the following part.157

B. Phase-separated near-critical fluid system and experimental setup158

To investigate light scattering stresses on liquid interfaces, we used the near-critical two-phase equilibrium state of a159

micellar phase of a microemulsion. The microemulsion is composed of water, oil (toluene), surfactant (sodium dodecyl160

sulfate, SDS), and co-surfactant (n-butanol-1). At low ratio of water and surfactant, thermodynamic equilibrium leads161

to the formation of a supramolecular binary liquid mixture composed of a suspension of water nanodroplets coated162

by a shell of surfactant, the micelles, dispersed in an oil continuum ; soluble on both water and oil, the co-surfactant163

is used for reducing the hydrophilic/lipophilic balance of SDS and thus allowing the formation of micelles. For the164

chosen composition (mass fractions in %wt: water, 9%, toluene, 79%, SDS, 4%, butanol, 17%), the micelles radius165

is about 4 nm [30] ; this value is small enough to keep the mixture slightly translucent at room temperature. As for166

any liquid mixture, our micellar solution presents a line of liquid-liquid critical points, here associated with a reverted167

coexistence curve [31] ; see figure 1b. It has also been demonstrated that this microemulsion belongs to the universality168

class (d = 3, n = 1) of the Ising model [32], implying that mechanical effects of light analyzed in such a system are169

expected to happen for any isotropic liquid in the same way. At the chosen composition, the critical temperature is170

Tc ' 35◦C. Above Tc, this mixture separates in two micellar phases of concentrations Φ1 and Φ2 (respectively rich and171

poor in micelles), illustrated by the schematic phase diagram shown in figure 1b. Fluid 1 and 2 denote respectively172

the bottom and top phases as illustrated in figure 1c. As for any system close to criticality, some properties, in the173

two-phase region, present divergent scaling laws or vanishing behaviors that are characteristic of second-order phase174

transition. Here the order parameter is the contrast in concentration (Φ1-Φ2). Important quantities for the present175

investigation are :176

(i) The correlation length of density fluctuations in the two-phase region which is involved in the fraction of scattered177

intensity and then in the scattering density force,178

ξ− = ξ−0

(
T − Tc
Tc

)−0.63

, with ξ−0 = 2 nm. (4)179

(ii) The susceptibility involved in the turbidity, and then in the scattering density force,180

χ− = χ−0

(
T − Tc
Tc

)−1.24

, with χ−0 = 1.344× 10−6 Pa−1. (5)181

(iii) The interfacial tension involved in the Laplace pressure,182

σ = σ0

(
T − Tc
Tc

)1.26

, with σ0 = 5× 10−5 N m−1. (6)183

(iv) The density contrast involved in buoyancy,184

(ρ1 − ρ2) = ∆ρ0

(
T − Tc
Tc

)0.325

, with ∆ρ0 = 53.625 kg m−3. (7)185

(v) the contrast of index of refraction involved in radiation pressure,186

(n1 − n2) = ∆n0

(
T − Tc
Tc

)0.325

, with ∆n0 = −0.0451 (8)187

And finally (vi) the capillary length involved in the optical Bond number Bo = (ω0/lc)
2,188

lc =

√
σ

(ρ1 − ρ2) g
= lc0

(
T − Tc
Tc

)0.47

, with lc0 = 3.1× 10−4 m. (9)189
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Also of importance is the shear viscosity of the two phases ηi (T ) = [1.46− 0.014 (T − 237)] (1 + 2.5Φi) 10−3 Pa s190

which depends on the concentration of the micellar phase Φi=1,2 = Φ0 ± ∆Φ0/2 ((T − Tc) /Tc)0.325
with Φ0 = 0.11191

and ∆Φ0 = 0.275. These scaling also show another important advantage in using such fluid systems : the above-192

mentioned properties can be tuned continuously just by changing the temperature of the system. In the present study,193

we chose ∆T = T −Tc = 0.5, 1.5, 1.9 K. Finally, the optical absorption of the mixture αa ≈ 3× 10−4 cm−1 at the used194

wavelength (λ0 = 532 nm in vacuum) is weak enough, to discard for the investigated temperatures, the laser heating195

side effects such as thermo-convection and Marangoni flows.196

The experimental setup is illustrated in figure 1a. It consists in focusing a vertical laser beam on the horizontal197

fluid interface of the two-phase sample contained in a thermally controlled fused quartz cell (40x10x2 mm3). The198

light beam is provided by a continuous wave frequency doubled Nd3+-YAG laser in the TEM00 mode. As the beam199

intensity, involved in both the scattering force and the radiation pressure, depends on both the beam power and waist,200

the setup allows for the variation of both quantities. Power is directly controlled by the power supply of the laser201

and the optical transmission of the setup. For the waist variation, we use the following scheme. The lens Le forms202

a first waist along the optical path and moving the prism Pr allows variation of the optical path between Le and203

the microscope objective O (Olympus 10X, long working distance) used to focus the beam at the interface. Using a204

focal lens Fe = 80 cm, the range of accessible beam waists in the sample is ω0 ∼ (3− 14) µm. With these values, the205

corresponding Rayleigh length, i.e. the length over which the beam can be assumed to be almost cylindrical, is always206

larger than 100µm, thus allowing numerical simulations to be confidently performed using cylindrical non-diverging207

laser waves. Note finally that the beam waist altitude inside the sample varies with the optical path between the208

lens Le and the objective O, so the cell is mounted on a vertical translation stage to precisely set the chosen beam209

waist on the interface ; this is done by observing the beam propagation in the sample using its scattering by the210

micelles (or the density fluctuations). As the index of refraction of the phase Φ1 is smaller than that of Φ2 on the211

one hand, and since we want to set opposing scattering and radiation pressure effects on the other hand, the laser212

beam is chosen to be incident from the phase Φ1 and propagates upward. The temperature T is controlled with a213

stability of ±0.05 K using a PID. An example of deformation of the interface separating the two phases Φ1 and Φ2214

above Tc is illustrated in figure 1c ; both scattering and radiation pressure effects are observed, acting in opposite215

directions as expected. This interface is illuminated by a white light source and deformations are observed using a216

large-chip high-speed CMOS camera. To prevent saturation of the chip, the field scattered in the sample is partially or217

completely suppressed using colored glass filters in front of the camera. A typical example of experiment is presented218

in figure 1d. By increasing the beam power, for given waist and T −Tc, the interface is increasingly deformed in both219

vertical directions : (i) due to the refractive index contrast between the two phases, the radiation pressure produces a220

deformation downward with a typical radial size comparable to the beam diameter, and (ii) a much wider deformation221

in the direction of propagation, i.e. upward, due to scattering forces on both liquid phases ; this larger wideness is due222

to scattering effects and not only depends on beam intensity but also on hydrodynamic boundary conditions. Note223

also on snapshots that interface shapes due to radiation pressure become nonlinear when increasing the beam power224

[33]. As scattering and radiation pressure effects are chosen to be antagonist in order to disentangle them as much225

as possible, the curve presented in figure 1d corresponds to the shoulder height where the contribution of scattering226

flows versus radiation pressure stresses is the largest. For the chosen conditions, it appears that this shoulder height227

starts to behave nonlinearly for incident power between P = 0.5 W and P = 1.0 W. Above this range, the height228

increases more rapidly and eventually the interface deformation becomes unstable at the shoulder location for some229

well-defined threshold power, giving birth to an off-axis stable jet.230

In the following part, we describe the physical system and the numerical method used.231

II. PHYSICAL MODEL232

To solve numerically the deformation of an initially flat interface by the scattering force, we use a boundary233

element method [20]. The Reynolds number being small (Re ≈ 10−4 [19]) we solve the Stokes equation and the mass234

conservation in each liquid phase :235

{
0 = −∇pi + ηi∆vi + fscatti ,
0 = ∇ · vi.

(10)236

237238

Considering the axisymmetry of the laser-fluid interaction, we introduce cylindrical coordinates (r, θ, z) of the239

orthogonal basis (er, eθ, ez). The z axis is taken positive in the direction of propagation of the laser beam and240

the origin z = 0 is set on the initially flat interface. The subscript i = 1, 2 denotes for the liquid phases 1 and 2241

(see figure 2). The corrected pressure term pi contains the hydrostatic pressure and the gravitational component242
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FIG. 2. Experimental evolution of the deformation of an initially flat interface under the mechanical effects of a laser beam.
The laser is turn-on at t = 0 s. This experiment was performed in a near-critical two-phase micro-emulsion at T − Tc = 1 K,
where Tc is the critical temperature. The beam power is P = 308 mW and the beam waist is ω0 = 9.8 µm. The green arrow
denotes for the direction of propagation of the incident laser wave while the three others show where the manifestation of both
the radiation pressure (red arrow from the large to the low refractive index phase, n2 > n1) and the scattering force (blue
arrows in the direction of propagation of the wave) induce visible effects on the fluid interface. The scattering deformation
being wider than the radiation pressure one, the global deformation shows a circular shoulder indicated by the black arrow.

pi = p′i + ρigh. ηi and vi = vzi(r, z)ez + vri(r, z)er are respectively the viscosity and the velocity field of the fluid243

phase i and fscatti is the scattering force density. The detailed calculation of this force for single scattering from244

Rayleigh scatterers is given in appendix A. Equation (2) can be rewritten in a compact form as :245

fscatti = $i
ni
c
Iez. (11)246

Where $i is the turbidity coefficient and niI/c is the light momentum in the liquid phase i. For the temperatures247

imposed experimentally, ∆T = T − Tc = 0.5, 1.5, 1.9 K, we respectively $1 = 136 m−1, 102 m−1 and 92 m−1. One248

can note also that $2 ≈ $1 close to a critical point. I(r) = I0 exp−2(r/ω0)2 is assumed as non-divergent during its249

propagation inside the whole sample. The stress balance at the interface is given by :250

[T1 − T2] · n = [σκ−∆ρgh(r)].n (12)251

With Ti = −pI + ηi(∇vi +∇tvi) the hydrodynamic stress tensor corrected by the pressure term and n a unit vector252

normal to the interface directed from fluid 1 to 2. Finally, we impose continuity of the velocity at the interface, we use253

a Lagrangian description to track the interface motion and we consider a classical no-slip condition at the container254

boundaries.255

dx

dt
= v(x), v1 = v2, at the interface.

v1 = v2 = 0, At the solid boundaries.
(13)256
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As we focus here on the dynamic effects of the scattering force over the interface, we did not include in our calculations257

a possible coupling with radiation pressure effects (already investigated numerically in stationary conditions and for258

small amplitude deformations [20]). Moreover, in order to focus on the effects of turbidity, we choose to consider259

η1 = η2 in our simulations which is totally consistent with experiments in phase-separated near-critical mixtures as260

η1/η2 ∈ [1.07, 1.11] for the range of temperature investigated here. We choose for the dimensions of the cylindrical261

numerical container of height 2L and radius R to consider L = L1 = L2 = 150ω0 for the liquid layer thicknesses262

and R = 60ω0 for their radial extension. These dimensions were chosen to discard as much as possible boundary263

effects due to finite volume of calculation. In addition, the radial extension was always chosen to be larger than 4lc264

for the range of investigated temperatures where lc is the capillary length lc =
√
σ/(∆ρg). The length 4lc gives265

a confident distance from which one can consider the interface dynamic free of container sidewalls influence. We266

introduce two dimensionless numbers, an optical Bond number Bo = (ω0/lc)
2

= (∆ρgω2
0)/σ which describes the267

effects of buoyancy over capillarity with ω0 the beam waist as characteristic length (since we cannot discard radiation268

pressure experimentally), and a capillary number Cai = ηi(∂vzi/∂z)/(σ/L) to represent the balance between viscous269

and interfacial stresses at the interface with L the characteristic length of the flow. As vzi depends on ω0 for |r| ≤ ω0270

(see figure 4 and 6 in [20]) we can deduce from equation (10) that ηi∆vzi ∼ ηivzi/ω
2
0 ∼ fscatti . Strictly speaking,271

it means that the capillary number Cai is space dependent due to the radial variation of the laser beam intensity272

and thus Cai = (2ni$i)/(πcσ)Pe−2( r
ω0

)2 . Conversely, due to the inherent radiation pressure surface effects (not273

considered for the sake of simplification in the simulations) on the beam axis of the experiments that opposes to274

scattering interface deformations, the largest observable manifestation of scattering flows appears at the shoulder275

r ≈ ω0 (see figure 2 for maximum hump amplitude and figure 4 for the jetting instability). Thus the experimental276

capillary number should be evaluated at r ≈ ω0 (as Πrad(r = ω0) ≈ 0) to get quantitative comparisons between277

experimental and numerical results ; it is then given by Cai = (2ni$i)/(πcσ)P/e2. Additionally, as experimentally278

the jet is formed on the shoulder of the deformation, i.e. where the scattering force contribution is the largest in279

presence of radiation pressure, we would like to compare the viscous stress and the Laplace pressure at this location.280

However, as it is not obvious to determine exactly the initial position of the jet nor the local viscous stress in situ,281

we decided to compute the experimental capillary number by introducing an effective power taking into account the282

radial decrease of the intensity. Indeed, as the jet is misaligned with the beam axis, defining a “centered“ capillary283

number leads to irrelevant experimental thresholds capillary numbers (Cath ∈ [5− 10] [21]).284

In the next section, we describe the dynamics of the deformed interface by scattering forces before the jetting285

instability threshold. We made the choice hereafter to present all capillary numbers using Ca1 as one should note286

that close to a critical point, where scattering effects are the largest, Ca2 ≈ Ca1 ≡ Ca.287288

III. BELOW THRESHOLD289

It was previously demonstrated that the scattering force density can produce small deformations [20] of a soft290

liquid/liquid interface by inducing bulk flows in turbid media in the form of toroidal eddies. Typical pictures of291

the dynamics of a small amplitude deformation is depicted figure 2. We report on figure 3 the experimental (open292

symbols) and the numerical (dashed lines) evolution of the shoulder height normalized by the beam waist with the293

viscocapillary time defined with the beam waist as length scale τ = (ω0η2)/σ (the viscous reference velocity of the294

interface is Uσ = ω0/τ) for different Bond numbers (including beam waist variation) and for several capillary numbers295

(including beam power variation). The experimental capillary numbers are calculated as discussed in the previous296

section and the corresponding injected powers are given in the figure caption. Two regimes are noticeable on the297

experimental dynamics. First, at short time, the interface is deformed by the viscous stress induced by the scattering298

force in the direction of propagation of the laser beam. Then, at longer time, the interface is pulled back in the299

opposite direction by radiation pressure. The numerical dynamics in 2, which consider only scattering force, show300

clearly that the radiation pressure is involved in the long-time process as the numerical deformations simply grow and301

reach a stationary state. As the time scales observed experimentally are well separated, we propose an empirical law302

which considers the addition of the deformation induced by the scattering force and the pull back due to radiation303

pressure :304

h(t) = α[(1− e(− t
τ1

) − β(1− e(− t
τ2

))] (14)305

With α, β, τ1 and τ2 four fitting parameters. The empirical law (plain lines in figure 3) describes well the experimental306

measurements. We obtain two characteristic times, τ1 which corresponds to the effect of the scattering force at short307

time scale and τ2 assigned to the second slower phenomenon related to radiation pressure. For all the dynamics308

we find τ1 ∈ [0.45, 0.65]s which scales like Lc/v
scatt [20], with Lc, the smallest dimension of the container and309

vscatt = (fscatti πω2
0)/ηi = (2Pni$i)/(cηi) derived from a one-fluid model. The fact that τ1 is independent of the310
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FIG. 3. Dynamics of the interface shoulder at different Bond numbers (with, from top-left corner to bottom-right one, ω0 =
2.7, 5.3, 7.5, 9.8 µm) and for several capillary numbers (with P = 346.5 mW, 693 mW ; P = 442 mW, 885.5 mW ; P = 616 mW,
1232 mW ; 616 mW, 1232 mW from top-left to bottom-right). Since radiation pressure is also present, the measurements are
taken on the shoulder of the deformation (see figure 1c), where the scattering force effects are the most visible. All these results
were obtained at T − Tc = 1.5 K. Open symbols are experimental data and are fitted (plain lines) with equation (14). Dashed
lines are numerical simulations considering scattering forces only.

beam waist ω0 expresses again the non-local feature of the interface deformation induced by the scattering force.311

Additionally, the time scale associated to the numerical dynamics τnum ∈ [0.7, 0.9]s is close to the experimental one312

and shows that τ1 is associated to the scattering force. Conversely, τ2 ranges from a few to tens of seconds. It313

has been demonstrated in previous studies that deformations induced by significant radiation pressure act as liquid314

waveguides [33] with complex adaptation of the incident spatial field distribution. A given amount of eigenmodes of315

the field is guided into the deformation which modifies in turn the radiation pressure. Depending on the beam power316

and waist, this modified field may pull the central deformation from an equilibrium z-position to another. Reaching317

a new stationary state may take time as the field and the interface continuously adapt to each other. This complex318

nonlinear behavior of the radiation pressure [33] can explain the decreasing of the height amplitude observed at long319

time in figure 3.320

In the following, we will see that when we increase sufficiently the capillary number above a threshold value denoted321

Cath, the scattering contribution becomes large enough to destabilize the interface. A ”fountain” jet emerges on the322

shoulder of the deformed interface as illustrated in figure 4. Statistically, this jet can form in any place on the circular323

shoulder. However, in the experiments the jetting breaks the symmetry, and therefore it becomes impossible to324

directly simulate the real system because of the axisymmetry of our simulation. As introduced before, (i) we discard325

radiation pressure effects which do not produce stationary flow, (ii) we choose to keep simulating liquid jets centered326

on the propagation axis of the laser beam and (iii) we compare numerical results with experimental ones considering327

their respective capillary numbers.328329
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FIG. 4. Temporal evolution of the deformation of the soft liquid interface followed by its destabilization and emergence of a331

micro-jet. T − Tc = 1.5 K, P = 1540 mW and Bo = 8.6× 10−2 with ω0 = 7.5 µm. At time t = 0 s the laser is turned on. The332

white arrow highlights the emergence of a liquid tip at the shoulder of the deformation which turns into a micro-jet in the wave333

propagation direction ; note that this jet is shifted regarding to the beam axis due to the fact that it is constituted by the334

liquid phase of smallest index of refraction. It seems to be centered at the end of the movies, but it had just moved in front of335

the camera ; the shoulder is still present.336
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FIG. 5. Comparison between the height evolution of experimental jets (filled dots) and numerical ones (lines). Both experimental
jets were obtained at T − Tc = 1.5 K and the Bond number are calculated with ω0 = 7.5, 9.8 µm. The experimental dynamics
(see figure 4) are considered at short times on the shoulder of the deformation and then at the apex of the jet. Experimentally,
we do not observe jets larger than h/ω0 > 10 due to the limited size of the camera chip. Numerically the height of the interface
is taken at r = 0 as we discarded radiation pressure effects.

IV. BEYOND THRESHOLD337

As a validation of our approach, we compare the dynamics of experimental and numerical jets. We plot in figure 5338

the evolution of experimental and numerical deformations actuated by the scattering force using the viscocapillary339

time. We then compare experimental dynamics with several predicted ones for different capillary numbers. Following340

the discussion in the section II and considering a spatially dependent capillary number, the computed numerical341

dynamics correspond to different radial positions where the jet would be induced experimentally. As expected the342

best match is retrieved in figure 5 by considering a shoulder at r
ω0
≈ 1, which is in agreement with the experimental343

jet position. Then, in order to get experimental capillary numbers comparable with numerical ones, we choose in the344

following to always consider Caexp at r/ω0 = 1.345

In the next sections, we describe the different properties of the induced experimental and numerical liquid micro-346

jets. We compare the velocity field inside the jets computed numerically with an analytical model, characterize their347

radii and finally determine the resulting fluid flow rates.348349

A. Velocity350

In order to calculate the fluid flow rate through the numerical jets, we computed the bulk velocity field by BEM.351

We observe on figure 6 an experimental jet with a corresponding numerical one superimposed on the same image352

(panel (a)) and the same numerical jet plotted along with the streamlines of the induced velocity field (panel (b))353

obtained with a capillary number Ca = 1.08. Disregarding the fact that the experimental jet is misaligned with the354

laser beam, both jets are very similar and extremely thin (few micrometers in diameter).355

As expected from mass conservation, we observe the formation of toroidal flows which scale as the smallest di-356

mension of the container (here the radial extension) in each liquid phase. The same kinds of flows can be observed357

experimentally (see figure 1 of [20]). Note that by linearity of the Stokes equation (10) the velocity is proportional358

to fscatt and thus to Ca. To validate the computed velocity field, we also calculated analytically the hydrodynamic359

velocity we would obtain considering a perfect cylindrical jet [19]. We consider the flow into the jet as a viscous360
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FIG. 6. Analysis of the hydrodynamic velocity field. (a) Experimental image of a jet induced by the scattering force and
the corresponding simulated profile at T − Tc = 1.5 K, Bo = 8.6× 10−2 (ω0 = 7.5 µm), Ca = 1.07 (P = 1540 mW). (b)
Numerical flow pattern of the velocity field at Bo = 8.6× 10−2 and Ca = 1.07. (c) Comparison between the velocity field at
the cross-section represented by the dashed red line in (b) with the analytical solution obtained for a perfect cylindrical jet.

incompressible steady laminar flow for which the velocity field has only radial dependences along the z axis. Fur-361

thermore, as the scattering force also depends on r along z, equation (10) implies ∂rpi = 0 which tells us that the362

corrected pressure only depends on z. Then by taking the divergence of equation (10), one finds ∂2
zpi = 0. So the363

pressure gradient is constant in both liquid phases ∂zpi = Ci.364

To obtain the whole expression of the pressure, we use equation (12). For r � ω0, and at z = 0, the interface is365

flat (curvature is null) and the amplitude of the hydrodynamic velocity field is negligible (see figure 6 panels (b)), so366

equation (12) gives us p1(z = 0) = p2(z = 0) = p0 the pressure at z = 0. Finally, as all terms of equation (12) are367

invariant along z axis, p1(z) − p2(z) should also be constant. Hence, we must choose C1 = C2 = C. We can now368

rewrite equation (10) in a dimensionless form with the characteristic lengths chosen earlier :369

1

r

d

dr
(r
d

dr
vzi(r)) = C − Cai

αi
e−2r2 (15)370

371

αi =

{ η2
η1

if i = 1

1 if i = 2
(16)372

By integrating these equations in each liquid phase, we get the following coupled equations :373

vz1(r) =
C

4

(
r2 − r2

1

)
+
Ca1

4α

(
Ei(−2r2)

2
− Ei(−2r2

1)

2
− ln

(
r

r1

))
(17)374
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375

vz2(r) =
C

2

{
1

2

(
r2 − r2

3

)
− r2

2ln

(
r

r3

)}
+
Ca2

4

(
Ei(−2r2)

2
− Ei(−2r2

3)

2
376

− e−2r22 ln

(
r

r3

))
(18)377

with Ei the exponential-integral function and C, r1, r2, and r3 four unknowns which are calculated numerically by378

considering (i) the continuity of the tangential velocity at the interface, (ii) the continuity of the shear stress at the379

interface, (iii) a no-slip condition on the domain boundaries and (iv) a flow rate outside the jet (into the liquid phase380

2) equal to zero due to mass conservation. We plot in figure 6 panel (c), the comparison between the numerically381

calculated velocity over a cross-section of the jet and the corresponding analytical solution. These velocity profiles382

match perfectly.383

B. Radius384

We need now to characterize the jet radii. Experimentally and numerically, as the jets are never perfectly cylindrical,385

the reported radii are taken as the mean ones of the most cylindrical part of the jets. Thus, we plot in figure 7 the386

variation of the jet radii with the capillary number ; the insets show (a) their variation from the threshold of jet387

formation in a logarithmic scale with Rth and Cath respectively the radius and the capillary number at the threshold388

and (b) the viscous stress on the jet interface. We retrieve a good agreement between numerical and experimental389

results despite some dispersion into the measurements of the experimental radii and a small systematic overestimation390

of the numerical jet radius likely due to the asymmetric character of the experimental configuration (see figure 4).391

Furthermore, figure 7 inset (a) shows that the jet radius, relatively to its threshold value, do not depend on the Bond392393

number, and therefore demonstrates again the nonlocal nature of the scattering force. Simple scaling arguments can be394

given to explain this linear behavior. Indeed, we assume that the radial viscous stress on the jet interface should have395

a negligible variation so that ∂vz/∂r ∼ A with A a constant . By definition of the capillary number on a cylindrical jet396

with small interface fluctuations, we have Ca = η(∂vzi/∂r)/(σ/Rjet) and therefore Ca ∼ A×Rjet. Finally, increasing397

the beam power, i.e. Ca, will lead to a proportional increase of Rjet in order to avoid any subsequent increase of the398

viscous stress which is maintained constant at the interface. This is demonstrated numerically in figure 7 inset (b)399

where we plotted the viscous stress normalized by the viscosity on the jet interface as a function of its radius ; we400

observe that ∂vz/∂r is constant for Rjet/ω0 ≥ 1.401

Once simulated jet radius and flow are characterized, we calculate next the fluid flow rates and compare them to402

the experimental ones.403

C. Fluid flow rate404

Experimentally the fluid flow rate is calculated by measuring the volume of the drops emitted at the tip of the405

micro-jet during several seconds. The total volume ejected is then divided by the whole measurement time to obtain406

the corresponding mean flow rate [19], see the snapshot on figure 8. To determine the numerical fluid flow rate, we407

integrate the computed fluid velocity over a cross-section of the cylindrical jet :408

Q = 2π

∫ Rjet

0

vz1rdr (19)409

As Rjet ∝ Ca and vz ∝ Ca we should expect the fluid flow rate to be proportional to Ca3. This cubic dependence of410

the fluid flow rates with the capillary number is retrieved numerically and the same order of magnitude is observed411

when comparing with the experiments ; thus qualitative agreement is illustrated in figure 8(a) and (b). However,412413

discrepancies in amplitude between experimental and numerical fluid flow rates are observed. They probably come414

from the fact that experimentally we determine the fluid flow rates by considering the emitted volume of fluid at415

the tip of the jet and not inside a jet cross section. On the one hand, the break-up at the jet tip and then the416

emission of droplets are affected by the Laplace pressure through the interfacial tension. On the other hand, when a417

droplet is ejected, the jet undergoes a recoil which can affect the hydrodynamics in a more complex way than the one418

considered in this article. Moreover, these discrepancies can also come from several other factors. For example, the419

chosen dimensions in the simulations allow us to discard any boundary effect but it may not always be true in the420

experiments. Indeed, due to the jet length, the droplets are ejected close to the top wall of the cell where the axial421

velocity decreases quickly. Additionally, if the laser is focused on the interface close to the radial boundaries (which is422
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FIG. 7. Variation of the micro-jet radius with the capillary number for different Bond numbers ; corresponding to the ex-
perimental beam waists ω0 = 4.4, 4.8, 5.5, 6.4, 3.0, 3.9, 4.4, 5.9, 7.1 µm. Numerical jet radii are represented by dashed lines and
experimental ones with open (T − Tc = 1.5 K) and filled (T − Tc = 1.9 K) symbols. Inset (a) : Same data normalized by their
value at the jetting threshold Rth and Cath in log-log plot. Inset (b) : Evolution of the numerical viscous stress at the jet
interface , normalized by the viscosity, with the jet radius for the Bo numbers considered numerically (same color code).

the case in the experiments in order to improve optical contrast) it may also affect the hydrodynamic by reducing the423

fluid flow rates. Nonetheless, it was found in reference [19], with a different configuration (when the resulting stress424

of the radiation pressure and the scattering force are both collaborating in the same direction), that the experimental425

fluid flow rate increases as Ca2.63, which is close to our numerical results ; in this collaborating configuration, the jet426

is much more stable as the laser beam propagates into it and stabilizes it by mode guiding.427

In further works it could be interesting to try to simulate dripping jets to characterize numerically the fluid flow428

rate through ejected droplets, in order to have a better understanding of the present discrepancies.429

V. CONCLUSION430

We described experimentally and numerically the whole dynamics of deformations of soft interfaces by light scatter-431

ing density forces up to instability and the emergence of liquid fountains. We first analyzed the dynamics of interface432

deformations below instability threshold and measured the associated characteristic times. Using an empirical expres-433

sion which fits well with the whole set of experimental dynamics, we showed that deformations are initially induced by434

a non-local effect which corresponds to the viscous stress exerted by the bulk flow triggered by the momentum transfer435

of light in turbid liquids. In a second part, increasing the amplitude of the bulk flows driven by light scattering, we436

described the interface behavior above its instability threshold at which liquid micro-jets emerge. We characterized437

their radius evolution and demonstrated that they increase linearly with the capillary number. By computing the438
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number for different Bond numbers. The insets show the same data normalized by their value at the threshold. The plain black
line in both insets is a fit of the whole set of curves according to Q/Qth = a0 × (Ca/Cath)3 with a0 = 1.87 for BEM results
and a0 = 0.59 for experimental ones. All the experimental results plotted here were obtained at T −Tc = 1.5 K and their Bond
numbers are calculated with ω0 = 3.0, 4.4, 5.5, 6.4, 7.1 µm. The snapshot shows an example of droplet train emitted at the tip
of a jet, and how they are fitted with an ellipse to calculate their volume.

hydrodynamic velocity field flowing through the jets, we were able to determine the numerical fluid flow rate which439

increases as the cube of the capillary number and compare it to the experimental ones.440

All the results presented here bring important new insights in the area of light-actuation of fluids in general and441

describe a unique way for triggering jets by light at low Reynolds number. Even if our experiments were performed in442

near-critical fluids in order to control the medium turbidity and then the amplitude of the scattering force, scattering443

forces effects can be generalized to any type of non-absorbing suspension. In reference [34] the authors already shown444

probable manifestations in colloidal solutions and we already demonstrated scattering effects in so-called turbid L3445

phases [21]. Consequently, scattering forces through momentum transfer from photons to turbid fluids proves to be446

an efficient way for setting fluid suspensions in movement in the micro-world without using any sort of pump or447

mechanical parts and the present investigation quantify the capabilities of such a contactless optical actuation.448

ACKNOWLEDGMENTS449

The authors thank Thomas Sidky for early-stage experiments on flow rate measurements.450

Appendix A: Scattering effects in turbid liquids451

In this section we present the calculation of the scattering force due to the interactions of an incident laser wave with452

a turbid fluid. Let us consider a dielectric and isotropic fluid, with a mean dielectric constant 〈ε (r, t)〉 = εl = ε0εr,453

in which an incident plane wave is propagating within the form Ei (r, t) = niE0exp [i (ki · r − ωit)], of polarization454

ni, of frequency ωi and of wave vector ki = (ωi/c)k̂i. The fluid is assumed as turbid meaning that the local dielectric455

constant includes a fluctuating part such as: ε (r, t) = εl + δε (r, t). Furthermore, the dielectric medium is considered456

as non-absorbing so that the interaction of the incident wave with the scatterers is elastic and the number of scatterers457

is considered as sufficiently low to neglect multiple scattering events.458

1. Expression of scattered field and intensity459

We consider that the amplitude of the field scattered by the fluctuations δε is significantly weaker than the incident460

field. The scattered field as well as the incident field satisfying the Maxwell equations, one can obtain the expression461
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of the scattered field in the Born approximation [35]462

ES (R, t) =
E0

4πεlR
exp [i (kfR− ωit)]kf

[
kf × ni

∫
V

d3rexp [i (q · r)] δε (r, t)

]
, (A1)463

where R is the distance between the turbid medium and the detector, kf the wave vector in the direction of R and464

q = ki − k. Considering geometric arguments, one can rewrite equation (A1) as:465

ES (R, t) =
k2
fE0

4πεlR
exp [i (kfR− ωit)] δε (q, t)

(
cosϕk̂f − ni

)
, (A2)466

where ϕ represents the angle between the polarization of the incident wave ni and the scattered wave vector direction467

k̂f . The scattering intensity is related to the auto-correlation function of the scattering field ES , such as:468

〈E∗S (R, 0) ·ES (R, t)〉 =
k4
f |E0|2

16π2ε2
lR

2
〈δε (q, 0) δε (q, t)〉 exp (−iωit)

∣∣∣cosϕk̂f − ni

∣∣∣2 . (A3)469

where 〈A〉 = limT→∞(1/T )
∫ T

0
A(t)dt. Thus, the spectral density of the scattered light measured by a detector placed470

at a distance R is given by:471

I (q, ωf , R) ≡ 1

2π

∫ +∞

−∞
dtexp (iωf t) 〈E∗S (R, 0) ·ES (R, t)〉 . (A4)472

After some developments, one can write the total scattering intensity as :473

I (q, ωf , R) =

[
I0k

4
f sin2ϕ

16π2ε2
lR

2

]〈
|δε (q)|2

〉
, (A5)474

with I0 = |E0|2 the intensity of the incident wave and
〈
|δε (q)|2

〉
representing the scattering properties of the turbid475

medium. After the evaluation of the term
〈
|δε (q) |2

〉
in equation (A5) in the Ornstein-Zernike approximation [35] for476

quasi-critical fluids, one comes up with :477

I (q, ωf , R) =

[
I0k

4
f sin2ϕ

16π2ε2
lR

2

] ∣∣∣∣∂εl∂ρ
∣∣∣∣2 β−1ρχT 〈N〉

 1

1 +
(
q
q0

)2

 , (A6)478

where β = 1/(kBT ), χT is the isotherm compressibility and q−1
0 = ξ the correlation length of density fluctuations.479

As ρ = 〈N〉 /V , with 〈N〉 the average number of scatterers in volume V of the scattering medium, εl = ε0εr and480

kf = (2π
√
εr)/λ0 = (2πn)/λ0 (λ0 being the wavelength of the incident beam in vacuum), we can write :481

I (q, ωf , R)

I0
=
π2

λ4
0

(
ρ
∂εr
∂ρ

)2

kBTχT

 1

1 +
(
q
q0

)2

 V

R2
sin2ϕ. (A7)482

In the equation (A7) we consider ρ which is not really a density but rather a number of scatterers per unit volume.483

In the case of a binary mixture, the volume fraction of scatterers is thus simply ρvi = (〈N〉 vi)/V = Φ (vi is the484

volume of the scatterer i). Furthermore, by replacing the isotherm compressibility by the osmotic compressibility (the485

pressure at work in a binary mixture being the osmotic pressure Π), we obtain finally for the total scattering intensity486

in turbid media :487

I (q, ωf , R)

I0
=
π2

λ4
0

(
∂εr
∂Φ

)2

kBTχT

 1

1 +
(
q
q0

)2

 V

R2
sin2ϕ, (A8)488
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2. Expression of the scattering force in turbid fluids489

The fraction of scattered intensity in a binary mixture is given by equation (A8) with q = |ki − kf | = 2kisin (θ/2) =490 (
4π
√
εr/λ0

)
sin (θ/2) and (q/q0)

2
= (qξ)

2
= α (1− cosθ), where α = 2

(
2π
√
εrξ/λ0

)2
(ξ being the correlation length491

of the density fluctuations of the medium). θ represents the scattering angle whereas ϕ is the angle between the492

polarization of the incident wave and the direction of the scattered wave vector. One can define as well ψ which493

reflects the angle between the polarization of the incident wave and the scattering plane such as cosϕ = cosψsinθ.494

Thus, equation (A8) can be written as:495

I (q, ωf , R)

I0
= AχT

[
1− cos2ψsin2θ

1 + α (1− cosθ)

]
V

R2
, (A9)496

with A = (π2/λ4
0) ((∂εr/∂Φ))

2
kBT .497

When an incident photon carrying a momentum }ki is elastically scattered by a scatterer of the medium with498

an angle θ, its momentum in the direction k̂i decreases by a quantity }ki (1− cosθ). This losses of momentum is499

transferred to the medium giving birth to the scattering force allowing motion of the fluid. Thus, the mean value of500

momentum lost per photon in the direction k̂i is given by the integration on the surface of a sphere of radius R of the501

intensity lost in the direction k̂i by elastic scattering. This mean value on the surface of radius R with the surface502

element R2dψsinθdθ = R2dΩ (with Ω the solid angle) is :503

∆pf =}k
∫ 2π

0

dψ

∫ +1

−1

R2d (cosθ)
I (q, ωf , R)

I0
(1− cosθ) . (A10)504

After integration and mathematical manipulation, we obtain :505

M pf = }kAV χTπg (α) , (A11)506

with the function :507

g (α) =
1

α4

[
8

3
α3 + 2α2 + 2α−

(
2α2 + 2α+ 1

)
ln (1 + 2α)

]
. (A12)508

If N represents the number of photons per surface and time units from an incident laser wave, the scattering force509

per unit volume can be expressed as fscatt = N∆pf/V . and becomes :510

fscatt = Nhν
√
εr
c
AχTπg (α) . (A13)511

512

Replacing in equation (A13) A by its expression given above and taking into account that I0 = Nhν, we finally obtain513

the expression of the scattering force per unit volume applied to a turbid binary liquid mixture as :514

fscatt(r) =
nI0(r)

c

(
π3

λ4
0

)(
∂εr
∂Φ

)2

kBTχT g (α) , (A14)515

With I0(r) is the intensity of the incident Gaussian wave with wavelength in vacuum λ0. Equation (A14) is valid as516

far as (i) the Ornstein-Zernike approximation is verified and (ii) scattering remains elastic and single.517
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Appendix B: Table summarizing physical properties and dimensionless numbers518

Setup properties Temperature dependent variables Dimensionless numbers

ξ− = ξ−0

(
T − Tc
Tc

)−0.63

Tc = 308K χ− = χ−0

(
T − Tc
Tc

)−1.24

τ = ω0η2
σ

∆T ∈ [0.5, 1.9]K σ = σ0

(
T − Tc
Tc

)1.26

Uσ = σ
η2

ω0 ∈ [3, 9.8]µm ∆ρ = ∆ρ0

(
T − Tc
Tc

)0.325

Bo = ω0
lc

2

λ0 = 532nm ∆n = ∆n0

(
T − Tc
Tc

)0.325

Cai = 2ni$iP
πcσ

exp−2

P ∈ [346, 1920]mW lc =

√
σ

(ρ1 − ρ2) g
= lc0

(
T − Tc
Tc

)0.47

ηi (T ) = [1.46− 0.014 (T − 237)] (1 + 2.5Φi) .10−3

Φi=1,2 = Φ0 ±∆Φ0/2 ((T − Tc) /Tc)0.325

$i =
(
π3

λ4
0

)(
∂εri
∂Φi

)2

kBTχT f(α)

519

TABLE I. Summarizing table of the physical parameters and dimensionless numbers used in the experiments and simulations.520

With ξ−0 = 2 nm, χ−0 = 1.344 10−6 Pa-1, σ0 = 5 10−5 N m-1, ∆ρ0 = 53.625 kg m-3, ∆n0 = −0.0451, lc0 = 3.1 10−4 m, Φ0 = 0.11521

and ∆Φ0 = 0.275.522
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