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Well-posedness and optimal decay rates for the viscoelastic Kirchhoff equation

In this paper, we investigate the well-posedness as well as optimal decay rate estimates of the energy associated with a Kirchhoff-Carrier problem in ndimensional bounded domain under an internal finite memory. The considered class of memory kernels is very wide and allows us to derive new and optimal decay rate estimates then those ones considered previously in the literature for Kirchhoff-type models.

Introduction

The nonlinear vibrations of an elastic string are written in the form of partial integro-differential equations by

ρh ∂ 2 u ∂t 2 = p 0 + Eh 2L L 0 ∂u ∂x 2 dx ∂ 2 u ∂x 2 + f, (1.1) 
for 0 < x < L and t ≥ 0, where

                            
u is the lateral deflection, x is the space coordenate variable while t denotes the time variable, E represents the Young's modulus, ρ designates the mass density, L indicates the string's lengh, h represents the cross section, p 0 denotes the axial tension, f represents an external force.

The model (1.1) has been introduced by Kirchhoff [15] in the study of the oscillations of stretched strings and plates, so that equation (1.1) is called the wave equation of Kirchhoff type until now. It is worth mentioning that, when p 0 = 0, the model (1.1) is called degenerate, and when p 0 > 0, we denominate it as a non-degenerate model.

There is a large literature regarding the Kirchhoff equation. In the sequel, we would like to mention some important works on this subject. Regarding the wellposedness of problem (1.1), the analytic case is rather known in general dimensions, as, for instance, [START_REF] Shibata | On global solvability of nonlinear viscoelastic equations in the analytic category[END_REF], [START_REF] D'ancona | Global solvability for the degenerate Kirchhoff equation with real analytic data[END_REF] and [START_REF] Pohozaev | On a class of quasilinear hyperbolic equations[END_REF]. In what concerns solutions for (1.1) lying in Sobolev spaces and, as far as we know, the results presented in the literature are only local in time, as, for example, [START_REF] Arosio | On the mildly degenerate Kirchhoff string[END_REF] and [START_REF] Menzala | On classical solutions of a quasilinear hyperbolic equation[END_REF]. However, when equation (1.1) is supplemented by some type of dissipative mechanism, which allows us, roughly speaking, to derive decay rate estimates for the solutions of the linearized problen of (1.1), it is possible to recover the global solvability in time. Consequently, deriving global solutions in time deeply depends on the decay structure of the solutions to the corresponding linearized problem of (1.1). Therefore, we are led naturally to consider the Kirchhoff equation subject to a dissipative term which guarantees the decay properties of the linearized problem. When the dissipation is given by a frictional mechanism, like g(∂ t u), there is a large body of works in the literature, see, for instance, [START_REF] Benaissa | Energy decay of solutions of a wave equation of φ-Laplacian type with a general weakly nonlinear dissipation[END_REF], [START_REF] Brito | The damped elastic strechted string equation generalized: existence, uniqueness, regularity and stability[END_REF], [START_REF] Cavalcanti | Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation[END_REF], [START_REF] Hosoda | On some nonlinear wave equations 2: global existence and energy decay of solutions[END_REF], [START_REF] Komornik | Exact Controllability and Stabilization. The Multiplier Method[END_REF], [START_REF] Koueémon-Patcheu | Existence globale et décroissance exponentielle de l'énergy d'une équation quasilinéaire[END_REF], [START_REF] Lasiecka | Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation[END_REF], [START_REF] Menzala | On classical solutions of a quasilinear hyperbolic equation[END_REF], [START_REF] Miranda | Existence and boundary stabilization of solutions for the Kirchhoff equation[END_REF], [START_REF] Nakao | Remarks on the existence and uniqueness of global decaying of nonlinear dissipative wave equations[END_REF] and a long list of references therein.

In this paper, we investigate the well-posedness as well as optimal decay rate estimates of the energy associated with the following Kirchhoff-Carrier problem with memory:

         u ′′ -M (||∇u(t)|| 2 2 )∆u + t 0 g(t -s)∆u(s) ds = 0 in Ω × R + , u = 0 on Γ × R + , u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) in Ω , (1.2) 
where Ω is a bounded domain in R n , n ∈ N * , with smooth boundary ∂Ω := Γ. While there is a great number of papers regarding the Kirchhoff equation subject to a frictional damping, in contrast, there is just a few number of papers concerned with the Kirchhoff equation subject to a dissipation given by a memory term. We are aware solely the paper [START_REF] Rivera | Existence and decay in non linear viscoelasticity[END_REF], where stronger conditions were considered on the kernel of the memory term. The assumption given in (1.7), firstly introduced in [START_REF] Messaoudi | General decay of solutions of a viscoelastic equation[END_REF], is much more general and allows us to consider a wide class of kernels, and consequently, get new and optimal decay rate estimates then those ones considered previously in the literature for the linear viscoelastic wave equation. In the present paper, we combine techniques given in [START_REF] Messaoudi | General decay of solutions of a viscoelastic equation[END_REF] with new ingredients inherent to the nonlinear character of the Kirchhoff equation (1.2).

It is worth mentioning some important contributions in connection with viscoelasticity, among them, we would like to mention [START_REF] Cavalcanti | Intrinsic decay rate estimates for the wave equation with localized competing viscoelastic and frictional dissipation[END_REF], [START_REF] Cavalcanti | Frictional versus viscoelastic damping in a semilinear wave equation[END_REF], [START_REF] Dafermos | An Abstract Volterra Equation with Application to Linear Viscoelasticity[END_REF], [START_REF] Dafermos | Asymptotic Stability in Viscoelasticity[END_REF], [START_REF] Fabrizio | A new approach to equations with memory[END_REF], [START_REF] Guesmia | A general decay result for a viscoelastic equation in the presence of past and finite history memories, Nonlinear Anal[END_REF], [START_REF] Jiam | A Global Existence Theorem for the Dirichlet Problem in Nonlinear n-Dimensional Viscoelasticity[END_REF], [START_REF] Messaoudi | General decay of solutions of a viscoelastic equation[END_REF], [START_REF] Renardy | Mathematical Problems in Viscoelasticity[END_REF] and references therein. 

∃m 0 > 0 : M ∈ C 1 (R + ) and M (λ) ≥ m 0 , ∀λ ≥ 0. (1.3) ∃γ, δ > 0 : M (λ) ≤ δλ γ , ∀λ ≥ 0. (1.4) ∃α, β > 0 : |M ′ (λ)| ≤ βλ α , ∀λ ≥ 0.
(1.5)

We shall assume the following assumptions on the kernel g:

Assumption 1.2. The function g : R + → R + belongs to the class g ∈ C 1 (R + ), g ′ ≤ 0 and, in addition

g(0) > 0 and g 0 := +∞ 0 g(s) ds < m 0 . (1.6)
Moreover, there exists a differentiable non increasing function ξ : R

+ → R * + such that ξ ′ ξ ∈ L ∞ (R + ), +∞ 0 ξ(s) ds = +∞ and g ′ (s) ≤ -ξ(s)g(s), ∀s ≥ 0. (1.7)
Now, we are in a position to state our main result.

Theorem 1.3. Assume that Assumption 1.1 and Assumption 1.2 are in place.

Then, there exists an open unbounded set S in (H 2 (Ω) ∩ H 1 0 (Ω)) × H 1 0 (Ω) which contains (0, 0) such that, if (u 0 , u 1 ) ∈ S, and, in addition, the initial data are taken in bounded sets of

H 1 0 (Ω) × L 2 (Ω), problem (1.2) possesses a unique global solution u satisfying u ∈ L ∞ (R + ; H 2 (Ω) ∩ H 1 0 (Ω)) ∩ W 1,∞ (R + ; H 1 0 (Ω)) ∩ W 2,∞ (R + ; L 2 (Ω)). (1.8)
Furthermore, we have the following decay estimates for the energy E given in (2.10):

E(t) ≤ c E(0)e -θ t 0 ξ(s) ds , ∀t ≥ 0, (1.9) 
where θ and c are positive constants independent of the initial data.

Our paper is organized as follows: in Section 2, we prove the general stability (1.9). The Section 3 is devoted to the proof the well-posedness (1.8). 

D R A F T

General stability

In what follows, let us consider the Hilbert space L 2 (Ω) endowed with the inner product

(u, v) L 2 (Ω) = Ω u(x)v(x) dx
and the corresponding norm

||u|| 2 2 = Ω |u(x)| 2 dx,
and the Banach space L p (Ω), for p ≥ 1, endowed by the norm

||u|| p p = Ω |u(x)| p dx.
Let -∆ be the operator defined by the triple

H 1 0 (Ω), L 2 (Ω), ((•, •)) H 1 0 (Ω)
, where

((u, v)) H 1 0 (Ω) = Ω ∇u∇v dx, ∀u, v ∈ H 1 0 (Ω) and D(-∆) = H 2 (Ω) ∩ H 1 0 (Ω).
We recall that the Spectral Theorem for self-adjoint operators guarantees the existence of a complete orthonormal system (ω ν ) of L 2 (Ω) given by the eigenfunctions of -∆. If (λ ν ) are the corresponding eigenvalues of -∆, then

0 < λ 1 ≤ λ 2 ≤ • • • ≤ λ ν ≤ • • • and λ ν → +∞ when ν → +∞. Moreover, ω ν √ λ ν is a complete orthonormal system in H 1 0 (Ω) and ω ν λ ν is a complete orthonormal system in H 2 (Ω) ∩ H 1 0 (Ω).
We denote by V m the subspace of

H 2 (Ω) ∩ H 1 0 (Ω) generated by the first m vectors w 1 , • • • , w m , namely, V m = [w 1 , • • • , w m ] and u m (t) = m j=1 γ jm (t)ω j , (2.1) D R A F T viscoelastic Kirchhoff-Carrier equation 5 
where u m is the solution of the approximate Cauchy problem

                           (u ′′ m (t), w j ) L 2 (Ω) + M (||∇u m (t)|| 2 2 )(∇u m (t), ∇w j ) L 2 (Ω) - t 0 g(t -s)(∇u m (s), ∇w j ) L 2 (Ω) ds = 0, j = 1, • • • , m, u 0m = m j=1 γ jm (0)w j → u 0 in H 2 (Ω) ∩ H 1 0 (Ω), u 1m = m j=1 γ ′ jm (0)w j → u 1 in H 1 0 (Ω). (2.2) 
By standard methods in differential equations, we can prove the existence of a solution to (2.2) on some interval [0, t m ). Then, this solution can be extended to the interval R + by using of the first estimate below.

The first estimate. Multiplying the first equation in (2.2) by γ ′ jm (t), j = 1, • • • , m, and summing the resulting expressions, we obtain

1 2 d dt ||u ′ m (t)|| 2 2 + 1 2 M (||∇u m (t)|| 2 2 ) d dt ||∇u m (t)|| 2 2 (2.3) - t 0 g(t -s)(∇u m (s), ∇u ′ m (t)) L 2 (Ω) ds = 0. Defining M (λ) = λ 0 M (s) ds, (2.4) 
and since

d dt M (||∇u(t)|| 2 2 ) = d dt ||∇u(t)|| 2 2 0 M (s) ds = M (||∇u(t)|| 2 2 ) d dt ||∇u(t)|| 2 2 ,
then we deduce, taking (2.3) and the last identity into account,

1 2 d dt ||u ′ m (t)|| 2 2 + 1 2 d dt M (||∇u m (t)|| 2 2 ) - t 0 g(t -s)(∇u m (s), ∇u ′ m (t)) L 2 (Ω) ds = 0.
(2.5) Using the binary notation 

(g u)(t) = t 0 g(t -s)|u(t) -u(s)| 2 ds, D R A F T
d dt Ω (g ∇u)(t)dx = Ω t 0 g ′ (t -s)|∇u(t) -∇u(s)| 2 ds dx + Ω t 0 g(t -s) d dt |∇u(t) -∇u(s)| 2 ds dx = Ω (g ′ ∇u)(t) dx +2 Ω t 0 g(t -s)(∇u(t) -∇u(s))∇u ′ (t) ds dx = Ω (g ′ ∇u)(t) dx + 2 Ω t 0 g(t -s)∇u(t)∇u ′ (t) ds dx -2 Ω t 0 g(t -s)∇u(s)∇u ′ (t) ds dx, which implies that, for u m instead of u, - t 0 g(t-s)(∇u m (s), ∇u ′ m (t)) L 2 (Ω) ds = 1 2 d dt Ω (g u m )(t)dx- 1 2 Ω (g ′ ∇u m )(t) dx - 1 2 t 0 g(s) ds d dt ||∇u m (t)|| 2 2 .
(2.6)

Then substituting (2.6) in (2.5) yields

1 2 d dt ||u ′ m (t)|| 2 2 + 1 2 d dt M (||∇um(t)|| 2 2 )+ 1 2 d dt Ω (g um)(t)dx- 1 2 t 0 g(s) ds d dt ||∇um(t)|| 2 2 = 1 2 Ω (g ′ ∇u m )(t) dx,
and using 1 2

d dt t 0 g(s) ds ||∇u m (t)|| 2 2 = 1 2 g(t)||∇u m (t)|| 2 2 + 1 2 t 0 g(s) ds d dt ||∇u m (t)|| 2 2 ,
we get

1 2 d dt ||u ′ m (t)|| 2 2 + M (||∇u m (t)|| 2 2 )+ Ω (g ∇u m )(t)dx - t 0 g(s) ds ||∇u m (t)|| 2 2 = 1 2 Ω (g ′ ∇u m )(t) dx - 1 2 g(t)||∇u m (t)|| 2 2 .
(2.7)

On the other hand, the hypothesis (1.3) implies that 

M ||∇u m (t)|| 2 2 = ||∇um(t)|| 2 2 0 M (s) ds ≥ m 0 ||∇u m (t)|| 2 2 , D R A F T viscoelastic Kirchhoff-Carrier equation
M ||∇u m (t)|| 2 2 - t 0 g(s) ds ||∇u m (t)|| 2 2 ≥ (m 0 -g 0 )||∇u m (t)|| 2 2 .
(2.8)

Combining (2.7) and (2.8), and observing that g > 0 and g ′ ≤ 0, we deduce

1 2 ||u ′ m (t)|| 2 2 + 1 2 (m 0 -g 0 )||∇u m (t)|| 2 2 + Ω (g ∇u m )(t)dx (2.9) ≤ 1 2 ||u 1m || 2 2 + 1 2 M (||∇u 0m || 2 2 ) ≤ L 1 ||u 1 || 2 2 , ||∇u 0 || 2 2 , ∀t ≥ 0, ∀m ∈ N,
where L 1 does not depend neither on m ∈ N nor on t ≥ 0. This implies that the approximated solution u m exists globally in the topologies given in (2.9).

Defining the energy E associated to problem (1.2) by

E(t) := 1 2 ||u ′ (t)|| 2 2 + 1 2 M (||∇u(t)|| 2 2 ) - 1 2 t 0 g(s) ds ||∇u(t)|| 2 2 (2.10) + 1 2 Ω (g ∇u)(t)dx,
then, in view of (2.7), it is non increasing function. In addition, as a consequence of (2.7), the following identity of the energy holds:

E(t 2 ) -E(t 1 ) = 1 2 t2 t1 Ω g ′ ✷∇u -g(t)|∇u| 2 dxdt ≤ 0, ∀t 2 ≥ t 1 ≥ 0. (2.11)
Energy decay estimate. Define

(g • v)(t) = t 0 g(t -s)||v(t) -v(s)|| 2 2 ds
and

(g ⋄ v)(t) = t 0 g(t -s)(v(t) -v(s)) ds. Lemma 2.1. Let ψ ∈ L 1 (R + , R + ) and u ∈ L 2 (R + ; L 2 (Ω)). Then ||(ψ ⋄ u)(t)|| 2 2 ≤ ||ψ|| L 1 (R+) (ψ • u)(t).
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Proof. Applying Hölder inequality and Fubini theorem, we have

||(ψ ⋄ u)(t)|| 2 2 = Ω t 0 ψ(t -s) ψ(t -s)(u(t) -u(s)) ds 2 dx ≤ t 0 ψ(ζ) dζ t 0 ψ(t -s) Ω (u(t) -u(s)) 2 dx ds.
✷ From now on, for short notation, we shall drop the parameter "m" in u m . We have the following useful lemma: Lemma 2.2. Let u be a solution to the approximated problem (2.2) corresponding to initial data taken in bounded sets of H 1 0 (Ω)×L 2 (Ω). Then, we have the following decay rate estimate:

E(t) ≤ c E(0)e -θ t 0 ξ(s) ds , t ≥ 0,
for some positive constants c and θ which do not depend on m ∈ N.

Proof. From (2.2), we have,

(u ′′ (t), w) L 2 (Ω) + M (||∇u(t)|| 2 2 )(∇u(t), ∇w) L 2 (Ω) (2.12) - t 0 g(t -s)(∇u(s), ∇w) L 2 (Ω) ds = 0, ∀w ∈ V m .
Recovering the potential energy.

Substituting w = u in (2.12), multiplying by ξ(t) and integrating over [0, T ], we can write

T 0 ξ(t)(u ′′ (t), u(t)) L 2 (Ω) dt + T 0 ξ(t)M (||∇u(t)|| 2 2 )||∇u(t)|| 2 2 dt (2.13) - T 0 ξ(t) t 0 g(t -s)(∇u(s), ∇u(t)) L 2 (Ω) ds dt = 0.
Having in mind that

d dt ξ(t)(u ′ (t), u(t)) L 2 (Ω) = ξ(t)(u ′′ (t), u(t)) + ξ(t)||u ′ (t)|| 2 2 + ξ ′ (t)(u ′ (t), u(t)) L 2 (Ω) ,
from (2.13) we obtain and, using (1.3) from (2.14), we find

ξ(t)(u ′ (t), u(t)) L 2 (Ω) | T 0 - T 0 ξ(t)||u ′ (t)|| 2 2 dt - T 0 ξ ′ (t)(u ′ (t), u(t)) L 2 (Ω) dt + T 0 ξ(t)M (||∇u(t)|| 2 2 )||∇u(t)|| 2 2 dt (2.14) - T 0 ξ(t) t 0 g(t -s)(∇u(s), ∇u(t)) L 2 (Ω) ds dt = 0, D R A F T viscoelastic Kirchhoff-Carrier equation
m 0 T 0 ξ(t)||∇u(t)|| 2 2 dt ≤ -ξ(t)(u ′ (t), u(t)) L 2 (Ω) | T 0 (2.15) + T 0 ξ(t)||u ′ (t)|| 2 2 dt + T 0 ξ ′ (t)(u ′ (t), u(t)) L 2 (Ω) dt + T 0 ξ(t) t 0 g(t -s)(∇u(s), ∇u(t)) L 2 (Ω) ds dt.
Now, we will estimate separately the last terms on the right hand side of (2.15). We have, using Cauchy-Schwarz and Young's inequalities,

T 0 ξ(t) t 0 g(t -s)(∇u(s), ∇u(t)) L 2 (Ω) ds dt ≤ T 0 ξ(t) t 0 g(t -s)||∇u(s)|| 2 ||∇u(t)|| 2 ds dt ≤ T 0 ξ(t) t 0 g(t -s) (||∇u(s) -∇u(t)|| 2 + ||∇u(t)|| 2 ) ||∇u(t)|| 2 ds dt = T 0 ξ(t) t 0 g(t -s)||∇u(s) -∇u(t)|| 2 ||∇u(t)|| 2 ds dt + T 0 ξ(t) t 0 g(t -s)||∇u(t)|| 2 2 ds dt ≤ (1 + ε) T 0 ξ(t) t 0 g(t -s)||∇u(t)|| 2 2 ds dt + 1 4ε T 0 ξ(t)(g • ∇u)(t) dt; that is, T 0 ξ(t) t 0 g(t -s)(∇u(s), ∇u(t)) L 2 (Ω) ds dt ≤ (1 + ε)g 0 T 0 ξ(t)||∇u(t)|| 2 2 dt (2.16) + 1 4ε T 0 ξ(t)(g • ∇u)(t) dt.
On the other hand, because ξ ′ ξ is bounded, we see that, for any ǫ 0 > 0,

T 0 ξ ′ (t)(u ′ (t), u(t)) L 2 (Ω) dt ≤ c 0 T 0 ξ(t) ǫ 0 ||u ′ (t)|| 2 2 + 1 ǫ 0 ||∇u(t)|| 2 2 dt, (2.17) 
where

c 0 = 1 2 (1 + λ -1/2 1 )|| ξ ′ ξ || L ∞ (R+) . D R A F T 10 
Guesmia, Messaoudi and Webler From (2.15), (2.16) and (2.17) we arrive at

m 0 T 0 ξ(t)||∇u(t)|| 2 2 dt ≤ -ξ(t)(u ′ (t), u(t)) L 2 (Ω) | T 0 + (1 + ǫ 0 c 0 ) T 0 ξ(t)||u ′ (t)|| 2 2 dt (2.18) + (1 + ε)g 0 + c 0 ǫ 0 T 0 ξ(t)||∇u(t)|| 2 2 dt + 1 4ε T 0 ξ(t)(g • ∇u)(t) dt.
Recovering the kinectic energy. Substituting w = g ⋄ u ∈ V m in (2.12) and multiplying by ξ(t), it results that

T 0 ξ(t)(u ′′ (t), (g ⋄ u)(t)) L 2 (Ω) dt (2.19) 
+ T 0 ξ(t)M ||∇u(t)|| 2 2 (∇u(t), (g ⋄ ∇u)(t)) L 2 (Ω) dt - T 0 ξ(t) t 0 g(t -s)(∇u(s), (g ⋄ ∇u)(t)) L 2 (Ω) ds dt = 0. But d dt ξ(t)(u ′ (t), (g ⋄ u)(t)) L 2 (Ω) = ξ(t)(u ′′ (t), (g ⋄ u)(t)) L 2 (Ω) +ξ(t)(u ′ (t), (g ′ ⋄ u)(t)) L 2 (Ω) +ξ(t) u ′ (t), t 0 g(t -s)u ′ (t) ds L 2 (Ω) +ξ ′ (t)(u ′ (t), (g ⋄ u)(t)) L 2 (Ω) .
Integrating the last identity over (0, T ), we obtain, 

T 0 ξ(t)(u ′′ (t), (g ⋄ u)(t)) L 2 (Ω) dt = ξ(t)(u ′ (t), (g ⋄ u)(t)) L 2 (Ω) | T 0 (2.20) - T 0 ξ ′ (t)(u ′ (t), (g ⋄ u)(t)) L 2 (Ω) dt - T 0 ξ(t)(u ′ (t), (g ′ ⋄ u)(t)) L 2 (Ω) dt - T 0 ξ(t) t 0 g(s) ds ||u ′ (t)|| 2 2 dt. D R A F T viscoelastic Kirchhoff-
= ξ(t)(u ′ (t), (g ⋄ u)(t)) L 2 (Ω) | T 0 - T 0 ξ(t)(u ′ (t), (g ′ ⋄ u)(t)) + T 0 ξ(t)M ||∇u(t)|| 2 2 (∇u(t), (g ⋄ ∇u)(t)) L 2 (Ω) dt - T 0 ξ(t) t 0 g(t -s) (∇u(s), (g ⋄ ∇u)(t)) L 2 (Ω) ds dt - T 0 ξ ′ (t)(u ′ (t), (g ⋄ u)(t)) L 2 (Ω) dt.
Let t 0 > 0 such that g(t 0 )t 0 > 0. This is possible in vertue of Assumption 1.2. Then one has t 0 g(s) ds ≥ g(t 0 )t 0 > 0, ∀t ≥ t 0 .

( 

≤ ξ(t)(u ′ (t), (g ⋄ u)(t)) L 2 (Ω) | T 0 - T 0 ξ(t)(u ′ (t), (g ′ ⋄ u)(t)) L 2 (Ω) dt + T 0 ξ(t)M ||∇u(t)|| 2 2 (∇u(t), (g ⋄ ∇u)(t)) L 2 (Ω) dt - T 0 ξ(t) t 0 g(t -s) (∇u(s), (g ⋄ ∇u)(t)) L 2 (Ω) ds dt - T 0 ξ ′ (t)(u ′ (t), (g ⋄ u)(t)) L 2 (Ω) dt, ∀T ≥ t 0 .
On the other hand, it is convenient to observe that

T 0 ξ(t) t 0 g(t -s)∇u(t) ds, (g ⋄ ∇u)(t) L 2 (Ω) dt (2.24) = T 0 ξ(t) ((g ⋄ ∇u)(t), (g ⋄ ∇u)(t)) L 2 (Ω) dt + T 0 ξ(t) t 0 g(t -s)∇u(s) ds, (g ⋄ ∇u)(t) L 2 (Ω)
dt.

D R A F T 12
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Combining (2.23) and (2.24) we infer, for all T ≥ t 0 ,

g(t 0 )t 0 T t0 ξ(t)||u ′ (t)|| 2 2 dt ≤ ξ(t)(u ′ (t), (g ⋄ u)(t)) L 2 (Ω) | T 0 + T 0 ξ(t)||(g ⋄ ∇u)(t)|| 2 2 dt - T 0 ξ(t)(u ′ (t), (g ′ ⋄ u)(t)) L 2 (Ω) dt + T 0 ξ(t)M ||∇u(t)|| 2 2 (∇u(t), (g ⋄ ∇u)(t)) L 2 (Ω) dt - T 0 ξ(t) t 0 g(t -s)∇u(t) ds, (g ⋄ ∇u)(t) L 2 (Ω) dt - T 0 ξ ′ (t)(u ′ (t), (g ⋄ u)(t)) L 2 (Ω) dt. (2.25)
Next, we shall analyse the terms on the right hand side of (2.25).

Estimate for

I 1 := ξ(t)(u ′ (t), (g ⋄ u)(t)) L 2 (Ω) | T 0 .
We have,

I 1 = ξ(T ) u ′ (T ), T 0 g(T -s)(u(T ) -u(s))ds L 2 (Ω)
.

(2.26) Thus, having in mind lemma 2.1, the definition of the energy in (2.10) and that ξ is non increasing, we deduce

|I 1 | = ξ(T )| T 0 g(T -s)(u ′ (T ), u(T ) -u(s)) L 2 (Ω) ds| (2.27) ≤ ξ(0) T 0 g(T -s)||u ′ (T )|| 2 ||u(T ) -u(s)|| 2 ds ≤ ξ(0) T 0 g(T -s) 1 2 ||u ′ (T )|| 2 2 + 1 2 ||u(T ) -u(s)|| 2 2 ds ≤ 1 2 ξ(0)g 0 ||u ′ (T )|| 2 2 + λ -1/2 1 ξ(0) 2 T 0 g(T -s)||∇u(T ) -∇u(s)|| 2 2 ds = 1 2 ξ(0)g 0 ||u ′ (T )|| 2 2 + λ -1/2 1 ξ(0) 2 (g • ∇u)(T ) ≤ ξ(0) g 0 + λ -1/2 1 E(T ).
Therefore for some C > 0, which, from now on, will represent various constants do not depend on T and m ∈ N, which is crucial in the proof.

|I 1 | ≤ C E(T ), ( 2 
Estimate for

I 2 := - T 0 ξ(t)(u ′ (t), (g ′ ⋄ u)(t)) L 2 (Ω) dt.
Employing lemma 2.1 and the property ξ(t) ≤ ξ(0), one has

|I 2 | ≤ T 0 ξ(t)||u ′ (t)|| 2 ||(g ′ ⋄ u)(t)|| 2 dt (2.29) ≤ ε T 0 ξ(t)||u ′ (t)|| 2 2 dt + 1 4ε T 0 ξ(t)||(g ′ ⋄ u)(t)|| 2 2 dt ≤ ε T 0 ξ(t)||u ′ (t)|| 2 2 dt + ξ(0) 4ε ||g ′ || L 1 (R+) T 0 (|g ′ | • u)(t)dt ≤ ε T 0 ξ(t)||u ′ (t)|| 2 dt - ξ(0)λ -1/2 1 4ε ||g ′ || L 1 (R+) T 0 (g ′ • ∇u)(t) dt,
where ε is an arbitrary positive constant.

Similarly, because ξ ′ ξ is bounded, we have

| - T 0 ξ ′ (t)(u ′ (t), (g ⋄ u)(t)) L 2 (Ω) dt| ≤ ε T 0 ξ(t)||u ′ (t)|| 2 dt (2.30) + λ -1/2 1 g 0 4ε || ξ ′ ξ || L ∞ (R+) T 0 ξ(t)(g • ∇u)(t)dt,
where ε is an arbitrary positive constant.

Estimate for

I 3 := T 0 ξ(t)M ||∇u(t)|| 2 2 (∇u(t), (g ⋄ ∇u)(t)) L 2 (Ω) dt.
Let us define:

E(t) := 1 2 ||u ′ (t)|| 2 2 + 1 2 ||∇u(t)|| 2 2 , (2.31)
the mechanical energy associated to problem (1.2). First, we observe that

E(t) ≥ 1 2 ||u ′ (t)|| 2 2 + (m 0 -g 0 )||∇u(t)|| 2 2 , which implies that E(0) ≥ E(t) ≥ α 0 E(t), ∀t ≥ 0,
where α 0 = min{1, m 0g 0 } (α 0 > 0 in vertue of (1.6)). Thus, we get

E(t) ≤ α -1 0 E(t) ≤ α -1 0 E(0), ∀t ≥ 0. (2.32) D R A F T 14 
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Using the assumption (1.4) and taking (2.32) into account, we deduce, similarly to the estimate (2.29),

|I 3 | ≤ δα -γ 0 (2 E(0)) γ T 0 ξ(t)||∇u(t)|| 2 ||(g ⋄ ∇u)(t)|| 2 dt (2.33) ≤ ε T 0 ξ(t)||∇u(t)|| 2 2 dt + δ 2 α -2γ 0 (2 E(0)) 2γ 4ε T 0 ξ(t)||(g ⋄ ∇u)(t)|| 2 2 dt ≤ ε T 0 ξ(t)||∇u(t)|| 2 2 dt + δ 2 α -2γ 0 g 0 (2 E(0)) 2γ 4ε T 0 ξ(t)(g • ∇u)(t)dt,
where ε is an arbitrary positive constant.

Estimate for

I 4 := T 0 ξ(t)||(g ⋄ ∇u)(t)|| 2 2 . Lemma 2.1 implies that |I 4 | ≤ g 0 T 0 ξ(t)(g • ∇u)(t) dt. (2.34) 
Estimate for

I 5 := - T 0 ξ(t) t 0 g(t -s)∇u(t) ds, (g ⋄ ∇u)(t) L 2 (Ω)
dt. One has, using again lemma 2.1,

|I 5 | ≤ g 0 T 0 ξ(t)||∇u(t)|| 2 ||(g ⋄ ∇u)(t)|| 2 dt (2.35) ≤ ε T 0 ξ(t)||∇u(t)|| 2 2 dt + g 2 0 4ε T 0 ξ(t)||(g ⋄ ∇u)(t)|| 2 2 dt ≤ ε T 0 ξ(t)||∇u(t)|| 2 2 dt + g 3 0 4ε T 0 ξ(t)(g • ∇u)(t)dt.
Combining (2.25), (2.28), (2.29), (2.30), (2.33), (2.34) and (2.35), we conclude, for all T ≥ t 0 ,

g(t 0 )t 0 T t0 ξ(t)||u ′ (t)|| 2 2 dt ≤ 2ε T 0 ξ(t)||u ′ (t)|| 2 dt + 2ε T 0 ξ(t)||∇u(t)|| 2 2 dt (2.36) +C E(T ) + C T 0 (ξ(t)(g • ∇u)(t) -(g ′ • ∇u)(t)) dt.
Multiplying (2.18) by a constant β 1 > 0, adding (2.36) and having in mind that, according to the properity ξ(t) ≤ ξ(0) and (2.32), and

g(t 0 )t 0 t 0 ξ(t)||u ′ (t)|| 2 2 dt ≤ g(t 0 )t 0 ξ(0) t0 0 ||u ′ (t)|| 2 2 dt ≤ C E(0), ∀t ∈ [0, t 0 ] D R A F T viscoelastic Kirchhoff-Carrier equation
| -ξ(t)(u ′ (t), u(t)) L 2 (Ω) | T 0 | ≤ C E(0), ∀t ≥ 0,
we can write

(g(t 0 )t 0 -2ε -β 1 (1 + ǫ 0 c 0 )) T 0 ξ(t)||u ′ (t)|| 2 2 dt
(2.37)

+ β 1 m 0 -g 0 - c 0 ǫ 0 -ε(β 1 g 0 + 2) T 0 ξ(t)||∇u(t)|| 2 2 dt ≤ C E(0) + C T 0 (ξ(t)(g • ∇u)(t) -(g ′ • ∇u)(t))dt, ∀T ≥ t 0 . Choosing ǫ 0 > c0 m0-g0 , 0 < β 1 < g(t0)t0 1+ǫ0c0 and 0 < ε < min 1 2 (g(t 0 )t 0 -β 1 (1 + ǫ 0 c 0 )), β 1 (m0-g0- c 0 ǫ 0 ) β 1 g0+2
. Hence, from (2.37), we deduce 

T 0 ξ(t)||ξ(t)u ′ (t)|| 2 2 dt + T 0 ξ(t)||∇u(t)||
E(t) = 1 2 ||u ′ (t)|| 2 2 + M (||∇u(t)|| 2 2 ) + (g • ∇u)(t) - t 0 g(s) ds ||∇u(t)|| 2 2 ≤ 1 2 g • ∇u + 1 2 ||u ′ (t)|| 2 2 + δ γ + 1 ||∇u(t)|| 2γ 2 ||∇u(t)|| 2 2 (2.41) ≤ 1 2 (g • ∇u)(t) + 1 2 ||u ′ (t)|| 2 2 + δ γ + 1 2 α 0 E(0) γ ||∇u(t)|| 2 2 .
We are assuming, by assumption, that the initial data are taken in bounded sets of H nor on t ∈ R + ) such that E(t) ≤ L. This implies that there exists d > 0 such that E(0) < d. Then, from (2.41), we conclude

E(t) ≤ 1 2 (g • ∇u)(t) + B 0 E(t), ∀t ≥ 0, (2.42) 
where B 0 = max 1, δ(2d) γ (γ + 1)α γ 0 , and, therefore 

T 0 ξ(t) E(t) dt ≤ 1 2 T 0 ξ(t)(g • ∇u)(t) dt + B 0 T 0 ξ(t)E(t)
E ′ (t) ≤ 1 2 (g ′ • ∇u)(t), ∀t ≥ 0, it implies that (-g ′ • ∇u)(t) ≤ -2 E ′ (t), ∀t ≥ 0,
and consequently, from (2.44), we have

T 0 ξ(t) E(t) dt ≤ C E(0) + C T 0 ξ(t)(g • ∇u)(t) dt -C T 0 E ′ (t) dt, ∀T ≥ t 0 , namely, T 0 ξ(t) E(t) dt ≤ C E(0) + C T 0 ξ(t)(g • ∇u)(t) dt, ∀T ≥ t 0 . (2.45) 
Once we are assuming (1.7) and because ξ is non increasing, we see that

ξ(t)(g • ∇u)(t) ≤ ((ξg) • ∇u)(t) ≤ -(g ′ • ∇u)(t) ≤ -2 E ′ (t),
then, we deduce from (2.45) that 

T 0 ξ(t) E(t) dt ≤ C E(0) -C T 0 E ′ (t), ∀T ≥ t 0 , ( 2 
F (t) dt ≤ CF (0), ∀T ≥ 0.
Consequently, by applying Theorem 9.1 in [START_REF] Komornik | Exact Controllability and Stabilization. The Multiplier Method[END_REF], we find that ther exist positive constants c and θ not depending on Ê(0) such that

F (t) ≤ cF (0)e -θt , ∀t ≥ 0.
✷ By the definition of F , this last inequality implies the general stability (1.9), which finishes the proof.

Well-posedness

Lemma 3.1 (H 2 (Ω) a priori bounds). Suppose that u is a local solution on [0, T [ such that sup t∈[0,T [ {||∇u ′ (t)|| 2 , ||∆u(t)|| 2 } < K,
for some K > 0 and T > 0. Then, the following estimate holds:

||∇u ′ (t)|| 2 2 + ||∆u(t)|| 2 2 ≤ CK 3 ( E(0)) 2α+1 2 t 0 e -θ(2α+1) 2 s 0 ξ(τ ) dτ ds (3.1) +α -1 0 ||∇u 1 || 2 2 + M (||∇u 0 || 2 2 )||∆u 0 || 2 2 := G(t, I 0 , I 1 , K) on [0, T [, with I 0 = E(0) and I 1 = ||∇u 1 || 2 2 + M (||∇u 0 || 2 2 )||∆u 0 || 2 2 .
Proof. Taking w = -∆u ′ ∈ V m in the approximate problem (2.2) yields

1 2 d dt ||∇u ′ (t)|| 2 2 + M (||∇u(t)|| 2 2 )||∆u(t)|| 2 2 - t 0 g(t -s)(∆u(s), ∆u ′ (s)) L 2 (Ω) ds = M ′ (||∇u(t)|| 2 2 )(∇u ′ (t), ∇u(t)) L 2 (Ω) ||∆u(t)|| 2 2 . (3.2) 
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Considering similar computations as done before, from (3.2), we infer

1 2 d dt ||∇u ′ (t)|| 2 2 +M (||∇u(t)|| 2 2 )||∆u(t)|| 2 2 - t 0 g(s)ds ||∆u(t)|| 2 2 +(g • ∆u)(t) = 1 2 (g ′ • ∆u)(t) dx - 1 2 g(t)||∆u(t)|| 2 2 + M ′ (||∇u|| 2 2 )(∇u ′ (t), ∇u(t)) L 2 (Ω) ||∆u(t)|| 2 2 . (3.3) Integrating (3.3) over (0, t), t > 0, we deduce ||∇u ′ (t)|| 2 2 + M ||∇u(t)|| 2 2 ||∆u(t)|| 2 2 - t 0 g(s)ds ||∆u(t)|| 2 2 + (g • ∆u)(t) -||∇u 1 || 2 2 + M ||∇u 0 || 2 2 ||∆u 0 || 2 2 (3.4) ≤ 2 t 0 M ′ ||∇u(s)|| 2 2 (∇u ′ (s), ∇u(s)) L 2 (Ω) ||∆u(s)|| 2 2 ds.
On the other hand, we have, in vertue of (1.3) of and (1.6), 2 are satisfied, for example, if g converges to zero at infinity faster than 1 t d , for any d > 0, like g 1 (t) = a 1 e -b1(t+1) q 1 and g 2 (t) = a 2 e -b2(ln(t+e q 2 -1 )) q 2 , where a i , b i , q 1 > 0 and q 2 > 1 such that a i are small enough so that (1.6) holds. For these two particular examples, ξ is given, respectively, by ξ(t) = b 1 q 1 (t + 1) min{0,q1-1} and ξ(t) = b 2 q 2 (t + e q2-1 ) -1 (ln(t + e q2-1 )) q2-1 .

||∇u ′ (t)|| 2 2 + M ||∇u(t)|| 2 2 ||∆u(t)|| 2 2 - t 0 g(s)ds ||∆u(t)|| 2 2 + (g • ∆u)(t) dx ≥ ||∇u ′ (t)|| 2 2 + (m 0 -g 0 )||∆u(t)|| 2 2 (3.5) ≥ α 0 ||∇u ′ (t)||
Howover, when g converges to zero at infinity slower than 1 t d , for some d > 0, like g 3 (t) = a 3 (t + 1) -q3 , where a 3 > 0 and q 3 > 1, Assumption 1.2 is satisfied with ξ(t) = q 3 (t + 1) -1

provided that a 3 is small enough so that (1.6) holds. But (3.8) is not always satisfied, since (3. Recalling Lemma 2.2, one can assert that u (the approximate solution constructed by Galerkin method) and u ′ exist globally in R + . Suppose that (u 0 , u 1 ) ∈ S K for some K > 0. Thus, we would like to prove that ||∆u(t)|| 2 < K and ||∇u ′ (t)|| 2 < K, ∀t ≥ 0. 
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  (1.6) into account,

  1 0 (Ω) × L 2 (Ω). Consequently, let L > 0 (not depending neither on m ∈ N

. 8 ) 3 . 4 .

 834 τ ) dτ ds < +∞. (3Remark Condition (3.8) as well as Assumption 1.

8 ) is equivalent to 1 2 (

 82 2α + 1)θq 3 > 1.Assume that Assumption 1.1, Assumption 1.2 and (3.8) hold, let K > 0 and setS K := {(u 0 , u 1 ) ∈ (H 2 (Ω) ∩ H 1 0 (Ω)) × H 1 0 (Ω), G(t, I 0 , I 1 , K) < K 2 , ∀t ≥ 0},

(3. 11 )

 11 In order to prove(3.11), we argue by contradiction. So, assume that (3.11) does not hold. Then, there exists some T > 0 such that||∆u(t)|| 2 < K and ||∇u ′ (t)|| 2 < K, ∀t ∈ [0, T [ (3.12) and ||∆u(T )|| 2 = K or ||∇u ′ (T )|| 2 = K. (3.13)

  dt, ∀T ≥ 0. (2.43) Combining (2.39) and (2.43) we deduce, for all T ≥ t 0 ,

	0	T	ξ(t) E(t) dt ≤ C E(0) + C	0	T	(ξ(t)(g • ∇u)(t) -(g ′ • ∇u)(t)) dt.	(2.44)
	Since, according to (2.7),				
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Guesmia, Messaoudi and Webler Repeating the proof of Lemma 3.1, we see from (3.12) and (3.13) that (3.1) remains valid, for 0 ≤ t < T , so that, taking (3.9) into account, one has

which contradicts (3.13). Thus, we have shown (3.11). As a consequence, we can repeat the continuation procedure indefinitely and we can conclude that, if (u 0 , u 1 ) ∈ S, the solution u can be continued globally on R + and (u(t), u ′ (t)) ∈ S, for all t ≥ 0.

Uniqueness. Let u and v be two solutions to problem (1.2). Then

Taking the inner product in L 2 (Ω) of the first equation of the above system with w ′ , we deduce