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Predictive models of fish microhabitat selection in multiple sites accounting for abundance overdispersion

INTRODUCTION

Habitat selection is the process by which an organism will choose the place to live [START_REF] Odum | Do not log-transform count data[END_REF][START_REF] Udvardy | Notes on the Ecological Concepts of Habitat, Biotope and Niche[END_REF][START_REF] Johnson | The comparison of usage and availability measurements for evaluating resource preference[END_REF]. This choice will depend on several factors such as species or individual traits [START_REF] Wagner | Using multilevel models to quantify heterogeneity in resource selection[END_REF][START_REF] Fisher | Body mass explains characteristic scales of habitat selection in terrestrial mammals[END_REF][START_REF] Bunce | The significance of habitats as indicators of biodiversity and their links to species[END_REF][START_REF] Capra | Fish habitat selection in a large hydropeaking river: Strong individual and temporal variations revealed by telemetry[END_REF]. In order to optimize their fitness [START_REF] Fretwell | On territorial behavior and other factors influencing habitat distribution in birds[END_REF], organisms will select different types of habitat according to their activities (e.g., foraging, reproduction period; [START_REF] Baker | Differentiation of Mating Vocalizations in Birds: Acoustic Features in Mainland and Island Populations and Evidence of Habitat-Dependent Selection on Songs[END_REF][START_REF] Conallin | Daytime habitat selection for juvenile parr brown trout (Salmo trutta) in small lowland streams[END_REF]. To describe this process, many habitat selection models are developed in terrestrial and in aquatic systems (Manly et al. 2002). These models generally relate species abundance or occurrence to a variety of habitat characteristics. They often involve habitat descriptions at the "local scale" of organisms, generally referred to as microhabitats when the scale represents the immediate surroundings of organisms [START_REF] Odum | Do not log-transform count data[END_REF], or mesohabitats when the scale represents somewhat larger environments considered to be functional units where individuals perform different activities [START_REF] Kemp | Use of 'functional habitats' to link ecology with morphology and hydrology in river rehabilitation[END_REF][START_REF] Fausch | Landscapes to Riverscapes: Bridging the Gap between Research and Conservation of Stream Fishes[END_REF].

Habitat selection models are particularly needed in rivers, where the increase in water demand and global warming are altering the local environment of freshwater organisms. In particular, the multiplication of water withdrawal, weirs or dams [START_REF] Lehner | Highresolution mapping of the world's reservoirs and dams for sustainable river-flow management[END_REF] may affect ecosystem functioning due to altered flow discharge, hydraulics, river morphology, habitat distribution and availability, and dispersal possibilities [START_REF] Poff | Landscape Filters and Species Traits: Towards Mechanistic Understanding and Prediction in Stream Ecology[END_REF][START_REF] Vörösmarty | Global threats to human water security and river biodiversity[END_REF][START_REF] Olden | Are largescale flow experiments informing the science and management of freshwater ecosystems?[END_REF]. The development of habitat selection models, in combination with hydraulic models and integrated into water management software, has contributed to understand the variations in habitat suitability (often for fish and macroinvertebrates) as a function of flow alteration (e.g., [START_REF] Tomsic | Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal[END_REF][START_REF] Hayes | Process-based modeling of invertebrate drift transport, net energy intake and reach carrying capacity for drift-feeding salmonids[END_REF][START_REF] Conallin | Instream physical habitat modeling types: an analysis as stream hydromorphological modeling tools for EU water resource managers[END_REF][START_REF] Poff | The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards[END_REF][START_REF] Lamouroux | Transferability of Hydraulic Preference Models for Aquatic Macroinvertebrates[END_REF][START_REF] Garbe | Modeling the impacts of a water trading scheme on freshwater habitats[END_REF][START_REF] Rosenfeld | Developing flow-ecology relationships: Implications of nonlinear biological responses for water management[END_REF]. Probably due to the strong variations in local hydraulics within rivers and their strong dependence on discharge, many fish habitat selection models were developed at the microhabitat scale (e.g., [START_REF] Lamouroux | Fish habitat preferences in large streams of southern France[END_REF][START_REF] Mouton | Impact of sampling efficiency on the performance of data-driven fish habitat models[END_REF][START_REF] Booker | Relative influence of local and landscape-scale features on the density and habitat preferences of longfin and shortfin eels[END_REF], which represent the immediate and daily habitat occupied by fish [START_REF] Odum | Do not log-transform count data[END_REF], or at the mesohabitat scale (e.g., [START_REF] Gosselin | Mesohabitat use by brown trout (Salmo trutta) in a small groundwater-dominated stream[END_REF][START_REF] Booker | Relative influence of local and landscape-scale features on the density and habitat preferences of longfin and shortfin eels[END_REF][START_REF] Vezza | Modeling habitat requirements of bullhead (Cottus gobio) in Alpine streams[END_REF], which represent the functional habitat for fish activities (e.g., pools and riffles, [START_REF] Kemp | Use of 'functional habitats' to link ecology with morphology and hydrology in river rehabilitation[END_REF]. Thus, microhabitat and mesohabitat models allow studying local processes involved in fish ecology, considering fish sensitivity to local hydraulic variations. These models generally link species abundance (or other proxies of habitat selection) to hydraulic variables such as water depth or current velocity, considered to be both more direct and ecologically relevant descriptors of habitat conditions than flow discharge alone.

Numerous microhabitat selection models have been developed for fish, differing for example by their localization (e.g., [START_REF] Labonne | Use of a generalised linear model to test habitat preferences: the example of Zingel asper, an endemic endangered percid of the River Rhône[END_REF][START_REF] Nykanen | Size-related changes in habitat selection by larval grayling (Thymallus thymallus L.)[END_REF]in Europe, Costa et al., 2013;Rosenfeld, 2017 in America;[START_REF] Fukuda | Assessing the applicability of fuzzy neural networks for habitat preference evaluation of Japanese medaka (Oryzias latipes)[END_REF]Shiroyama & Yoshimura, 2016 in Asia), the type of rivers (e.g., [START_REF] Girard | Hydraulic Preferences of Shrimps and Fishes in Tropical Insular Rivers[END_REF]for tropical streams, Papadaki et al., 2017 for Mediterranean streams) and species involved (e.g., [START_REF] Dunbar | Hydraulic habitat modeling for setting environmental river flow needs for salmonids[END_REF]for salmonids, Muñoz-Mas et al., 2017 for redfin barbels), or the methodological approach used (e.g., Radinger, Kail & Wolter, 2017 using expert judgments;Jowett & Davey, 2007 using Generalized Additive Models, GAM). In many studies, microhabitat selection models involved one or a few species and a limited number of surveys (dates × sites combinations). This often limits the possibility to test the transferability of models to independent rivers of different catchments and to apply habitat models at the larger scale of "riverscapes" (Harby et al. 2017). For that purpose, it is crucial to improve methodological developments of such models for enlarging their application in river management.

The joint analysis of ecological data collected from multiple surveys is often useful to detect general ecological patterns, and to account for the influence of various environmental parameters that can influence patterns observed in each individual survey. For example, having numerous field surveys increases the statistical power to detect changes after restoration projects [START_REF] Vaudor | How sampling influences the statistical power to detect changes in abundance: an application to river restoration[END_REF] and the performance of species distribution models [START_REF] Wisz | Effects of sample size on the performance of species distribution models[END_REF]. For microhabitat selection models, analyzing numerous surveys can increase the statistical power to detect similarities and differences in microhabitat selection among surveys. Using numerous surveys is also required for non-abundant species, for which a single survey is often not powerful enough for identifying robust abundance-habitat relationships. However, a challenge when using data from several surveys is to develop modeling frameworks that clearly separate abundance/occurrence changes within surveys (that correspond to microhabitat selection) from differences between surveys that can be due to numerous other factors such as temperature, water quality, hydrology or species biogeography.

Among the abundant literature on habitat selection, many statistical models have been used to study microhabitat selection [START_REF] Ahmadi-Nedushan | A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment[END_REF][START_REF] Conallin | Instream physical habitat modeling types: an analysis as stream hydromorphological modeling tools for EU water resource managers[END_REF]. This includes the simple comparison of microhabitat densities across habitat categories (e.g. habitat suitability curves of [START_REF] Lamouroux | Fish habitat preferences in large streams of southern France[END_REF][START_REF] Mouton | Impact of sampling efficiency on the performance of data-driven fish habitat models[END_REF], generalized linear models (GLMs, e.g. [START_REF] Labonne | Use of a generalised linear model to test habitat preferences: the example of Zingel asper, an endemic endangered percid of the River Rhône[END_REF][START_REF] Jowett | A Comparison of Composite Habitat Suitability Indices and Generalized Additive Models of Invertebrate Abundance and Fish Presence-Habitat Availability[END_REF][START_REF] Alcaraz-Hernandez | Generalized additive models to predict adult and young brown trout (Salmo trutta Linnaeus, 1758) densities in Mediterranean rivers[END_REF], fuzzy-models (e.g., [START_REF] Muñoz-Mas | Assessment of brown trout habitat suitability in the Jucar River Basin (SPAIN): Comparison of data-driven approaches with fuzzy-logic models and univariate suitability curves[END_REF] that compute a weighted average of different models, and more recent machine-learning techniques such as random forests (e.g., [START_REF] Vezza | Modeling habitat requirements of bullhead (Cottus gobio) in Alpine streams[END_REF][START_REF] Shiroyama | Assessing bluegill (Lepomis macrochirus) habitat suitability using partial dependence function combined with classification approaches[END_REF] or neural networks (e.g., [START_REF] Fukuda | Assessing the applicability of fuzzy neural networks for habitat preference evaluation of Japanese medaka (Oryzias latipes)[END_REF][START_REF] Muñoz-Mas | Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus)[END_REF] that are complex non-parametric classification methods [START_REF] Guisan | Predictive habitat distribution models in ecology[END_REF].

Due to their simplicity and flexibility, GLMs are powerful methods to assess fish habitat selection.

These models can be designed to cope for non-linear habitat selection relationships, for example by using splines in generalized additive models [START_REF] Pleydell | Mixtures of GAMs for Habitat Suitability Analysis with Overdispersed Presence/Absence Data[END_REF][START_REF] Girard | Hydraulic Preferences of Shrimps and Fishes in Tropical Insular Rivers[END_REF][START_REF] Zuur | A Beginner's Guide to Generalised Additive Mixed Models with R[END_REF]. These smoothing regressions use polynomial regressions to characterize the range of habitat selected without overfitting models. In addition, they can deal with the spatial and temporal variations generated by multiple surveys within multiple rivers using mixed-effect formulations [START_REF] Goldstein | Multilevel statistical models[END_REF][START_REF] Bates | Fitting Linear Mixed-Effects Models using lme4[END_REF]. They also can account for different hypothesis concerning the statistical distribution of abundance counts, such as the Poisson or Negative Binomial distributions.

Because GLMs are parametric models, their parameters can be extracted for predictive purposes [START_REF] Ahmadi-Nedushan | A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment[END_REF] and easily transferred to stakeholders as "preference curves" (e.g., ).

Combinations of multilevel GLMs and smoothing B-splines have already been used with longitudinal data (i.e. multiple measurements on the same subject) in medicine, for modeling human growth [START_REF] Pan | Multi-level repeated measures growth modeling using extended spline functions[END_REF][START_REF] Grajeda | Modeling subject-specific childhood growth using linear mixed-effect models with cubic regression splines[END_REF], but in our knowledge they have not been used in ecology for modeling the relationship between species abundance and habitats. By combining a regression method with a smoothing approach, this modeling method could help developing a powerful method for studying complex microhabitat selection processes.

However, the overdispersion of fish abundance data (i.e. variance >> mean) complicates microhabitat selection modeling. This overdispersion is characterized by a high number of samples without organisms and a few samples containing the majority of the abundance. This overdispersion can be accounted for by different methods. A first possibility is to transform the data (e.g., by logtransformation; O'Hara & Kotze, 2010) in order to limit the impact of high variance on the models, but transformations generate difficulties such as an underestimation of mean values (O'Hara & Kotze, 2010;[START_REF] Warton | Distance-based multivariate analyses confound location and dispersion effects[END_REF][START_REF] Ives | For testing the significance of regression coefficients, go ahead and log-transform count data[END_REF]. Another method is to use distribution assumptions that involve an overdispersion parameter by definition, such as the overdispersed Poisson distribution, the Negative Binomial distribution or zero-inflated distributions, which consider simultaneously an abundance distribution and a presence-absence distribution [START_REF] Warton | Many zeros does not mean zero inflation: comparing the goodness-of-fit of parametric models to multivariate abundance data[END_REF][START_REF] Potts | Comparing species abundance models[END_REF][START_REF] Vaudor | How sampling influences the statistical power to detect changes in abundance: an application to river restoration[END_REF]. Of these distributions, the Negative Binomial is particularly well adapted to freshwater abundance data [START_REF] Vaudor | Comparing distribution models for small samples of overdispersed counts of freshwater fish[END_REF] and might be the most relevant for modeling fish microhabitat selection.

Given these statistical limits of current approaches, the aim of this paper is to present and apply a more suitable methodology for developing fish microhabitat selection models. Our approach is based on the use of mixed-effect GLMs (to account for data collected in multiple surveys) involving B-spline transformations of habitat variables (to account for non-linear responses) and Negative Binomial assumptions (to account for overdispersed abundance data). We applied our approach to a unique data set involving 3,528 microhabitats electrofished in a total of 129 surveys (date × reach combinations) in 9 French rivers. A total of 22 species × four size classes were considered. We first developed univariate models relating fish abundance to microhabitat water depth, current velocity, substratum grain size and substratum heterogeneity (i.e. grain size diversity). Models of increasing complexity were compared to appreciate the degree of model transferability across surveys, and models were built for microhabitat subsets with or without hydraulic refuges. Their performance was assessed using several metrics, posterior predictive checks (Bayesian approach) and cross validations. Then, we developed bivariate models for a selection of species to appreciate their added values when compared with univariate models.

METHODS

STUDY REACHES

A total of 3,528 microhabitats were sampled between 1989 and 2014 during 129 surveys in 9 southern French rivers (Fig. 1, Table 1, Appendix 1). A first dataset was (n= 1709 microhabitats; rivers Ain, Ardèche, Drome, Garonne, Loire and Rhône) was already used by [START_REF] Lamouroux | Fish habitat preferences in large streams of southern France[END_REF] to develop habitat selection models, with a different modeling approach and a debatable log-transformation of abundance. A second dataset (n= 1819 microhabitats) involved southern rivers. These two datasets were pooled to develop fish microhabitat selection models.

FISH SAMPLING

In both datasets, fish were electrofished at low flow rates with adjusted current (5 kW, 180-1000 V, 1-4 A, direct current) in microhabitats of varying surface areas (between 4 and 90 m² for 95% of microhabitats). Each microhabitat was selected in a given habitat type (e.g. a pool or a riffle) and electrofished using an open-sampling technique [START_REF] Vadas | A New Technique for Estimating the Abundance and Habitat Use of Stream Fishes[END_REF][START_REF] Lamouroux | Fish habitat preferences in large streams of southern France[END_REF]. For each survey, the total number of microhabitats represented the distribution of habitat types observed in the sampling reach on the sampling date. Fish lengths were recorded and classified into four classes cl1 (≤ 80 mm), cl2 (80 -180 mm), cl3 (180 -300 mm) and cl4 (> 300 mm).

To model fish microhabitat selection, for each specific size class (i.e. a size class associated to one species), surveys including less than six individuals observed in less than three microhabitats were removed from datasets. In addition, species observed in less than three surveys were not modelled. Some classes were pooled to develop and improve the models when individual classes did not contain enough individuals. For example, a pooled class 1-3 will be noted cl123 hereafter.

MICROHABITAT CHARACTERISTICS

Mean water depth and mean water column current velocity were calculated by the mean of several verticals measurements (average = 7), randomly sampled and georeferenced within each microhabitat, defining the microhabitat and weighted by their representative area for depth and representative volume for velocity. Point water column velocities were measured from three measurements at distances above the bed of 20%, 40% and 80% of the water depth, using a current meter. These calculations were performed using the HydroSignature software [START_REF] Coarer | Hydraulic signatures for ecological modeling at different scales[END_REF].

Substratum grain size characterisation differed between the two datasets. In the first dataset, one or two dominant substratum grain sizes (covering most of the ~1m 2 area around the point) and the substratum with the maximum grain sizes were estimated at several points, as for depth and velocity, and assigned to one of 12 categories using a modified version of the Wentworth logarithmic scale [START_REF] Wentworth | A Scale of Grade and Class Terms for Clastic Sediments[END_REF].

In the second dataset, the substratum grain size was measured at 10 points using the roughness height of substratum, defined as the relative height of particles relative to the bed [START_REF] Gordon | Stream Hydrology: An Introduction for Ecologists[END_REF]. To merge datasets, we translated all substratum characterisations into frequencies of seven size classes within the microhabitat: silt, sand, gravel, pebble, cobble, boulder and block. Then, we computed the dominant substratum class and the number of distinct substratum classes. Finally, for each species, between 29% and 50 % of the data did not include substratum descriptions and were removed from dataset for developing models involving substratum (Table 2).

The presence of hydraulic refuges (grouping mineral refuges, vegetated refuges and bank refuges) was recorded. We separated the full dataset into two datasets, with or without refuges, to analyse the influence of refuges on microhabitat use. Most analyses were made on the dataset without refuges, and the data set with refuge was used to appreciate their influence.

MODELING

To compare predictive microhabitat selection models by specific size classes (and refuge types) we defined four mixed-effect models of increasing complexity (M1-M4, eqn.1 -eqn.4). In short, M1 was a model without microhabitat selection, M2 a model where selection was similar in all surveys and M3-4 models where selection could vary across surveys. All models linked the abundance of a specific size class to one of our four habitat variables, and accounted for difference between surveys by forcing a random effect on the model intercept. Models M3-4 also had random effects at the survey level associated with microhabitat characteristics, allowing variable microhabitat selection across surveys.

Each model could be represented by its conditional expression, which corresponded to the full model fit (fixed and random effects) and thus could vary across surveys (e.g., Fig. 2), and its marginal component, which corresponded to its fixed effects only and had a similar form across surveys (e.g., Fig. 3).

Fish overdispersion was accounted for by assuming that abundance values followed a Negative Binomial distribution NB(μ,θ), with different parameters of dispersion θ across species, size class and models, but a constant θ across surveys. [START_REF] Vaudor | How sampling influences the statistical power to detect changes in abundance: an application to river restoration[END_REF] justified the choice of using a constant parameter across surveys by the reduced temporal variation of θ for a given species. To check the relevance of our NB assumption, we estimated for each model the overdispersion coefficient defined as the sum of squared Pearson residuals divided by the difference between the sample size and the number of parameters [START_REF] Zuur | A Beginner's Guide to Generalised Additive Mixed Models with R[END_REF]. The values, close to 1, ranged between 0.4 and 2.4 and indicated a good adjustment of the NB to our abundance distributions [START_REF] Zuur | A Beginner's Guide to Generalised Additive Mixed Models with R[END_REF].

Because microhabitat selection is typically a non-linear process (e.g., [START_REF] Labonne | Use of a generalised linear model to test habitat preferences: the example of Zingel asper, an endemic endangered percid of the River Rhône[END_REF][START_REF] Girard | Hydraulic Preferences of Shrimps and Fishes in Tropical Insular Rivers[END_REF][START_REF] Alcaraz-Hernandez | Generalized additive models to predict adult and young brown trout (Salmo trutta Linnaeus, 1758) densities in Mediterranean rivers[END_REF], we introduced B-splines to transform the microhabitat variables, which decomposed these variables into piecewise cubic regressions with fixed knots [START_REF] Pan | Multi-level repeated measures growth modeling using extended spline functions[END_REF][START_REF] Grajeda | Modeling subject-specific childhood growth using linear mixed-effect models with cubic regression splines[END_REF]. For each model, we previously selected the appropriate number of knots between models with a single knot (fixed at 50 % of the distribution of the microhabitat variable, 2 degrees of freedom) or models with two knots (fixed at 33 % and 67 % of the distribution of the microhabitat variable, 3 degrees of freedom). The criterion used for this selection was a modified Akaike Information Criterion for overdispersed count data, QAIC [START_REF] Burnham | Model selection and multimodel inference: a practical information-theoretic approach[END_REF]Kim et al., 2014), which is a correction of the maximum-likelihood estimations by the overdispersed coefficient of the global model and is calculated as:

QAIC =-2 log ( Likelihood ) ĉM 4 + 2 K
where K is the number of parameters of the model, and ĉ M 4 the overdispersion coefficient estimated using our more detailed model M4.

Finally, to deal with differences in surface areas among microhabitats, which obviously could influence abundance values, we introduced an offset (c area ) which was not a parameter of the models and corresponded to the total area sampled by microhabitat.

The four models were built following:

y ij NB ( μ ij , θ )
where y ij is the abundance of a specific size class of microhabitat i in survey j and μ ij its expected mean value. Relations between μ ij and microhabitat variables varied across models:

M1: No microhabitat selection log ( μij ) = β 0 +u 0 j +c area eqn.1
where β 0 represents the fixed component of the intercept and u 0 j N ( 0 , σ 0 2 ) its random component.

Values of u 0 j were assumed normally distributed with a standard deviation of σ 0 .

M1 is a model where microhabitat variables have no influence on abundance.

M2: "Average" microhabitat selection

log ( μij ) = β 0 +u 0 j + β x t n * f ( x t ¿ ¿ n ij )+ c area ¿ eqn.2
where β x t n are the fixed coefficients for each cubic regression spline f ( x ¿¿ t n )¿ of the microhabitat variable x with n knots located at tn positions, andu 0 j N (0 , σ 0 2 ).

M2 is a model where microhabitat variables have a similar influence on abundance across surveys, i.e. it assumes that microhabitat selection is transferable across sites and dates.

M3: Partially random microhabitat selection

log ( μij ) = β 0 +u 0 j + β x t n * f (x t ¿ ¿ n ij )+ u 1 j x ij +c area ¿ eqn.3
where

( u 0 j u 1 j ) N (0 , Ω) with a variance covariance matrix Ω= ( σ 0 2 σ 01 σ 01 σ 1 2 ) .
M3 is a model where microhabitat variables have different influences on abundance across surveys.

M4: Fully random microhabitat selection

log ( μij ) = β 0 +u 0 j +(β ¿ ¿ x t n +u 1 x t n j ) * f ( x t ¿ ¿ n ij )+ c area ¿ ¿ eqn.4
where ( u 0 j u 1 x tn ,j ) N (0 , Ω) and Ω= (

σ 0 2 ⋯ σ 0 x tn ⋮ ⋱ ⋮ σ 0 x tn ⋯ σ x tn 2 ) .
M4 is a model where microhabitat variables have different influences on abundance across surveys as in M3, but is more flexible than M3 because all coefficients of cubic regression splines may vary across surveys.

In our study, M1 is considered as a null random model and thus a reference for appreciating the added value of microhabitat selection models M2-M4. By contrast, M4 is the most complicated and parametrized model and represents the best fitted microhabitat selection model.

MODEL EVALUATION

Model selection

To compare models fit and parsimony, we calculated a ∆QAIC, defined as the difference in QAIC between the model with the lowest QAIC and the QAIC of the three other models. Following [START_REF] Burnham | Model selection and multimodel inference: a practical information-theoretic approach[END_REF], models presenting a ∆QAIC≥10 were identified as failing to explain some substantial variation in the data.

Model fits: explained deviance (R²MF) and Spearman rho

Model fits were characterized using a McFadden's R² (R²MF;[START_REF] Mcfadden | The measurement of urban travel demand[END_REF] or explained deviance, which is the ratio between the explained deviance and the null deviance and is the equivalent for maximum-likelihood of a R² in linear regression [START_REF] Guisan | Predictive habitat distribution models in ecology[END_REF]. Because R²MF are based on null deviance, they can be compared between each model. A model with a higher value of R²MF indicates a model with a higher explained deviance.

R ² MF=1- log ( Likelihood Model ) log ( Likelihood Nullmodel )
To appreciate how the fully random model (M4) fitted the data compared to the model without microhabitat selection (M1), we calculated a ∆R²MF which compared the difference between the R²MF of M4 and the R²MF of M1.

To appreciate how the "average" model M2 (considered as an average selection model shared by all rivers) explained microhabitat selection compared to the most flexible model (M4), we calculated a relative R²MF (RRMF), which compared the differences between the R²MF of the model M2 and the R²MF of the simplest model M1, to the difference between the R²MF of the most parametrized model (M4) and the least parametrized model (M1).

R RMF M 2 = R ² MF M 2 -R ² MF M 1 R ² MF M 4 -R ² MF M 1
We also use Spearman rho (i.e. rank correlation; [START_REF] Spearman | The proof and measurement of association between two things[END_REF], hereafter cited as Spearman rho, as an alternative statistic to R²MF, in order to complement our appreciation of model fit [START_REF] Guisan | Predictive habitat distribution models in ecology[END_REF][START_REF] Potts | Comparing species abundance models[END_REF]. Adding this statistic was important in our case of overdispersed 

R rho M 2 = rho M 2 -rho M 1 rho M 4 -rho M 1

Posterior predictive check simulations

We used posterior predictive check simulations [START_REF] Chambert | Use of posterior predictive checks as an inferential tool for investigating individual heterogeneity in animal population vital rates[END_REF], widely used in Bayesian statistics, to assess the performance of models at predicting the data. The objective of this technique was to appreciate what quality of model fit (i.e. R²MF and Spearman rho) could be expectable with overdispersed abundance data such as ours. Specifically, simulations consisted in 1) assuming that the fitted model corresponded to the true response of abundance to habitat, 2) generating fictive, simulated observed values (n = 1500 fictive abundance datasets) taking into account the overdispersion of the taxa, 3) estimating the R²MF and Spearman rho of models fitted on these fictive data, and 4) comparing our initial model fit with the fictive ones.

The choice of n = 1500 fictive datasets was made after trials with n values between 20 and 2000, indicating stable results for all models when n = 1500. To keep a similar structure between the observed dataset and the simulated datasets, each simulated dataset contained the same number of surveys as the observed dataset. In a simulated survey, we randomly picked the number of microhabitats within the range of microhabitats sampled by survey. For example, Telestes soufia class 2 was present in 60 surveys which contained between 7 and 96 microhabitats, consequently the simulated surveys randomly contained between 7 and 96 microhabitats. Then we randomly picked a value of the microhabitat characteristic for each sample. Given this microhabitat characteristic, we finally randomly picked the sampling area within the range of area observed for this microhabitat value. For example, the value of 0.1 m of water depth was observed in sampling area between 2 and 94 m² with a median at 21 m².

Finally, the abundance ŷij was simulated following NB ( μ , θ) using the 95 % confidence interval estimations for fixed effect and the variance estimated for the random effect from models. Because M4 is assumed to represent all the variability due to the hydraulic variables measured, we used in the simulations the θ estimated from M4 for all simulations (M1-M4).

Leave_one_river_out cross-validations

To evaluate the transferability of M2 across rivers, i.e. its ability to predict microhabitat selection on external data, we computed leave_one_river_out cross-validations after removing each river in turn.

Specifically, for each specific class, we computed new models after excluding one river (i.e. training data set) and calculated the Spearman rho correlations between the observations and the predictions of each survey from this river (i.e. validation data set). The specific size classes included in these crossvalidations where those showing a minimum magnitude of microhabitat selection (subjectively chosen as ∆R²MF >0.01 or ∆rho > 0.09 between M4 and M1) and well described in the data (subjectively chosen as abundance ≥ 20 individuals per survey, occurrence ≥ 10 per survey).

Comparison with the dataset with refuges and the results of [START_REF] Lamouroux | Fish habitat preferences in large streams of southern France[END_REF] The comparison of models for datasets with and without refuges was done for the selection of specific size classes showing a minimum magnitude of microhabitat selection (see just above).

Then, we compared our selection models with preference models showed in [START_REF] Lamouroux | Fish habitat preferences in large streams of southern France[END_REF], derived with different methods (calculations of average log-densities in habitat classes in [START_REF] Lamouroux | Fish habitat preferences in large streams of southern France[END_REF]. For this purpose we represented the predicted abundance in our study (according to the marginal model M2, which corresponded to an average model across survey comparable to those developed in [START_REF] Lamouroux | Fish habitat preferences in large streams of southern France[END_REF]) as a function of the preferred microhabitat class identified in [START_REF] Lamouroux | Fish habitat preferences in large streams of southern France[END_REF]. This comparison was made only for specific size classes showing a minimum magnitude of microhabitat selection.

Multivariate models

To evaluate whether multivariate models increased the performance of univariate models, we developed multivariate models that include an additive selection for water depth and current velocity. Multivariate models were built for the "average" model M2 only and for specific size classes showing a minimum magnitude of microhabitat selection. We compared the R²MF and rho of multivariate models with values obtained by each univariate model (i.e. water depth and current velocity).

All modeling was performed with R software (version 3.4.1, R Core Team, 2017) using the function {glmer} from lme4 package [START_REF] Bates | Fitting Linear Mixed-Effects Models using lme4[END_REF] for mixed effects models, mgcv package [START_REF] Wood | Generalized Additive Models : An Introduction with R[END_REF] for Negative Binomial distributions.

RESULTS

Species characteristics

A total of 87,177 individuals of 22 species, mainly cyprinids (Table 1), were considered in the dataset.

They belonged to 37 specific size classes. The two most abundant species were Concerning the refuges, a quarter of specific size classes occurred more frequently in microhabitats containing refuges than others. Although refuge descriptions are not detailed here, the majority of refuges were vegetated refuges.

MODEL EVALUATION

Model selection

Models were constructed using the dataset without refuges for a total of 132 cases (size class x variable combinations) that involved 35 specific size classes for water depth and current velocity, and 31 size classes for substratum variables. Following model selection according to ∆QAIC criteria, there was a significant microhabitat selection for 65/132 cases: 22/35 for water depth, 25/35 for current velocity, 14/31 for dominant substratum grain size, and 4/31 for substratum heterogeneity. In total, 18/22 species and 29/35 size classes significantly selected at least one habitat characteristic. In the remaining cases, model M1 was selected, suggesting no microhabitat selection.

Among the 65 significant selection models, we retained hereafter only the 50 cases (Table 3) with a minimal magnitude of habitat selection, subjectively defined as ∆R²MF between M4 and M1 strictly superior to 0.01 or a ∆rho strictly superior to 0.09 (models listed in Table 3). These 50 cases involved 19/22 species and 26/35 specific size classes. For these models, M2 was selected in 26/50 cases (11 for water depth, 10 for current velocity, 4 for dominant substratum grain size, 1 for number of substratum classes), M3 in 21/50 cases (9 for water depth, 8 for current velocity, 3 for dominant substratum grain size, 1 for number of substratum classes) and M4 in 3/50 cases only (all for current velocity).

Model fits: explained deviance (R²MF) and Spearman rho

The values of R²MF obtained were generally low (see Table 3 for a synthesis of model fits): between 0 and 0.10 for M1, from 0.02 to 0.16 for the "average" model M2, from 0.02 to 0.19 for the detailed M4.

Because the level of complexity of M3 is between the level of complexity of M2 and M4, values for M3

were not shown in Table 3. When analyzing how the fully random model (M4) fitted the data compared to the model without selection (M1), we observed differences in R²MF from 0.02 to 0.17 (between 0.02 and 0.09 for water depth, 0.02 and 0.16 for current velocity, 0.02 and 0.17 for dominant substratum grain size, 0.02 and 0.08 for number of substratum classes).

When analyzing how the "average" model (M2) fitted the data compared to the fully random model (M4) using the relative R²MF, we observed values from 0.15 to 1.03 with a median of 0.72. In other words, the "average" model M2 explained a median share of 72% of the deviance explained by the detailed model M4.

Conditional Spearman rho (Table 3) confirmed these global results but rho values were much higher than R²MF values. Spearman rho obtained ranged from -0.25 to 0.38 for M1, from 0.04 to 0.67 for M2, and from 0.07 to 0.69 for M4. When analyzing how the fully random model (M4) fitted the data compared to the model without selection (M1), we observed differences in conditional Spearman rho from 0.10 to 0.62 (between 0.10 and 0.41 for water depth, 0.10 and 0.62 for current velocity, 0.11 and 0.51 for dominant substratum grain size, 0.10 and 0.41 for number of substratum classes).

When analyzing how the "average" model (M2) fitted the data compared to the fully random model (M4) using the relative conditional Spearman rho, we observed values from -0.24 to 1.01 with a median of 0.75. In other words, the "average" model M2 had rho values that represented a median share of 75% of the rho values of model M4, consistently with the results obtained with deviance statistics.

Posterior predictive check simulations

The posterior predictive check simulations (Table 3) suggested that, considering the overdispersion of microhabitat abundance data, the highest R²MF and Spearman rho values (95% percentile of our fictive simulations) that could be expected when fitting our models ranged between 0 and 0.59 (for R²MF) and 0.28 and 0.78 (for Spearman rho). Our model fits (up to 0.19 for R²MF and up to 0.69 for Spearman rho) therefore indicates satisfactory fits for overdispersed data.

Univariate average microhabitat selection

Fig. 2 and Fig. 3 provide two examples of the univariate models described in Table 3. 3). The "average" selection model is therefore very relevant for this size class. The Telestes soufia cl1 is an example with lower magnitude of habitat selection (∆rho = 0.26 and Rrho = 73%, current velocity, Table 3). For these taxa, the "average" model is also relevant but variations in selection across surveys are stronger (deviations between the red-line M2 and black line M4). Both graphs enable to appreciate the high degree of dispersion in these microhabitat data, with many points without fish and others with >100 individuals. Fig. 3 shows the marginal component of M2 for these two taxa, shared by all surveys, that represents the average shape of habitat selection model for the whole dataset. and fast-flowing habitats, and large fish tend to select deeper habitats than small ones. Among the fewer significant selection of substrate characteristics, small Perca fluviatilis cl12 selects a reduced substratum heterogeneity (as opposed to Squalius cephalus cl2), preferably gravels.

Leave_one_river_out cross-validation

Cross-validations of the models of Table 3 indicated the majority of models M2 presented positive correlation between the observations and the predictions of the validating data set (Fig. 5). Crossvalidation rho values were of the same order of values than the differences in Spearman rho between M2 and M1 models during the fit on all rivers. Therefore, they reflected the potential of model M2 to predict abundance ranks in surveys of independent rivers. This was particularly true for example Barbatula barbatula cl12 (water depth, described in Fig. 3), Telestes soufia cl1 and Barbus barbus cl2 (current velocity, described in Fig. 3) but less for Alburnus alburnus cl1 (water depth, Fig. 3) whose cross-validations were less convincing.

Comparison with the dataset with refuges and the results of [START_REF] Lamouroux | Fish habitat preferences in large streams of southern France[END_REF] After fitting selection models for the dataset with refuges (as was done for the dataset without refuges), a total of 24 significant models could be compared between the two datasets: 6 for water depth, 17 for current velocity, 1 for dominant substratum grain size and none for substrate heterogeneity. For all habitat variables, the majority of specific size classes presented similar average selection for models build on data with and without refuges (Fig. 6). A few deviations were observed for Barbus barbus cl2 and cl34, and Alburnoides bipunctatus cl23 that used lower velocities in the presence of refuges, and for Squalius cephalus cl34 that selected a smaller substratum (gravel vs. pebble) in presence of refuges.

When comparing microhabitat selection (models of Table 3) with those available in Lamouroux et al 1999 (Fig. 7), we observed consistent results for water depth and current velocity but not for dominant substratum grain size.

Multivariate models

Multivariate models were developed for the 16 specific size classes that had significant selection (with minimal magnitude of effect) for both water depth and current velocity (Table 3). The multivariate model approach increased the performance of the majority of univariate models M2. This result was observed with both metrics: median R²MF increased from 0.04 for water depth and 0.05 for current velocity to 0.06 and median rho increased from 0.30 for water depth and 0.33 for current velocity to 0.38 (Fig. 8).

DISCUSSION

Our results confirmed the generality of microhabitat selection because 29/35 specific size classes showed significant microhabitat selection for at least one hydraulic variable, with a minimal magnitude.

Moreover, our results indicated the relevance of average models across surveys because (1) the average model (M2) was selected by Akaike criteria in 26/50 cases, and (2) across all cases, the average model explained more than 70 % of the variability explained by a fully random microhabitat selection model (i.e. random intercept and slope by survey, model M4). However, if this fully random microhabitat selection model explained a small proportion of variance, then the average model would not be relevant either. Our results were also consistent with previous studies on fish habitat selection (e.g., [START_REF] Rifflart | Spatio-temporal patterns of fish assemblages in a large regulated alluvial river[END_REF], for example small Barbatula barbatula selected shallow microhabitats and small Barbus barbus faster-flowing microhabitat.

In contrast to our expectations, no difference in microhabitat selection was found for both conditions with and without refuge. Although refuges are crucial for fish ecology (e.g., [START_REF] Magoulick | The role of refugia for fishes during drought: a review and synthesis[END_REF], these results could suggest an absence of influence of refuge type on hydraulic microhabitat selection. Nevertheless, our analysis of the influence of refuges could be complicated by the influence of vegetated refuge such as woody debris on sampling technique efficiency [START_REF] Thévenet | Linking fluvial fish community to physical habitat in large woody debris: sampling effort, accuracy and precision[END_REF] as well as difficulties to measure hydraulic conditions in refuges. In addition, the absence of significant difference could be partly due to the lack of data with different type of refuges. We also found that selection of substrate characteristics was weaker and less transferable across streams than selection for hydraulics, as was observed earlier for fish and macroinvertebrates [START_REF] Lamouroux | Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters[END_REF].

Fish size appears to be an important factor explaining habitat selection. Here, it was partly accounted for by our use of specific size classes and its effects could deserve more detailed studies.

Indeed, for some species the models showed differences in average microhabitat selection between size classes of the same species. Barbus barbus is a good example of the environmental gradient used by individuals throughout their life. Smallest individuals (< 80 mm, mainly juveniles) select slower and shallower habitat (velocity ~ 0.50 m.s -1 , depth ~ 0.25 m) than larger individuals (80 -180 m), which select themselves shallower habitat (velocity ~ 1 m.s -1 , depth ~ 0.50 m) than largest individuals (velocity ~ 1 m.s-1, depth ~0.75 m, size > 180 mm, mainly reproductive adult). Fish selection of deeper habitats over time can be related to predator avoidance and the use of riverine habitats where they can avoid high velocity variations. Nevertheless, considering the strong seasonal and annual variations in fish length between and within species, our use of fixed fish size categories remains questionable. We choose an arbitrary and uniform method for all species to define fish size classes, which was a compromise between expert opinion and statistical difficulties. Further developments may consider alternative groupings based on species life history strategies and traits (Schwartz 2016).

The strong variability explained by average multi-survey models adds evidence to the relevance of generic habitat selection models, for many taxa, despite the variability of habitat selection across surveys (e.g., [START_REF] Lamouroux | Transferability of Hydraulic Preference Models for Aquatic Macroinvertebrates[END_REF][START_REF] Dixon | Burbot resource selection in small streams near the southern extent of the species range[END_REF]. These results justify the application of habitat selection models over river networks and catchments for appreciating the ecological impact of flow management at large scale (e.g. [START_REF] Snelder | A Method to Assess and Define Environmental Flow Rules for Large Jurisdictional Regions 1[END_REF][START_REF] Muñoz-Mas | Assessment of brown trout habitat suitability in the Jucar River Basin (SPAIN): Comparison of data-driven approaches with fuzzy-logic models and univariate suitability curves[END_REF].

The generality of habitat selection has also been explained by ecological strategies adapted to particular hydraulic conditions, such as the association between opportunistic species and stressful habitat conditions (Blanck, Tedesco & Lamouroux, 2007;[START_REF] Ayllón | Spatio-temporal habitat selection shifts in brown trout populations under contrasting natural flow regimes[END_REF]. However, in many studies involving fish or macroinvertebrates, it was found that habitat selection can vary a lot across space [START_REF] Lancaster | Linking the hydraulic world of individual organisms to ecological processes: Putting ecology into ecohydraulics[END_REF] or time [START_REF] Vilizzi | Assessing variation in suitability curves and electivity profiles in temporal studies of fish habitat use[END_REF] due to several potential causes such as variations in water quality or individual behavior. Our cross-validation values indicated also that an average model does not systematically transfer well to an independent river. These variations could be explained by the huge variation in river discharge (from 0.28 to 1490 m 3 .s -1 ) and width (from 5 to 160 m), and the dominance of large rivers as the Rhône River and the Durance River regarding a few number of small rivers as the Loup River and Paillons Rivers. These differences in river characteristics were equally considered in our modeling approach and numerically limit the model transferability to small rivers. All these studies illustrate the need to better examine the variations in habitat selection across different regions or watersheds.

Part of the variability in microhabitat selection across surveys may be due to identification biases of studied species. Indeed, recent studies revealed genetic differences within species identified using taxonomic criteria in France such as Gobio gobio, Barbatula barbatula or Esox lucius [START_REF] Kottelat | Handbook of European freshwater fishes[END_REF][START_REF] Denys | Taxonomie intégrative des poissons d'eau douce de France métropolitaine[END_REF]. These differences suggest the presence of multiple species considered as a single one in our study, and thus the development of microhabitat selection models at the genus level.

Nevertheless, when species share taxonomic or functional traits, genus microhabitat selection models can be relevant as shown for macroinvertebrates genus such as Glossosoma or Protonemura (each grouping two species in [START_REF] Dolédec | Modeling the hydraulic preferences of benthic macroinvertebrates in small European streams[END_REF]. Similarly, microhabitat selection models developed for fish at the guild level showed common patterns of microhabitat selection and good transferability across populations and surveys [START_REF] Lamouroux | Fish assemblages and stream hydraulics: consistent relations across spatial scales and regions[END_REF][START_REF] Martinez-Capel | Microhabitat use by three endemic Iberian cyprinids in Mediterranean rivers (Tagus River Basin, Spain)[END_REF]. In addition, Chen & Olden (2018) showed that grouping species by guild based on their habitat use (i.e. species present in lower current velocity, for example Cyprinus carpio or Gambusia affinis) can provide relationships between flow and ecology that are transferable across rivers and basins, and thus relevant for catchment management.

Although low, our values of explained deviance (R²MF) and correlations between observed and fitted values (Spearman rho) indicated good model quality and good adjustment. Indeed, there is no absolute value to determine whether the model performs well and the significance of each evaluation metric must be discussed for each specific study [START_REF] Guisan | Predicting species distribution: offering more than simple habitat models[END_REF]. In particular, when working at small scales such as the scale of microhabitats of a few square-meters, one cannot expect obtaining strong deterministic models of species abundance (see also [START_REF] Fladung | Modeling the habitat preferences of preadult and adult fishes on the shoreline of the large, lowland Elbe River[END_REF]. Our Bayesian approach of fit statistic (posterior predictive checks) clearly confirmed that the magnitude of our fits were typically those we could expect when considering the overdispersed character of fish abundance. These results showed the relevance of average microhabitat selection models despite apparent weak fit metrics.

Bivariate additive microhabitat selection, for water depth and water column current velocity, increased model performance. Indeed, for species presenting univariate selection for both hydraulic variables, model quality metrics increased in median from 0.04 to 0.06 for R²MF and from 0.30 to 0.38 for Spearman rho. These results confirm the need to further develop multivariate approach as described in previous studies on microhabitat and/or mesohabitat selection (e.g. [START_REF] Coarer | Hydraulic signatures for ecological modeling at different scales[END_REF][START_REF] Dixon | Burbot resource selection in small streams near the southern extent of the species range[END_REF][START_REF] Muñoz-Mas | Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus)[END_REF]. In contrast, for some species as Barbus barbus, the introduction of additive variable did not increase model performance and confirmed the assumption that in some cases univariate models perform better than multivariate ones [START_REF] Millidine | Assessing the transferability of hydraulic habitat models for juvenile Atlantic salmon[END_REF]. Several possibilities exist to investigate further the interactive effects of depth and velocity on microhabitat selection, such as describing habitats with the Froude number [START_REF] Millidine | Assessing the transferability of hydraulic habitat models for juvenile Atlantic salmon[END_REF], or using multivariate structural equation modeling (Leftwich et al. 1997), or Generalized Functional Response (Matthiopoulos et al. 2010). These approaches could improve model transferability across rivers.

Microhabitat selection models were often criticized in the literature for considering abundance as a proxy of habitat selection. Indeed, abundance or density are not always equal to selection and can be strongly influenced by density-dependent population dynamics and individual behavior ( [START_REF] Horne | Density as a misleading indicator of habitat quality[END_REF][START_REF] Lancaster | Linking the hydraulic world of individual organisms to ecological processes: Putting ecology into ecohydraulics[END_REF][START_REF] Lamouroux | The generality of abundance-environment relationships in microhabitats: A comment on Lancaster and Downes[END_REF]. For example, for territorial species, the most suitable microhabitat may be occupied by dominant individuals and thus correspond to low abundance [START_REF] Rosenfeld | Developing Bioenergetic-Based Habitat Suitability Curves for Instream Flow Models[END_REF]. Alternatives to the use of abundance are to build selection models using presence or presence-absence data (e.g., [START_REF] Micheli-Campbell | Integrating telemetry with a predictive model to assess habitat preferences and juvenile survival in an endangered freshwater turtle[END_REF][START_REF] Guerra | Spawning habitat selection by Octopus vulgaris: New insights for a more effective management of this resource[END_REF], or to build bioenergetic models [START_REF] Rosenfeld | Developing Bioenergetic-Based Habitat Suitability Curves for Instream Flow Models[END_REF]) that represent the energy gain or loss by organisms in a given microhabitat. Although encouraging, these bioenergetic models still deserve further field validation. Using other descriptors than abundance may raise other problems: for example, presence-absence data contain little information for species that have very low or very high occurrence. Our methodological approach considers overdispersion and has the advantage of taking into account the abundance information without giving too much importance to the samples with very high abundance. Specifically, our models treated differently gregarious species with schooling behavior, such as Phoxinus phoxinus [START_REF] Garner | Effects of variable discharge on the velocity use and shoaling behaviour of Phoxinus phoxinus[END_REF], or less gregarious species such as Barbus barbus, and were well adapted to each condition.

Finally, our selection models considered the temporal and spatial variations of abundance over space (between microhabitats) and time (across surveys). However, they did not account for the temporal and spatial variations of the microhabitat characteristics themselves. Microhabitats where fish individuals were found have their own history influenced by temporal events such as strong variations in discharge (e.g., floods or hydropower releases, [START_REF] Kennard | Multiscale effects of flow regime and habitat and their interaction on fish assemblage structure in eastern Australia[END_REF][START_REF] Capra | Fish habitat selection in a large hydropeaking river: Strong individual and temporal variations revealed by telemetry[END_REF] or drying events (e.g. [START_REF] Pires | Out of Pools: Movement Patterns of Mediterranean Stream Fish in Relation to Dry Season Refugia[END_REF]. Similarly, these microhabitats belong to particular microhabitat spatial configurations-or distributions-that can be more or less heterogeneous (e.g., [START_REF] Martelo | Habitat patchiness affects distribution and microhabitat use of endangered Mira chub Squalius torgalensis (Actinopterygii, Cypriniformes)[END_REF] and more or less suitable for the different activities of the individuals over their dispersal distance [START_REF] Radinger | Patterns and predictors of fish dispersal in rivers[END_REF]. Ideally, these temporal and spatial variations in microhabitat characteristics around individuals should be described and included in microhabitat selection models. Our flexible mixed-effect methods could be further developed to integrate these aspects and provide more realistic, multi-scale models of complex habitat selection patterns. 

  abundance values, which cause low R²MF values. Spearman rho is the correlation between the rank of observed values and the rank of conditional fitted values (i.e. model adjusted by survey). A value close to 1 suggests a positive correlation between the rank of observed values and the rank of conditional fitted values, consequently a good rank correlation between the observed values and the predictions of the observed values by the conditional model. By contrast, negative value of Spearman rho correlation indicates negative correlation between the rank of observed values and the rank of fitted values, consequently a poor rank correlation between the observed values and the predictions of the observed values by the model. As for R²MF, we calculated a ∆rho which compared the difference between the Spearman rho of M4 and the Spearman rho of M1. Again, to appreciate the part of microhabitat selection explained by the "average" fixed model M2, we calculated a relative Spearman rho, which compared the differences between the Spearman rho of model M2 and the Spearman rho of the simplest model M1, to the difference between the Spearman rho of the most parametrized model (M4) and the least parametrized model (M1).

  Barbatula barbatula cl12 (N = 14,661 individuals) and Phoxinus phoxinus cl12 (N = 11,721), and the two least abundant species were Zingel asper cl12 (N = 29) and Rhodeus amarus cl12 (N = 66). The two species the most occurring were Barbatula barbatula cl12 (N = 1,124 presences in N = 2,359 sampled microhabitats) and Phoxinus phoxinus cl12 (N = 844 /1,854), and the two least occurring species were Zingel asper cl12 (N = 18 /196) and Chondrostoma nasus cl34 (N = 67 / 465). Around two third of specific size classes were sampled in more than 10 surveys.

  Fig. 2 and Fig. 3 provide two examples of the univariate models described in Table 3. Fig. 2 shows how the different models M1-M4 fitted the observed variations in observed abundance of small Barbatula barbatula cl12 as a function of water depth and Telestes soufia cl1 as a function of current velocity. The Barbatula barbatula cl12 model has a strong magnitude of habitat selection, with a ∆rho of 0.32, and the gain in Spearman rho with model M2 (Rrho) equals 93% of the gain in rho with M4 (Table

Fig. 4

 4 Fig.4summarizes the "average habitat selection" of habitat variables for all models in Table3. This "average habitat selection" corresponds to the average value of the marginal component of M2 (as shown in the examples of Fig.3) over the range of habitat characteristics observed in our dataset([0, 3] m for water depth; [0, 1.94] m.s -1 for water column current velocity). It corresponds to the average habitat value used by the size class if all habitat characteristics were equally available over these ranges. Fig.4indicates a wide diversity of habitat selection among specific size classes, with average selected depth ranging between ~0.2 and ~1.2 m, average selected velocities between ~0.05 and ~1 m.s -1 and substratum sizes between sand and cobbles. For example, Fig.4indicates that small Barbatula barbatula cl12 select shallow habitats around ~0.2 m whereas Telestes soufia cl1 select intermediate velocities ~0.3 m.s -1 , consistently with Figs. 2&3. Other species such as Barbus barbus cl34 select deep

Figure 1 :

 1 Figure 1: Location of sampling sites (points). Red points indicate location of two sites closely sampled.

Figure 2 :

 2 Figure 2: Observed microhabitat abundance (empty points) for conditional predictions of our four models (M1: black dashed lines, M2: red solid lines, M3: black dotted lines, M4: black solid lines) for the eight most abundant surveys for Barbatula barbatula cl12 and water depth (left) and for Telestes soufia cl1 and current velocity habitat (right). Each frame represents a survey. Because of their similarities (i.e. adjusted intercept and habitat selection shape by surveys), M3 and M4 lines are often superimposed on the graphs. Species codes are in Table2.

Figure 3 :

 3 Figure 3: Marginal predictions of model M2 (red lines) with its 95-percent confidence interval (grey areas) for Barbatula barbatula cl12 and Alburnus alburnus cl1 in relation to water depth (left) and Telestes soufia cl1 and Barbus barbus cl2 in relation to current velocity (right). The Y-axis represents the average microhabitat selection corresponding to the ratio of the predicted abundance and the maximum predicted abundance of the "average" model M2. The dashes along the x-axis indicate the distribution of measurments of fish presence in the model. Species codes are from Table2.

Figure 4 :

 4 Figure 4: Average microhabitat selection corresponding to the average value of the marginal component of M2 (see examples in Fig. 2) over the range of habitat characteristics observed in our dataset. Codes of species and size classes are from Table 2. Blue codes represent specific size classes showing average microhabitat selection for two microhabitat types, red codes for three microhabitat types.

Figure 5 :

 5 Figure 5: Distribution of Spearman rho values relating the observed ranks of abundance in surveys with predicted ranks (obtained for model M2 during our leave_one_river_out cross validations). These statistics indicate the potential of our "average" selection model M2 to predict blindly abundance ranks in an independent river. These cross-validations rho values are shown for the different specific size classes, ordered on the x-axis according to the differences of Spearman rho values between the full M2 and full M1. These differences indicate how M2 fits abundance ranks within surveys. Points indicate median values obtained across all the rivers tested for the specific size class.

Figure 6 :

 6 Figure 6: Comparison of the average microhabitat selected (defined as in Fig. 3) between models M2 developed without (X-axis) and with (Y-axis) refuge. Dashed lines represent y=x, corresponding to a similar microhabitat selection with and without refuge.

Figure 7 :

 7 Figure 7: Comparison of habitat characteristics corresponding to maximum abundance values, between our models and those of Lamouroux et al. (1999). This comparison is made using the microhabitat classes from Lamouroux et al. (1999): Water depth: 0-0.2 m (D1); 0.2-0.4 m (D2); 0.4-0.8 m (D3); >0.8m (D4); Dominant substratum: 0-0.016 m (R1); 0.016-0.064 m (R2); 0.064-0.256 m (R3); >0.256 m (R4); large bedrocks (R5); Current velocity (i.e. water column water current velocity): 0-0.05 m.s -1 (V1); 0.05-0.2 m.s -1 (V2); 0.2-0.4 m.s -1 (V3); 0.4-0.5 m.s -1 (V4); >0.8 m.s -1 (V5). Boxplots show the median, quartiles, 95% confidence intervals and extreme values across the different specific size classes.

Figure 8 :

 8 Figure 8: Comparison of univariate (X-axis) and multivariate (Y-axis) performance of model M2, indicated by McFadden's R²MF (left) and conditional Spearman's rho (right). Circles and triangles represent respectively the performance of univariate models associated with water depth and current velocity. Grey segments link the performance for water depth and current velocity for a given specific class. Dashed lines represent the Y=X axis.

Table 1 :

 1 River characteristics: number of reaches sampled, number of surveys, median number of microhabitats sampled during each survey, mean daily discharge [m 3 .s -1 ] average by sampling date and for the entire reach, average width of the reach[m] 

	River	Nb of reaches	Nb of surveys	Median Nb of microhabitats per survey		Mean daily discharge	Average width
					Average by sampling date	Reach	Reach
					Minimum	Maximum		
	Ain	1	9	51	20.80	155.00	125	
	Ardèche	1	12	50	0.98	33.85	24	
	Drôme	1	2	37	13.10	27.20	7	
	Durance	18	1 to 12	15	1.01 to 78.50	1.01 to 270.00	6 to 20	15 to
	Garonne	1	2	63	52.20	59.50	200	
	Le Loup	2	1	100	0.49	0.83	7	
	Les Paillons	6	1	30	0.16	0.24	0.28	
	Loire	5	1	15	10.50	19.00	50	
	Rhône	4	1 to 7	50	609.00	855.00	1030 to 1490	120 to

Table 2 :

 2 Species codes, size classes and characteristics. Total occurrence is the number of microhabitats where the size class occurred, among the total number of microhabitats sampled during the surveys where the size class occurred. Underlined specific size classes were considered for multivariate models.

	Family	Species	Code	Size class	Total Abundance	Total Occurrence	Total Nb of microhabitats	Nb of Surveys	% of data with substratum	% of microhabitats with refuges
										Absence Presence
	Anguilidae									
		Anguilla anguilla	AnA	cl23	177	84	250		-	0.73	0.27
				cl4	554	273	761		0.37	0.45	0.55
	Balitoridae									
		Barbatula barbatula	BaBa	cl12	14661	1124	2359		0.41	0.72	0.28
	Centrarchidae								
		Lepomis gibbosus	LeG	cl123	974	159	482		0.49	0.43	0.57
	Cobitidae									
		Cobitis bilineata	CoB	cl12	518	127	396		0.29	0.87	0.13
	Cottidae									
		Cottus gobio	CoG	cl12	200	77	312		0.46	0.56	0.44
	Cyprinidae									
		Alburnoides bipunctatus	AlB	cl1	8506	831	1828		0.38	0.66	0.34
				cl23	3349	512	1370		0.40	0.68	0.32
		Alburnus alburnus	AlA	cl1	1918	193	811		0.48	0.53	0.47
				cl23	895	124	451		0.48	0.62	0.38
		Barbus barbus	BaBu	cl1	3848	691	1687		0.41	0.67	0.33
				cl2	2393	528	1454		0.41	0.60	0.40
				cl34	1836	287	1176		0.48	0.54	0.46
		Barbus meridionalis	BaM	cl1	235	31	199		-	1.00	-
				cl23	607	155	364		-	0.57	0.43
		Blicca bjoerkna	BlB	cl12	360	44	219		0.46	0.58	0.42
		Chondrostoma nasus	ChN	cl12	925	136	412		0.49	0.71	0.29
				cl34	298	67	465		0.48	0.74	0.26
		Gobio gobio	GoG	cl1	4580	643	1674		0.43	0.67	0.33
				cl23	2376	596	1770		0.45	0.61	0.39
		Leuciscus leuciscus	LeL	cl123	317	81	371		0.50	0.35	0.65
		Parachondrostoma toxosoma	PaT	cl1	1195	136	534		0.44	0.74	0.26
				cl23	338	85	423		0.48	0.65	0.35
		Phoxinus phoxinus	PhP	cl12	11721	844	1854		0.37	0.71	0.29
		Rhodeus amarus	RhA	cl12	66	13	37		0.50	-	1.00
		Rutilus rutilus	RuR	cl1	1844	145	558		0.49	0.51	0.49
				cl2	1373	148	505		0.48	0.36	0.64
				cl34	188	39	211		0.34	0.42	0.58
		Squalius cephalus	SqC	cl1	8065	906	2272		0.42	0.62	0.38
				cl2	3956	727	1854		0.43	0.51	0.49
				cl34	1129	341	1238		0.48	0.46	0.54

Table 3 :

 3 Univariate model fits for microhabitat characteristics without refuge × specific size classes for specific size class showing minimum magnitude. ∆QAIC: difference with the lowest QAIC among models M1-M4, McFadden's R² (R²MF) observed with the dataset (Obs) and the R²MF observed in the 95-percentile of the posterior predictive checks simulations (Simu), the difference between the R²MF of M1 and M4 (∆R²MF), the relative R²MF of M2 compared with M4 (RR²MF), and similar statistics for Spearman rho. The values were ordered of decreasing ∆R²MF. Underlined specific size classes were considered for multivariate models. Bold numbers represent the selected model according to an AIC's selection.

	Habitat	Specie s code	Class	∆QAIC			McFadden's R²					∆R²MF RR²MF	Spearman rho					∆rho Rrho
				M1 M2 M3 M4	M1		M2		M4				M1		M2		M4		
							Obs Simu	Obs Simu	Obs Simu			Obs	Simu	Obs Simu	Obs Simu	
	Water depth																			
		BaBa	cl12	22	2	-	0.03	0.09	0.12	0.16	0.12	0.19	0.09	0.96	0.37	0.62	0.67	0.71	0.69	0.72	0.32	0.93
		CoG	cl12	-	3	8	-	-	0.08	0.20	0.09	0.24	0.09	0.94	-0.10	0.35	0.29	0.52	0.31	0.73	0.41	0.95
		BaM	cl23	-	2	5	0.03	0.06	0.09	0.15	0.10	0.26	0.08	0.87	0.27	0.51	0.42	0.64	0.43	0.68	0.16	0.91
		BaBu	cl1	59	-	5	0.03	0.05	0.07	0.12	0.09	0.21	0.06	0.65	0.27	0.51	0.49	0.61	0.52	0.61	0.25	0.87
		CoB	cl12	-	3	9	-	-	0.05	0.09	0.06	0.08	0.06	0.95	-0.12	0.32	0.22	0.43	0.26	0.45	0.39	0.89
		GoG	cl23	5	5	-	0.01	0.03	0.05	0.07	0.06	0.08	0.04	0.82	0.07	0.37	0.24	0.57	0.31	0.64	0.24	0.73
		BaBu	cl34	-	3	2	0.05	0.05	0.08	0.09	0.09	0.16	0.04	0.88	0.20	0.38	0.32	0.51	0.37	0.49	0.17	0.69
		AlA	cl23	19	5	-	0.01	0.02	0.02	0.06	0.05	0.14	0.04	0.21	0.22	0.34	0.27	0.40	0.34	0.47	0.13	0.42
		BaBu	cl2	4	-	2	0.02	0.04	0.06	0.07	0.06	0.15	0.04	0.82	0.27	0.43	0.38	0.53	0.40	0.74	0.13	0.83
		PhP	cl12	66	1	-	0.02	0.05	0.05	0.08	0.06	0.08	0.04	0.67	0.26	0.44	0.46	0.51	0.52	0.54	0.26	0.75
		SqC	cl34	2	-	8	0.02	0.03	0.06	0.07	0.06	0.17	0.04	0.84	0.09	0.31	0.20	0.43	0.27	0.41	0.18	0.64
		AlB	cl23	2	-	8	0.02	0.04	0.04	0.07	0.05	0.08	0.03	0.85	0.30	0.43	0.40	0.53	0.45	0.56	0.15	0.71
		AnA	cl4	6	-	5	0.10	0.11	0.11	0.13	0.13	0.20	0.03	0.48	0.37	0.57	0.41	0.63	0.48	0.78	0.11	0.38
		TeS	cl2	18	6	-	0.02	0.02	0.04	0.05	0.05	0.17	0.03	0.57	0.17	0.36	0.28	0.44	0.34	0.44	0.17	0.63
		GoG	cl1	18	-	8	0.02	0.05	0.04	0.08	0.05	0.18	0.03	0.76	0.21	0.41	0.37	0.47	0.41	0.57	0.19	0.80
		TeS	cl1	10	-	3	0.01	0.03	0.03	0.06	0.03	0.06	0.03	0.82	0.10	0.41	0.32	0.46	0.37	0.47	0.27	0.80
		SqC	cl2	7	2	-	0.02	0.02	0.03	0.05	0.04	0.06	0.03	0.56	0.06	0.34	0.18	0.40	0.26	0.40	0.20	0.62
		SqC	cl1	30	2	-	0.01	0.02	0.03	0.05	0.03	0.12	0.03	0.68	-0.04	0.31	0.21	0.38	0.25	0.41	0.30	0.86
		AlA	cl1	9 13	-	0.02	0.04	0.03	0.04	0.04	0.08	0.02	0.30	0.16	0.33	0.18	0.34	0.35	0.41	0.19	0.08
		PaT	cl1	15	-	4	0.03	0.05	0.03	0.12	0.05	0.11	0.02	0.15	0.18	0.35	0.22	0.38	0.33	0.41	0.15	0.25
	Current velocity																			
		PeF	cl12	-	-	5	-	0.06	0.14	0.24	0.16	0.29	0.16	0.85	-0.25	0.40	0.22	0.49	0.29	0.52	0.54	0.88
		BaM	cl1	1	-	4	0.05	0.10	0.16	0.25	0.19	0.36	0.15	0.82	0.05	0.52	0.34	0.52	0.37	0.54	0.33	0.88
		CoB	cl12	-	2	3	-	-	0.12	0.19	0.13	0.15	0.13	0.94	-0.12	0.37	0.47	0.60	0.49	0.58	0.61	0.97
		LeG cl123	-	2	6	-	0.02	0.08	0.15	0.09	0.23	0.09	0.93	-0.22	0.35	0.37	0.54	0.40	0.64	0.62	0.96
	30																					30
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