Predictive models of fish microhabitat selection in multiple sites accounting for abundance overdispersion

Laura Plichard, Maxence Forcellini, Yann Le Coarer, Hervé Capra, Georges
Carrel, René Ecochard, Nicolas Lamouroux

- To cite this version:

Laura Plichard, Maxence Forcellini, Yann Le Coarer, Hervé Capra, Georges Carrel, et al.. Predictive models of fish microhabitat selection in multiple sites accounting for abundance overdispersion. River Research and Applications, 2020, 36 (7), pp.1056-1075. 10.1002/rra.3631 . hal-02915577

HAL Id: hal-02915577

https://hal.science/hal-02915577

Submitted on 12 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Predictive models of fish microhabitat selection in MULTIPLE SITES ACCOUNTING FOR ABUNDANCE OVERDISPERSION.

Running head: PREDICTIVE MODELS OF FISH MICROHABITAT SELECTION IN MULTIPLE SITES

Authors: Plichard Laura ${ }^{1 *}$, Forcellini Maxence ${ }^{1}$, Le Coarer Yann², Capra Hervé ${ }^{1}$, Carrel Georges ${ }^{2}$, Ecochard René ${ }^{3}$, Lamouroux Nicolas ${ }^{1}$
${ }^{1}$ Irstea, UR RiverLy, Villeurbanne, France
${ }^{2}$ Irstea, UR RECOVER, Aix-en-Provence, France
${ }^{3}$ Université Lyon 1, Department of Health Biostatistics, CNRS 5558 - LBBE, Lyon, France

* Current address: Ecogea, 352 avenue Roger Tissandié 31600 Muret, France:
laura.plichard@protonmail.com

Forcellini Maxence : maxence.forcellini@irstea.fr
Le Coarer Yann : yann.lecoarer@irstea.fr
Capra Hervé : herve.capra@irstea.fr
Carrel Georges : georges.carrel@irstea.fr
Ecochard René : rene.ecochard@chu-lyon.fr
Lamouroux Nicolas : nicolas.lamouroux@irstea.fr

AckNOWLEDGEMENTS

For financial support, thanks to Agence Française pour la Biodiversité, Compagnie Nationale du Rhône, Agence de l'eau Rhône-Méditerranée-Corse, Electricité De France, Région Rhône-Alpes, Région Provence-Alpes-Côte d'Azur. For fish datasets, thanks to the LTSER platform «ZABR », University of Marseille, Ecotec, and all contributors who helped for numerous sampling surveys. For Bayesian statistic and simulation guidance, thanks to Dominique Lamonica. For parallel computing
advice, thanks to Gérard Henry, Dominique Lamonica, Julie Crabot and Éliane Schermer. This manuscript benefited from the meaningful comments from three anonymous reviewers.

Conflict of interest: No

ABSTRACT

Microhabitat selection models are frequently used in rivers to evaluate anthropogenic effects on aquatic organisms. Fish models are generally developed from few rivers, with debatable statistical treatments for coping with overdispersed abundance distributions. Analyses of data from multiple rivers are needed to test their transferability and increase their relevance for stakeholders. Using 3,528 microhabitats sampled in 9 French rivers during 129 surveys, we developed models for 35 specific-size classes of 22 fish species. We used mixed-effects GLMs (accounting for multiple surveys), involving Bspline transformations (accounting for non-linear responses) and assuming a Negative Binomial distribution (accounting for abundance overdispersion). We compared models of increasing complexity: no selection (M1), an "average" selection similar in all surveys (M2), two models with different selection across surveys (M3-4). Of 132 univariate cases (specific-size classes by habitat), 63% indicated selection for depth, 71% for velocity, 45% for substratum size and 13% for substratum heterogeneity. A total of 50 models were retained, involving $26 / 35$ specific-size classes. Model fits indicated low explained deviance ($\mathrm{R}^{2} \mathrm{MF}<0.19$) and higher rank correlations (rho<0.69) between observed and modeled values. However, Bayesian posterior predictive checks validated these results since excellent fits would generate $\mathrm{R}^{2} \mathrm{MF}$ lower than 0.59 and rho lower than 0.78 . We found high transferability among rivers and dates, because (1) M2 was the most appropriate in $26 / 50$ cases; (2) the R^{2} MF and rho values by M2 was respectively 72% and 75% of that explained by the complex M 4 , and (3) independent river crossvalidations showed good transferability. Bivariate models for selected specific-size classes improved univariate model fits (rho from 0.30 to 0.38). Overall, using a non-linear mixed-effect approach, our results confirmed the relevance of "average" models based on several rivers for developing helpful eflow tools. Finally, our modeling approach opens opportunities for integrating additional effects as the spatial distribution of competitors.

Keyword: Fish microhabitat selection modeling, Fish preference, mixed-effect models, abundance overdispersion, Negative Binomial distribution, hydraulic habitat

Introduction

Habitat selection is the process by which an organism will choose the place to live (Odum, 1953; Udvardy, 1959; Johnson, 1980). This choice will depend on several factors such as species or individual traits (Wagner et al., 2011; Fisher, Anholt \& Volpe, 2011; Bunce et al., 2013; Capra et al., 2017). In order to optimize their fitness (Fretwell \& Lucas, 1969), organisms will select different types of habitat according to their activities (e.g., foraging, reproduction period; Baker, 2006; Conallin et al., 2014). To describe this process, many habitat selection models are developed in terrestrial and in aquatic systems (Manly et al. 2002). These models generally relate species abundance or occurrence to a variety of habitat characteristics. They often involve habitat descriptions at the "local scale" of organisms, generally referred to as microhabitats when the scale represents the immediate surroundings of organisms (Odum, 1953), or mesohabitats when the scale represents somewhat larger environments considered to be functional units where individuals perform different activities (Kemp, Harper \& Crosa, 1999; Fausch et al., 2002).

Habitat selection models are particularly needed in rivers, where the increase in water demand and global warming are altering the local environment of freshwater organisms. In particular, the multiplication of water withdrawal, weirs or dams (Lehner et al., 2011) may affect ecosystem functioning due to altered flow discharge, hydraulics, river morphology, habitat distribution and availability, and dispersal possibilities (Poff, 1997; Vörösmarty et al., 2010; Olden et al., 2014). The development of habitat selection models, in combination with hydraulic models and integrated into water management software, has contributed to understand the variations in habitat suitability (often for fish and macroinvertebrates) as a function of flow alteration (e.g., Tomsic et al., 2007; Hayes, Hughes \& Kelly, 2007; Conallin, Boegh \& Jensen, 2010; Poff et al., 2010; Lamouroux et al., 2013; Garbe \& Beeyers, 2017; Rosenfeld, 2017). Probably due to the strong variations in local hydraulics within rivers and their strong dependence on discharge, many fish habitat selection models were developed at the microhabitat scale (e.g., Lamouroux et al., 1999; Mouton et al., 2012; Booker \& Graynoth, 2013), which represent the immediate and daily habitat occupied by fish (Odum, 1953), or at the mesohabitat scale (e.g., Gosselin, Maddock \& Petts, 2012; Booker \& Graynoth, 2013; Vezza et al., 2014), which represent the functional habitat for fish activities (e.g., pools and riffles, Kemp, Harper \& Crosa, 1999). Thus, microhabitat and mesohabitat models allow studying local processes involved in fish ecology, considering fish sensitivity to local hydraulic variations. These models generally link species abundance (or other proxies of habitat selection) to hydraulic variables such as water depth or current velocity, considered to be both more direct and ecologically relevant descriptors of habitat conditions than flow discharge alone.

Numerous microhabitat selection models have been developed for fish, differing for example by their localization (e.g., Labonne, Allouche \& Gaudin, 2003; Nykanen \& Huusko, 2003 in Europe, Costa et al., 2013; Rosenfeld, 2017 in America; Fukuda, 2011; Shiroyama \& Yoshimura, 2016 in Asia), the type of
rivers (e.g., Girard et al., 2014 for tropical streams, Papadaki et al., 2017 for Mediterranean streams) and species involved (e.g., Dunbar, Alfredsen \& Harby, 2012 for salmonids, Muñoz-Mas et al., 2017 for redfin barbels), or the methodological approach used (e.g., Radinger, Kail \& Wolter, 2017 using expert judgments; Jowett \& Davey, 2007 using Generalized Additive Models, GAM). In many studies, microhabitat selection models involved one or a few species and a limited number of surveys (dates \times sites combinations). This often limits the possibility to test the transferability of models to independent rivers of different catchments and to apply habitat models at the larger scale of "riverscapes" (Harby et al. 2017). For that purpose, it is crucial to improve methodological developments of such models for enlarging their application in river management.

The joint analysis of ecological data collected from multiple surveys is often useful to detect general ecological patterns, and to account for the influence of various environmental parameters that can influence patterns observed in each individual survey. For example, having numerous field surveys increases the statistical power to detect changes after restoration projects (Vaudor et al., 2015) and the performance of species distribution models (Wisz et al., 2008). For microhabitat selection models, analyzing numerous surveys can increase the statistical power to detect similarities and differences in microhabitat selection among surveys. Using numerous surveys is also required for non-abundant species, for which a single survey is often not powerful enough for identifying robust abundance-habitat relationships. However, a challenge when using data from several surveys is to develop modeling frameworks that clearly separate abundance/occurrence changes within surveys (that correspond to microhabitat selection) from differences between surveys that can be due to numerous other factors such as temperature, water quality, hydrology or species biogeography.

Among the abundant literature on habitat selection, many statistical models have been used to study microhabitat selection (Ahmadi-Nedushan et al., 2006; Conallin, Boegh \& Jensen, 2010). This includes the simple comparison of microhabitat densities across habitat categories (e.g. habitat suitability curves of Lamouroux et al., 1999; Mouton et al., 2012), generalized linear models (GLMs, e.g. Labonne, Allouche \& Gaudin, 2003; Jowett \& Davey, 2007; Alcaraz-Hernandez et al., 2016), fuzzy-models (e.g., Muñoz-Mas et al., 2012) that compute a weighted average of different models, and more recent machine-learning techniques such as random forests (e.g., Vezza et al., 2014; Shiroyama \& Yoshimura, 2016) or neural networks (e.g., Fukuda, 2011; Muñoz-Mas et al., 2018) that are complex non-parametric classification methods (Guisan \& Zimmermann, 2000).

Due to their simplicity and flexibility, GLMs are powerful methods to assess fish habitat selection. These models can be designed to cope for non-linear habitat selection relationships, for example by using splines in generalized additive models (Pleydell \& Chrétien, 2010; Girard et al., 2014, Zuur, Saveliev \& Ieno, 2014). These smoothing regressions use polynomial regressions to characterize the range of habitat selected without overfitting models. In addition, they can deal with the spatial and temporal variations generated by multiple surveys within multiple rivers using mixed-effect formulations
(Goldstein, 2003; Bates et al., 2015). They also can account for different hypothesis concerning the statistical distribution of abundance counts, such as the Poisson or Negative Binomial distributions. Because GLMs are parametric models, their parameters can be extracted for predictive purposes (Ahmadi-Nedushan et al., 2006) and easily transferred to stakeholders as "preference curves" (e.g.,). Combinations of multilevel GLMs and smoothing B-splines have already been used with longitudinal data (i.e. multiple measurements on the same subject) in medicine, for modeling human growth (Pan \& Goldstein, 1998; Grajeda et al., 2016), but in our knowledge they have not been used in ecology for modeling the relationship between species abundance and habitats. By combining a regression method with a smoothing approach, this modeling method could help developing a powerful method for studying complex microhabitat selection processes.

However, the overdispersion of fish abundance data (i.e. variance >> mean) complicates microhabitat selection modeling. This overdispersion is characterized by a high number of samples without organisms and a few samples containing the majority of the abundance. This overdispersion can be accounted for by different methods. A first possibility is to transform the data (e.g., by logtransformation; O'Hara \& Kotze, 2010) in order to limit the impact of high variance on the models, but transformations generate difficulties such as an underestimation of mean values (O'Hara \& Kotze, 2010; Warton, Wright \& Wang, 2012; Ives, 2015). Another method is to use distribution assumptions that involve an overdispersion parameter by definition, such as the overdispersed Poisson distribution, the Negative Binomial distribution or zero-inflated distributions, which consider simultaneously an abundance distribution and a presence-absence distribution (Warton, 2005; Potts \& Elith, 2006; Vaudor et al., 2015). Of these distributions, the Negative Binomial is particularly well adapted to freshwater abundance data (Vaudor, Lamouroux \& Olivier, 2011) and might be the most relevant for modeling fish microhabitat selection.

Given these statistical limits of current approaches, the aim of this paper is to present and apply a more suitable methodology for developing fish microhabitat selection models. Our approach is based on the use of mixed-effect GLMs (to account for data collected in multiple surveys) involving B-spline transformations of habitat variables (to account for non-linear responses) and Negative Binomial assumptions (to account for overdispersed abundance data). We applied our approach to a unique data set involving 3,528 microhabitats electrofished in a total of 129 surveys (date \times reach combinations) in 9 French rivers. A total of 22 species \times four size classes were considered. We first developed univariate models relating fish abundance to microhabitat water depth, current velocity, substratum grain size and substratum heterogeneity (i.e. grain size diversity). Models of increasing complexity were compared to appreciate the degree of model transferability across surveys, and models were built for microhabitat subsets with or without hydraulic refuges. Their performance was assessed using several metrics, posterior predictive checks (Bayesian approach) and cross validations. Then, we developed bivariate
models for a selection of species to appreciate their added values when compared with univariate models.

Methods

Study reaches

A total of 3,528 microhabitats were sampled between 1989 and 2014 during 129 surveys in 9 southern French rivers (Fig. 1, Table 1, Appendix 1). A first dataset was ($\mathrm{n}=1709$ microhabitats; rivers Ain, Ardèche, Drome, Garonne, Loire and Rhône) was already used by Lamouroux et al. (1999) to develop habitat selection models, with a different modeling approach and a debatable log-transformation of abundance. A second dataset ($\mathrm{n}=1819$ microhabitats) involved southern rivers. These two datasets were pooled to develop fish microhabitat selection models.

FISH SAMPLING

In both datasets, fish were electrofished at low flow rates with adjusted current ($5 \mathrm{~kW}, 180-1000 \mathrm{~V}, 1-4$ A, direct current) in microhabitats of varying surface areas (between 4 and $90 \mathrm{~m}^{2}$ for 95% of microhabitats). Each microhabitat was selected in a given habitat type (e.g. a pool or a riffle) and electrofished using an open-sampling technique (Vadas \& Orth, 1993; Lamouroux et al., 1999). For each survey, the total number of microhabitats represented the distribution of habitat types observed in the sampling reach on the sampling date. Fish lengths were recorded and classified into four classes cl1 (\leq 80 mm), cl2 ($80-180 \mathrm{~mm}$), cl3 ($180-300 \mathrm{~mm}$) and cl4 ($>300 \mathrm{~mm}$).

To model fish microhabitat selection, for each specific size class (i.e. a size class associated to one species), surveys including less than six individuals observed in less than three microhabitats were removed from datasets. In addition, species observed in less than three surveys were not modelled. Some classes were pooled to develop and improve the models when individual classes did not contain enough individuals. For example, a pooled class 1-3 will be noted cl123 hereafter.

MICROHABITAT CHARACTERISTICS

Mean water depth and mean water column current velocity were calculated by the mean of several verticals measurements (average $=7$), randomly sampled and georeferenced within each microhabitat, defining the microhabitat and weighted by their representative area for depth and representative volume for velocity. Point water column velocities were measured from three measurements at distances above the bed of $20 \%, 40 \%$ and 80% of the water depth, using a current meter. These calculations were performed using the HydroSignature software (Le Coarer, 2007).

Substratum grain size characterisation differed between the two datasets. In the first dataset, one or two dominant substratum grain sizes (covering most of the $\sim 1 \mathrm{~m}^{2}$ area around the point) and the substratum with the maximum grain sizes were estimated at several points, as for depth and velocity, and assigned to one of 12 categories using a modified version of the Wentworth logarithmic scale (Wentworth, 1922). In the second dataset, the substratum grain size was measured at 10 points using the roughness height of substratum, defined as the relative height of particles relative to the bed (Gordon, McMahon \& Finlayson, 1992). To merge datasets, we translated all substratum characterisations into frequencies of seven size classes within the microhabitat: silt, sand, gravel, pebble, cobble, boulder and block. Then, we computed the dominant substratum class and the number of distinct substratum classes. Finally, for each species, between 29% and 50% of the data did not include substratum descriptions and were removed from dataset for developing models involving substratum (Table 2).

The presence of hydraulic refuges (grouping mineral refuges, vegetated refuges and bank refuges) was recorded. We separated the full dataset into two datasets, with or without refuges, to analyse the influence of refuges on microhabitat use. Most analyses were made on the dataset without refuges, and the data set with refuge was used to appreciate their influence.

Modeling

To compare predictive microhabitat selection models by specific size classes (and refuge types) we defined four mixed-effect models of increasing complexity (M1-M4, eqn.1-eqn.4). In short, M1 was a model without microhabitat selection, M2 a model where selection was similar in all surveys and M3-4 models where selection could vary across surveys. All models linked the abundance of a specific size class to one of our four habitat variables, and accounted for difference between surveys by forcing a random effect on the model intercept. Models M3-4 also had random effects at the survey level associated with microhabitat characteristics, allowing variable microhabitat selection across surveys. Each model could be represented by its conditional expression, which corresponded to the full model fit (fixed and random effects) and thus could vary across surveys (e.g., Fig. 2), and its marginal component, which corresponded to its fixed effects only and had a similar form across surveys (e.g., Fig. 3).

Fish overdispersion was accounted for by assuming that abundance values followed a Negative Binomial distribution $\mathrm{NB}(\mu, \theta)$, with different parameters of dispersion θ across species, size class and models, but a constant θ across surveys. Vaudor et al. (2015) justified the choice of using a constant parameter across surveys by the reduced temporal variation of θ for a given species. To check the relevance of our NB assumption, we estimated for each model the overdispersion coefficient defined as the sum of squared Pearson residuals divided by the difference between the sample size and the number of parameters (Zuur, Saveliev \& Ieno, 2014). The values, close to 1, ranged between 0.4 and
2.4 and indicated a good adjustment of the NB to our abundance distributions (Zuur, Saveliev \& Ieno, 2014).

Because microhabitat selection is typically a non-linear process (e.g., Labonne, Allouche \& Gaudin, 2003; Girard et al., 2014; Alcaraz-Hernandez et al., 2016), we introduced B-splines to transform the microhabitat variables, which decomposed these variables into piecewise cubic regressions with fixed knots (Pan \& Goldstein, 1998; Grajeda et al., 2016). For each model, we previously selected the appropriate number of knots between models with a single knot (fixed at 50% of the distribution of the microhabitat variable, 2 degrees of freedom) or models with two knots (fixed at 33% and 67% of the distribution of the microhabitat variable, 3 degrees of freedom). The criterion used for this selection was a modified Akaike Information Criterion for overdispersed count data, QAIC (Burnham \& Anderson, 2002; Kim et al., 2014), which is a correction of the maximum-likelihood estimations by the overdispersed coefficient of the global model and is calculated as:

QAIC $=-2 \frac{\log (\text { Likelihood })}{\hat{c}_{M 4}}+2 K$
where K is the number of parameters of the model, and $\hat{c}_{M 4}$ the overdispersion coefficient estimated using our more detailed model M4.

Finally, to deal with differences in surface areas among microhabitats, which obviously could influence abundance values, we introduced an offset ($c_{\text {area }}$) which was not a parameter of the models and corresponded to the total area sampled by microhabitat.

The four models were built following:
$y_{i j} N B\left(\mu_{i j}, \theta\right)$
where $y_{i j}$ is the abundance of a specific size class of microhabitat i in survey j and $\mu_{i j}$ its expected mean value. Relations between $\mu_{i j}$ and microhabitat variables varied across models:

M1: No microhabitat selection

$\log \left(\hat{\mu}_{i j}\right)=\beta_{0}+u_{0 j}+c_{\text {area }}$
where β_{0} represents the fixed component of the intercept and $u_{0 j} N\left(0, \sigma_{0}^{2}\right)$ its random component. Values of $u_{0 j}$ were assumed normally distributed with a standard deviation of σ_{0}. M1 is a model where microhabitat variables have no influence on abundance.

M2: "Average" microhabitat selection

275
$\log \left(\hat{\mu}_{i j}\right)=\beta_{0}+u_{0 j}+\beta_{x_{t}} * f\left(x_{t} i \iota n_{i j}\right)+c_{\text {area }}{ }^{i}$
where $\beta_{x_{t}}$ are the fixed coefficients for each cubic regression spline $f\left(x i i t_{n}\right) i$ of the microhabitat variable x with n knots located at t_{n} positions, and $u_{0 j} N\left(0, \sigma_{0}^{2}\right)$.

M2 is a model where microhabitat variables have a similar influence on abundance across surveys, i.e. it assumes that microhabitat selection is transferable across sites and dates.

M3: Partially random microhabitat selection

$\log \left(\hat{\mu}_{i j}\right)=\beta_{0}+u_{0 j}+\beta_{x_{t},} * f\left(x_{t} i i n_{i j}\right)+u_{1 j} x_{i j}+c_{\text {area }} i$
eqn. 3
where $\binom{u_{0 j}}{u_{1 j}} \quad N(0, \Omega)$ with a variance covariance matrix $\Omega=\left(\begin{array}{cc}\sigma_{0}^{2} & \sigma_{01} \\ \sigma_{01} & \sigma_{1}^{2}\end{array}\right)$.
M3 is a model where microhabitat variables have different influences on abundance across surveys.

M4: Fully random microhabitat selection
$\log \left(\hat{\mu}_{i j}\right)=\beta_{0}+u_{0 j}+\left(\beta_{i} i x_{t_{n}}+u_{1 x_{t},}\right) * f\left(x_{t} i i n_{i j}\right)+c_{\text {area }} i i$
eqn. 4

M4 is a model where microhabitat variables have different influences on abundance across surveys as in M3, but is more flexible than M3 because all coefficients of cubic regression splines may vary across surveys.

In our study, M1 is considered as a null random model and thus a reference for appreciating the added value of microhabitat selection models M2-M4. By contrast, M4 is the most complicated and parametrized model and represents the best fitted microhabitat selection model.

Model evaluation

Model selection

To compare models fit and parsimony, we calculated a \triangle QAIC, defined as the difference in QAIC between the model with the lowest QAIC and the QAIC of the three other models. Following Burnham \&

Anderson (2002), models presenting a $\triangle Q A I C \geq 10$ were identified as failing to explain some substantial variation in the data.

Model fits: explained deviance ($R^{2} M F$) and Spearman rho

Model fits were characterized using a McFadden's $R^{2}\left(R^{2} M F ;\right.$ McFadden, 1974) or explained deviance, which is the ratio between the explained deviance and the null deviance and is the equivalent for maximum-likelihood of a R^{2} in linear regression (Guisan \& Zimmermann, 2000). Because $R^{2} M F$ are based on null deviance, they can be compared between each model. A model with a higher value of $\mathrm{R}^{2} \mathrm{MF}$ indicates a model with a higher explained deviance.
$R^{2} M F=1-\frac{\log \left(\text { Likelihood }_{\text {Model }}\right)}{\log \left(\text { Likelihood }_{\text {Nullmodel }}\right)}$
To appreciate how the fully random model (M4) fitted the data compared to the model without microhabitat selection (M1), we calculated a $\Delta R^{2} M F$ which compared the difference between the $R^{2} M F$ of M 4 and the $\mathrm{R}^{2} \mathrm{MF}$ of M 1 .

To appreciate how the "average" model M2 (considered as an average selection model shared by all rivers) explained microhabitat selection compared to the most flexible model (M4), we calculated a relative $R^{2} M F$ (RRMF), which compared the differences between the $R^{2} M F$ of the model M2 and the R^{2} MF of the simplest model M1, to the difference between the $R^{2} M F$ of the most parametrized model (M4) and the least parametrized model (M1).
$R R M F_{M 2}=\frac{R^{2} M F_{M 2}-R^{2} M F_{M 1}}{R^{2} M F_{M 4}-R^{2} M F_{M 1}}$

We also use Spearman rho (i.e. rank correlation; Spearman, 1904), hereafter cited as Spearman rho, as an alternative statistic to $\mathrm{R}^{2} \mathrm{MF}$, in order to complement our appreciation of model fit (Guisan \& Zimmermann, 2000; Potts \& Elith, 2006). Adding this statistic was important in our case of overdispersed abundance values, which cause low $R^{2} M F$ values. Spearman rho is the correlation between the rank of observed values and the rank of conditional fitted values (i.e. model adjusted by survey). A value close to 1 suggests a positive correlation between the rank of observed values and the rank of conditional fitted values, consequently a good rank correlation between the observed values and the predictions of the observed values by the conditional model. By contrast, negative value of Spearman rho correlation indicates negative correlation between the rank of observed values and the rank of fitted values, consequently a poor rank correlation between the observed values and the predictions of the observed values by the model. As for $R^{2} M F$, we calculated a Δ rho which compared the difference between the Spearman rho of M4 and the Spearman rho of M1.

Again, to appreciate the part of microhabitat selection explained by the "average" fixed model M2, we calculated a relative Spearman rho, which compared the differences between the Spearman rho of model M2 and the Spearman rho of the simplest model M1, to the difference between the Spearman rho of the most parametrized model (M4) and the least parametrized model (M1).

Rrho $_{M_{2}}=\frac{r h o_{M 2}-r h o_{M 1}}{r h o_{M 4}-r h o_{M 1}}$

Posterior predictive check simulations

We used posterior predictive check simulations (Chambert, Rotella \& Higgs, 2014), widely used in Bayesian statistics, to assess the performance of models at predicting the data. The objective of this technique was to appreciate what quality of model fit (i.e. R²MF and Spearman rho) could be expectable with overdispersed abundance data such as ours. Specifically, simulations consisted in 1) assuming that the fitted model corresponded to the true response of abundance to habitat, 2) generating fictive, simulated observed values ($\mathrm{n}=1500$ fictive abundance datasets) taking into account the overdispersion of the taxa, 3) estimating the $\mathrm{R}^{2} \mathrm{MF}$ and Spearman rho of models fitted on these fictive data, and 4) comparing our initial model fit with the fictive ones.

The choice of $\mathrm{n}=1500$ fictive datasets was made after trials with n values between 20 and 2000, indicating stable results for all models when $n=1500$. To keep a similar structure between the observed dataset and the simulated datasets, each simulated dataset contained the same number of surveys as the observed dataset. In a simulated survey, we randomly picked the number of microhabitats within the range of microhabitats sampled by survey. For example, Telestes soufia class 2 was present in 60 surveys which contained between 7 and 96 microhabitats, consequently the simulated surveys randomly contained between 7 and 96 microhabitats. Then we randomly picked a value of the microhabitat characteristic for each sample. Given this microhabitat characteristic, we finally randomly picked the sampling area within the range of area observed for this microhabitat value. For example, the value of 0.1 m of water depth was observed in sampling area between 2 and $94 \mathrm{~m}^{2}$ with a median at $21 \mathrm{~m}^{2}$. Finally, the abundance $\hat{y}_{i j}$ was simulated following $N B(\hat{\mu}, \hat{\theta})$ using the 95% confidence interval estimations for fixed effect and the variance estimated for the random effect from models. Because M4 is assumed to represent all the variability due to the hydraulic variables measured, we used in the simulations the $\hat{\theta}$ estimated from M4 for all simulations (M1-M4).

Leave_one_river_out cross-validations

To evaluate the transferability of M 2 across rivers, i.e. its ability to predict microhabitat selection on external data, we computed leave_one_river_out cross-validations after removing each river in turn. Specifically, for each specific class, we computed new models after excluding one river (i.e. training data set) and calculated the Spearman rho correlations between the observations and the predictions of each survey from this river (i.e. validation data set). The specific size classes included in these crossvalidations where those showing a minimum magnitude of microhabitat selection (subjectively chosen as $\Delta R^{2} M F>0.01$ or $\Delta r h o>0.09$ between $M 4$ and $M 1$) and well described in the data (subjectively chosen as abundance ≥ 20 individuals per survey, occurrence ≥ 10 per survey).

Comparison with the dataset with refuges and the results of Lamouroux et al. 1999
The comparison of models for datasets with and without refuges was done for the selection of specific size classes showing a minimum magnitude of microhabitat selection (see just above).

Then, we compared our selection models with preference models showed in Lamouroux et al. (1999), derived with different methods (calculations of average log-densities in habitat classes in Lamouroux et al. 1999). For this purpose we represented the predicted abundance in our study (according to the marginal model M2, which corresponded to an average model across survey comparable to those developed in Lamouroux et al. 1999) as a function of the preferred microhabitat class identified in Lamouroux et al. (1999). This comparison was made only for specific size classes showing a minimum magnitude of microhabitat selection.

Multivariate models

To evaluate whether multivariate models increased the performance of univariate models, we developed multivariate models that include an additive selection for water depth and current velocity. Multivariate models were built for the "average" model M2 only and for specific size classes showing a minimum magnitude of microhabitat selection. We compared the $R^{2} M F$ and rho of multivariate models with values obtained by each univariate model (i.e. water depth and current velocity).

All modeling was performed with R software (version 3.4.1, R Core Team, 2017) using the function \{glmer\} from Ime4 package (Bates et al., 2015) for mixed effects models, mgcv package (Wood, 2006) for Negative Binomial distributions.

Results

Species characteristics

A total of 87,177 individuals of 22 species, mainly cyprinids (Table 1), were considered in the dataset. They belonged to 37 specific size classes. The two most abundant species were Barbatula barbatula cl12 ($\mathrm{N}=14,661$ individuals) and Phoxinus phoxinus cl12 $(\mathrm{N}=11,721$), and the two least abundant species were Zingel asper cl12 $(\mathrm{N}=29)$ and Rhodeus amarus cl12 $(\mathrm{N}=66)$. The two species the most occurring were Barbatula barbatula cl12 ($N=1,124$ presences in $N=2,359$ sampled microhabitats) and Phoxinus phoxinus cl12 ($\mathrm{N}=844 / 1,854$), and the two least occurring species were Zingel asper cl12 ($\mathrm{N}=18 / 196$) and Chondrostoma nasus cl34 ($\mathrm{N}=67 / 465$). Around two third of specific size classes were sampled in more than 10 surveys.

Concerning the refuges, a quarter of specific size classes occurred more frequently in microhabitats containing refuges than others. Although refuge descriptions are not detailed here, the majority of refuges were vegetated refuges.

Model evaluation

Model selection

Models were constructed using the dataset without refuges for a total of 132 cases (size class x variable combinations) that involved 35 specific size classes for water depth and current velocity, and 31 size classes for substratum variables. Following model selection according to \triangle QAIC criteria, there was a significant microhabitat selection for $65 / 132$ cases: $22 / 35$ for water depth, $25 / 35$ for current velocity, $14 / 31$ for dominant substratum grain size, and $4 / 31$ for substratum heterogeneity. In total, $18 / 22$ species and 29/35 size classes significantly selected at least one habitat characteristic. In the remaining cases, model M1 was selected, suggesting no microhabitat selection.

Among the 65 significant selection models, we retained hereafter only the 50 cases (Table 3) with a minimal magnitude of habitat selection, subjectively defined as $\Delta R^{2} M F$ between M4 and M1 strictly superior to 0.01 or a Δ rho strictly superior to 0.09 (models listed in Table 3). These 50 cases involved 19/22 species and $26 / 35$ specific size classes. For these models, M2 was selected in $26 / 50$ cases (11 for water depth, 10 for current velocity, 4 for dominant substratum grain size, 1 for number of substratum classes), M3 in 21/50 cases (9 for water depth, 8 for current velocity, 3 for dominant substratum grain size, 1 for number of substratum classes) and M4 in 3/50 cases only (all for current velocity).

Model fits: explained deviance ($R^{2} M F$) and Spearman rho

The values of $R^{2} M F$ obtained were generally low (see Table 3 for a synthesis of model fits): between 0 and 0.10 for M1, from 0.02 to 0.16 for the "average" model M2, from 0.02 to 0.19 for the detailed M4. Because the level of complexity of M3 is between the level of complexity of M2 and M4, values for M3 were not shown in Table 3. When analyzing how the fully random model (M4) fitted the data compared to
the model without selection (M1), we observed differences in $R^{2} \mathrm{MF}$ from 0.02 to 0.17 (between 0.02 and 0.09 for water depth, 0.02 and 0.16 for current velocity, 0.02 and 0.17 for dominant substratum grain size, 0.02 and 0.08 for number of substratum classes).

When analyzing how the "average" model (M2) fitted the data compared to the fully random model (M4) using the relative R^{2} MF, we observed values from 0.15 to 1.03 with a median of 0.72 . In other words, the "average" model M2 explained a median share of 72% of the deviance explained by the detailed model M4.

Conditional Spearman rho (Table 3) confirmed these global results but rho values were much higher than R2MF values. Spearman rho obtained ranged from -0.25 to 0.38 for M1, from 0.04 to 0.67 for M2, and from 0.07 to 0.69 for M4. When analyzing how the fully random model (M4) fitted the data compared to the model without selection (M1), we observed differences in conditional Spearman rho from 0.10 to 0.62 (between 0.10 and 0.41 for water depth, 0.10 and 0.62 for current velocity, 0.11 and 0.51 for dominant substratum grain size, 0.10 and 0.41 for number of substratum classes).

When analyzing how the "average" model (M2) fitted the data compared to the fully random model (M4) using the relative conditional Spearman rho, we observed values from -0.24 to 1.01 with a median of 0.75 . In other words, the "average" model M2 had rho values that represented a median share of 75% of the rho values of model M4, consistently with the results obtained with deviance statistics.

Posterior predictive check simulations

The posterior predictive check simulations (Table 3) suggested that, considering the overdispersion of microhabitat abundance data, the highest R2 MF and Spearman rho values (95% percentile of our fictive simulations) that could be expected when fitting our models ranged between 0 and 0.59 (for R2MF) and 0.28 and 0.78 (for Spearman rho). Our model fits (up to 0.19 for R^{2} MF and up to 0.69 for Spearman rho) therefore indicates satisfactory fits for overdispersed data.

Univariate average microhabitat selection

Fig. 2 and Fig. 3 provide two examples of the univariate models described in Table 3. Fig. 2 shows how the different models M1-M4 fitted the observed variations in observed abundance of small Barbatula barbatula cl12 as a function of water depth and Telestes soufia cl1 as a function of current velocity. The Barbatula barbatula cl12 model has a strong magnitude of habitat selection, with a $\Delta r h o$ of 0.32 , and the gain in Spearman rho with model M2 (Rrho) equals 93% of the gain in rho with M4 (Table 3). The "average" selection model is therefore very relevant for this size class. The Telestes soufia cl1 is an example with lower magnitude of habitat selection (Δ rho $=0.26$ and Rrho $=73 \%$, current velocity,

Table 3). For these taxa, the "average" model is also relevant but variations in selection across surveys are stronger (deviations between the red-line M2 and black line M4). Both graphs enable to appreciate the high degree of dispersion in these microhabitat data, with many points without fish and others with >100 individuals. Fig. 3 shows the marginal component of M2 for these two taxa, shared by all surveys, that represents the average shape of habitat selection model for the whole dataset.

Fig. 4 summarizes the "average habitat selection" of habitat variables for all models in Table 3. This "average habitat selection" corresponds to the average value of the marginal component of M2 (as shown in the examples of Fig. 3) over the range of habitat characteristics observed in our dataset ($[0,3]$ m for water depth; $[0,1.94] \mathrm{m} . \mathrm{s}^{-1}$ for water column current velocity). It corresponds to the average habitat value used by the size class if all habitat characteristics were equally available over these ranges. Fig. 4 indicates a wide diversity of habitat selection among specific size classes, with average selected depth ranging between ~ 0.2 and $\sim 1.2 \mathrm{~m}$, average selected velocities between ~ 0.05 and $\sim 1 \mathrm{~m} . \mathrm{s}^{-1}$ and substratum sizes between sand and cobbles. For example, Fig. 4 indicates that small Barbatula barbatula cl12 select shallow habitats around $\sim 0.2 \mathrm{~m}$ whereas Telestes soufia cl1 select intermediate velocities ~ 0.3 m.s ${ }^{-1}$, consistently with Figs. $2 \& 3$. Other species such as Barbus barbus cl 34 select deep and fast-flowing habitats, and large fish tend to select deeper habitats than small ones. Among the fewer significant selection of substrate characteristics, small Perca fluviatilis cl12 selects a reduced substratum heterogeneity (as opposed to Squalius cephalus cl2), preferably gravels.

Leave_one_river_out cross-validation

Cross-validations of the models of Table 3 indicated the majority of models M2 presented positive correlation between the observations and the predictions of the validating data set (Fig. 5). Crossvalidation rho values were of the same order of values than the differences in Spearman rho between M2 and M1 models during the fit on all rivers. Therefore, they reflected the potential of model M2 to predict abundance ranks in surveys of independent rivers. This was particularly true for example Barbatula barbatula cl12 (water depth, described in Fig. 3), Telestes soufia cl1 and Barbus barbus cl2 (current velocity, described in Fig. 3) but less for Alburnus alburnus cl1 (water depth, Fig. 3) whose cross-validations were less convincing.

Comparison with the dataset with refuges and the results of Lamouroux et al. 1999
After fitting selection models for the dataset with refuges (as was done for the dataset without refuges), a total of 24 significant models could be compared between the two datasets: 6 for water depth, 17 for current velocity, 1 for dominant substratum grain size and none for substrate heterogeneity. For all habitat variables, the majority of specific size classes presented similar average selection for models build on data with and without refuges (Fig. 6). A few deviations were observed for Barbus barbus cl2
and cl 34 , and Alburnoides bipunctatus cl 23 that used lower velocities in the presence of refuges, and for Squalius cephalus cl34 that selected a smaller substratum (gravel vs. pebble) in presence of refuges.

When comparing microhabitat selection (models of Table 3) with those available in Lamouroux et al 1999 (Fig. 7), we observed consistent results for water depth and current velocity but not for dominant substratum grain size.

Multivariate models

Multivariate models were developed for the 16 specific size classes that had significant selection (with minimal magnitude of effect) for both water depth and current velocity (Table 3). The multivariate model approach increased the performance of the majority of univariate models $M 2$. This result was observed with both metrics: median $R^{2} M F$ increased from 0.04 for water depth and 0.05 for current velocity to 0.06 and median rho increased from 0.30 for water depth and 0.33 for current velocity to 0.38 (Fig. 8).

DIsCussion

Our results confirmed the generality of microhabitat selection because $29 / 35$ specific size classes showed significant microhabitat selection for at least one hydraulic variable, with a minimal magnitude. Moreover, our results indicated the relevance of average models across surveys because (1) the average model (M2) was selected by Akaike criteria in $26 / 50$ cases, and (2) across all cases, the average model explained more than 70% of the variability explained by a fully random microhabitat selection model (i.e. random intercept and slope by survey, model M4). However, if this fully random microhabitat selection model explained a small proportion of variance, then the average model would not be relevant either. Our results were also consistent with previous studies on fish habitat selection (e.g., Rifflart et al., 2009), for example small Barbatula barbatula selected shallow microhabitats and small Barbus barbus faster-flowing microhabitat.

In contrast to our expectations, no difference in microhabitat selection was found for both conditions with and without refuge. Although refuges are crucial for fish ecology (e.g., Magoulick and Kobza 2003), these results could suggest an absence of influence of refuge type on hydraulic microhabitat selection. Nevertheless, our analysis of the influence of refuges could be complicated by the influence of vegetated refuge such as woody debris on sampling technique efficiency (Thévenet \& Statzner, 1999) as well as difficulties to measure hydraulic conditions in refuges. In addition, the absence of significant difference could be partly due to the lack of data with different type of refuges. We also found that selection of substrate characteristics was weaker and less transferable across streams than selection for hydraulics, as was observed earlier for fish and macroinvertebrates (Lamouroux, Dolédec \& Gayraud, 2004).

Fish size appears to be an important factor explaining habitat selection. Here, it was partly accounted for by our use of specific size classes and its effects could deserve more detailed studies. Indeed, for some species the models showed differences in average microhabitat selection between size classes of the same species. Barbus barbus is a good example of the environmental gradient used by individuals throughout their life. Smallest individuals (< 80 mm , mainly juveniles) select slower and shallower habitat (velocity $\sim 0.50 \mathrm{~m} . \mathrm{s}^{-1}$, depth $\sim 0.25 \mathrm{~m}$) than larger individuals $(80-180 \mathrm{~m})$, which
 (velocity $\sim 1 \mathrm{~m} . \mathrm{s}-1$, depth $\sim 0.75 \mathrm{~m}$, size $>180 \mathrm{~mm}$, mainly reproductive adult). Fish selection of deeper habitats over time can be related to predator avoidance and the use of riverine habitats where they can avoid high velocity variations. Nevertheless, considering the strong seasonal and annual variations in fish length between and within species, our use of fixed fish size categories remains questionable. We choose an arbitrary and uniform method for all species to define fish size classes, which was a compromise between expert opinion and statistical difficulties. Further developments may consider alternative groupings based on species life history strategies and traits (Schwartz 2016).

The strong variability explained by average multi-survey models adds evidence to the relevance of generic habitat selection models, for many taxa, despite the variability of habitat selection across surveys (e.g., Lamouroux et al., 2013; Dixon \& Vokoun, 2009). These results justify the application of habitat selection models over river networks and catchments for appreciating the ecological impact of flow management at large scale (e.g. Snelder, Booker \& Lamouroux, 2011; Muñoz-Mas et al., 2012). The generality of habitat selection has also been explained by ecological strategies adapted to particular hydraulic conditions, such as the association between opportunistic species and stressful habitat conditions (Blanck, Tedesco \& Lamouroux, 2007; Ayllón et al., 2014). However, in many studies involving fish or macroinvertebrates, it was found that habitat selection can vary a lot across space (Lancaster \& Downes, 2010) or time (Vilizzi, Copp \& Roussel, 2004) due to several potential causes such as variations in water quality or individual behavior. Our cross-validation values indicated also that an average model does not systematically transfer well to an independent river. These variations could be explained by the huge variation in river discharge (from 0.28 to $1490 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$) and width (from 5 to 160 m), and the dominance of large rivers as the Rhône River and the Durance River regarding a few number of small rivers as the Loup River and Paillons Rivers. These differences in river characteristics were equally considered in our modeling approach and numerically limit the model transferability to small rivers. All these studies illustrate the need to better examine the variations in habitat selection across different regions or watersheds.

Part of the variability in microhabitat selection across surveys may be due to identification biases of studied species. Indeed, recent studies revealed genetic differences within species identified using taxonomic criteria in France such as Gobio gobio, Barbatula barbatula or Esox lucius (Kottelat \& Freyhof, 2007; Denys, 2015). These differences suggest the presence of multiple species considered as a single
one in our study, and thus the development of microhabitat selection models at the genus level. Nevertheless, when species share taxonomic or functional traits, genus microhabitat selection models can be relevant as shown for macroinvertebrates genus such as Glossosoma or Protonemura (each grouping two species in Dolédec et al., 2007). Similarly, microhabitat selection models developed for fish at the guild level showed common patterns of microhabitat selection and good transferability across populations and surveys (Lamouroux \& Cattanéo, 2006, Martinez-Capel et al., 2009). In addition, Chen \& Olden (2018) showed that grouping species by guild based on their habitat use (i.e. species present in lower current velocity, for example Cyprinus carpio or Gambusia affinis) can provide relationships between flow and ecology that are transferable across rivers and basins, and thus relevant for catchment management.

Although low, our values of explained deviance ($\mathrm{R}^{2} \mathrm{MF}$) and correlations between observed and fitted values (Spearman rho) indicated good model quality and good adjustment. Indeed, there is no absolute value to determine whether the model performs well and the significance of each evaluation metric must be discussed for each specific study (Guisan \& Thuiller, 2005). In particular, when working at small scales such as the scale of microhabitats of a few square-meters, one cannot expect obtaining strong deterministic models of species abundance (see also Fladung, Scholten \& Thiel, 2003). Our Bayesian approach of fit statistic (posterior predictive checks) clearly confirmed that the magnitude of our fits were typically those we could expect when considering the overdispersed character of fish abundance. These results showed the relevance of average microhabitat selection models despite apparent weak fit metrics.

Bivariate additive microhabitat selection, for water depth and water column current velocity, increased model performance. Indeed, for species presenting univariate selection for both hydraulic variables, model quality metrics increased in median from 0.04 to 0.06 for $R^{2} M F$ and from 0.30 to 0.38 for Spearman rho. These results confirm the need to further develop multivariate approach as described in previous studies on microhabitat and/or mesohabitat selection (e.g. Le Coarer, 2007; Dixon \& Vokoun, 2009; Muñoz-Mas et al., 2018). In contrast, for some species as Barbus barbus, the introduction of additive variable did not increase model performance and confirmed the assumption that in some cases univariate models perform better than multivariate ones (Millidine, Malcolm \& Fryer, 2016). Several possibilities exist to investigate further the interactive effects of depth and velocity on microhabitat selection, such as describing habitats with the Froude number (Millidine et al. 2016), or using multivariate structural equation modeling (Leftwich et al. 1997), or Generalized Functional Response (Matthiopoulos et al. 2010). These approaches could improve model transferability across rivers.

Microhabitat selection models were often criticized in the literature for considering abundance as a proxy of habitat selection. Indeed, abundance or density are not always equal to selection and can be strongly influenced by density-dependent population dynamics and individual behavior (Van Horne, 1983; Lancaster \& Downes, 2010; Lamouroux et al., 2010). For example, for territorial species, the most
suitable microhabitat may be occupied by dominant individuals and thus correspond to low abundance (Rosenfeld, Beecher \& Ptolemy, 2016). Alternatives to the use of abundance are to build selection models using presence or presence-absence data (e.g., Micheli-Campbell et al., 2013; Guerra et al., 2015), or to build bioenergetic models (Rosenfeld, Beecher \& Ptolemy, 2016) that represent the energy gain or loss by organisms in a given microhabitat. Although encouraging, these bioenergetic models still deserve further field validation. Using other descriptors than abundance may raise other problems: for example, presence-absence data contain little information for species that have very low or very high occurrence. Our methodological approach considers overdispersion and has the advantage of taking into account the abundance information without giving too much importance to the samples with very high abundance. Specifically, our models treated differently gregarious species with schooling behavior, such as Phoxinus phoxinus (Garner, 1997), or less gregarious species such as Barbus barbus, and were well adapted to each condition.

Finally, our selection models considered the temporal and spatial variations of abundance over space (between microhabitats) and time (across surveys). However, they did not account for the temporal and spatial variations of the microhabitat characteristics themselves. Microhabitats where fish individuals were found have their own history influenced by temporal events such as strong variations in discharge (e.g., floods or hydropower releases, Kennard et al., 2007, Capra et al., 2017) or drying events (e.g. Pires, Beja \& Magalhães, 2014). Similarly, these microhabitats belong to particular microhabitat spatial configurations- or distributions- that can be more or less heterogeneous (e.g., Martelo et al., 2014) and more or less suitable for the different activities of the individuals over their dispersal distance (Radinger \& Wolter, 2014). Ideally, these temporal and spatial variations in microhabitat characteristics around individuals should be described and included in microhabitat selection models. Our flexible mixed-effect methods could be further developed to integrate these aspects and provide more realistic, multi-scale models of complex habitat selection patterns.

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the article. Any additional data requirements are available on request from the corresponding author.

References

Ahmadi-Nedushan B., St-Hilaire A., Berube M., Robichaud E., Thiemonge N. \& Bobee B. (2006) A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment. River Research and Applications 22, 503-523.

Alcaraz-Hernandez J.D., Munoz-Mas R., Martinez-Capel F., Garofano-Gomez V. \& Vezza P. (2016) Generalized additive models to predict adult and young brown trout (Salmo trutta Linnaeus, 1758) densities in Mediterranean rivers. Journal of Applied Ichthyology 32, 217-228.

Ayllón D., Nicola G.G., Parra I., Elvira B. \& Almodóvar A. (2014). Spatio-temporal habitat selection shifts in brown trout populations under contrasting natural flow regimes. Ecohydrology 7, 569-579.

Baker M.C. (2006) Differentiation of Mating Vocalizations in Birds: Acoustic Features in Mainland and Island Populations and Evidence of Habitat-Dependent Selection on Songs. Ethology 112, 757771.

Bates D., Maechler M., Bolker B. \& Walker S. (2015) Fitting Linear Mixed-Effects Models using Ime4. Journal of statistical software 67, 1-48.

Blanck A. \& Lamouroux N. (2007) Large-scale intraspecific variation in life-history traits of European freshwater fish. Journal of Biogeography 34, 862-875.

Booker D.J. \& Graynoth E. (2013) Relative influence of local and landscape-scale features on the density and habitat preferences of longfin and shortfin eels. New Zealand Journal of Marine and Freshwater Research 47, 1-20.

Bunce R.G.H., Bogers M.M.B., Evans D., Halada L., Jongman R.H.G., Mucher C.A., et al. (2013) The significance of habitats as indicators of biodiversity and their links to species. Ecological Indicators 33, 19-25.

Burnham K.P. \& Anderson D.R. (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New-York.

Capra H., Plichard L., Bergé J., Pella H., Ovidio M., McNeil E., et al. (2017) Fish habitat selection in a large hydropeaking river: Strong individual and temporal variations revealed by telemetry. Science of The Total Environment 578, 109-120.

Chambert T., Rotella J.J. \& Higgs M.D. (2014) Use of posterior predictive checks as an inferential tool for investigating individual heterogeneity in animal population vital rates. Ecology and Evolution 4, 1389-1397.

Chen W. \& Olden J.D. (2018) Evaluating transferability of flow-ecology relationships across space, time and taxonomy. Freshwater Biology 63, 817-830.

Conallin J., Boegh E. \& Jensen J.K. (2010) Instream physical habitat modeling types: an analysis as stream hydromorphological modeling tools for EU water resource managers. International Journal of River Basin Management 8, 93-107.

Conallin J., Boegh E., Olsen M., Pedersen S., Dunbar M.J. \& Jensen J.K. (2014) Daytime habitat selection for juvenile parr brown trout (Salmo trutta) in small lowland streams. Knowledge and Management of Aquatic Ecosystems, 09.

Costa M.R. da, Mattos T.M., Borges J.L. \& Araujo F.G. (2013) Habitat preferences of common native fishes in a tropical river in Southeastern Brazil. Neotropical Ichthyology 11, 871-880.

Denys G. (2015) Taxonomie intégrative des poissons d'eau douce de France métropolitaine. Muséum National d'Histoire Naturelle, Paris.

Dixon C.J. \& Vokoun J.C. (2009). Burbot resource selection in small streams near the southern extent of the species range. Ecology of Freshwater Fish 18, 234-246.

Dolédec S., Lamouroux N., Fuchs U. \& Mérigoux S. (2007) Modeling the hydraulic preferences of benthic macroinvertebrates in small European streams. Freshwater Biology 52, 145-164.

Dunbar M.J., Alfredsen K. \& Harby A. (2012) Hydraulic habitat modeling for setting environmental river flow needs for salmonids. Fisheries Management and Ecology 19, 500-517.

Fausch K.D., Torgersen C.E., Baxter C.V. \& Li H.W. (2002) Landscapes to Riverscapes: Bridging the Gap between Research and Conservation of Stream Fishes. BioScience 52, 483-498.

Fisher J.T., Anholt B. \& Volpe J.P. (2011) Body mass explains characteristic scales of habitat selection in terrestrial mammals. Ecology and Evolution 1, 517-528.

Fladung E., Scholten M. \& Thiel R. (2003) Modeling the habitat preferences of preadult and adult fishes on the shoreline of the large, lowland Elbe River. Journal of Applied Ichthyology 19, 303-314.

Fretwell S.D. \& Lucas H.L. (1969) On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica 19, 16-36.

Fukuda S. (2011) Assessing the applicability of fuzzy neural networks for habitat preference evaluation of Japanese medaka (Oryzias latipes). Ecological Informatics 6, 286-295.

Garbe J. \& Beeyers L. (2017) Modeling the impacts of a water trading scheme on freshwater habitats. Ecological Engineering 105, 284-295.

Garner P. (1997) Effects of variable discharge on the velocity use and shoaling behaviour of Phoxinus phoxinus. Journal of Fish Biology 50, 1214-1220.

Girard V., Monti D., Valade P., Lamouroux N., Mallet J.-P. \& Grondin H. (2014) Hydraulic Preferences of Shrimps and Fishes in Tropical Insular Rivers. River Research and Applications 30, 766-779.

Goldstein H. (2003) Multilevel statistical models. John Wiley \& Sons.
Gordon N.D., McMahon T.A. \& Finlayson B.L. (1992) Stream Hydrology: An Introduction for Ecologists. John Wiley \& Sons Ltd, Chichester.

Gosselin M.-P., Maddock I. \& Petts G. (2012) Mesohabitat use by brown trout (Salmo trutta) in a small groundwater-dominated stream. River Research and Applications 28, 390-401.

Grajeda L.M., Ivanescu A., Saito M., Crainiceanu C., Jaganath D., Gilman R.H., et al. (2016) Modeling subject-specific childhood growth using linear mixed-effect models with cubic regression splines. Emerging Themes in Epidemiology 13.

Guerra Á., Hernández-Urcera J., Garci M.E., Sestelo M., Regueira M., González Á.F., et al. (2015) Spawning habitat selection by Octopus vulgaris: New insights for a more effective management of this resource. Fisheries Research 167, 313-322.

Guisan A. \& Thuiller W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 993-1009.

Guisan A. \& Zimmermann N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modeling 135, 147-186.

Hayes J.W., Hughes N.F. \& Kelly L.H. (2007) Process-based modeling of invertebrate drift transport, net energy intake and reach carrying capacity for drift-feeding salmonids. Ecological Modeling 207, 171-188.

Ives A.R. (2015) For testing the significance of regression coefficients, go ahead and log-transform count data. Methods in Ecology and Evolution 6, 828-835.

Johnson D.H. (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65-71.

Jowett I.G. \& Davey A.J.H. (2007) A Comparison of Composite Habitat Suitability Indices and Generalized Additive Models of Invertebrate Abundance and Fish Presence-Habitat Availability. Transactions of the American Fisheries Society 136, 428-444.

Kemp J.L., Harper D.M. \& Crosa G.A. (1999) Use of 'functional habitats' to link ecology with morphology and hydrology in river rehabilitation. Aquatic Conservation: Marine and Freshwater Ecosystems 9, 159-178.

Kennard M.J., Olden J.D., Arthington A.H., Pusey B.J. \& Poff N.L. (2007) Multiscale effects of flow regime and habitat and their interaction on fish assemblage structure in eastern Australia. Canadian Journal of Fisheries and Aquatic Sciences 64, 1346-1359.

Kottelat M. \& Freyhof J. (2007) Handbook of European freshwater fishes. Publications Kottelat.
Labonne J., Allouche S. \& Gaudin P. (2003) Use of a generalised linear model to test habitat preferences: the example of Zingel asper, an endemic endangered percid of the River Rhône. Freshwater Biology 48, 687-697.

Lamouroux N., Capra H., Pouilly M. \& Souchon Y. (1999) Fish habitat preferences in large streams of southern France. Freshwater Biology 42, 673-687.

Lamouroux N. \& Cattanéo F. (2006) Fish assemblages and stream hydraulics: consistent relations across spatial scales and regions. River Research and Applications 22, 727-737.

Lamouroux N., Dolédec S. \& Gayraud S. (2004) Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. Journal of the North American Benthological Society 23, 449-466.

Lamouroux N., Mérigoux S., Capra H., Dolédec S., Jowett I.G. \& Statzner B. (2010) The generality of abundance-environment relationships in microhabitats: A comment on Lancaster and Downes (2009). River Research and Applications 26, 915-920.

Lamouroux N., Mérigoux S., Dolédec S. \& Snelder T.H. (2013) Transferability of Hydraulic Preference Models for Aquatic Macroinvertebrates. River Research and Applications 29, 933-937.

Lancaster J. \& Downes B.J. (2010) Linking the hydraulic world of individual organisms to ecological processes: Putting ecology into ecohydraulics. River Research and Applications 26, 385-403.

Le Coarer Y. (2007) Hydraulic signatures for ecological modeling at different scales. Aquatic Ecology 41, 451-459.

Lehner B., Liermann C.R., Revenga C., Vörösmarty C., Fekete B., Crouzet P., et al. (2011) Highresolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9, 494-502.

Magoulick, D.D., and Kobza, R.M. 2003. The role of refugia for fishes during drought: a review and synthesis. Freshw. Biol. 48(7): 1186-1198.

Martelo J., Grossman G.D., Porto M. \& Filomena Magalhaes M. (2014) Habitat patchiness affects distribution and microhabitat use of endangered Mira chub Squalius torgalensis (Actinopterygii, Cypriniformes). Hydrobiologia 732, 93-109.

Martinez-Capel F., García de Jalón D., Werenitzky D., Baeza D. \& Rodilla-Alama M. (2009). Microhabitat use by three endemic Iberian cyprinids in Mediterranean rivers (Tagus River Basin, Spain). Fisheries Management and Ecology 16, 52-60

McFadden D. (1974) The measurement of urban travel demand. Journal of Public Economics 3, 303328.

Micheli-Campbell M.A., Campbell H.A., Connell M., Dwyer R.G. \& Franklin C.E. (2013) Integrating telemetry with a predictive model to assess habitat preferences and juvenile survival in an endangered freshwater turtle. Freshwater Biology 58, 2253-2263.

Millidine K.J., Malcolm I.A. \& Fryer R.J. (2016) Assessing the transferability of hydraulic habitat models for juvenile Atlantic salmon. Ecological Indicators 69, 434-445.

Mouton A.M., Dillen A., Van den Neucker T., Buysse D., Stevens M. \& Coeck J. (2012) Impact of sampling efficiency on the performance of data-driven fish habitat models. Ecological Modeling 245, 94-102.

Muñoz-Mas R., Fukuda S., Portoles J. \& Martinez-Capel F. (2018) Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus). Ecological Informatics 43, 24-37.

Muñoz-Mas R., Martínez-Capel F., Alcaraz-Hernández J.D. \& Mouton A.M. (2017) On species distribution modeling, spatial scales and environmental flow assessment with Multi-Layer Perceptron Ensembles: A case study on the redfin barbel (Barbus haasi; Mertens, 1925). Limnologica - Ecology and Management of Inland Waters 62, 161-172.

Muñoz-Mas R., Martinez-Capel F., Schneider M. \& Mouton A.M. (2012) Assessment of brown trout habitat suitability in the Jucar River Basin (SPAIN): Comparison of data-driven approaches with fuzzy-logic models and univariate suitability curves. Science of the Total Environment 440, 123131.

Nykanen M. \& Huusko A. (2003) Size-related changes in habitat selection by larval grayling (Thymallus thymallus L.). Ecology of Freshwater Fish 12, 127-133.

Odum E. (1953) Fundamentals of ecology. W.B. Saunders Company, Philadelphia.
O'Hara R.B. \& Kotze D.J. (2010) Do not log-transform count data. Methods in Ecology and Evolution 1, 118-122.

Olden J.D., Konrad C.P., Melis T.S., Kennard M.J., Freeman M.C., Mims M.C., et al. (2014) Are largescale flow experiments informing the science and management of freshwater ecosystems? Frontiers in Ecology and the Environment 12, 176-185.

Pan H.Q. \& Goldstein H. (1998) Multi-level repeated measures growth modeling using extended spline functions. Statistics in Medicine 17, 2755-2770.

Papadaki C., Soulis K., Ntoanidis L., Zogaris S., Dercas N. \& Dimitriou E. (2017) Comparative Assessment of Environmental Flow Estimation Methods in a Mediterranean Mountain River. Environmental Management 60, 280-292.

Pires D.F., Beja P. \& Magalhães M.F. (2014) Out of Pools: Movement Patterns of Mediterranean Stream Fish in Relation to Dry Season Refugia. River Research and Applications, n/a-n/a.

Pleydell D.R.J. \& Chrétien S. (2010) Mixtures of GAMs for Habitat Suitability Analysis with Overdispersed Presence/Absence Data. Comput. Stat. Data Anal. 54(5), 1405-1418.

Poff N.L. (1997) Landscape Filters and Species Traits: Towards Mechanistic Understanding and Prediction in Stream Ecology. Journal of the North American Benthological Society 16, 391-409.

Poff N.L., Richter B.D., Arthington A.H., Bunn S.E., Naiman R.J., Kendy E., et al. (2010) The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology 55, 147-170.

Potts J.M. \& Elith J. (2006) Comparing species abundance models. Ecological Modeling 199, 153-163.
R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Radinger J., Kail J. \& Wolter C. (2017) Differences among Expert Judgments of Fish Habitat Suitability and Implications for River Management. River Research and Applications 33, 538-547.

Radinger J. \& Wolter C. (2014) Patterns and predictors of fish dispersal in rivers. Fish and Fisheries 15, 456-473.

Rifflart R., Carrel G., Le Coarer Y. \& Fontez B.N. (2009) Spatio-temporal patterns of fish assemblages in a large regulated alluvial river. Freshwater Biology 54, 1544-1559.

Rosenfeld J., Beecher H. \& Ptolemy R. (2016) Developing Bioenergetic-Based Habitat Suitability Curves for Instream Flow Models. North American Journal of Fisheries Management 36, 1205-1219.

Rosenfeld J.S. (2017) Developing flow-ecology relationships: Implications of nonlinear biological responses for water management. Freshwater Biology 62, 1305-1324.

Shiroyama R. \& Yoshimura C. (2016) Assessing bluegill (Lepomis macrochirus) habitat suitability using partial dependence function combined with classification approaches. Ecological Informatics 35, 9-18.

Snelder T., Booker D. \& Lamouroux N. (2011) A Method to Assess and Define Environmental Flow Rules for Large Jurisdictional Regions 1. JAWRA Journal of the American Water Resources Association 47, 828-840.

Spearman C. (1904) The proof and measurement of association between two things. The American journal of psychology 15, 72-101.

Thévenet A. \& Statzner B. (1999) Linking fluvial fish community to physical habitat in large woody debris: sampling effort, accuracy and precision. Archiv Fur Hydrobiologie 145, 57-77.

Tomsic C.A., Granata T.C., Murphy R.P. \& Livchak C.J. (2007) Using a coupled eco-hydrodynamic model to predict habitat for target species following dam removal. Ecological Engineering 30, 215-230.

Udvardy M.F.D. (1959) Notes on the Ecological Concepts of Habitat, Biotope and Niche. Ecology 40, 725-728.

Vadas R. \& Orth D. (1993) A New Technique for Estimating the Abundance and Habitat Use of Stream Fishes. Journal of Freshwater Ecology 8, 305-317.

Van Horne B. (1983) Density as a misleading indicator of habitat quality. The Journal of Wildlife Management, 893-901.

Vaudor L., Lamouroux N. \& Olivier J.-M. (2011) Comparing distribution models for small samples of overdispersed counts of freshwater fish. Acta Oecologica 37, 170-178.

Vaudor L., Lamouroux N., Olivier J.-M. \& Forcellini M. (2015) How sampling influences the statistical power to detect changes in abundance: an application to river restoration. Freshwater Biology 60, 1192-1207.

Vezza P., Parasiewicz P., Calles O., Spairani M. \& Comoglio C. (2014) Modeling habitat requirements of bullhead (Cottus gobio) in Alpine streams. Aquatic Sciences 76, 1-15.

Vilizzi L., Copp G.H. \& Roussel J.-M. (2004) Assessing variation in suitability curves and electivity profiles in temporal studies of fish habitat use. River Research and Applications 20, 605-618.
Vörösmarty C.J., McIntyre P.B., Gessner M.O., Dudgeon D., Prusevich A., Green P., et al. (2010) Global threats to human water security and river biodiversity. Nature 467, 555-561.

Wagner T., Diefenbach D.R., Christensen S.A. \& Norton A.S. (2011) Using multilevel models to quantify heterogeneity in resource selection. The Journal of Wildlife Management 75, 1788-1796.

Warton D.I. (2005) Many zeros does not mean zero inflation: comparing the goodness-of-fit of parametric models to multivariate abundance data. Environmetrics 16, 275-289.

Warton D.I., Wright S.T. \& Wang Y. (2012) Distance-based multivariate analyses confound location and dispersion effects. Methods in Ecology and Evolution 3, 89-101.

Wentworth C.K. (1922) A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology 30, 377-392.

Wisz M.S., Hijmans R.J., Li J., Peterson A.T., Graham C.H., Guisan A., et al. (2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions 14, 763-773.

Wood S.N. (2006) Generalized Additive Models : An Introduction with R. Chapman and Hall/CRC.
Zuur A.F., Saveliev A. \& Ieno E.N. (2014) A Beginner's Guide to Generalised Additive Mixed Models with R, Highland Statistics Ltd.

Table 1: River characteristics: number of reaches sampled, number of surveys, median number of microhabitats sampled during each survey, mean daily discharge $\left[\mathrm{m}^{3} . \mathrm{s}^{-1}\right]$ average by sampling date and for the entire reach, average width of the reach [m]

River	Nb of reaches	$\begin{gathered} \mathrm{Nb} \text { of } \\ \text { surveys } \end{gathered}$	Median Nb of microhabitats per survey		Mean daily discharge		Average width
				Average by sampling date		Reach	Reach
				Minimum	Maximum		
Ain	1	9	51	20.80	155.00	125	60
Ardèche	1	12	50	0.98	33.85	24	30
Drôme	1	2	37	13.10	27.20	7	20
Durance	18	1 to 12	15	1.01 to 78.50	1.01 to 270.00	6 to 20	15 to 100
Garonne	1	2	63	52.20	59.50	200	100
Le Loup	2	1	100	0.49	0.83	7	10
Les Paillons	6	1	30	0.16	0.24	0.28	5
Loire	5	1	15	10.50	19.00	50	75
Rhône	4	1 to 7	50	609.00	855.00	1030 to 1490	120 to 160

Table 2: Species codes, size classes and characteristics. Total occurrence is the number of microhabitats where the size class occurred, among the total number of microhabitats sampled during the surveys where the size class occurred. Underlined specific size classes were considered for multivariate models.

Family	Species	Code	Size class	Total Abundance	Total Occurrence	Total Nb of microhabitats	Nb of Surveys	\% of data with substratum		\% of microhabitats
:---:										
with refuges										

Table 2. Continued

Family	Species	Code	Size class	Total Abundance	Total Occurrence	Total Nb of microhabitats	Nb of Surveys	\% of data with substratum	\% of microhabitats with refuges	
									Absence	Presence
Cyprinidae										
	Telestes soufia	TeS	cl1	5231	625	1481	59	0.36	0.66	0.34
			cl 2	2857	517	1644	60	0.37	0.60	0.40
Percidae										
	Perca fluviatilis	PeF	cl12	188	72	419	12	0.49	0.43	0.57
	Zingel asper	ZiA	cl12	29	18	196	3	0.50	1.00	-
Salmonidae										
	Salmo trutta fario	SaT	cl12	308	122	380	7	0.33	0.69	0.31
			cl34	87	34	93	3	-	-	1.00

Table 3: Univariate model fits for microhabitat characteristics without refuge \times specific size classes for specific size class showing minimum magnitude. \triangle QAIC: difference with the lowest QAIC among models M1-M4, McFadden's R^{2} ($R^{2} M F$) observed with the dataset (Obs) and the $R^{2} M F$ observed in the 95 -percentile of the posterior predictive checks simulations (Simu), the difference between the R2MF of M1 and M4 ($\Delta R^{2} M F$), the relative R^{2} MF of M2 compared with M4 (R^{2} MF), and similar statistics for Spearman rho. The values were ordered of decreasing $\Delta R^{2} M F$. Underlined specific size classes were considered for multivariate models. Bold numbers represent the selected model according to an AIC's selection.

Habitat	Specie s code	Class	\triangle QAIC				McFadden's $\mathbf{R}^{\mathbf{2}}$						$\Delta \mathrm{R}^{2} \mathrm{MF}$	R $\mathbf{R}^{2} \mathrm{MF}$	Spearman rho						$\Delta \mathrm{rho}$	Rrho
			M1	M2	M3	M4	M1		M2		M4				M1		M2		M4			
							Obs	Simu	Obs	Simu	Obs	Simu			Obs	Simu	Obs	Simu	Obs	Simu		
Water depth																						
	BaBa	cl12	681	22	2	-	0.03	0.09	0.12	0.16	0.12	0.19	0.09	0.96	0.37	0.62	0.67	0.71	0.69	0.72	0.32	0.93
	CoG	cl12	34	-	3	8	-	-	0.08	0.20	0.09	0.24	0.09	0.94	-0.10	0.35	0.29	0.52	0.31	0.73	0.41	0.95
	BaM	cl23	29	-	2	5	0.03	0.06	0.09	0.15	0.10	0.26	0.08	0.87	0.27	0.51	0.42	0.64	0.43	0.68	0.16	0.91
	BaBu	cl1	178	59	-	5	0.03	0.05	0.07	0.12	0.09	0.21	0.06	0.65	0.27	0.51	0.49	0.61	0.52	0.61	0.25	0.87
	CoB	cl12	25	-	3	9	-	-	0.05	0.09	0.06	0.08	0.06	0.95	-0.12	0.32	0.22	0.43	0.26	0.45	0.39	0.89
	GoG	cl23	111	5	5	-	0.01	0.03	0.05	0.07	0.06	0.08	0.04	0.82	0.07	0.37	0.24	0.57	0.31	0.64	0.24	0.73
	BaBu	cl34	41	-	3	2	0.05	0.05	0.08	0.09	0.09	0.16	0.04	0.88	0.20	0.38	0.32	0.51	0.37	0.49	0.17	0.69
	AIA	cl23	22	19	5	-	0.01	0.02	0.02	0.06	0.05	0.14	0.04	0.21	0.22	0.34	0.27	0.40	0.34	0.47	0.13	0.42
	BaBu	cl 2	91	4	-	2	0.02	0.04	0.06	0.07	0.06	0.15	0.04	0.82	0.27	0.43	0.38	0.53	0.40	0.74	0.13	0.83
	PhP	cl12	208	66	1	-	0.02	0.05	0.05	0.08	0.06	0.08	0.04	0.67	0.26	0.44	0.46	0.51	0.52	0.54	0.26	0.75
	SqC	cl34	11	2	-	8	0.02	0.03	0.06	0.07	0.06	0.17	0.04	0.84	0.09	0.31	0.20	0.43	0.27	0.41	0.18	0.64
	AIB	cl23	71	2	-	8	0.02	0.04	0.04	0.07	0.05	0.08	0.03	0.85	0.30	0.43	0.40	0.53	0.45	0.56	0.15	0.71
	AnA	cl4	12	6	-	5	0.10	0.11	0.11	0.13	0.13	0.20	0.03	0.48	0.37	0.57	0.41	0.63	0.48	0.78	0.11	0.38
	TeS	cl 2	62	18	6	-	0.02	0.02	0.04	0.05	0.05	0.17	0.03	0.57	0.17	0.36	0.28	0.44	0.34	0.44	0.17	0.63
	GoG	cl1	83	18	-	8	0.02	0.05	0.04	0.08	0.05	0.18	0.03	0.76	0.21	0.41	0.37	0.47	0.41	0.57	0.19	0.80
	TeS	cl1	98	10	-	3	0.01	0.03	0.03	0.06	0.03	0.06	0.03	0.82	0.10	0.41	0.32	0.46	0.37	0.47	0.27	0.80
	SqC	$\mathrm{cl2}$	32	7	2	-	0.02	0.02	0.03	0.05	0.04	0.06	0.03	0.56	0.06	0.34	0.18	0.40	0.26	0.40	0.20	0.62
	SqC	cl1	111	30	2	-	0.01	0.02	0.03	0.05	0.03	0.12	0.03	0.68	-0.04	0.31	0.21	0.38	0.25	0.41	0.30	0.86
	AIA	cl1	14	9	13	-	0.02	0.04	0.03	0.04	0.04	0.08	0.02	0.30	0.16	0.33	0.18	0.34	0.35	0.41	0.19	0.08
	PaT	cl1	13	15	-	4	0.03	0.05	0.03	0.12	0.05	0.11	0.02	0.15	0.18	0.35	0.22	0.38	0.33	0.41	0.15	0.25
Current velocity																						
	PeF	cl12	23	-	-	5	-	0.06	0.14	0.24	0.16	0.29	0.16	0.85	-0.25	0.40	0.22	0.49	0.29	0.52	0.54	0.88
	BaM	cl1	29	1	-	4	0.05	0.10	0.16	0.25	0.19	0.36	0.15	0.82	0.05	0.52	0.34	0.52	0.37	0.54	0.33	0.88
	CoB	cl12	118	-	2	3	-	-	0.12	0.19	0.13	0.15	0.13	0.94	-0.12	0.37	0.47	0.60	0.49	0.58	0.61	0.97
	LeG	cl123	48	-	2	6	-	0.02	0.08	0.15	0.09	0.23	0.09	0.93	-0.22	0.35	0.37	0.54	0.40	0.64	0.62	0.96

Table 3. Continued																						
Habitat	Specie s code	Class	\triangle QAIC				McFadden's $\mathrm{R}^{\mathbf{2}}$						$\Delta \mathrm{R}^{2} \mathrm{MF}$	RR2'MF	Spearman rho						$\Delta \mathrm{rho}$	Rrho
			M1	M2	M3	M4	M1 Obs	Simu	M2 Obs	Simu	$\begin{gathered} \text { M4 } \\ \text { Obs } \end{gathered}$	Simu			M1 Obs	Simu	M2 Obs	Simu	M4 Obs	Simu		
Current velocity																						
	BIB	cl12	34	-	2	6	0.01	0.05	0.09	0.12	0.10	0.14	0.09	0.91	0.12	0.38	0.36	0.53	0.41	0.52	0.29	0.82
	RuR	cl1	49	-	-	1	0.01	0.04	0.08	0.13	0.09	0.13	0.08	0.86	0.03	0.39	0.40	0.53	0.40	0.55	0.37	0.98
	BaBu	cl 2	112	52	14	-	0.02	0.04	0.05	0.10	0.08	0.10	0.05	0.51	0.27	0.46	0.42	0.53	0.47	0.57	0.20	0.76
	SqC	cl1	244	26	5	-	0.01	0.03	0.05	0.09	0.06	0.08	0.05	0.86	-0.04	0.37	0.38	0.49	0.42	0.51	0.46	0.93
	GoG	cl1	192	39	-	1	0.02	0.05	0.06	0.09	0.07	0.11	0.05	0.75	0.21	0.42	0.39	0.48	0.42	0.52	0.21	0.85
	SqC	cl 2	96	14	-	2	0.02	0.02	0.05	0.08	0.05	0.06	0.04	0.79	0.06	0.35	0.23	0.42	0.29	0.43	0.23	0.77
	BaBu	cl34	31	22	7	-	0.05	0.04	0.06	0.08	0.08	0.13	0.04	0.28	0.20	0.35	0.35	0.42	0.39	0.48	0.18	0.78
	AIA	cl1	38	5	8	-	0.02	0.04	0.04	0.07	0.05	0.09	0.04	0.72	0.16	0.34	0.23	0.39	0.33	0.44	0.17	0.44
	AIB	cl23	80	44	14	-	0.02	0.04	0.03	0.07	0.05	0.13	0.04	0.36	0.30	0.43	0.42	0.50	0.46	0.56	0.16	0.74
	PhP	cl12	184	44	4	-	0.02	0.05	0.05	0.08	0.06	0.08	0.04	0.71	0.26	0.45	0.44	0.49	0.52	0.54	0.26	0.69
	AIA	cl23	12	5	4	-	0.01	0.02	0.03	0.05	0.05	0.10	0.04	0.43	0.22	0.34	0.24	0.40	0.35	0.46	0.13	0.19
	AnA	cl4	14	9	-	4	0.10	0.10	0.11	0.14	0.13	0.18	0.03	0.38	0.37	0.57	0.41	0.60	0.46	0.60	0.09	0.44
	PaT	cl1	25	-	3	7	0.03	0.05	0.06	0.09	0.06	0.11	0.03	0.91	0.18	0.36	0.32	0.40	0.36	0.42	0.18	0.78
	TeS	cl1	114	10	11	-	0.01	0.03	0.03	0.07	0.04	0.06	0.03	0.84	0.10	0.41	0.29	0.47	0.36	0.50	0.26	0.73
	ChN	cl12	12	3	-	5	0.02	0.07	0.04	0.12	0.05	0.13	0.03	0.64	0.26	0.46	0.34	0.55	0.37	0.53	0.11	0.74
	GoG	cl23	59	20	-	2	0.01	0.02	0.03	0.04	0.03	0.06	0.02	0.62	0.07	0.34	0.13	0.36	0.23	0.41	0.16	0.41
	BaBu	cl1	68	46	4	-	0.03	0.05	0.04	0.06	0.05	0.08	0.02	0.33	0.27	0.47	0.32	0.50	0.41	0.55	0.14	0.39
	TeS	cl 2	35	28	-	1	0.02	0.03	0.02	0.03	0.04	0.07	0.02	0.22	0.17	0.36	0.14	0.35	0.29	0.42	0.12	-0.24
Dominant substratum																						
	PeF	cl 12	34	-	4	3	-	0.06	0.14	0.28	0.17	0.26	0.17	0.84	-0.23	0.41	0.18	0.44	0.28	0.46	0.51	0.80
	AIA	cl1	28	8	-	-	0.01	0.03	0.03	0.08	0.05	0.11	0.05	0.59	0.13	0.32	0.26	0.38	0.32	0.42	0.19	0.69
	SqC	cl34	11	10	8	-	0.02	0.03	0.03	0.06	0.07	0.08	0.05	0.15	0.06	0.30	0.09	0.32	0.20	0.37	0.14	0.18
	LeG	cl123	17	-	3	9	-	0.01	0.03	0.09	0.03	0.10	0.03	0.97	-0.22	0.30	0.13	0.34	0.16	0.38	0.38	0.92
	RuR	cl1	13	-	4	8	0.01	0.03	0.03	0.09	0.03	0.09	0.03	0.88	0.05	0.32	0.21	0.38	0.21	0.39	0.17	0.96
	AIB	cl23	36	22	-	6	0.02	0.06	0.03	0.07	0.04	0.16	0.02	0.39	0.31	0.45	0.37	0.47	0.42	0.56	0.11	0.52
	TeS	cl 2	15	12	-	4	0.02	0.03	0.02	0.06	0.04	0.22	0.02	0.24	0.12	0.35	0.19	0.38	0.24	0.45	0.12	0.61
Substratum heterogeneity																						
	PeF	cl12	10	-	4	9	-	0.59	0.08	0.22	0.08	0.24	0.08	0.94	-0.23	0.28	0.10	0.35	0.18	0.38	0.41	0.81
	SqC	cl 2	24	17	7	-	0.02	0.04	0.03	0.05	0.04	0.09	0.03	0.28	0.06	0.37	0.05	0.37	0.19	0.41	0.13	-0.10

Figure 1: Location of sampling sites (points). Red points indicate location of two sites closely sampled.

Figure 2: Observed microhabitat abundance (empty points) for conditional predictions of our four models (M1: black dashed lines, M2: red solid lines, M3: black dotted lines, M4: black solid lines) for the eight most abundant surveys for Barbatula barbatula cl12 and water depth (left) and for Telestes soufia cl1 and current velocity habitat (right). Each frame represents a survey. Because of their similarities (i.e. adjusted intercept and habitat selection shape by surveys), M3 and M4 lines are often superimposed on the graphs. Species codes are in Table 2.

Figure 3: Marginal predictions of model M2 (red lines) with its 95-percent confidence interval (grey areas) for Barbatula barbatula cl12 and Alburnus alburnus cl1 in relation to water depth (left) and Telestes soufia cl1 and Barbus barbus cl2 in relation to current velocity (right). The Y-axis represents the average microhabitat selection corresponding to the ratio of the predicted abundance and the maximum predicted abundance of the "average" model M2. The dashes along the x-axis indicate the distribution of measurments of fish presence in the model. Species codes are from Table 2.

Average microhabitat selection

Figure 4: Average microhabitat selection corresponding to the average value of the marginal component of M2 (see examples in Fig. 2) over the range of habitat characteristics observed in our dataset. Codes of species and size classes are from Table 2. Blue codes represent specific size classes showing average microhabitat selection for two microhabitat types, red codes for three microhabitat types.

Figure 5: Distribution of Spearman rho values relating the observed ranks of abundance in surveys with predicted ranks (obtained for model M2 during our leave_one_river_out cross validations). These statistics indicate the potential of our "average" selection model M2 to predict blindly abundance ranks in an independent river. These cross-validations rho values are shown for the different specific size classes, ordered on the x-axis according to the differences of Spearman rho values between the full M2 and full M1. These differences indicate how M2 fits abundance ranks within surveys. Points indicate median values obtained across all the rivers tested for the specific size class.

Figure 6: Comparison of the average microhabitat selected (defined as in Fig. 3) between models M2 developed without (X-axis) and with (Y-axis) refuge. Dashed lines represent $y=x$, corresponding to a similar microhabitat selection with and without refuge.

Habitat Preference from Lamouroux et al. 1999

Figure 7: Comparison of habitat characteristics corresponding to maximum abundance values, between our models and those of Lamouroux et al. (1999). This comparison is made using the microhabitat classes from Lamouroux et al. (1999): Water depth: 0-0.2 m (D1); 0.2-0.4 m (D2); 0.4-0.8 m (D3); >0.8m (D4); Dominant substratum: 0-0.016 m (R1); 0.016-0.064 m (R2); 0.064-0.256 m (R3); >0.256 m (R4); large bedrocks (R5); Current velocity (i.e. water column water current velocity): 0-0.05 m. s^{-1} (V1); 0.05$0.2 \mathrm{~m} . \mathrm{s}^{-1}(\mathrm{~V} 2) ; 0.2-0.4 \mathrm{~m} . \mathrm{s}^{-1}(\mathrm{~V} 3) ; 0.4-0.5 \mathrm{~m} . \mathrm{s}^{-1}(\mathrm{~V} 4) ;>0.8 \mathrm{~m} . \mathrm{s}^{-1}(\mathrm{~V} 5)$. Boxplots show the median, quartiles, 95% confidence intervals and extreme values across the different specific size classes.

Figure 8: Comparison of univariate (X -axis) and multivariate (Y -axis) performance of model M 2 , indicated by McFadden's $\mathrm{R}^{2} \mathrm{MF}$ (left) and conditional Spearman's rho (right). Circles and triangles represent respectively the performance of univariate models associated with water depth and current velocity. Grey segments link the performance for water depth and current velocity for a given specific class. Dashed lines represent the $Y=X$ axis.

