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Identification of material parameters for a violin bridge from dynamic output data

In this work we present an output least-squares method for the identification of elastic material parameters for orthotropic material specimens like a wooden violin bridge. The basis for the identification are measurements of the transient behaviour of the investigated object. Such an approach points out an alternative to the widely spread usage of destructive tensile tests and is applicable in a variety of disciplines in engineering and natural sciences. We design a cost functional based on dynamical output data taking into account amplitude and phase information of the data for the optimisation. We then derive the sensitivities of this cost functional with help of the adjoint equation and subsequently explain the algorithmic approach via a quasi-Newton method. For the numerical simulations, the damped elastic wave equation on the complex three-dimensional violin bridge geometry will serve as the modelling equation. In the last section we complete the discussion by presenting several successful numerical experiments for the violin bridge.

Introduction

The aim of this work is the development of a reliable parameter identification algorithm to reconstruct the material parameters of a wood specimen from data provided by a measured transient output signal. Our main focus will be on the the identification of the material parameters of a violin bridge. These parameters are very relevant to the individual vibrational behaviour of the bridge because they significantly affect its sound transmission properties, and thus the sound of the overall instrument. The violin bridge can be considered as the first link in a chain of mechanical wave guides which transport the vibration of the string into the acoustical space surrounding the instrument. See also [START_REF] Fletcher | The Physics of Musical Instruments[END_REF], [START_REF]Die Übertragungseigenschaften des streichinstrumentensteges[END_REF][START_REF] Cremer | The Physics of the Violin[END_REF] for the importance of the violin bridge from a physical point of view. An image of a typical violin bridge mounted on the instrument can be seen in Figure 1. The bridge has obviously a complex three dimensional shape and is made from maple wood which is highly anisotropic in its elastic material parameters. The elastic parameters of the wood are the Young's moduli E kk , the shear moduli G kl and the Poisson's ratios ν lk where k, l P t1, 2, 3u. Later on we also include the mass density ρ and the damping coefficients into our investigation. See Section 2.1 for further discussions and elucidation of the role of the considered parameters. These quantities can be measured using various physical experimental setups. Classically, the determination of orthotropic materials is based on tensile tests [START_REF] Bruno | A full-field approach for the elastic characterization of anisotropic materials[END_REF][START_REF] Lecompte | Mixed numericalexperimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens[END_REF][START_REF] Li | Determination of tensile elastic parameters from brazilian tensile test: Theory and experiments[END_REF]. A good overview of the state of the art in the field of mechanical parameter testing can be found in [START_REF] Saba | 1 -an overview of mechanical and physical testing of composite materials[END_REF]. Experiments of this kind, however, are usually destructive tests and require a sufficiently large sample of the material in a standardised geometric form. For a singular, non-reproducible object like a violin bridge which often was cut from a slap of wood decades ago, these testing methods are not applicable. In the last two decades effort has been made to determine materials in a nondestructive way by numerical optimisation. An example from biomedicine is the reconstruction of elastic properties from ultrasonic measurements like in [START_REF] Crossen | An equation error approach for the elasticity imaging inverse problem for predicting tumor location[END_REF][START_REF] Samani | An inverse problem solution for measuring the elastic modulus of intactex vivobreast tissue tumours[END_REF]. Also the vast field of geophysical inverse theory and full wavefield inversion is related to our problem. For this case the material parameters inside a domain of interest are unknown and measurements of the elastic or acoustic field over time (seismograms) acquired at discrete sensor locations are used to estimate the unknown parameter distribution. The main difference to our situation is that in seismology one is usually interested in estimating the spacial distribution of parameters along with possible material interfaces. In this complex situation, the parameter-to-output operator is often linearised and the linear model is inverted. For good and recent overviews of the field we refer to [START_REF] Schuster | Society of Exploration Geophysicists[END_REF] and [START_REF] Virieux | An overview of full-waveform inversion in exploration geophysics[END_REF].

The identification of anisotropic material properties has gained some interest in recent years as well. In [START_REF] Bal | Reconstruction of a fully anisotropic elasticity tensor from knowledge of displacement fields[END_REF] it is shown that a spacially varying anisotropic elasticity tensor can be uniquely identified from the knowledge of finitely many static displacement fields provided that the data are available at every point of the reference domain. In [START_REF] Hajhashemkhani | Inverse determination of elastic constants of a hyper-elastic member with inclusions using simple displacement/length measurements[END_REF] an output-least-squares approach is applied to identify piecewise constant parameters for a neo-Hookean material from static measurements of the displacement field. There, however, it is required that the subdivision of the domain into parts with constant material parameters is known a-priori.

The method we will present in the following chapters is based on measurements of the transient behaviour of a material specimen detected at a single measurement point on the surface. These measurements are technologically much simpler to obtain than the distributed surface measurements considered e.g. in [START_REF] Hajhashemkhani | Inverse determination of elastic constants of a hyper-elastic member with inclusions using simple displacement/length measurements[END_REF] and the experiments are comparably easy to conduct. This opens our method to a wide field of possible applications where the technology of a well-equipped laboratory is not at hand. Therefore, our approach via an inverse output least squares problem is an alternative to methods relying on more sophisticated data acquisition devices and still has the advantage of leaving the considered object unaffected during the parameter identification process.

Starting from an input-output measurement at two defined points, we analyse the transient behaviour with tools from signal processing. Doing the same in our numerical simulation, we then can compare the measured and simulated signals in the frequency domain. For this purpose we design a logarithmic L 2 -cost functional comparing amplitudes and phases of the two signals over a prescribed frequency interval.

The article is structured as follows: In Chapter 2 we start with the explanation of the mathematical model, the elastic wave equation, on a domain describing the 3D violin bridge geometry. Here we discuss the dynamic state model on the one hand in Subsection 2.1, and isogeometric analysis as our methodical basis for the numerical implementations on the other hand in Subsection 2.2. Afterwards, we formulate the variational form of the parameter identification problem and introduce our proposed cost functional J in Chapter 3. In Chapter 4 we subsequently derive the sensitivities of J with respect to the considered material parameters with help of the adjoint state equation. With the sensitivities on hand, we can turn to the parameter optimisation and its concrete algorithmic implementation in Chapter 5. The results of several numerical experiments for the parameter identification of a violin bridge are presented in Chapter 6.

Mathematical Model

Before we start out with the discussion of the modelling equations for the vibrational behaviour of the violin bridge we fix some notational agreements. We will deal with three dimensional vectors in physical space and (usually very high dimensional) coefficient vectors for finite element approximations. We will denote all these vector valued quantities by bold letters, e.g. x or w. The scalar product for three-dimensional vectors is written as x ¨ξ whereas the scalar product for finite element coefficient vectors is written as xw, vy. Moreover, we use subscripts w j to address individual finite element coefficients but superscripts x m to address components of three-dimensional vectors.

Dynamic state model

In order to get realistic simulation results, we need a physically and numerically accurate and reliable model for the vibrational behaviour of the violin bridge. This will make our research results valuable to practitioners as well. The underlying physical model for the small-amplitude vibrations of the violin bridge is the elastic damped wave equation on a bounded domain Ω Ă R 3 which is a piecewise smooth, Lipschitz continuous, not simply connected open set in R 3 . The Dirichlet boundary Γ Ă BΩ is a nonempty subset of the boundary BΩ. On Γ we assume that the bridge is clamped and remains stationary throughout the vibrational movement after excitation, i.e. we have zero boundary conditions here. A natural choice for Γ are the two bases of the feet of the bridge where the bridge is in contact with the top plate of the violin. The dynamic evolution usually starts from the static equilibrium, so we choose the initial conditions up0, xq " 9 up0, xq " 0 for x P Ω. All together we get the following system equations: 

ρ: upt,
Hence, the Rayleigh damping models the acting damping forces as a linear combination of one factor which is proportional to velocity and a second factor which is proportional to the rate of change of the local elastic energy.

To clarify the notations of linear elasticity we take a look at (1):

ρ: u " ∇ ¨σ `f ``α A ∇ ¨9 σ ´αM 9 u ˘(3a)
together with the constitutive equation (Hooke's law)

σ " C : εpuq. ( 3b 
)
Here σ is the Cauchy stress tensor and εpuq " 1 2 `∇u `∇u J ˘is the linearised strain tensor. Equation (3b) describes a linear stress-strain relation which is feasible in our case of small-amplitude oscillations. Here C " C ijkl is the fourth order elasticity tensor of the material. In our applications we model maple wood which is a homogeneous orthotropic material. Under this assumption, we can employ various symmetry properties and arrive at the following matrix form of the constitutive relation

¨σ11 σ 22 σ 33 σ 23 σ 31 σ 12 ‹ ‹ ‹ ‹ ‹ ‹ ' " ¨C11 C 12 C 13 0 0 0 C 12 C 22 C 23 0 0 0 C 13 C 23 C 33 0 0 0 0 0 0 C 44 0 0 0 0 0 0 C 55 0 0 0 0 0 0 C 66 ‹ ‹ ‹ ‹ ‹ ‹ ' ¨¨ε 11 ε 22 ε 33 ε 23 ε 31 ε 12 ‹ ‹ ‹ ‹ ‹ ‹ ' (4) 
for σ ij " `σpuq ˘ij and ε ij " `εpuq ˘ij , i, j " 1, 2, 3 (see [START_REF] Rand | With symbolic computational tools, With 1 CD-ROM (Windows, Macintosh and UNIX)[END_REF]Section 2.4] for details). Equation ( 4) can be written in the compact form

σ " M C ε (5) 
with the sparsity structure of M C given in (4). In the engineering literature it is usual to designate the coefficients of the inverse matrix m C " pM C q ´1. In this setting one works with the matrix The matrix m c is determined by the Young's moduli E kk , the Poisson rations ν lk and the shear moduli G kl , k, l P t1, 2, 3u, of the orthotropic material.

m C " ¨1 E11 ´ν21 E22 ´ν31 E33 0 0 0 ´ν12 E11 1 E22 ´ν32 E33 0 0 0 ´ν13 E11 ´ν23 E22 1 E33 0 0 0 0 0 0 1 G23 0 0 0 0 0 0 1 G13 0 0 0 0 0 0 1 G12 ‹ ‹ ‹ ‹ ‹ ‹ ‹ ' .
In preparation of the finite element formulation in the following section, we write (3a) in its weak form:

ż Ω ρ xϕ, : uy dx `żΩ ´αM xϕ, 9 uy `αA εpϕq : `C εp 9 uq ˘¯dx `żΩ εpϕq : `C εpuq ˘dx " @ ϕ, f D `H1 Γ pΩq,pH 1 Γ q ˚pΩq ˘(6)
for all ϕ P H 1 Γ pΩq and almost every t P r0, T s. Here we use the Sobolev space

H 1 Γ pΩq " H 1 Γ pΩ; R 3 q " tu : Ω Ñ R 3 : u i P H 1 pΩq for i " 1, 2, 3 and u| Γ " 0u
and its corresponding dual space pH 1 Γ q ˚pΩq.

Numerical methods and finite element formulation

The numerical solution of the wave equation ( 6) requires sophisticated discretisation techniques if reliable numerical simulations shall be achieved. The main difficulty is the complex geometrical shape of the domain Ω.

To pay respect to this, we choose isogeometric elements, both, for the description of the geometry, and for the finite element basis. We do this by decomposing Ω into a number of patches, each of it being homeomorphic to the unit cube in R 3 where the homeomorphism is parametrised using tensor products of non-uniform rational B-splines (NURBS). On each patch a local NURBS finite-element basis is defined. The interaction between the different patches is resolved introducing mortar elements on the common interface between two patches which act as Lagrange multipliers ensuring regularity of the global solution across the interface (see [START_REF] Cottrell | Toward integration of CAD and FEA[END_REF] and [START_REF] Brivadis | Isogeometric mortar methods[END_REF] for details regarding theory and implementation). In Figure 2.2 a schematic drawing of a bridge shows the chosen decomposition into 16 patches where each patch is the homeomorphic image of the unit cube in R 3 under a NURBS-based bijective transformation. Note (especially in patches No. 1, 9 and 11) that corners and edges present in the patch need not necessarily be the images of corners and edges of the unit cube under the NURBS transformation. In fact kinks and corners can be realised using NURBS by decreasing the regularity of the rational B-spline basis locally. We remark that in the derivation of the FE-model for the violin bridge, we constructed a highly precise NURBS geometry from measured µ-CT scan data of an actual bridge. A detailed explanation of this process can be found in [START_REF] Marschke | An approach to construct a three-dimensional isogeometric model from µ-ct scan data with an application to the bridge of a violin[END_REF]. The patchwise defined scalar isogeometric basis functions N j : Ω Ñ R form a NURBS basis N " tN j : j " 1, ..., N u, N being the total number of basis function on all individual patches. To solve (6) numerically we approximate the solution by a linear combination of NURBS basis functions N j with timedependent three dimensional coefficient vector y j ptq " `y1 j ptq, y 2 j ptq, y 3 j ptq ˘t:

upt, xq " N ÿ j"1 N j pxq y j ptq . (7) 
We assemble the individual coefficient vectors y j into an overall state vector yptq. Moreover, the (time dependent) coefficients of the mortar basis functions defined on the interfaces between patches are also included in the vector yptq. Evaluating the weak form of the elastic wave equation for all test functions ϕ m j pxq " N j pxq e m , with e m , m " 1, 2, 3, denoting the canonical basis in R 3 , gives the discrete approximation of (6) which takes the form of a second order ODE-system for the coefficient vector yptq: M y 2 ptq `Dy 1 ptq `Ayptq " f ptq, (8a) yp0q " y 1 p0q " 0.

(8b)

We denote the total number of degrees of freedom in (8) by d " 3N `3L where L is the number of mortar basis functions. The mass matrix M is build up from the 3 ˆ3 sub-matrices M ij " pM mn ij q 3 m,n"1 with M mn ij " ρ ş Ω N i pxq N j pxq δ mn dx.

The stiffness matrix A contains the sub-matrices A ij with

A ij " ş Ω ε `Ni pxq ˘: ´C ε `Nj pxq ˘¯dx and the damping matrix D contains the entries D ij " α M M ij `αA A ij .
Here

N j pxq " 3 ÿ m"1 N j pxqe m " 3 ÿ m"1 ϕ m j pxq
is the vector valued version of the basis function N j pxq. The force vector f ptq on the right-hand side comprises the forcing terms

xϕ m i , f ptqy H 1 Γ ,pH 1 Γ q ˚.
We choose a time-dependent point source of the form

A ϕ m i , f ptq E H 1 Γ ,pH 1 Γ q ˚" f ptq ϕ m i px in q (9)
with a given input signal f : r0, T s Ñ R, usually a chirp signal, at some fixed input location x in P BΩzΓ. We assume that the input is active only on a part of the whole considered time interval, i.e. f ptq " 0 on pT in , T s for some 0 ă T in ă T . The elastic material parameters E kk , ν kl and G kl occur in the stiffness matrix A and hence also in the damping matrix D. The mass density ρ occurs as a multiplicative factor in the mass matrix M and the damping parameters α M and α A appear in D. If we define the parameter vector p as

p " ´E11 , E 22 , E 33 , ν 21 , ν 31 , ν 32 , G 23 , G 13 , G 12 , ρ, α A , α M ¯J (10) 
then all finite element matrices are p-dependent. We usually write M ppq, Dppq and Appq. If certain of the parameters are set to fixed values and thus will be removed from the list of estimated parameters, corresponding p-dependencies might disappear.

Variational formulation of the parameter identification problem

We now address the problem of identifying the physical parameters from measured input-output behaviour of the considered physical system and introduce a cost functional to reach this aim in an iterative optimisation process. As mentioned in section 2.1, we use just one fixed input signal acting at a given point x in on the surface of the bridge.

The three-dimensional output data are given as

u out ptq " 3 ÿ m"1 u m out ptq e m " N ÿ j"1 N j px out q y j ptq (11) 
for a given fixed measurement point x out P BΩ, x out ‰ x in . The time interval r0, T s on which the output signal is recorded is finite. We shall, however, assume that T is large and the damping strong enough such that all relevant signals have faded out at the final time t " T . It will be convenient to extend the signals by zero onto r0, 8q especially when dealing with Fourier transforms. If the amplitude decay at the end of the time-interval is strong enough this extension procedure will not introduce spurious frequencies in the Fourier transforms.

Comparing measured and simulated outputs directly in an output-least squares formulation turns out to be infeasible to solve the parameter estimation problem. Due to the oscillatory nature of the output signal, the resulting optimisation problem would have many spurious solutions (local minima of the cost functional) and the identification algorithm is very likely to get stuck in one of these minima. Instead, we fit the output signal to the measured signal in frequency space, where we choose the fitting terms for amplitude and phase independently. For the amplitude fitting we define a Kullback-Leibler type cost functional of the form

J am ppq " 3 ÿ m"1 ż ωmax ωmin ˆlog |û m out pωq| `ε |û m dat pωq| `ε ˙2 dω. (12) 
We here hence compare amplitudes of output-and measured data on frequency domain in a logarithmic scale. As a second term for the cost functional we treat the least-squares data fit of the phases. It reads

J ph ppq " 3 ÿ m"1 ż ωmax ωmin ˆû m out |û m out | `ε ´û m dat |û m dat | `ε ˙2 dω. (13) 
In both cases ûpωq denotes the Fourier transform for a given signal u : r0, 8q Ñ R 3 :

ûpωq "

ż 8 0 e ´2πiωt uptq dt .
The frequency interval I ω " rω min , ω max s for the data fit is chosen such that frequency values which are relevant for the the acoustical properties lie within I ω but the dominant frequencies in the data noise are cut off. The role of the non-degeneracy parameter ε ą 0, especially in equation ( 12), will be discussed in detail later in Chapter 5.

For the identification of the parameter vector p from the given measured data u dat we minimise the combined cost functional

Jppq " J am ppq `Jph ppq [START_REF] Li | Determination of tensile elastic parameters from brazilian tensile test: Theory and experiments[END_REF] over a set P Ă R 12 of physically feasible parameter vectors . Note that both data-fit terms ( 12) and ( 13) depend on the parameter p only indirectly via the solution ypt, pq of the discrete state equation ( 8) and consequently via the output signal u out pt, pq where the actual p-dependence lies in the coefficients of the system matrices for [START_REF] Cremer | The Physics of the Violin[END_REF]. Denoting Jam puq " for a given vector-valued signal u : r0, 8q Ñ R, we have J am ppq " Jam pu out ppqq and J ph ppq " Jph pu out ppqq.

For later reference we define the data mismatch in the amplitude part of the cost functional (12) as

J am pω; p, εq " 3 ÿ m"1 ˆlog |û m out pωq| `ε |û m dat pωq| `ε ˙2 . ( 15 
)
4 Sensitivity analysis and adjoint equation

In this section we will compute the sensitivities of the introduced cost functional ( 14) with respect to the parameter vector. Since the explicit computation via the forward problem would be computationally very costly we therefore chose to compute them via an adjoint approach. We specify the set of feasible parameters by P " tp P R 12 : p lb ď p ď p ub u with given vectors p lb P R 12 `and p ub P R 12 `of upper and lower bounds for the parameters. Using standard regularity results for linear ODEs (c.f. Amann [2, Theorem 9.2]) it follows that p Þ Ñ yp¨q is a mapping in C 1 `P, C 1 pr0, T s, R d q ˘on the set P, where d is the total number of degrees of freedom in [START_REF] Cremer | The Physics of the Violin[END_REF]. Moreover, the partial derivative y pν with respect to parameter p ν solves the sensitivity equation M y 2 pν ptq `Dy 1 pν ptq `Ay pν ptq " ´Mpν y 2 ptq ´Dpν y 1 ptq ´Apν yptq on r0, T s, (16a)

y pν p0q " y 1 pν p0q " 0 (16b)
for ν " 1, 2 . . . , 12. Here y " ypt, pq is the solution to the discrete state equation ( 8) for the given parameter vector p. Moreover, we assume that the right-hand side of ( 8) is independent of the parameter vector p. Using [START_REF] Hajhashemkhani | Inverse determination of elastic constants of a hyper-elastic member with inclusions using simple displacement/length measurements[END_REF], it is obvious that also u out is of the same differentiability class as yptq and we have u out,pν ptq " N ÿ j"1 N j px out q y j,pν ptq .

Consequently we get the following expression for the derivatives of J am and J ph with respect to the parameter p ν : J am,pν ppq " Jam,u pu out ppqq ¨uout,pν ppq and J ph,pν ppq " Jph,u pu out ppqq ¨uout,pν ppq

where Jam,u puq ¨v " 4

3 ÿ m"1 ż ωmax ωmin log ˆ|û m | `ε |û m dat | `ε ˙Re `û m vm |û m | `ε˘| ûm | dω (18) 
and

J ph,u puq ¨v " 2 3 ÿ m"1 ż ωmax ωmin Re «˜û m |û m | `ε ´û m dat |û m dat | `ε ¸˜v m |û m | `ε ´û m `|û m | `ε˘2 Re `û m vm |û m | ¸ff dω " 2 3 ÿ m"1 ż ωmax ωmin ˜Re `û m vm |û m | `ε˘2 ˆ1 ´|û m | |û m | `ε ˙´Re `û m dat vm |û m dat | `ε˘`| ûm | `ε˘`R e `û m vm |û m | `ε˘2 Re `û m dat ûm |û m dat | `ε˘| ûm | ¸dω " 2 ż ωmax ωmin «˜ε |û m | `ε `Re `û m dat ûm |û m dat | `ε˘| ûm | ¸Re `û m vm |û m | `ε˘2 ´Re `û m dat vm |û m dat | `ε˘`| ûm | `ε˘ff dω. (19) 
It will turn out to be advantageous to write out vpωq " ş 8 0 e 2πiωt vptqdt explicitly and to exchange the order of t-and ω-integrations. Together with the notation g am ptq " 

We now continue by introducing the adjoint system M J w 2 ptq ´DJ w 1 ptq `AJ wptq " rptq, (24a) wpT q " w 1 pT q " 0.

(24b)

The component of the right-hand side vector r corresponding to the test function ϕ m j are given by r m j ptq " N j px out q `gm am ptq `gm ph ptq ˘.

Note that an end-time condition wpT q " w 1 pT q " 0 is imposed on the adjoint equation ( 24). Consequently, we will have to solve (24) backward in time on the interval r0, T s. Using ( 17), (22), and (23), we obtain

J pν ppq " ż T 0 ´gam ptq `gph ptq ¯¨N ÿ j"1
N j px out q y j,pν ptq dt "

ż T 0 @ rptq, y pν ptq D dt.
The adjoint equation (24) further implies

J pν ppq " ż T 0 @ M J w 2 ptq ´DJ w 1 ptq `AJ wptq, y pν ptq D dt " ż T 0
´@w 2 ptq, M y pν ptq D

´@w 1 ptq, Dy pν ptq D `@wptq, Ay pν ptq D ¯dt.

After two partial integrations, using the initial and end conditions (16b) and (24b), we get

J pν ppq " ż T 0 @
wptq, M y pν ptq 2 `Dy pν ptq 1 `Ay pν ptq D dt.

Finally, the sensitivity equation (16a) yields

J pν ppq " ż T 0 @ wptq, ´`M pν y 2 ptq `Dpν y 1 ptq `Apν yptq ˘D dt " ż T 0
´@w 1 ptq, M pν y 1 ptq D

´@wptq, D pν y 1 ptq `Apν yptq ˘D ¯dt.

For the last equality we carried out yet another partial integration in the time domain. In this final form, the sensitivity can be readily implemented because most solution algorithms for the ODEs ( 8) and (24) will automatically provide approximations for the solution vectors and their first time-derivatives.

Numerical Implementation of the Optimisation Process

In this section we explain our algorithmical approach via BFGS algorithms to find the optimal parameters w.r.t. [START_REF] Li | Determination of tensile elastic parameters from brazilian tensile test: Theory and experiments[END_REF]. We also address the possible choices of the constants ε, ω max and ω min occurring in [START_REF] Li | Determination of tensile elastic parameters from brazilian tensile test: Theory and experiments[END_REF] as well as our choice for the start parameters.

Regulation of low amplitude supression

As we have seen in Section 3, the cost functionals J am ppq, J ph ppq contain a positive constant ε which prevents the degeneracy of the two cost terms. One needs to take special care about the choice of ε in the numerical implementation because it not only prevents degeneracy but also suppresses the low-amplitude part of the signal. To identify the parameters we have deliberately chosen a logarithmic scale for the amplitude of the signal in frequency domain because we want to match peaks in the signal over different scales of magnitude.

In the very low amplitude regime, however, the logarithmic scale still gives a considerable mismatch between simulated and measured data which nonetheless contains very little information. The introduction of ε yields that the fraction

|û m out pωq|`ε |û m dat pωq|`ε is close to one if both amplitudes |û m
dat pωq| and |û m out pωq| are much smaller than ε and hence its logarithm is close to zero. By choosing ε appropriately we, therefore, set a soft threshold below which the amplitude mismatch will not be considered in the cost functional any more. See Figure 6 in the next section for plots of the amplitude decay over frequency for typical output signals.

Figure 3 shows a comparison of the cost integrand J am pω; p, εq defined in equation ( 15) for different values of ε over the frequency range ω P r0 Hz, 8000 Hzs. One recognises that a decrease of ε results in a decrease of the low-amplitude suppression, especially in the high frequency band width. Thus, the choice of ε should equilibrate the level of noise suppression against the elimination of eigenfrequencies from the cost term J am . Of course this choice is problem dependent. For our application we identified a value of ε " 1e ´10 as a reasonable choice.

The maximal frequency ω max of the frequency window on which the data fit is performed plays a similar role. Because random noise on the measured data u out is mostly visible in the high-frequency region of the Fourier transformed signal, the cut-off frequency ω max eliminates high frequent noise from the data in the cost functional. Consequently, both ε and ω max play the role of regularisation parameters which help stabilise the identification process. Both, however, must not be chosen too strict. Otherwise necessary information is suppressed and not available for the data inversion.

Choice of start parameters

A crucial point for the optimisation process is the choice of a viable starting parameter set p 0 . In most cases we chose as start up parameters the literature values presented in [6, Table 3.1, Table 3.2] which are also listed in Table 1. For the mass density we respectively started at ρ 0 " 705 kg{m 3 , and for the damping constants our initial choice usually was α 0

A " 5 ¨10 ´7, α 0 M " 5 ¨10 ´3.

Youngs moduli For validation purposes of the algorithmic implementation we usually generated reference output data with these parameters and started with a set of parameters p0 P tp P R 12 : p lb ď p ď p ub u with given vector bounds p lb " 0.02 ¨p0 and p ub " 1.5 ¨p0 . In most our runs the constraints do not become active during the optimisation process.

(

Algorithmic Approach

For the optimisation we decided to implement the BFGS method from the class of quasi-Newton algorithms which only needs one gradient evaluation for each iteration step. The main motivation for the choice of the BFGS method is that it mimics the behaviour of an SQP-algorithm in the sense that it generates subproblems with balanced curvature in all directions. This is especialy advantegous in our case because our cost functional shows strongly unequilibrated behaviour in the different directions. Furthermore, we have superlinear convergence for the applied approach [START_REF] Nocedal | Numerical Optimization[END_REF]. We state the algorithmic scheme for the minimisation of J by the BFGS method like it can be found in [START_REF] Nocedal | Numerical Optimization[END_REF], e.g.:

Algorithm 1 BFGS method Input: p 0 , H 0 , ε tol . k Ð 0; 1: top: 2: while }∇J k } ą ε tol 3: do 4:
g k " ´Hk ∇J k ;

5:

p k`1 " p k `αk g k (α k computed by line search, see ( 27));

6: compute s k " p k`1 ´pk , y k " ∇J k`1 ´∇J k ; 7:
Hessian update:

8: compute ρ k " 1 y J k s k ; 9: H k`1 " pI ´ρk s k y J k qH k pI ´ρk y k s J k q `ρk s k s J k ; 10: k Ð k `1.
11:

goto 1.

The step size α ą 0 for the BFGS step is computed with a line search using a local quadratic model of the cost functional. If the local model is non-convex, a backup strategy uses the last available value for the step size α. If the model is convex, the line search checks the Goldstein criteria to ensure that a reasonable descent will be achieved. For a generic cost functional J they read as:

Jpp k q `p1 ´cqα k ∇J J k g k ď Jpp k `αg k q ď Jpp k q `cα k ∇J J k g k , (27) 
where the subscript k indicates the current values of the parameters and iterates at step k. Here g k denotes the current search direction, p k the current iterate and ∇J k the gradient of J for the current iterate. The constant c in general ranges between 0 and 0.5, in our concrete application we chose c " 0.25. The first inequality (the step length condition) controls the step length from below to prevent the algorithm from getting stuck in diminishing step lengths. The second inequality condition is also known as the Armijo condition and ensures a significant decrease along the search direction p k . If necessary, the step size is decreased until the Armijo condition is satisfied. Given a valid Armijo condition the step size is increased until the step length condition is satisfied. If this does not happen after a fixed number of increasing steps, the last step length satisfying the Armijo condition is accepted. For the gradient bound as a stopping criterion we usually worked with ε tol " 10 ´4.

For the computation of the solutions of ( 8) we used a Newmark-β-time-stepping scheme [START_REF] Kaltenbacher | Numerical Simulation of Mechatronic Sensors and Actuators[END_REF] which is most commonly used if damping is present. For a time-step size δ t the structural equations read as

y i`1 " y i `δt y 1 i `δ2 t 2 `p1 ´2βq y 2 i `2βy 2 i`1 ˘(28a) y 1 i`1 " y 1 i `δt `p1 ´γq y 2 i `γy 2 i`1 ˘. (28b) 
This time-stepping scheme is unconditionally stable and second order accurate for β " 1{4 and γ " 1{2.

Numerical examples

We perform our numerical examples using artificial data generated by the code we designed for the simulation of the elastic wave equation. For the input signal we consistently use an enforced displacement of a given point on the upper right part of the back side of the bridge. The displacement is imposed in all three space dimensions where the amplitude of the displacement takes the form of a chirp signal in time. The chirp runs trough frequencies between 60 Hz and 16000 Hz and acts over a time interval of 0.08 sec. The first plot in Figure 5 shows a close-up of the first 0.015 sec of the chirp input. The total time-interval for the simulation ends usually at T " 0.15 sec. We record the displacement in all three space dimensions at a measurement point x out at the front side as the output signal. Figure 4 shows the locations of input and measurement points on the bridge. The left image shows the back side, the right one, the front side. In Figure 5, plots 2-4, a typical time series for the three dimensional output signal is depicted.

In the cost functional ( 14), we compare simulated and measured output data in frequency space on a logarithmic scale. Figure 6 shows logarithmic plots of the amplitudes of all three space dimensions of the output signal. As expected, the amplitudes decay over the frequency range. Certain concise peaks in the signals correspond to frequencies of eigenvalues of the linear system (8). In the next Figure 7 we compare a noise-free signal to one where 5% random Gaussian noise was added to the output in time-domain. In frequency-domain, the noise takes control over the signal at a frequency of about 10000 Hz. We therefore cut off the matching of simulated and given data at an upper frequency ω max " 10000 Hz or even below. The lower bound for the frequency interval was set to ω min " 0 Hz. The plot on the right-hand side in Figure 7 shows the phase for the noise-free and noisy signal. Both phase curves were unwrapped to create a smooth curve over the frequency range. The two curves start to diverge also at about the same frequency of 10000 Hz. Due to the data noise, (necessary) jumps of 2π are occasionally omitted in the unwrapping process for the noisy signal. Consequently, the average slope of the noisy phase is flatter than the slope of the noise-free curve in the range above 10000 Hz.

Table 2 shows the reconstructed values of Young's and shear moduli for different noise-levels on the data along with the number of iterations up to termination. As a stopping criterion for the optimisation we usually worked with the gradient bound }∇J} ă ε tol " 10 ´4. For the noise-free run, we used an upper bound ω max " 10000Hz whereas for the runs with noisy data, we cut off the frequency interval at ω max " 8000Hz. The Poisson rations, mass density and damping parameters were set to the true reference values and not changed during the iterations.

Finally, let us examine the individual runs summarised in Table 2 in more detail. Figure 8 shows the development of the cost functional and the norm of the gradient over the number of iterations of the optimisation algorithm, both in a semilogarithmic scale. It is evident that the cost functional repeatedly remains nearly constant over a number of iterations just to drop off steeply at the end of these platforms. This behaviour indicates the strong non-convexity of the cost functional and makes the inverse problem numerically difficult and strongly dependent on a good choice for the initial parameter vector. The next Figure 9 shows the development of the relative errors of the reconstructed parameters over the iterations, again in a semilogarithmic scale. We see similar platforms in the errors as we see for the cost functional. It can be observed that the parameter E 33 is not reconstructed as well as the others and that the decrease in the error for this parameter sets in later than for the others. E 33 is the Young's modulus in z-direction, the direction in which the bridge has its smallest extension. It is evident from the reconstructions that the input-output relation is least sensitive with respect to the Young's modulus in this direction which makes it harder to determine.

The experiments with noisy data show that the parameter identification process is very robust with respect to data noise. The iteration numbers up to fulfilment of the stopping criterion grow only slowly with increasing noise level and the relative error is quite small even for 10% noise in the data. The qualitative behaviour shown in the plots in Figures 10111213for 1% and 10% noise respectively changes only little with varying noise. This is due to the fact that the Gaussian white noise in time domain gives rise to a slight constant increase of the noise in the frequency domain over the complete spectrum without affecting the resonances.

Table 3 and Figures 14151617show the results for the identification of the Poisson ratios. Here the Young's and shear moduli along with the mass density and the damping parameters were held fixed at the true reference value and the optimisation was performed only with respect to the three Poisson rations. In general, the iteration numbers are less than for the identification of the 6 moduli and the reconstruction is even less sensitive to data noise. With 10% noise we still get a reconstruction with total relative error in the range of 10 ´8. At the beginning of the optimisation the norm of the gradient is several magnitudes larger than the for the Young's and shear moduli which requires a smaller start up value for the step length in the line search. 

Conclusion

We presented an inverse identification method for the elastic parameters of wood based on the matching of simulated and measured dynamical output data of an investigated material sample. With the illustrative example of a violin bridge we demonstrated the capabilities of the presented method with a numerically complex example and successfully identified the elastic parameters even under the influence of measurement noise. In the future, it would be of interest to extend the optimisation problem to other material classes than wood offering an even broader application of the developed method to different engineering problems.
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 1 Figure 1: Closeup of a violin bridge mounted on the instrument.
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 2 Figure 2: Sketch of the decomposition of the bridge into 16 individual patches for NURBS discretisation.
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 123 Figure 3: The cost integrand of J am pp, εq for different values of ε.
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 4 Figure 4: Location of input and output points on the bridge. Left: input location, right: output location.
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 5 Figure 5: Input and output signals for a typical simulation run.
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 6 Figure 6: Amplitude of output signal in three space dimensions over frequency. Logarithmic scale.
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 7 Figure 7: Amplitude and phase for noise-free and noisy (5%) data.
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 8 Figure 8: Development of the cost functional and gradient norm for identification of Young's and shear moduli. Noise-free data.
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 9 Figure 9: Development of errors for Young's and shear moduli. Noise-free data.
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 101112131415 Figure 10: Development of cost functional and gradient norm for identification of Young's and shear moduli. Noise level: 1%
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 16174 Figure 16: Development of cost functional and gradient norm for identification of Poisson ratios. Noise level: 10%
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 18 Figure 18: Development of cost functional and gradient norm for identification of mass density and damping coefficients. Noise level: 5%.

Figure 19 :

 19 Figure 19: Development of errors for mass density and damping parameters. Noise level: 5%.

  P L 2 pr0, T s; H 1 pΩq ˚q. The space H 1 pΩq ˚denotes the dual space of the Sobolev space H 1 pΩq and the function f describes the excitation. It is usually either a short pulse or a chirp signal acting on some point x in P BΩzΓ.

	xq `dp 9 upt, xqq ´∇ ¨σpupt, xqq " f pt, xq, t P r0, T s , x P Ω,
	up0, xq " 9 up0, xq " 0			x P Ω,	(1)
	upt, xq " 0			t P r0, T s , x P Γ
	with given right hand side f In our case we apply Rayleigh damping (see [12, Section 3.7.2]) and thus the
	damping term in (1) takes the form			
	dp 9 upt, xqq :" α M 9 upt, xq `αA	d dt	" ∇	¨σ`u pt, xq ˘‰ .

Table 1 :

 1 Usual starting parameters for the elastic constants.

		GPa) Shear	(GPa) Poisson	
			moduli		Ratios	
	E 1	10	G 23	0.29	ν 23	0.82
	E 2	1.52	G 13	1.22	ν 13	0.5
	E 3	0.87	G 12	1.10	ν 12	0.46

Table 2 :

 2 Reconstructed Young's and shear moduli from noisy data sets.

Table 3 :

 3 Reconstructed Poisson ratios from noisy data sets.

	Parameter: true	Starting val.		Reconstructions	
	Noise level:		0%	1%	10%
	ν 21 0.61	0.59889	0.61	0.61	0.61
	ν 32 0.269	0.25697	0.269	0.269	0.269
	ν 31 0.2765 0.29673	0.2765	0.2765	0.2765
	rel. error 0	0.1361	6.1519 ¨10 ´9 6.8225 ¨10 ´8 4.42249 ¨10 ´8
	No. of iterations -	-	16	18	19
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