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Abstract 1 

Killer whales (KW) may be predators or competitors of other cetaceans. Since their foraging 2 

behavior and acoustics differ among populations (‘ecotypes’), we hypothesized that other 3 

cetaceans can eavesdrop on KW sounds and adjust their behavior according to the KW ecotype. 4 

We performed playback experiments on long-finned pilot whales (Globicephala melas) in 5 

Norway using familiar fish-eating KW sounds (fKW) simulating a sympatric population that 6 

might compete for foraging areas, unfamiliar mammal-eating KW sounds (mKW) simulating a 7 

potential predator threat, and two control sounds. We assessed behavioral responses using 8 

animal-borne multi-sensor tags and surface visual observations. Pilot whales barely changed 9 

behavior to a broadband noise (CTRL-) whereas they were attracted and exhibited spyhops to 10 

fKW, mKW and to a repeated-tonal upsweep signal (CTRL+). Whales never stopped nor started 11 

feeding in response to fKW whereas they reduced or stopped foraging to mKW and CTRL+. 12 

Moreover, pilot whales joined other subgroups in response to fKW and CTRL+ whereas they 13 

tightened individual spacing within group and reduced time at surface in response to mKW. 14 

Typical active intimidation behavior displayed to fKW might be an anti-predator strategy to a 15 

known low-risk ecotype or alternatively a way of securing the habitat exploited by a 16 

heterospecific sympatric population. Cessation of feeding and more cohesive approach to mKW 17 

playbacks might reflect an anti-predator behavior towards an unknown KW ecotype of 18 

potentially higher risk. We conclude that pilot whales are able to acoustically discriminate 19 

between familiar and unfamiliar KW ecotypes, enabling them to adjust their behavior according 20 

to the perceived disturbance type. 21 
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Introduction 24 

Individuals not only interact and exchange information intentionally, but they can also intercept 25 

unintended signals from conspecifics and heterospecifics, which can provide an additional gain 26 

of information at reduced cost for eavesdroppers (Peake et al. 2001; Blanchet et al. 2010). Such 27 

information gathering can benefit a wide range of fitness-enhancing activities such as habitat 28 

selection, foraging efficiency, adapted antipredator responses, or mate choice (Blanchet et al. 29 

2010; Magrath et al. 2015).  30 

Animal sounds play an important role for communication and species/individual 31 

recognition in many animals, including anurans, birds, insects, terrestrial and aquatic mammals 32 

(Bradbury and Vehrencamp 1998). Moreover, in species such as bats and toothed whales, 33 

echolocation sounds can be important to find and track food or to navigate (Madsen and 34 

Surlykke 2013). Detecting heterospecific sounds can be particularly relevant in the dynamics of 35 

predator-prey interactions and interspecific competition (Dorado Correa et al. 2013). When prey 36 

species detect acoustic signals produced by their predator, they can evaluate the level of 37 

predation risk (e.g. identification of the predator species) and adopt the most appropriate anti-38 

predator strategy (Seyfarth et al. 1980; Manser 2001). For example, mule deer (Odocoileus 39 

hemionus) are able acoustically to discriminate among different predator species, i.e. coyotes 40 

(Canis latrans), mountain lions (Puma concolor) and wolves (Canis lupus) and respond 41 

differently according to the perceived level of threat (Hettena et al. 2014). Breeding songbirds 42 

can assess the spatial distribution of predators by listening to their vocalizations and then choose 43 

the most appropriate nest site, leading to increased reproductive success (Emmering and Schmidt 44 
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2011). On the other hand, listening to the acoustic cues emitted by species sharing similar 45 

ecological requirements (e.g. diet or habitat) can provide beneficial information such as the 46 

presence of potential competitors. Competing species may directly interfere, e.g. by aggressively 47 

attempting to exclude one another from particular habitats (interference competition), or 48 

indirectly by exploiting similar resources, e.g. by consuming similar food (exploitation 49 

competition) (Eccard et al. 2008). For instance, bats can eavesdrop on foraging echolocation 50 

signals produced by conspecifics and heterospecifics to locate feeding sites, thus reducing 51 

foraging costs (Balcombe and Fenton 1988; Ubernickel et al. 2012; Dorado Correa et al. 2013). 52 

Lemurs are able to acoustically identify heterospecific species competing for similar food and 53 

adjust their behavior accordingly in order to defend the area where they forage (Rakotonirina et 54 

al. 2016). Moreover, species can cooperate rather than exclude each other (e.g. in primates, 55 

(Eckardt and Zuberbühler 2004)). For instance, many bird and mammal species form mixed-56 

species feeding associations which can improve their foraging efficiency (e.g. in birds, 57 

Monkkonen et al. 1996; in cetaceans, Jourdain and Vongraven 2017).  58 

Cetaceans are typically social and vocal species. They rely primarily on sound to 59 

communicate with their conspecifics (e.g. in breeding context or to coordinate with their group 60 

members), to get information from their environment (e.g. to identify the presence of other 61 

species), and in toothed whales, to orientate and acquire food through echolocation (Tyack 62 

2008). Most cetacean species have the ability to hear at least part of the frequency range of 63 

sounds produced by other cetacean species, enabling them to hear each other (Mooney et al. 64 

2012). Cetaceans belong to a complex trophic network in which predation and competition 65 

interactions occur at various trophic levels (Paine 2006). Therefore, they represent interesting 66 

model species for studying heterospecific sound eavesdropping. 67 



 

4 
 

The killer whale (Orcinus orca) is present in all the world’s oceans. As an apex marine 68 

predator, it has a unique position in the food web of marine ecosystems (Reeves et al. 2006). 69 

Killer whales can feed on a large diversity of prey including fish, cephalopods, birds, turtles, 70 

seals, dolphins and whales (Foote et al. 2009; De Bruyn et al. 2013; Vongraven and Bisther 71 

2014). From the point of view of other cetacean species, the killer whale can be thus considered 72 

as both a potential predator and/or a competitor for resources (e.g. habitat, prey). A wide variety 73 

of observed interactions have been reported between killer whales and other cetaceans (Jefferson 74 

et al. 1991) ranging from avoidance behavior (e.g. in beluga whales, Fish & Vania 1971), 75 

physical attacks (e.g. in grey whales, Ford et al. 2005), feeding associations to approach 76 

responses  (in humpback whales: Pitman et al. 2015, Jourdain and Vongraven 2017). To date, at 77 

least 10 different forms of killer whales, also called “ecotypes”, have been recognized. Ecotypes 78 

can differ according to their prey preferences, distribution, social structure, foraging habits, 79 

acoustic behavior, physical features and genetics (Jefferson et al. 1991; De Bruyn et al. 2013). 80 

Locally, populations often specialize on specific prey species, sharing hunting strategies with 81 

their group members and adapting their foraging techniques according to the type and 82 

availability of prey resource. All ecotypes produce echolocation clicks, pulsed calls and whistles 83 

(Ford 1989). Substantial differences in acoustic behavior have been described across the 84 

different killer whale ecotypes (e.g. variation in call frequency or in vocal rate) (Foote and 85 

Nystuen 2008; Deecke et al. 2011; Filatova et al. 2015). Overall, fish-eating killer whales are 86 

very vocal during the whole period of foraging, relying mainly on echolocation clicks to find 87 

food and producing social calls and whistles to coordinate with group members (Simon et al., 88 

2007; Holt et al. 2016). Moreover, herring-feeding killer whales stun herring using their flukes, 89 

which produces an audible signal (Simon et al. 2005, 2007). By contrast, mammal-eating killer 90 
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whales are usually quiet at the early stage of a hunt, i.e. before attacking, probably to remain 91 

undetectable by their prey, and increase their vocalization rate (mainly calls and whistles) once 92 

the attack has been engaged, likely to coordinate group members and maintain group cohesion 93 

(Ford et al. 2005; Deecke et al. 2011). The fundamental frequency of calls of mammal-eating 94 

killer whales is slightly lower than those of fish-eating killer whales (Filatova et al. 2015).  95 

Given the recognized importance of the use of sound in cetaceans and the particular 96 

trophic position of the killer whale, representing a potential predator or competitor for food 97 

and/or foraging areas to other cetacean species, we hypothesized that cetaceans are able to 98 

discriminate different familiar and unfamiliar killer whale ecotypes by listening to the sounds 99 

they produce. Such an ability to acoustically discriminate ecotypes might give other cetacean 100 

species the opportunity to evaluate whether they are at risk of increased competition or predation 101 

and to adjust their behavior accordingly at an early stage of potential encounters with killer 102 

whales.  103 

We conducted our research on the northern Norway population of long-finned pilot 104 

whales (Globicephala melas), which live in sympatry with killer whales (Eskesen et al. 2011), 105 

although both species are rarely sighted together (Simila et al. 1996; Vester 2017). Long-finned 106 

pilot whales are social toothed whales that live in stable matrilineal groups and can temporarily 107 

form large aggregations with different groups (Visser et al. 2014). Their vocal repertoire includes 108 

clicks and buzzes used for echolocation and a variety of pulsed calls and whistles used for 109 

communication (Weilgart and Whitehead 1990; Vester et al. 2014, 2017). Long-finned pilot 110 

whales spend most of their time close to the surface and typically conduct bouts of foraging 111 

dives that can reach several hundred meters in depth (Sivle et al. 2012; Isojunno et al. 2017).  112 
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In the North-East Atlantic Ocean, killer whales have been reported to attack cetaceans 113 

including large baleen whales (humpback whales, McCordic et al. 2013). Killer whales have 114 

been also observed attacking long-finned pilot whales off Iceland (Donovan and Gunnlaugsson 115 

1989), Greenland and the Faroe Islands (Jefferson et al. 1991), although to our knowledge there 116 

are no such reports from Norwegian waters. In Iceland (pers. obs. by author P.W.), in Norway 117 

and in the Mediterranean Sea (Strait of Gibraltar) (De Stephanis et al. 2014), long-finned pilot 118 

whales have been observed chasing towards fish-eating killer whales, with the killer whales 119 

fleeing away from the pilot whales. These observations have been interpreted either as the anti-120 

predatory behavior of pilot whales mobbing dangerous killer whales, or pilot whales chasing 121 

killer whales away from foraging areas that might be exploited by both species. In the North 122 

Atlantic Ocean, long-finned pilot whales feed primarily on squid and occasionally eat small 123 

schooling fish (Desportes and Mouritsen 1993). In Norway and Iceland, long-finned pilot whales 124 

coexist with at least two forms of killer whales: one fish-eating ecotype that predominantly feeds 125 

on Atlantic herring (Simila et al. 1996; Vester and Hammerschmidt 2013), and one more 126 

generalist ecotype that feeds on both fish and marine mammals (seals, harbor porpoises) (Foote 127 

et al. 2009; Jourdain et al. 2017; Samarra et al. 2017). It might be also that long-finned pilot 128 

whales have experienced presence of additional ecotypes in the North-East Atlantic Ocean such 129 

as the one observed feeding on large baleen whales but no such interaction has been reported in 130 

our studied area off Norway. There, long-finned pilot whales may have the opportunity to learn 131 

that the calls of local herring-eating killer whales represent a relatively low threat, while in 132 

contrast it is expected that any other killer whale sounds, i.e. from familiar mammal-feeding 133 

killer whales or unfamiliar (fish- or mammal-feeding) killer whales, should be perceived as 134 

threatening as familiar mammal-feeding killer whale sounds (Deecke et al. 2002). Pilot whales 135 
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hear well at the frequencies of killer whale vocalizations (Pacini et al. 2010) and thus may assess 136 

and respond to killer whale presence by eavesdropping on their vocalizations or other sounds 137 

they produce such as tail-slaps. Curé et al. (2012) showed that long-finned pilot whales were 138 

horizontally attracted to sounds of local fish-eating killer whales and that they joined with other 139 

pilot whale groups to form bigger groups. Based on their results, the authors could not resolve 140 

whether pilot whales perceived killer whale sounds as either a potential opportunity of feeding, 141 

explaining their attraction towards an identified food patch (‘dinner bell’ effect, Stansbury et al. 142 

2015), or as a threatening stimulus (competitor or predator) that would have resulted in a chasing 143 

behavior as part of an active intimidation response.  144 

To evaluate these questions, we conducted playback experiments and monitored the 145 

behavioral responses of long-finned pilot whales using multi-sensor tags and surface behavioral 146 

observations of the tagged whale and its group. We compared the behavioral responses of long-147 

finned pilot whales to the playback of i) familiar herring-feeding killer whale sounds simulating 148 

a local sympatric species exploiting similar foraging areas, ii) unfamiliar mammal-eating killer 149 

whale sounds simulating a potential high level of predation risk (Deecke et al. 2002; Curé et al. 150 

2015), and iii) control sounds. We analyzed a wide range of behavioral variables typically 151 

observed in predatory, competition and foraging contexts to test whether long-finned pilot 152 

whales display different behavioral response strategies according to the perceived stimulus 153 

playback, and particularly between sound playbacks of the two killer whale ecotypes. 154 

Specifically, we predicted that if a stimulus was perceived as a potential threat, it should elicit 155 

fitness-enhancing behaviors such as reduced foraging activity, avoidance reactions and social 156 

defense response strategies (e.g. including approach and grouping). For perceived high-level 157 

threatening stimuli, we would expect particularly biologically costly responses such as a 158 
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complete and prolonged cessation of feeding and/or extended avoidance responses. In contrast, a 159 

‘dinner bell effect’ would be reflected by an approach response along with potential grouping 160 

behavior and initiation of search for food in non-feeding whales.  161 

 162 

Material and Methods 163 

Study species and general protocol 164 

We conducted our study on free-ranging long-finned pilot whales encountered in the Norwegian 165 

Sea in May/June 2008, 2009, 2010, 2013 and 2014. The protocol consisted of the following 166 

phases: (1) Tagging operation in which a non-invasive multi-sensor suction-cup tag was attached 167 

to the whale using a 6 m carbon fibre hand-held pole (see details of the tagging protocol in Miller 168 

et al. 2012 and Visser et al. 2016); These tags are devices carrying a suite of sensors, which have 169 

been specifically developed to monitor the behavior of marine mammals and their response to 170 

sound continuously throughout the dive cycle (Johnson & Tyack 2003). (2) Baseline data 171 

collection of the tagged animal (focal follow) following a post-tagging period of at least 30 min 172 

to reduce potential effects of the tagging procedure; (3) Playback experiments (see next section); 173 

and (4) End of tracking after the tag released, and tag recovery. Tagging operations and playback 174 

experiments were carried out from a small motor boat (5-8m) launched from the research vessel 175 

(55m). In most cases only one whale of a group was tagged, becoming the focal follow animal 176 

for which visual observations were collected from a dedicated observation platform on a vessel 177 

(20-27m) continuously following the focal whale at a range of 300-500 m.  In two cases, another 178 

whale associated with the focal group was tagged (Gm13_169b and Gm13_180b). These 179 
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secondary tagged whales were not focal follow animals (no visual observations) but provided 180 

additional recorded tag data. 181 

Playback experiments 182 

The playback experiments used an M-Audio II microtrack player, a Cadence Z8000 amplifier, 183 

and a Lubell speaker LL9642T (described in details in Curé et al. 2012; Visser et al. 2016). 184 

Playback sounds were monitored using a calibrated hydrophone (Bruel & Kjaer 8105) placed 1 185 

m from the speaker and connected to a charge amplifier (Bruel & Kjaer 2635) that was itself 186 

connected to a M-Audio Microtrack II recorder. The playback boat from which the speaker was 187 

deployed in the water was positioned with respect to the playback subjects to provide a geometry 188 

designed to identify either horizontal attraction to or avoidance of the sound source. 189 

We played 4 acoustic stimuli: two types of killer whale sounds produced by groups of 4-7 190 

killer whales while feeding, and two types of control sounds. Control sounds were used to 191 

distinguish behavioral changes elicited in response specifically to the killer whale sounds from 192 

those induced unspecifically by other sounds in their environment. The two killer whale sound 193 

stimuli were: i) familiar herring-eating killer whale sounds (fKW) recorded previously in the 194 

study area (expected to be perceived as a local competitor for food and/or resource territory), and 195 

ii) unfamiliar mammal-eating KW sounds (mKW) recorded in the North Pacific (expected to be 196 

perceived as an increased potential predation risk; Deecke et al. 2002). Both types of killer whale 197 

sounds were previously recorded using animal-attached Dtags (Johnson and Tyack 2003). The 198 

two control stimuli were: i) a broadband noise control (CTRL-) with most energy within the 0.5-199 

10 kHz frequency band, corresponding to amplified non-calling periods taken from the 200 

recordings of the killer whale sounds (see Curé et al. 2012), and ii) a synthetic hyperbolic 201 

upsweep 1-2 kHz tonal signal (CTRL+) of 1 s duration repeated every 20 s, matching the 202 
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dominant frequency range of many killer whale calls (Ford 1989). All playbacks lasted 15 min 203 

and stimuli were generated at comparable root-mean square power, each within the range of the 204 

natural source levels of killer whale vocalizations (Miller 2006). The source level of the killer 205 

whale stimuli ranged from 147 to 154 dB re 1µPa m (mean±SD: 151 ± 2 dB re 1µPa m, n = 3 206 

mKW and 4 fKW stimuli). The source levels of the control stimuli were adjusted to match those 207 

of the killer whale sound stimuli, ranging from 145 to 151 dB re 1µPa m for CTRL- (mean±SD: 208 

148 ± 2 dB re 1µPa m, n = 6 stimuli) and from 149 to 155 dB re 1µPa m for CTRL+ (mean±SD: 209 

152 ± 1 dB re 1µPa m, n = 3 stimuli). The elapsed time separating the successive playback 210 

stimuli performed on a tested whale was set at ≥30min, in order to include a recovery period of 211 

15 min of post-exposure followed by 15 min of pre-exposure before the next stimulus. In some 212 

cases, this recovery period was shortened due to logistical constraints (e.g. weather conditions). 213 

For these cases (7 out of 27 playback trials, see Table 1), the pre-exposure phase of a given 214 

playback overlapped at least partly with the post-exposure phase of the previous playback trial. 215 

For all stimulus types (except for CTRL+), 3 different versions (i.e. coming from 216 

different recordings) were used to avoid excessive pseudoreplication (McGregor et al. 1992). 217 

Data collection from tags and visual observations  218 

Tag data were collected using movement and sound recording Dtags (Johnson and Tyack 2003) 219 

and in one case a movement recording Little Leonardo tag (Aoki et al. 2013) (Table 1). All tags 220 

were equipped with depth and three-dimensional accelerometer and magnetometer sensors, 221 

sampled at 50 Hz for the Dtags and 10 Hz for the Little Leonardo tag. Additionally, Dtags 222 

contained hydrophones that recorded stereo sound with 16-bit resolution at 96 or 192 kHz 223 

sampling rate. Some tagged whales (gm13_149a, gm13_169a, gm13_169b) were also equipped 224 

with a small Fastloc-GPS logger (Fastloc2, Sirtrack, New Zealand) attached to the Dtag. All 225 
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Dtags contained a VHF transmitter beacon that we used to relocate the focal whale when it 226 

surfaced. Measurements of bearing and visual estimates of range during surfacing events were 227 

collected to calculate the position of the tagged whale from the position of the observation 228 

vessel. Simultaneously, surface behavioral data of the focal tagged whale and its group were 229 

collected. The focal group was composed of all individuals in closer proximity to the focal 230 

tagged individual and to each other than to other individuals in the area (Visser et al. 2014). This 231 

definition is based on the relative spacing of individuals to each other. All individuals with a 232 

similar distance to each other are part of a group (distance in body lengths, with categories 233 

ranging from <1 body length, to >15 body lengths, see Visser et al. 2014 for details). Whale 234 

positional data and visual behavior observations were recorded using the software Logger at 235 

minimum 2 min intervals when the tagged whale was present at the surface (see Visser et al. 236 

2014 for protocol details).  237 

Processing of the data  238 

We converted the tag’s pressure data to depth and plotted vertical and horizontal movements 239 

throughout the deployment period using Matlab software (version 7.8.0; www.mathworks.com). 240 

We used the Dtag’s acoustic recordings to identify sounds produced by the tagged whale or 241 

nearby conspecifics. Specifically, we inspected spectrograms (Blackman-Harris window; FFT 242 

length: 4096; time resolution: 21.3 ms) of the acoustic recordings using Adobe Audition software 243 

and manually identified the production of clicks, buzzes and calls/whistles. Each annotated 244 

sound was categorized according to its amplitude (see detailed method in Miller et al. 2012). 245 

Sounds were classified by their perceived signal-to-noise ratio following the method of Alves et 246 

al. 2014, in which loud (as perceived by the auditor) and clearly visible sounds on spectrograms 247 

were considered likely to be produced by the tagged whale or nearby individuals, while faint and 248 
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barely detectable sounds (i.e. low signal-to-noise ratio) were considered likely to have been 249 

produced by more distant whales. Only sounds likely produced by the tagged whale or nearby 250 

animals were included in further analysis. Horizontal tracks of the focal whales were obtained 251 

from the collected measurements of the relative bearing to the whale, visual estimates of 252 

observer-whale range and the GPS location and course of the observation vessel. Where 253 

available, GPS locations recorded by the GPS logger were also included in the horizontal track. 254 

In one case, a non-focal tagged whale (Gm13_169b) had a GPS logger, allowing us to obtain 255 

also the horizontal track of the non-focal whale. The accuracy of such Fastloc-GPS positions is 256 

comparable to that of the visual position fixes and generally in the order of tens of meters, but 257 

dependent upon other factors (Wensveen et al., 2015a). The tagged whale’s direction of 258 

movement was calculated from the horizontal track as the true bearing from the previous 259 

location. Horizontal speed was calculated as the ratio between the distance and time between 2 260 

successive locations of the tagged whale. To quantify the degree of aggregation, coordination 261 

and surface activity of the focal group, we recorded seven metrics from surface observations 262 

following Visser et al. (2014): 1) focal group size ; 2) number of individuals in the focal area (i.e. 263 

within 200m of the focal animal); 3) distance to the nearest other group; 4) individual spacing 5) 264 

surfacing synchrony, and 6) presence/absence of logging events in the focal group (i.e. whale 265 

horizontally floating at the surface) and 7) number of spyhops (i.e. brief event for which the 266 

whale positions itself vertically with head out of the water).  267 

Assessment of changes in behavior  268 

We used two different analytical approaches to detect behavioral responses of the pilot whales 269 

exposed to the acoustic stimuli: 1) an expert panel scoring the severity of behavioral responses 270 
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by inspecting standardized plots of multivariate time series, and 2) univariate analyses of a range 271 

of behavioral variables. 272 

Severity scoring panel method 273 

Expert identification and scoring of responses was used to evaluate the severity of behavioral 274 

responses on a numeric scale (Southall et al. 2007)) ranging from no effect (0), effects not likely 275 

to influence vital rates (severity scores 1 to 3), effects that could affect vital rates (severity scores 276 

4 to 6), to effects that are likely to affect vital rates (severity scores 7 to 9). The severity score of 277 

a response depended on the type of behavioral response and its duration relative to the duration 278 

of the playback (Southall et al. 2007; Miller et al. 2012; Sivle et al. 2015). The behavioral 279 

responses in the 2008−2009 dataset (2 whales with Dtags) were scored by Miller et al. (2012), 280 

and the 2010, 2013 and 2014 dataset (8 whales with Dtags) were scored in the present work in 281 

exactly the same way. The behavioral changes were described and scored based on the 282 

inspection of the geographic track plots and time series data plots generated from Dtag data and 283 

visual observations; changes were scored by 2 independent scorer panels in accordance with the 284 

severity scale (see Fig. S1 for example plots). One panel consisted of authors C.C., S.I., P.W. and 285 

P.M., and the other of authors F.V., L.S., and two more scorers. All scorers are expert scientists 286 

in this field of research. Since most of them participated to conduct fieldwork and data 287 

collection, they could not be blind to the experiments. Therefore, panels were blind to each 288 

other’s scoring but not blind to the experimental condition. Thereafter, the 2 panels compared 289 

and assimilated their results in the presence of an adjudicator (P.T) to reach a consensus scoring. 290 

The adjudicator and 6 of the 8 scorers had previously scored long-finned pilot whale responses 291 

using a similar scoring procedure (Miller et al. 2012); therefore, we are confident that the new 292 

scoring effort is consistent with Miller et al. (2012). Overall, 80% of the attributed scores were 293 
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similar between both teams; among the 20% that differed and needed discussion, none of them 294 

required the adjudicator for reaching a consensus. This indicates that the scoring measures of this 295 

study were highly reliable across scorers. 296 

For each exposure experiment, panels inspected the multivariate data plots and scored the 297 

occurrence and severity of 7 behavioral metrics (see Table S1): avoidance of the sound source, 298 

change in locomotion, change in orientation, change in the dive profile, impact on feeding (based 299 

on alteration of the production of regular foraging clicks and buzzes), modification of vocal 300 

behavior, change in group distribution. For all scored experiments, we distinguished between a 301 

score of 0 (no behavioral change) and the absence of a score. The absence of a score for a 302 

particular behavioral metric could have resulted from either missing data (e.g. no acoustics on 303 

some tag data because of recording failure, no social behavioral data of non-focal whales) or 304 

because of a particular behavioral context (e.g. cessation of feeding could only be assessed for 305 

animals that were actually feeding before the start of the exposure). Then, for each experiment, 306 

we quantified the proportion of scored behavioral metrics (%), expressed as the total number of 307 

behavioral metrics for which a non-zero score was attributed, normalized to the maximum 308 

number of potential scored behavioral metrics (i.e. excluding cases for which scores could not be 309 

assessed) (Table S2). 310 

Quantitative (univariate) analysis of behavioral metrics  311 

We defined three experimental phases for each sound playback: PRE (period preceding 312 

exposure), DUR (during exposure) and POST (period following end of exposure). The DUR 313 

phase always lasted the duration of the playback (i.e. ~15min), the PRE and POST phases each 314 

lasted 15min where possible, but could be shorter due to logistical constraints. For each 315 

numerical variable, we calculated two behavioral change scores (Table S2): (1) the difference 316 
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between the DUR and the PRE experimental phases, reflecting any behavioral change induced 317 

during the sound exposure (change score PRE_DUR) and (2) the difference between the POST 318 

and the PRE exposure periods, indicating whether the behavioral change lasted (or eventually 319 

started) after the end of exposure (change score PRE_POST).  320 

For the univariate quantitative analysis, we defined and investigated behavioral metrics 321 

reflecting the three main types of pilot whale behavioral responses expected to occur in case of 322 

any perceived threatening or ‘dinner bell’ stimuli: avoidance/approach responses (both horizontal 323 

and vertical), modification of the group structure and surface behavioral displays, and changes in 324 

foraging activity. 325 

A dive was defined as having a maximum depth >5.3m and/or a duration >37.8s (based 326 

on a mixture model of the same tag deployments, Isojunno et al. 2017). Non-dive periods were 327 

called ‘near-surface’ behavior. First, for each phase, we calculated the ratio between the total 328 

duration of the near-surface periods and of the diving periods, as a proxy for time budget spent 329 

near the surface versus diving. To investigate whether animals made dives to probe for 330 

information at the depth of the speaker or whether they attempted to avoid the source by moving 331 

deeper or shallower, we classified the dives into 3 categories based on their maximum depth: 1) 332 

shallow dives, at depths <5m (but which had a duration of 37.8s or longer); 2) dives performed 333 

within the depth range of the speaker, ≥5m and <10m; and 3) dives at depth ≥10m, likely to 334 

include foraging dives. Then, for each phase, we assessed the proportion of time spent in each of 335 

these three dive categories (%). 336 

Regular clicks and buzzes produced during dives were attributed to foraging activity 337 

whereas calls, whistles and buzzes produced near surface were attributed to social contexts (in 338 

Risso's dolphins: Arranz et al. 2016; in long-finned pilot whales: Visser et al. 2016). For each 339 
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experimental phase, we calculated four acoustic variables: the proportion of time clicking while 340 

diving (%), the occurrence of calls (#calls per min), the occurrence of buzzes (#buzzes per min) 341 

produced at depth (i.e. while in a dive mode) and the occurrence of buzzes produced near 342 

surface. Because the buzz rate at depth was particularly variable across animals, we inspected the 343 

frequency distribution of the calculated change scores PRE_DUR and PRE_POST (see Fig. S2). 344 

This analysis showed that most change scores values ranged from -0.25 to +0.25 (arbitrary unit), 345 

whereas other values were spread out with values <-0.25 and >+0.25. Based on this, change 346 

scores of buzz rate at depth were converted to -1 if <-0.25 buzz/min (reduction of buzzing), +1 if 347 

>0.25 buzz/min (increase of buzzing), 0 if ranging between -0.25 and +0.25 buzz/min (very 348 

weak or no change in buzz rate). 349 

Horizontal approach or avoidance was quantified by calculating a movement reaction 350 

score which was based on the comparison between the observed horizontal track during the 351 

playback and the projected course of the whale given its direction of movement during the PRE 352 

phase (method detailed in Curé et al. 2012). Positive or negative movement reaction scores 353 

(arbitrary units) indicated respectively a horizontal attraction or avoidance response to the 354 

playback. We also calculated for each phase the mean horizontal speed. 355 

For each phase, we recorded maximum focal group size and maximum number of animals in the 356 

focal area, minimum distance to nearest other subgroup, mean individual spacing and surfacing 357 

synchrony, presence/absence of logging events and the rate of spyhopping (#spyhops per min) 358 

(Visser et al. 2014)   359 

Statistical analyses 360 

To account for repeated measures (whales were exposed to several sound playbacks) and cases in 361 

which two whales of the same group were exposed to a playback,  we used Generalized 362 
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Estimating Equation (GEE) models that allowed us to specify a blocking unit (the focal group 363 

ID) within which observations can be correlated (Hardin and Hilbe 2002). Statistical analyses 364 

were performed using geepack (Carey et al. 2012) in R v.3.0.2 (R Development Core Team 365 

2013). 366 

For the severity scoring variable, i.e. proportion of non-zero scored responses per stimulus type, 367 

we tested whether the two covariates Signal (4 factor levels: CTRL+, CTRL-, fKW, mKW) and 368 

playback Order (2 factor levels: first and later than first) had an effect on the response variable. 369 

For the univariate analysis approach, we tested whether the three covariates Signal, Order and 370 

Period (2 factor levels: PRE_DUR and PRE_POST), as well as the 2-way interaction term 371 

Signal:Period, had an effect on the change scores calculated for each of the behavioral response 372 

variables. All explanatory variables (i.e. Signal and Order for the proportion of scored responses; 373 

Signal, Order, Period and Signal:Period for the other variables) were included in the full GEE 374 

models of all variables except for the horizontal movement reaction score for which there was no 375 

Period covariate (because only the change score PRE_DUR was assessed). The change score 376 

values of the univariate analysis variables and the severity scoring variable were modeled as 377 

Gaussian response variables, and the blocking unit was the tagged whale group ID (accounting 378 

for possible dependencies in the two cases for which the data included the focal tagged whale 379 

and a secondary tagged non-focal whale of its group). As the Sandwich variance estimator can be 380 

biased for small sample sizes, a Jackknife variance estimator was applied. For all GEE models, 381 

we first ran the full model with all candidate explanatory variables. We conducted hypothesis-382 

based model selection using p-values given by an ANOVA (sequential Wald test) and backwards 383 

selection (detailed method in Curé et al. (2015)). After fitting each model, an ANOVA was 384 

conducted and the covariate or interaction term with the highest p-value was removed and the 385 
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GEE model refitted. This was repeated until all terms retained in the ANOVA were significant at 386 

5% level.  387 

Results 388 

We tested 9 groups of long-finned pilot whales of which seven groups had one tagged whale, and 389 

two groups had two tagged whales. Out of the 11 tagged whales, 8 were exposed to CTRL-, 5 to 390 

CTRL+, 7 to fKW, and 6 to mKW playbacks (see Table 1). CTRL+ and Mammal-eating KW 391 

playbacks were conducted in 2013 and 2014. CTRL– and fish eating KW playbacks were 392 

conducted in 2008, 2009, 2010. Part of data of individuals tested in 2008, 2009 and 2010 were 393 

used in previous work to describe responses to the fish-eating killer whale sound playback 394 

(Miller et al. 2012; Curé et al. 2012) and/or to contrast them to responses to naval sonar as part 395 

of a parallel project (Visser et al. 2016, Isojunno et al. 2017). 396 

 397 

The total number of playback trials conducted per group tested ranged from 1 to 4 with an 398 

average (± sem) recovery period between two successive playbacks of 37±11 min (n=14 399 

recovery periods). Nine of those playbacks were played before any other stimuli (at first order 400 

#1) and 17 were played as 2nd, 3rd or 4th order (different than #1). We excluded three playback 401 

trials (2 playbacks of Gm09_138a and the first playback of Gm08_159a) from the dataset 402 

because the tagged whales were too far from the sound source to detect sounds (see Curé et al. 403 

(2012)). The first playback of Gm13_137a consisted of an unfamiliar humpback whale song 404 

stimulus (HW) that was not included in the statistical analyses since n=1. The tagged whales 405 

Gm08_159a and Gm09_156b presented in Table 1 were previously exposed to sonar sounds as 406 

part of a parallel project (Kvadsheim et al. 2009).  407 
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Severity scoring panel results showed that CTRL- and CTRL+ playbacks were associated 408 

with the lowest (2.4%) and highest (75.6%) proportion of scored responses (i.e. % scored 409 

responses different from 0), respectively. fKW and mKW sound playbacks respectively resulted 410 

in 36.8% and 50.3% of scored responses (Fig. 1a). Moreover, the highest severities were scored 411 

during CTRL+ and mKW playbacks with a maximum score value of 7 (Table S1). In 412 

comparison, the maximum severity score value was 5 during fKW playback and 3 in response to 413 

the CTRL-.  414 

Regarding the univariate analysis, for most behavioral variables, only the factor Signal 415 

was retained in the best fitting GEE model, indicating that the playback Signal was the main 416 

factor explaining the variance in the data (Tables 2 and 3). For mean horizontal speed and near 417 

surface buzz rate, the interaction term Signal:Period was retained. For the number of animals 418 

present in the focal area and the change in the proportion of time spent in diving at depth ranging 419 

from 5 to 10m, the two main factors Signal and Period were retained in the best fitting GEE 420 

model. For the occurrence of buzzing at depth and the ratio of time spent near the surface to time 421 

spent diving, the factors Signal and Order were retained. For the change in the proportion of time 422 

spent in diving deeper than 10m, the ANOVA did not retain any of the factors, indicating that 423 

none of them explained the variance in the data for this variable.  424 

Attraction versus avoidance responses  425 

Horizontal movements  426 

A horizontal approach response was scored in 100% of the CTRL+, fKW and mKW playbacks 427 

whereas no change in horizontal movement was ever scored in response to CTRL- (Fig. 1b; 428 

Table S1). A horizontal avoidance response was never scored to any of the stimulus types. The 429 

calculated movement reaction scores were highly positive in response to fKW, mKW, and 430 
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CTRL+, indicating a clear horizontal attraction towards the sound source (Fig. 2a; Table S4). For 431 

these three stimulus types, the tested whales reduced their horizontal speed during the post-432 

exposure (Fig. 2b), once they were already near the source. All these results significantly 433 

contrasted to the response to CTRL- for which whales barely changed direction and decreased 434 

speed only during the exposure (Fig. 1b; Table S4). 435 

 436 

Vertical movements  437 

The severity scoring panel results showed that the whales changed their dive profile most 438 

consistently in response to mKW and CTRL+ playbacks (Fig. 1; Table S1) and that these 439 

changes varied across subjects depending on the behavioral context of the whales during the 440 

period preceding the start of playback (Table S1). One consistent result was that the whales that 441 

interrupted feeding behavior in response to mKW and CTRL+ playbacks switched from a clear 442 

foraging dive mode to shallower dives (Table S1 ). Results of the quantitative analysis conducted 443 

on the dive behavior metrics showed that the whales exposed to mKW playbacks spent 444 

significantly less time near surface compared to the absence of such a change in response to both 445 

control playbacks CTRL- and CTRL+ (Fig. 3a; Online Resource, Table S4). Moreover, whales 446 

exposed to mKW spent more time diving at shallow depths (<5m) and at the depth range of the 447 

speaker (between 5 and 10m) compared to the three other stimuli (Fig. 3b-c; Table S4). There 448 

was no evidence of vertical avoidance responses to greater depths (Fig. 3d; Table S1). The order 449 

of playbacks had an effect on dive behavior, indicated by an increased proportion of time spent 450 

near surface for the first playback compared to the following exposures (effect of Order at level 451 

of p<0.05, Table S4). Moreover, the overall increased proportion of time spent in diving at the 452 



 

21 
 

depth range of the speaker observed after the end of most playbacks differed significantly from 453 

the slight change occurring during playbacks (effect of Period at level of p<0.05, Table S4). 454 

 455 

Changes in social behavior and surface displays  456 
The severity scoring panel results demonstrated for all stimulus playback types except CTRL-, 457 

that group distribution changed for the duration of the exposure or even longer (severity score 5 458 

or 6) (Table S1). Moreover, inspection of the multivariate plots showed that changes in group 459 

distribution and surface displays such as spyhops were scored more in response to CTRL+ and 460 

mKW sound playbacks compared to fKW sound playbacks, whereas they barely occurred in 461 

response to CTRL- (Fig. 1b). Univariate analyses showed that both the number of whales in the 462 

focal group and in the focal area increased significantly in response to CTRL+ and to fKW 463 

playbacks compared to the overall no change observed in response to CTRL- (Fig. 4a-b; Table 464 

S4). Those changes in group distribution in response to CTRL+ and fKW significantly 465 

contrasted to the lack of response to mKW sound playbacks (Fig. 4a-b; Table S4). The distance 466 

between whales within the focal group clearly decreased in response to mKW sound playbacks 467 

compared to the overall lack of response observed to fKW, CTRL- and CTRL+ sound playback 468 

(Fig. 4c; Table S4). Whales came significantly closer to other groups present in the focal area in 469 

response to fKW playback compared to the overall lack of change in response to CTRL- and 470 

mKW playbacks (Fig. 4d; Table S4). Moreover, whales became less synchronized when 471 

surfacing in response to CTRL+ compared to the overall level of synchrony maintained during 472 

exposure to CTRL- and fKW playbacks (Fig. 4e; Table S4). Whales exhibited significantly more 473 

spyhops in response to CTRL+, fKW and mKW compared to CTRL- playbacks (Fig. 5a) and 474 

increased logging in response to CTRL+ only (Fig. 5b; Table S4). Moreover, they increased 475 
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calling activity in response to fKW compared to mKW playbacks (Fig. 6a; Table S4). There was 476 

a significant decrease in buzzing recorded near surface in response to fKW sound playbacks 477 

compared to CTRL- that lasted beyond the end of playback (Fig. 6b; Table S4). This 478 

modification in vocal behavior in response to the fKW playback significantly contrasted to the 479 

increase in near-surface buzz rate during mKW sound playbacks. Whales also increased near-480 

surface buzz rate in response to CTRL+ compared to CTRL- but only after the end of playback 481 

(difference between CTRL+ and CTRL- dependent on the Period; Table S4). 482 

 483 

Effects on foraging behavior  484 
Based on inspection of the dive profile and production of foraging sounds (regular clicks and 485 

buzzes) when available, the severity scoring panel could determine whether the whales were in a 486 

foraging mode. Playbacks for which whales were clearly not foraging before the start of 487 

exposure (4 CTRL-, 2 CTRL+, 2 fKW and 2 mKW; excluding data without acoustics) were 488 

never associated with a start of feeding. Clear cessation of feeding was only scored in response 489 

to CTRL+ and mKW playbacks (Fig. 1b; Table S1). Specifically, both whales that were 490 

conducting deep foraging dives (>100m depth) before the start of CTRL+ and mKW (N=2 491 

playbacks each) switched to a shallower dive mode along with a cessation of buzzing and a 492 

reduction of clicking rate (Table S1). The cessation of feeding extended until after the end of 493 

exposure, resulting in a severity score of 7. The other whales exposed to CTRL+ (N=1) and 494 

mKW (N=2) were conducting shallower dives while producing regular clicks and buzzes before 495 

the start of exposure; this was considered to represent a potential foraging mode. Severity 496 

scoring panels did not score cessation of feeding for those whales (score 0; Table S1). By 497 

contrast, none of the fKW playbacks resulted in a scored cessation of feeding. The whale 498 
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Gm08_159a that was in a deep foraging mode before the start of fKW playback, switched to a 499 

shallower dive mode but kept producing clicks and buzzes while diving, and therefore was 500 

assumed to have continued feeding activity (score 0; Table S1). The whale Gm09_156b, which 501 

was exposed twice to fKW playbacks and for which no acoustic data was recorded (failure of 502 

Dtag), was in a deep dive mode before the start of playback, thus indicating likely feeding 503 

behavior. This whale remained in this deep dive mode during both fKW playbacks (score 0; 504 

Table S1). Quantitative analyses showed that the proportion of time spent clicking while diving 505 

significantly decreased in response to CTRL+ and to mKW playbacks compared to the overall no 506 

change in response to CTRL-, whereas the reduction was not statistically supported for fKW 507 

sound playbacks (Fig. 6c; Table S4). Moreover, the whales significantly reduced their production 508 

of buzzes while diving in response to mKW compared to both CTRL- and fKW playbacks (Fig. 509 

6d; Table S4). This reduced buzzing rate was more pronounced for the first playback than for the 510 

other following playbacks (effect of Order at level of p<0.05; Table S4).  511 

 512 

Discussion  513 

We found that long-finned pilot whales modified their behavior in different ways in response to 514 

fish-eating killer whale sounds, mammal-eating killer whale sounds, and two control sounds, 515 

indicating that they were able to acoustically discriminate between these four stimulus types 516 

(Table 2). 517 

The most striking outcomes reveal first, that the whales barely changed their behavior in 518 

response to the broadband noise control playback (CTRL-). Whales were consistently attracted 519 

to all the other three sound presentations (fKW, mKW, and CTRL+), indicating a strong 520 
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tendency for this species to approach, presumably to inspect the source of these sounds occurring 521 

in their environment (Table 2). However, details of how their behavior changed in response to 522 

each stimulus type indicate functional discrimination of these sound types. The whales stopped 523 

feeding and reduced time spent near the surface in response to mKW playbacks, whereas they 524 

joined other groups to form bigger groups in response to fKW playbacks. And finally, the whales 525 

clearly changed behavior in response to a repeated modulated upsweep artificial 1-2kHz 526 

playback signal (CTLR+). In particular, the response to CTRL+ playbacks included a 527 

combination of parts of the responses to mKW (interruption of feeding) and to fKW (joining 528 

other groups), and specifically a reduced surface synchrony and an increased logging events 529 

compared to CTRL- (Table 2).  530 

Contrasting response to CTRL- versus other stimuli 531 

For all behavioral metrics studied, the whales either did not change or only slightly changed their 532 

behavior in response to CTRL-. This stimulus resembles a continuous broadband noise generated 533 

by the engine of a vessel and is possibly perceived as a common sound heard by the whales. 534 

Indeed, the subject pilot whale groups occupy a coastal habitat in Norway that regularly 535 

experiences a high amount of ship traffic, including large cargo vessels and fishing vessels. 536 

These ships generate broadband noises to which the whales might have habituated. Additionally, 537 

previous studies found that pilot whales in these areas hardly changed their behavior in response 538 

to an approaching ship, indicating that vessel noise might have a limited effect on their behavior 539 

(Miller et al. 2012; Sivle et al. 2012; Isojunno et al. 2017).  540 

The three other playback stimuli had tonal modulated frequency components (CTRL+, 541 

fKW and mKW) and induced a clear horizontal approach towards the sound source along with 542 

an increase in spyhopping. The same approach response was also elicited to playback of 543 
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unfamiliar humpback whale sounds (data not shown). The shared behavioral response towards 544 

playbacks which contained tonal sounds could be a way to probe information about the location 545 

and/or characteristics of the sound source by getting closer and gathering visual cues from the 546 

surface.  547 

Response to killer whale sound playbacks 548 

Previous work with parts of this data set (whales tested in 2008, 2009 and 2010) showed that 549 

pilot whales approached a fKW sound source and aggregated with other whales (Curé et al. 550 

2012). Beside the possibility that an approach response might be a way to investigate the sound 551 

source and to assess level of disturbance risk, we had hypothesized other, not mutually exclusive, 552 

potential functions. One hypothesis was that pilot whales learn to associate fKW presence with 553 

an opportunity to feed and they may eavesdrop on fKW sounds to locate a food patch and 554 

increase their foraging efficiency (‘dinner bell’ effect, Stansbury et al. 2015). If so, one would 555 

expect pilot whales to approach the source and initiate exploratory or foraging dives to search for 556 

a potential prey patch, the aggregation being a consequence of the food appeal triggered by the 557 

source and available to other animals present in the area. In the present study, by investigating 558 

the foraging (diving and echolocation) behavior of the whales, we showed that none of the 559 

playbacks, including fKW sounds, appeared to induce an initiation of foraging behavior. 560 

Moreover, visual observations conducted in Norway reported that killer whales actively feeding 561 

on herring were chased away by pilot whales that did not seem themselves interested in preying 562 

upon herring (De Stephanis et al. 2014). Altogether, these results do not support the ‘dinner bell’ 563 

hypothesis, indicating that pilot whales might not have perceived fKW sounds as indicating an 564 

opportunity to feed.  565 
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A second hypothesis was that pilot whales display an active intimidation behavior in 566 

response to fKW sounds, either to mob a potential predator (e.g. in mammals: Tamura 1989; in 567 

birds: Francis et al. 1989, Preisser et al. 2005) or to chase away an intruder perceived as a 568 

potential competitor exploiting the same foraging areas (e.g. in birds: Boyden 1978 ; in fish: 569 

Kohda 1991; Lehtonen et al. 2010). This behavior usually involves a pursuit along with the 570 

production of sounds and additional intimidation behaviors (e.g. grouping with other individuals, 571 

physical defense behavior) (reviewed in Alcock 2009). “Fight” strategies involving intimidation 572 

behaviors have been observed in other cetaceans in response to killer whale attacks, such as the 573 

sea-surface rolling and tail fluke splashing of grey whales defending their calves (Ford & Reeves 574 

2008). Here, the clear horizontal attraction towards fKW sound source along with joining of 575 

different subgroups and increased production rate of social calls in response to fKW playbacks 576 

compared to mKW playbacks support an active intimidation behavior rather than the dinner bell 577 

effect, which is in line with the chasing behavior observations described by De Stephanis et al. 578 

(2014). 579 

In order to investigate whether such active intimidation behavior is driven by a perceived 580 

competition for the habitat/foraging areas (since competition for the same prey is unlikely) or an 581 

increased predation risk in pilot whales, we detailed the differences in behavioral responses to 582 

both fKW and mKW sounds. Though pilot whales approached the source in response to both 583 

fKW and mKW, the exact response strategy appeared different in response to mKW. Indeed, 584 

there was a tightening of animals within their group in response to mKW playbacks, indicating 585 

potential increased group cohesion, which contrasted with the joining to other groups observed in 586 

response to fKW playbacks. Moreover, during the mKW playbacks, whales spent less time near 587 

surface and more time in shallow dives and dives within the depth range of the speaker. The fact 588 
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that mKW sounds are unfamiliar to the pilot whales could explain a need for additional efforts 589 

(e.g. spending more time within depth range of sound source) to probe for acoustic information 590 

specifically in response to this stimulus.  591 

Production of click signals (i.e. clicks, buzzes) is usually associated with echolocation 592 

functions including the gain of information about the environment (e.g. used for orientation)  and 593 

foraging behaviors (Au 1997). The ‘buzz,’ which is characterized by a fast click train is usually 594 

associated with attempts to capture prey or to collect information about elements present in the 595 

environment (e.g. used as a proxy for feeding in deep diving pilot whales, Quick et al. 2017). 596 

However, click signals may also carry a communication function in cetaceans as for instance the 597 

slow clicks produced typically near surface in sperm whales (Physeter microcephalus) (Oliveira 598 

et al. 2013), some types of narrow-band high-frequency clicks in Commerson’s dolphins 599 

(Cephalorhynchus commersonii) (Yoshida et al. 2014), and “rasps” or “burst-pulses” in short-600 

finned pilot whales (Globicephala macrorhyncus) and Risso’s dolphins (Grampus griseus) 601 

(Arranz et al. 2016; Perez et al. 2016). Most studies on acoustic communication signals in pilot 602 

whales have focused on calls that would essentially function to relocate and coordinate with 603 

group members (Jensen et al. 2011; Zwamborn and Whitehead 2016). Because fast click trains 604 

are mainly emitted while whales are diving in a foraging context (i.e. buzzes), the ones produced 605 

near the surface have received little attention and their function has remained poorly understood 606 

(Vester 2017; Vester et al. 2017). It may be that in our study, fast click trains produced near 607 

surface (called as “near-surface buzzing”) reflect an attempt by the pilot whales to use 608 

echolocation to gain information about an unfamiliar sound source. Alternatively, near-surface 609 

buzzing may be used as a way of communicating near surface and/or in a more effective and/or 610 
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more discrete way (i.e. more directional or short-range distance) than calls that can travel longer 611 

distances (Norris and Dohl 1979 ; Perrin et al. 2009).  612 

Since only the behavioral response to the fKW contained the typical combination of 613 

behavioral indicators of an active intimidation behavior (joining with other groups while 614 

approaching), we conclude that this response was specifically exhibited to fKW but not to mKW.  615 

In Norway, long-finned pilot whales may be able to learn that the sounds produced by local 616 

herring-eating killer whales represent a relatively low-risk stimulus. The active intimidation 617 

behavior in response to fKW playbacks could be driven by a perceived low predator risk or 618 

alternatively by perceived competition with the fKW. Indeed, although pilot whales in Norway 619 

likely do not feed on the same prey as local herring-eating killer whales (De Stephanis et al. 620 

2014), they target demersal prey (cod, Todarodes) that do eat herring, which could explain the 621 

correlation between occurrence of pilot whales and herring (Nottestad et al. 2015), and possible 622 

indirect competition with local killer whales for the exploitation of common foraging areas.  623 

Another striking difference between responses to both KW sound types was the clear 624 

cessation of feeding induced by mKW playbacks that contrasted with no case of such an effect in 625 

response to fKW. An animal’s decision to respond to a threat is based upon a trade-off between 626 

the costs and benefits of behavioral change and the perceived risks evaluated by the animal 627 

(Lima and Dill 1990; Frid and Dill 2002; Sih 2013). Thus, animals must make a choice between 628 

avoiding the perceived risk from the threat versus continuing fitness-enhancing activities such as 629 

feeding. Encountering a predator is probably the maximum level of natural threat an animal can 630 

meet, since it may lead to death. One can thus expect the adaptive response of the prey to a 631 

perceived increased predation risk to be particularly costly (e.g. by interrupting fitness-enhancing 632 

activities such as feeding) compared to other natural disturbance types (Curé et al. 2016). 633 
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Cessation of feeding is typically observed in perceived high-risk predatory contexts in terrestrial 634 

taxa (e.g. in mule deer, Altendorf et al. 2001; in birds, Turney and Godin 2014) as well as in 635 

other cetacean species (e.g. in sperm whales, Curé et al. 2013; in humpback whales, Curé et al. 636 

2015). Here, we found clear cessation of feeding in response to mKW playbacks that lasted for 637 

longer than the duration of the exposure (severity score 7), which if persistent, could potentially 638 

lead to impact on vital rates (Southall et al. 2007). The specifically costly response (cessation of 639 

feeding) to mKW playbacks supports the hypothesis that pilot whales perceived the unfamiliar 640 

mKW sounds as a particularly threatening stimulus, possibly a predator-signaling cue. Although 641 

the subject individuals could not have experienced predatory interactions with the Pacific 642 

mammal-eating killer whales from which we collected sounds to prepare our stimuli, and given 643 

that it seems unlikely that the Atlantic mammal-eating killer whales would predate on pilot 644 

whales, pilot whales may have conserved past historical antipredator strategies (Sih et al. 2013; 645 

De Stephanis et al. 2014; Hettena et al. 2014).  646 

The more cryptic and more cohesive approach response strategy to mKW playbacks (no 647 

grouping behavior, individuals tightening within group, less time near surface, promoting surface 648 

buzzing vocal activity) compared to fKW playbacks could be a way to ‘inspect’ the situation in 649 

order to evaluate the level of threat (e.g. inspecting the level of predator threat, Pitcher et al. 650 

1986) before engaging in a further response, for instance either a social defense strategy or a 651 

flight response (Curé et al. 2015).  652 

Altogether, the different behavioral approach strategies exhibited by pilot whales in 653 

response to fKW playbacks (joining other groups) and mKW playbacks (cessation of feeding, 654 

reduced time spent near surface, and tightening of individuals within group) support respectively 655 

an interspecific intimidation behavior associated with a perceived familiar low threatening 656 
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stimulus, i.e. a low predation risk or a known heterospecific species exploiting the same habitat, 657 

and an anti-predator behavior directed towards a perceived high-level of predation risk. 658 

One could argue that the difference between the behavioral responses to both killer whale 659 

sound types is due to perceived familiar fKW versus unfamiliar mKW sound stimuli (Deecke et 660 

al. 2002). Indeed, by having experienced that the local fish-eating killer whales (fKW) are 661 

harmless, pilot whales might have shaped their response strategy to the detected presence of this 662 

killer whale ecotype. By contrast, they would react differently to any other unfamiliar KW 663 

sounds such as mKW. Moreover, it might be possible that the missing upper frequency spectrum 664 

part of the KW sound playback (since the speaker played sounds only up to 20kHz) had an effect 665 

of the behavioral response of pilot whales, particularly once they got close to the source where 666 

higher frequencies should be detectable if the whale is pointing towards the subject (Miller 667 

2002).  668 

 669 

Response to CTRL+  670 

Whales showed a mixed/intermediate response relative to responses to both killer whale sound 671 

stimuli. Indeed, they stopped feeding in response to CTRL+ playbacks, similar to their response 672 

to a mKW playbacks (unfamiliar signal with a potentially high predation risk), indicating that 673 

pilot whales might have perceived a higher level of threat in those two stimuli compared to the 674 

fKW sounds. Moreover, in response to CTRL+, pilot whales exhibited both approach and 675 

grouping behavioral responses similar to the fKW playbacks. Therefore, it seems that pilot 676 

whales exhibited a strong fitness-enhancing behavioral response to CTRL+, combining partly 677 

both the responses to mKW and to fKW.  678 
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One of the analytical approaches to improve our ability to assess potential behavioral 679 

disturbance effects of a non-natural stimulus such as anthropogenic noise is to compare 680 

responses to this stimulus with responses to known or novel signals from predators as a reference 681 

pattern of disturbance expressed in relevant natural context (Frid and Dill 2002; Curé et al. 682 

2016). Our results indicate that in addition to the anti-predator responses to known predators or 683 

to unfamiliar signals that could indicate an unknown level of predation risk, the responses to 684 

novel signals (here the CTRL+ signal) can be also valuable high level-disturbance reference 685 

models to help in the interpretation of the biological significance of the responses to other 686 

stimuli. Indeed, such models could be used to extend the risk-disturbance hypothesis to species 687 

without natural predators, such as the killer whale whose apparent sensitivity to anthropogenic 688 

noise could not be explained by the predation risk template (Harris et al. 2017). 689 

Second, CTRL+ playbacks specifically induced a reduction in surface synchrony and an 690 

increase in the number of logging events. The decrease in synchrony could reflect a social 691 

reorganization within the group or a difficulty for the individuals of the group to maintain 692 

cohesion (Visser et al. 2016). Logging more might be a way for whales to reduce the risk of 693 

masking and to use visual cues to supplement acoustics in relocating group members and 694 

maintaining group cohesion, as also observed for pilot whales in this area in response to naval 695 

sonar exposure (Wensveen et al. 2015b; Visser et al. 2016). 696 

Interestingly, our findings match partly those of previous research that showed a 697 

cessation of foraging and increased logging behavior (at received levels of 145-170dB) in 698 

response to a controlled CTRL+ exposure generated at much higher SPLs, used to simulate a 699 

naval sonar exercise (LFAS 1-2kHz signals in: Miller et al. 2012; Sivle et al. 2012; Wensveen et 700 

al. 2015b; Visser et al. 2016). However, the responses did not match entirely. There was no 701 
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horizontal approach but some horizontal avoidance recorded in response to the powerful sonar 702 

CTRL+ source (Miller et al. 2012) compared to the CTRL+ playbacks we conducted in the 703 

present study, indicating whales perceive different levels of disturbance between these two 704 

presentations. 705 

 706 

To conclude, our findings confirm that cetacean species can eavesdrop on heterospecific 707 

sounds (Curé et al. 2012, 2013, 2015) and demonstrate their ability to acoustically discriminate 708 

across familiar and unfamiliar sub-populations of another species, allowing them to adjust their 709 

behavioral response strategies according to the perceived level of disturbance. More experiments 710 

testing responses to familiar mKW and unfamiliar fKW sounds could be useful to identify the 711 

specific role that familiarity versus novelty might have on how long-finned pilot whales respond 712 

to sounds produced by killer whales. However, the different combination of behavioral changes 713 

exhibited in response to the two unfamiliar sound stimuli (mKW sounds and CTRL+) indicate 714 

that the familiarity versus unfamiliar aspect should not be the only driver of the response. One 715 

strength of our approach is that we used the entire suite of natural sounds recorded from killer 716 

whales. However, without further research, we cannot be conclusive about specifically which 717 

sounds (vocalizations, tail slaps, clicks) produced by the killer whales might be the salient cues 718 

recognized by the long-finned pilot whales. Indeed, Bowers et al. (2018) showed that in a close 719 

related species, the short-finned pilot whale, and in Risso’s dolphins, responses to the playback 720 

of familiar transient (mammal-eaters) killer whales sounds were selectively induced only when 721 

specific call types were present in the playback stimuli. A wide range of other cetacean species 722 

have unexplained interactions with killer whales (e.g. humpback whales approaching or avoiding 723 

killer whales, (Pitman et al. 2017) or with other species. Further experiments using similar 724 
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playback approach should be investigated to gain insight in the use of eavesdropping and other 725 

processes that might explain the range of inter-specific interactions with killer whales and other 726 

species.  727 
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 1010 

 1011 

 1012 

 1013 

 1014 

Figure Captions  1015 

Fig. 1. Severity scoring panel results. a) Proportion of scored behavioral responses (all 7 1016 

behavioral response types combined) for each of the 4 stimulus types (in %, shown as mean ± 1017 

sem). This proportion is expressed as the number of behavioral metrics for which a non-zero 1018 

score was attributed, normalized to the maximum number of potential scorable behavioral 1019 

metrics. As an example, CTRL+ playbacks induced 75.6% (± 10.4) of scored behavioral 1020 

responses among the potential maximum 100%. P-values are from GEE results of the paired-1021 

comparisons across the 4 stimulus types (Table S4) and are given as *P<0.05, **P<0.01 and 1022 

***P<0.001. b) Cumulated proportions of scored responses for each of the 7 behavioral response 1023 

categories of the scoring panel across the 4 stimulus playback types (%). As an example, 1024 

avoidance responses never occurred during any playbacks (0% whatever the stimulus playback 1025 

type), whereas change in locomotion (horizontal approach towards the source) was the most 1026 

common response type (100% of the CTRL+, fKW and mKW playbacks). CTRL- = broadband 1027 

noise control playback; CTRL+= 1-2kHz tonal sound control playback; fKW= fish-eating killer 1028 
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whale sound playback; mKW= mammal-eating killer whale sound playback. N: number of tested 1029 

individuals; n: number of playback trials. 1030 

 1031 

Fig. 2. Quantitative analysis of the effects of sound playbacks on the direction of horizontal 1032 

movement: a) mean movement reaction score (arbitrary units, a.u) showing avoidance (if 1033 

negative) versus approach response (if positive), and b) change in mean horizontal speed (m.s-1) 1034 

showing increase (if positive) versus decrease (if negative) of speed. The mean movement 1035 

reaction score is a PRE_DUR change score, whereas for speed, both change scores (PRE_DUR 1036 

and PRE_POST) are shown. For speed, the factors Signal, Period and Signal:Period were 1037 

retained in the ANOVA (Table S3). P-values of the GEE results are given as *P<0.05, **P<0.01 1038 

and ***P<0.001 for paired differences between stimuli independent of Period (interpretation of 1039 

the factor Signal; Table S4), and as +P<0.05, ++P<0.01 and +++P<0.001 for cases where the 1040 

factor Signal:Period was significant (Table S4). PRE_DUR = difference between the DUR 1041 

(sound playback) and PRE phases reflecting the behavioral change induced during the sound 1042 

exposure; PRE_POST = difference between the POST and PRE phases indicating whether the 1043 

behavioral change lasted (or eventually started) after the end of exposure. CTRL- = broadband 1044 

noise control playback; CTRL+= 1-2kHz tonal sound control playback; fKW= fish-eating killer 1045 

whale sound playback; mKW= mammal-eating killer whale sound playback. N: number of tested 1046 

individuals; n: number of playback trials. 1047 

 1048 

Fig. 3.  Quantitative analysis of the effects of sound playbacks on dive behavior : a) Ratio of 1049 

time spent near surface over diving time, b) change in the proportion (%) of time spent in 1050 

shallow diving (i.e. maximum depth <5m), c) change in the proportion (%) of time spent in 1051 
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diving within the depth range of the speaker (i.e. 5m≤maximum depth<10m), d) changes in the 1052 

proportion (%) of time spent in deeper diving (i.e. maximum depth ≥10m). For the change in % 1053 

of time spent in diving at depth deeper than 10m (d), the ANOVA did not retain any factors, 1054 

indicating that the variance in the data was not explained by any of those covariates. For the 1055 

three other parameters (a, b, c), the factor Signal explained the differences between the paired-1056 

comparisons (Tables 3 and 4). For (a), the factor Order (not illustrated on the figure) also 1057 

explained the variance in the data (Tables 4 and 5). For (c), the factor Period was also retained in 1058 

the ANOVA but the interaction term Signal:Period was not significant, indicating that the effects 1059 

of Signal and Period were independent to each other. P-values from GEE results are given as 1060 

*P<0.05, **P<0.01 and ***P<0.001. PRE_DUR = difference between the DUR (sound 1061 

playback) and PRE phases reflecting the behavioral change induced during the sound exposure; 1062 

PRE_POST = difference between the POST and PRE phases indicating whether the behavioral 1063 

change lasted (or eventually started) after the end of exposure. CTRL- = broadband noise control 1064 

playback; CTRL+= 1-2kHz tonal sound control playback; fKW= fish-eating killer whale sound 1065 

playback; mKW= mammal-eating killer whale sound playback. N: number of tested individuals; 1066 

n: number of playback trials. 1067 

 1068 

Fig. 4.  Quantitative analysis of the effects of sound playbacks on the group distribution 1069 

parameters : a) change in group size (in number of animals), b) change in the number of animals 1070 

in the focal area (in number of animals), c) change in individual spacing (a.u.) representing 1071 

positive values as spreading and negative values as tightening of whales within the group, d) 1072 

change in the distance to nearest other subgroup (a.u.), e) change in surface synchrony (a.u.). For 1073 

each of those 5 parameters (a-e), only the factor Signal explained the differences between the 1074 
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paired-comparisons, independently of the Period (Tables 3 and 4). P-values from GEE results 1075 

are given as *P<0.05, **P<0.01 and ***P<0.001. PRE_DUR = difference between the DUR 1076 

(sound playback) and PRE phases reflecting the behavioral change induced during the sound 1077 

exposure; PRE_POST = difference between the POST and PRE phases indicating whether the 1078 

behavioral change lasted (or eventually started) after the end of exposure. CTRL- = broadband 1079 

noise control playback; CTRL+= 1-2kHz tonal sound control playback; fKW= fish-eating killer 1080 

whale sound playback; mKW= mammal-eating killer whale sound playback. N: number of tested 1081 

individuals; n: number of playback trials. 1082 

 1083 

Fig. 5. Quantitative analysis of the effects of sound playbacks on behavioral surface displays: a) 1084 

change in occurrence of spyhops (in number of spyhops per min), b) changes in occurrence of 1085 

logging (number of logging events per min). For these 2 parameters (a-b), only the factor Signal 1086 

explained the differences between the paired-comparisons, independently of the Period (Tables 3 1087 

and 4). P-values from GEE results are given as *P<0.05, **P<0.01 and ***P<0.001. PRE_DUR 1088 

= difference between the DUR (sound playback) and PRE phases reflecting the behavioral 1089 

change induced during the sound exposure; PRE_POST = difference between the POST and 1090 

PRE phases indicating whether the behavioral change lasted (or eventually started) after the end 1091 

of exposure. CTRL- = broadband noise control playback; CTRL+= 1-2kHz tonal sound control 1092 

playback; fKW= fish-eating killer whale sound playback; mKW= mammal-eating killer whale 1093 

sound playback. N: number of tested individuals; n: number of playback trials. 1094 

 1095 

Fig. 6. Quantitative analysis of the effects of sound playbacks on vocal behavior: a) changes in 1096 

occurrence of social calls (#calling per min), b) change in occurrence of near surface buzzes 1097 
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(#buzzing event per min), c) change in the proportion of time spent clicking while diving (%), 1098 

and d) changes in occurrence of buzzes at depth (a.u). The differences of the occurrence of near 1099 

surface buzzing across the stimulus types depend on the Period (Table S3). For the other 3 1100 

parameters (a, c, d), the paired differences observed between the stimulus types were 1101 

independent of the Period (Tables 3 and 4). For the occurrence of buzzes produced at depth (d), 1102 

the factor Order (not illustrated on the figure) also explained the variance in the data (see Tables 1103 

3 and 4). P-values from GEE results are given as *P<0.05, **P<0.01 and ***P<0.001 for paired 1104 

differences between stimuli independent of Period (interpretation of the factor Signal, Table S4), 1105 

and as +P<0.05, ++P<0.01 and +++P<0.001 for cases where the factor Signal:Period was 1106 

significant (Table S4). PRE_DUR = difference between the DUR (sound playback) and PRE 1107 

phases reflecting the behavioral change induced during the sound exposure; PRE_POST = 1108 

difference between the POST and PRE phases indicating whether the behavioral change lasted 1109 

(or eventually started) after the end of exposure. CTRL- = broadband noise control playback; 1110 

CTRL+= 1-2kHz tonal sound control playback; fKW= fish-eating killer whale sound playback; 1111 

mKW= mammal-eating killer whale sound playback. N: number of tested individuals; n: number 1112 

of playback trials. 1113 

 1114 
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TABLES  

 

Table 1. Overview of collected data. Presence or absence of a change score is indicated 

respectively by 1 or 0 for both change scores (PRE_DUR; PRE_POST). Horizontal 

movement indicates horizontal track collected by visual observations and/or by GPS logger 

attached to the tag. Surface behavior indicates collection of social parameters and surface 

behavioral events of the focal follow group. Acoustics and dive data indicate respectively 

sound recording and depth data collected from tags. Absence of a change score is due to 

missing data for one or more of the three phases PRE, DUR and POST. Italic lines indicate 

cases for which the PRE period overlapped at least partly with the POST period of the 

previous signal playback. Numbers with * indicate cases with not fully recorded surface 

behavioral parameters. Whale tag ID = identification number of tagged whale for each 

experiment. The code for the whales ID tagged with a D-tag are identified as gm (for the 

species abbreviation, i.e. globicephala melas), followed by the two last numbers of the year of 

conducted field work (08, 09, 10, 13 or 14), the day number of the year and a letter (e.g. ‘a’, 

for identifying the deployment of the day). Only one whale which was tagged with a Little 

Leonardo tag in 2010 has a different code ID (LpW_10pm1N). All tagged whales except two 

are focal follow animals. The other two non-focal whales (Gm13_169b and Gm13_180b) are 

secondary tagged whales associated to the focal follow group. Playback stimuli: CTRL- = 

broadband noise control playback; CTRL+= 1-2kHz tonal sound control playback; fKW= 

fish-eating killer whale sound playback; mKW= mammal-eating killer whale sound playback. 

Playback order indicates the order of stimuli presentation since whales could be exposed from 

1 to 4 playbacks. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Whale tag ID 
Playback 

Signal 
Playback Order  Horizontal movement Acoustics 

Surface 

Behavior 
Dive data 

Gm08_159a fKW 2 (1 ;1) (1;1) (0*;0*) (1;1) 

Gm09_156b fKW 1 (1 ;1) (0;0) (1*;0*) (1 ;1) 

Gm09_156b fKW 2 (1 ;1) (0;0) (1* ;1*) (1 ;1) 

LpW_10pm1N CTRL- 1 (1 ;1) (0;0) (1 ;1) (1 ;1) 

LpW_10pm1N fKW 2 (1 ;1) (0 ;0) (1 ;1) (1 ;1) 

LpW_10pm1N CTRL- 3 (1 ;1) (0 ;0) (1 ;1) (1 ;1) 

LpW_10pm1N fKW 4 (1 ;1) (0 ;0) (1 ;1) (1 ;1) 

Gm10_157b CTRL- 1 (1 ;1) (1 ;1) (1 ;1) (1 ;1) 

Gm10_157b CTRL- 2 (1 ;1) (1 ;1) (1 ;0) (1 ;0) 

Gm10_158d CTRL- 1 (1 ;1) (1 ;1) (1 ;1) (1 ;1) 

Gm10_158d fKW 2 (1 ;1) (1 ;1) (1 ;1) (1 ;1) 

Gm10_158d CTRL- 3 (1 ;1) (1 ;1) (1 ;1) (1 ;1) 

Gm10_158d fKW 4 (1 ;1) (1 ;1) (1 ;1) (1 ;1) 

Gm13_137a HW 1 (1 ;1) (1 ;1) (1 ;1) (1 ;1) 

Gm13_137a mKW 2 (1 ;1) (1 ;1) (1 ;1) (1 ;1) 

Gm13_149a CTRL+  1 (1 ;0) (1 ;0) (1 ;0) (1 ;0) 

Gm13_149a mKW 2 (1 ;1) (1 ;1) (1 ;1) (1 ;1) 

Gm13_169a mKW 1 (1 ;1) (1 ;1) (1 ;1) (1 ;1) 

Gm13_169a CTRL+  2 (1 ;1) (1 ;1) (1 ;1) (1 ;1) 

Gm13_169a CTRL- 3 (1 ;1) (1 ;1) (1 ;1) (1 ;1) 

Gm13_169b mKW 1 (1 ;1) (1 ;1) (0;0) (1 ;1) 

Gm13_169b CTRL+  2 (1 ;1) (1 ;1) (0;0) (1 ;1) 

Gm13_169b  CTRL- 3  (1 ;1) (1 ;1) (0;0) (1 ;1) 

Gm14_180a CTRL+  1 (1 ;1) (1 ;1) (1 ;1) (1 ;1) 

Gm14_180a mKW 2 (1 ;1) (1 ;1) (1 ;1) (1 ;1) 

Gm14_180b CTRL+  1 (0 ;0) (1 ;1) (0;0) (1 ;1) 

Gm14_180b mKW 2 (0 ;0) (1 ;1) (0;0) (1 ;1) 



Table 2. Summary table of results indicating the most relevant behavioral changes exhibited 

in response to playbacks of the three acoustic stimuli CTRL+, fKW and mKW compared to 

the broadband noise control playback (CTRL-). For each stimulus type, filled boxes indicate 

the occurrence of the associated described behavioral changes whereas empty boxes mean 

there was no significant change compared to CTRL-. Only ‘Clear cessation of feeding’ events 

(interruption of foraging dives) are presented as ‘Yes’ when they did happen (based from 

severity scoring panel results). There was never a cessation of feeding in response to CTRL-. 

For each quantitative behavioral parameter, the GEE results of the paired comparisons across 

the 4 stimuli were obtained, resulting in a total of 6 tested paired comparisons (i.e. differences 

between the 4 factor levels of Signal). To account for potential effect of multiple testing, we 

highlighted results supported at Bonferoni-corrected levels (α = 0.05/6 = 0.008). Results 

supported by p<0.05 and p<0.008 (after Bonferroni correction) are respectively represented as 

* and ** CTRL+= 1-2kHz tonal sound control playback; fKW= fish-eating killer whale sound 

playback; mKW= mammal-eating killer whale sound playback.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Behavioral changes in response to playback sounds CTRL+ fKW mKW 

Horizontal and 

vertical 

movements 

Horizontal approach towards sound source  (Fig. 2a) ** ** ** 

Reduced horizontal speed after end of playback (Fig. 

2b) 
** ** * 

Reduced time spent near surface compared to diving, 

and increased time spent in shallow diving (Fig. 3a, b)   
* 

Increased time spent within depth range of speaker (Fig. 

3c) 
  

** 

Foraging 

behavior 

Clear cessation of feeding (interruption of foraging 

dives) (Fig. 1b) 
Yes  

 
Yes  

Reduced clicking and/or buzzing while diving (Fig. 6c, 

d) 
*  ** 

Social response 

Increased group size and/or number of animals within 

focal area (Fig. 4a, b)   
** * 

 

Reduced distance to nearest other group (Fig. 4d) * ** 
 

Decreased surface synchrony (Fig. 4e) *   

Decreased individual spacing (Fig. 4c) 
  

** 

Reduced near surface buzzing (Fig. 6b) 
 

** 
 

Increased near surface buzzing (Fig. 6b) 
* (after end 

of 

playback) 
 

** 

(during 

playback) 

Behavioral 

surface displays 

Increased logging events ** 
  

Exhibition of spyhops * ** * 


