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Kinetic modelling of myocardial
necrosis biomarkers offers

an easier, reliable and more
acceptable assessment of infarct
size

Stéphanie Chadet?, David Ternant'?, Francois Roubille3, Theodora Bejan-Angoulvant®*,
Fabrice Prunier’, Nathan Mewton®, Gilles Paintaud'?, Michel Ovize®, Anne Marie Dupuy?,
Denis Angoulvant®’ & Fabrice lvanes 7%

Infarct size is a major prognostic factor in ST-segment elevation myocardial infarction (STEMI). It

is often assessed using repeated blood sampling and the estimation of biomarker area under the
concentration versus time curve (AUC) in translational research. We aimed at developing limited
sampling strategies (LSS) to accurately estimate biomarker AUC using only a limited number of blood
samples in STEMI patients. This retrospective study was carried out on pooled data from five clinical
trials of STEMI patients (TIMI blood flow 0/1) studies where repeated blood samples were collected
within 72 h after admission to assess creatine kinase (CK), cardiac troponin | (cTnl) and muscle-brain
CK (CK-MB). Biomarker kinetics was assessed using previously described biomarker kinetic models. A
number of LSS models including combinations of 1 to 3 samples were developed to identify sampling
times leading to the best estimation of AUC. Patients were randomly assigned to either learning (2/3)
or validation (1/3) subsets. Descriptive and predictive performances of LSS models were compared
using learning and validation subsets, respectively. An external validation cohort was used to validate
the model and its applicability to different cTnl assays, including high-sensitive (hs) cTnl. 132 patients
had full CK and cTnl dataset, 49 patients had CK-MB. For each biomarker, 180 LSS models were tested.
Best LSS models were obtained for the following sampling times: T4-16 for CK, T8-T20 for cTnl and
T8-T16 for CK-MB for 2-sample LSS; and T4-T16-T24 for CK, T4-T12-T20 for cTnl and T8-T16-T20 for
CK-MB for 3-sample LSS. External validation was achieved on 103 anterior STEMI patients (TIMI flow
0/1), and the cTnl model applicability to recommended hs cTnl confirmed. Biomarker kinetics can be
assessed with a limited number of samples using kinetic modelling. This opens the way for substantial
simplification of future cardioprotection studies, more acceptable for the patients.

Abbreviations

AAR Area at risk of ischemic myocardium

ACS Abnormally contracting segments

AUC Area under the concentration versus time curve
BE Bayesian estimators

CK Creatine kinase

CK-MB Creatine kinase muscle-brain
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cTnl Cardiac troponin I

IS Infarct size

LSS Limited sampling strategy

MRI Magnetic resonance imaging

STEMI ST-segment elevation myocardial infarction

TIMI flow Blood flow according to the thrombolysis in myocardial infarction classification

Infarct size (IS) is a key predictor of subsequent major cardiovascular events in the context of myocardial
ischemia-reperfusion injury" 2. Its utilization has been for years a surrogate major objective of phase II cardio-
protection studies®~. The gold standard of IS assessment is the quantification of late gadolinium enhancement in
cardiac magnetic resonance imaging (MRI). Since access to MRI is often limited in routine practice and biplane
left ventricular angiography significantly increases the volume of iodinated contrast media (and the risk severe
induced ventricular arrhythmias), serial blood measurements of necrosis biomarkers are classically used as sur-
rogate endpoints in trials in the field of cardioprotection®, notably serum creatine kinase (CK), creatine kinase
muscle-brain specific of cardiomyocytes (CK-MB) and troponins” . Up to date, because of their availability and
their known correlation with IS°-", the total amount of necrosis biomarker is estimated using the peak and/
or the area under the concentration versus time curve (AUC) of CK, CK-MB and troponins, determined using
trapezoid method'>.

However, in order to obtain accurate evaluation of IS by AUC, investigators are prompted to perform a large
number of repeated blood samples (12 to 16 within 72 h instead of generally two measurements on the day of
admission and one daily afterward in routine clinical practice)'> . Repeated blood sampling in patients after
ST-segment elevation myocardial infarction (STEMI) may be perceived as a burden for patients, generating
discomfort and reluctance to clinical research, and both paramedics and investigators, leading to increased cost
and risk of missing data.

In a previous study, we developed and validated mathematical models to describe the serum kinetics of CK,
CK-MB and troponins, using individual data from five clinical trials that assessed the efficacy of conditioning
therapies in STEMI®-'. In this context, decreasing the number of samples without loss in estimation accuracy is
amajor challenge and is, of course, not possible with the classical trapezoidal rule AUC approach. The need for
limited sampling strategies (LSS) to describe individual kinetic profiles led to development of Bayesian estima-
tors (BE) of kinetic parameters®. This approach has been widely used in therapeutic drug monitoring, notably
of immunosuppressant drugs such as mycophenolate? > and allowed significant reduction of blood samples in
this field (3 samples). We hypothesized that such a Bayesian approach may be used to estimate myocardial bio-
marker AUC in STEM], and thus IS, without any significant loss of accuracy. Our mathematical models'® should
allow for the first time the estimation of biomarker AUC using a small number of blood samples (typically 2 or
3 samples per patient) and provide to physicians easy and reliable access to infarct size data.

The aim of the present study was therefore (i) to develop LSS allowing the estimation of necrosis biomarker
(CK, CK-MB, troponins) AUC based on recently published biomarker kinetics models, (ii) to compare these
LSS to full kinetic sampling profiles, and (iii) to provide the best sampling times for these estimations using our
kinetic models.

Results

Among the 246 patients included in the 5 clinical trials, 181 patients had a full biomarker measurement profile
and their data were used for this work (Table 1). The full data sets, i.e. with CK, cardiac troponin I (cTnI) and
CK-MB, included 132, 132 and 49 patients, respectively. In learning and validation subsets, 84 and 48 patients
were assessed for CK and cTnl, respectively, whereas 32 and 17 patients were respectively asessed in learning
and validation subsets for CK-MB.

Biomarker LSS models accurately described biomarker AUC. Biomarker kinetic models in the
learning set satisfactorily described learning subset data of CK, ¢Tnl and CK-MB. In addition, model perfor-
mances in learning and validation sets were totally comparable (Fig. 1, Supplemental Data).

Overall, we ran 15, 45 and 120 LSS models with 1, 2 and 3 sampling times for each biomarker, respectively
(Table 2). Details on LSS model development are presented in Supplemental Data.

Among LSS models with R*>90%, relative bias < 10% and last sampling time <24 h, best LSS were: T12 for
CK and CK-MB, and T8 for c¢Tnl for one sample LSS; T4-16 for CK, T8-T20 for ¢Tnl and T8-T16 for CK-MB
for two sample LSS; and T4-T16-T24 for CK, T4-T12-T20 for cTnl and T8-T16-T20 for CK-MB for three
sample LSS (Table 2, Fig. 1).

Regarding the association between models and area at risk of ischemic myocardium (AAR), the association
of AAR was tested as a covariate on kinetic parameters. A significant association of the AAR with amount of
biomarker release (B0) was found for CK and CK-MB, increased AAR resulted in increased BO (Supplemental
Data). LSS models were built on the basis of these associations.

Biomarker LSS models accurately predicted biomarker AUC. The prediction performances of LSS
models of the validation step were similar to those found during the development step (Table 2). The best LSS
models determined previously were confirmed to accurately predict AUC of biomarkers (Table 2). For the three
biomarkers, 3-sample LSS strategies led to better descriptive and predictive performance than 1 and 2-sample
strategies. Therefore, best 3-sample strategies were T4-T16-T24, T4-T12-T20 and T8-T16-T20 for CK, cTnl
and CK-MB, respectively (Fig. 2).



Study parameters CK and ¢Tnl CK-MB External validation cohort
Patients evaluable 132 49 103
Gender (male/female) 101/31 40/9 85/18

Control—52 Control—16 -
Study arms Conditioning—61 RIPer—17 -

RIPer + IPOST—16

Age (years) 56 (49-68) 59 (49-72) 62 (53-73)
Active smokers (%) 57.8 36.4 38.3
Arterial hypertension (%) 439 36.4 52.3
Body Mass Index (kg/m?) 25.95(23.3-29.1) 25.95 (23.03-28.56) | 25.35 (23.94-27.43)
Dyslipidaemia (%) 474 40 51.4
Diabetes mellitus (%) 16.8 5.5 14

eGFR (MDRD formula, mL/min/1.73 m?)

85.5 (70.25-98.75)

82.4 (62.65-98.5)

86.2 (71.6-103.7)

Area at risk (% of ACS) 34.7 (27.0-46.5) 37.4 (30.5-45.7) -

LVEF (%) 50.7 (43-61) 48.2 (44.1-53.2) 44 (35-54)
AUC CK (IU h/L) 74,212 (32-1,09,236) | -

CK peak (IU/L) 2,745 (1,671-4,418) -

AUC cTnl (mg h/L) 2,607 (1,452-4,267) -

cTnl peak (mg/L) 97 (46-161) -

AUC CK-MB (IU h/L)

5,403 (3,631-7,742)

CK-MB peak (IU/L)

306 (196-451)

Table 1. Summary of assessed patients’ characteristics. ACS abnormally contracting segments, AUC area
under the concentration versus time curve, CK creatine kinase, CK-MB creatine kinase muscle-brain specific of
cardiomyocytes, cTnI cardiac troponin I, eGFR glomerular filtration rate, IPOST ischemic post-conditioning,
LVEF left ventricular ejection fraction, MDRD modified diet and renal disease, RIPer remote ischemic per-
conditioning.

If we consider the best strategy gathering the three biomarkers, then the best times would be T4-T12-T20
with respective R? of 95.6%, 92.8% and 94.0%. Of note, this is not the best strategy for either CK or CK-MB.

External validation. 484 cTnl samples taken in the first 24 h following admission for STEMI with TIMI
0/1 initial blood flow, from 103 patients allowed us external validation of the ¢TnI model. All these patients
had both high-sensitive (hs) and non-hs ¢TnI samples data available for different time points. Detailed patients
characteristics for this validation cohort are provided in Table 1 and can be retrieved in the publication from
Laugaudin et al.**. Application of the ¢Tnl model to both non-hs and hs ¢TnI samples showed excellent predic-
tive performance of cTnl model, as depicted in Fig. 3.

The results regarding R? and relative bias were:

cTnl in the reference cohort bias = — 0.2% R2 = 0.970
cTnl in the external cohort bias = 1.5% R2 = 0.981
hs cTnl in the external cohort bias = 3.5% R2 = 0.986

This further validates the cTnI model with regards to the different assays available, including hs cTnl assays.

Discussion
This study is the first to propose a simple and powerful approach of necrosis biomarker data assessment based on
a limited number of blood samples taken during a short delay (within 24 h) in ST-segment elevation myocardial
infarction patients TIMI flow 0/1 revascularized by PCI. Based on our previous mathematical description of
biomarker kinetics, we demonstrated that estimation of AUC of CK, c¢Tnl and CK-MB biomarkers using 3-sam-
ple LSS strategies led to excellent biomarker AUC description and prediction. In addition, we provide external
validation with regards to our cTnI model and its applicability to modern hs cTnI assays.

Based on our results, the overall optimal pattern would be to take the three samples between T4 and T24 with
a delay of 4-6 h between samples. Sampling times should be respected since the accuracy of LSS models relies
on the high information level carried by samples, as proposed above. If best description and prediction perfor-
mances are given by 3-sample LSS, very good performances are still obtained using 2-sample LSS. For 2-sample
LSS, sampling times should be T4-T16 for CK, T8-T20 for ¢Tnl and T8-T16 for CK-MB (Fig. 2). Of note, for
3-sample LSS, the high number of LSS strategies leading to R*>90% suggests a certain flexibility in sampling
times that should help reconnecting the requirements of clinical research with the reality of day-to-day patients’
care and still ensure good quality data collection. Besides, CK-MB appears to be more flexible than CK or ¢Tnl
because most of 3-sample LSS (more than 75%) led to very good predictive performance (R*>90%) compared
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Figure 1. Observed versus model-predicted creatine kinase (CK, up), cardiac troponin I (cTnl, middle) and
creatine kinase muscle-brain (CK-MB, bottom) for limited sampling strategies. From left to right, all data points,
then best 1-sample, 2-sample and 3-sample limited sampling strategies. Open and dark circles are observed/
predicted biomarker level couples for learning an validation sets, respectively, the line is the first bisector line.

Number samples 1 sampling time 2 sampling times 3 sampling times

Biomarker CK |[cInl |CK-MB |CK cTnl CK-MB | CK cTnl CK-MB
Number of LSS model tested 15 15 15 45 45 45 120 120 120
11;12u>rr;boi/z of LSS models with 1 0 2 12 3 24 67 29 9

Sample times (hours) Ti2 | T8 Ti12 T4, T16 | T8, T20 |T8,T16 |T4,T16,T24 |T4,T12,T20 | T8, T16, T20
R? learning set (%) 923 | 855 95.3 96.2 95.4 97.2 98.7 97.1 97.6

R? validation set (%) 922 779 88.7 95.7 97.4 94.7 98.2 97.5 96.8

Table 2. Summary of 1-, 2- and 3-sample limited sampling strategies. CK creatine kinase, CK-MB creatine
kinase muscle-brain specific of cardiomyocytes, cTnl cardiac troponin I, LSS limited sampling strategy, R’
coefficient of determination, Tx sampling at time x.

to CK (approximately 50%) or cTnl (approximatively 25%). Paradoxically this biomarker is becoming less and
less used and may not be available in every centre.

Our data demonstrated the excellent predictive performance of our models in the validation subset. Although
we observed a non-neglectable decrease in predicting performance of CK-MB in the validation subset, we believe
that this may be related to the small number of patients (17) with CK-MB measurements in that subset. In order
to optimize the external validation of our models, it needs to be tested on databases totally independent from
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Figure 2. Sampling times for best 2-sample (full diamonds) and 3-sample (open circles) limited sampling
strategies (LSS). Lines are median creatine kinase (CK), cardiac troponin I (¢TnI) and muscle-brain creatine
kinase (CK-MB) kinetic profiles vs. time. Best LSS were: T4-16 for CK, T8-T20 for ¢Tnl and T8-T16 for
CK-MB for 2-sample LSS; and T4-T16-T24 for CK, T4-T12-T20 for ¢TnI and T8-T16-T20 for CK-MB for
3-sample LSS.
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Figure 3. Observed vs. model-predicted biomarker levels (based on 484 observations of each biomarker). Left,
hs cTnl assay from Abbott; right, conventional non-hs cTnl assay from Siemens.

the present study. Importantly, both kinetic models and LSS should be performed without any change regarding
model structure, parameter values, or sampling times.

Another research group published detailed analysis of necrosis biomarker kinetics in order to investigate
differences between troponins I and T?. Yet, their analysis does not allow to draw a general model that can be
applied outside their data set. Nor can it be used to reduce the number of samples. In addition, a model describ-
ing troponin kinetics was developed in order to quantify the toxicity of the association of trastuzumab and
anthracyclins. However, since troponin input was linked to anthracyclin infusion, this model is not suitable for
accurate AUC estimation in the context of STEMI*.

The added value of the Bayesian approach performed in this study is to provide a significant amount of infor-
mation using limited number of samples in each patient. However, one must acknowledge that there is still a slight
loss of information, estimated to be below 5% for best sampling strategies, that may be attenuated by the overall
general performance of the model, which is more accurate in estimating the total amount of necrosis biomarker
released than the trapezoid-calculated AUC itself'®. These LSS models, applied to future cardioprotection studies
in STEMI aiming at reducing infarct size, may greatly improve the research process, with a significant gain in
human and financial resources for the investigators, and in comfort for the patients participating in such studies.
The next validation step is to determine their correlation with the gold standard technique for infarct size assess-
ment, i.e. late gadolinium enhancement in cardiac MRI, and confirm that this method is a suitable alternative to
MRI for infarct size determination. Yet, this mathematical model will never be able to outperform MRI in all its
post-infarction indication as it cannot give any indication regarding the presence of a left ventricular thrombus.

This work has however several limitations. Despite the fact that we pooled data from five clinical trials, the
groups were of reduced size, in particular the CK-MB group. Another limitation is that our models are not
defined for cardiac troponin T, as this biomarker was not available in our study population. Yet this biomarker,
together with ¢Tnl, is the main biomarker used for the definition of myocardial infarction and may be the only
troponin assay available in many centers®. The adaptation of the model to troponin T measurements and kinetics
is needed, and will be done on new patients’ databases. Our cTnl model was derived from non-hs c¢Tnl from two
different assays, yet with very similar characteristics. We provided here external validation of the model, both on
another non-hs c¢Tnl assay, and more interestingly on a newer hs-cTnl assay. With regard to these data, we are
convinced of the ability of our model to describe cTnl kinetic data obtained from various (hs) assays, since Bayes-
ian estimation of kinetic parameters is based on mixed-model effect modelling, which allows to take into account
variability due to non-controlled or unknown factors, including differences in measurement techniques®*26-%.
Our kinetic models were developed on TIMI 0/1 STEMI patients and whether the models may be applicable
to all-comers STEMI, including TIMI 2/3, requires further investigation. Similarly, our models were not tested
on patients whom primary reperfusion treatment was intravenous fibrinolysis. More data are needed before we
can validate our models in this specific population, as well as in patients with ongoing cardiogenic shock. Late
presenter STEMI patients admitted after the primary PCI window may still benefit from this model-based infarct
size assessment if the first blood sample is taken in the 72 I’ time limit. Yet, the model was not derived from these
patients and might further loose in accuracy. This may also be the case in patients with failed angioplasty or
severe renal insufficiency. Last, our models are not applicable to non-STEMI patients. Yet, these are completely
different patients from STEMI patients as pointed out by most population studies, including the latest French
registry FAST-MI. In these patients, the prognosis is far more related to comorbidities and extent of coronary
artery anomalies than to proper infarct size. Thus, infarct size is a less relevant parameter in this population.



Conclusion

We demonstrated that biomarker kinetics can be assessed using a limited number of samples (2 or 3 samples,
which means until 7 times less than in current protocols) thanks to Bayesian kinetic modelling. This opens the
way for substantial simplification of future cardioprotection studies in TIMI 0/1 STEMI with more acceptable
protocols for patients, research teams and investigators. This approach will increase power and put an end to the
classical trapezoidal rule AUC. Bayesian analysis is likely to be a useful add-on to future studies in the field of
cardioprotection. In addition, it offers a simple way and inexpensive to estimate infarct size for patients present-
ing with STEMI in routine clinical care.

Methods

Patients population and data collection. We used data from five clinical trials in STEMI patients (Sup-
plemental Data) that evaluated the effect of a conditioning strategy (ischemic post-conditioning, pharmacologi-
cal post-conditioning with cyclosporine A, remote ischemic per-conditioning) versus control for CK, cTnI'*16-1
and CK-MB". These trials were approved by local ethical committees and all patients provided written informed
consent. All patients in these studies were admitted within 12 h of the onset of chest pain and had a TIMI 0/1
coronary blood flow at first culprit coronary artery injection. Primary endpoint was infarct size estimated by
AUC of CK, CK-MB and non-hs cTnl, based on serial serum measurements. The AAR was estimated using a
biplane left ventricular angiography in order to measure the circumferential extent of abnormally contracting
segments (ACS)*'*. Blood samples were collected prior to primary percutaneous coronary intervention, every
4 h in the first 24 h following intervention, and every 6 h over the following 48 h. Therefore, 15 samples (T0, T4,
T8,..., T72) were available for each patient and each biomarker. These samples had been used to compute AUC
toward 72 h for every patient individually, for CK (AUCc), cTnl (AUC,p,,;) and CK-MB (AUCc ). For both
CK and non-hs cTnl, concentrations were measured using two distinct assays from Beckman Coulter (Ville-
pinte, France) and then from Abbott (Rungis, France). For the first 54 patients, non-hs cTnl concentrations were
measured using Accu kit on Access 2 system (Beckman Coulter) and CK concentrations were measured using
CK reactive kit on Synchron LX system (Beckman Coulter). For the 78 remaining patients, non-hs c¢Tnl con-
centrations were measured using STAT ARCHITECT kit on Architect 12000 system (Abbott) and CK concen-
trations were measured using Abbott 7D63 CK kit on Architect C8000 and C16000 instruments (Abbott). The
kits had close characteristics: similar limits of detection (0.01 ng/mL), 99th percentile concentration (0.040 ng/
mL and 0.028 ng/mL for Beckman Coulter and Abbott, respectively), coefficient of variation of 99th percentile
(14%) and no significant difference in either concentration measurements, or in kinetic parameters were found
between these assays (see Supplementary Material for detailed characteristics).

This study was conducted in accordance with the Declaration of Helsinki, approved by the institutional review
board of the Pole Coeur Thorax Vaisseaux from the Tours University Hospital (Tours, France), and was registered
as a clinical audit'®. All data were fully anonymized and the present study was conducted retrospectively. Patients
were not involved in its conduct, and there was no impact on their care.

Data splitting. Measurements of cTnl and CK were pooled for kinetic modeling assessment. CK-MB meas-
urements from the remote ischemic per-conditioning study were assessed separately. Three full data sets, i.e.
with CK, c¢Tnl and CK-MB variables, were built. With the aim of validating LSS models to estimate both bio-
marker input and AUC, data sets were randomly assigned (computerized allocation) into learning (2/3 patients)
or validation (1/3 patients) subsets (Fig. 1). Learning and validation subsets were used for internal and external
validation of LSS estimators, respectively. To ensure homogeneity between both subsets, the randomization of
the study population was stratified on study (to avoid time bias) and treatment (conditioning or control).

We also seeked for external validation and therefore ran our models using individual data of another french
cohort of 103 patients with anterior STEMI and a TIMI 0/1 blood flow. These patients were refered for primary
percutaneous coronary intervention within 12 h of the onset of chest pain and had multiple biomarkers assess-
ments from admission and every 12 h up to 132 h. ¢Tnl was measured using different assays: a non-hs cTnl assay
and a hs c¢Tnl assay with the following characteristics.

Non-hs c¢TnI were measured using the Advia Centaur Ultra cTnI assay on an Advia Centaur Immunoassay
analyser from Siemens, with a 10% coeflicient of variation limit of 30 ng/mL and a 99th percentile of 40 ng/
mL (confidence interval 20-60). Hs cTnl were measured using the Architect STAT High Sensitive Troponin-I
Reagent on an Architect i1000SR from Abbott Diagnostics. The 10% coefficient of variation limit was 3.9 ng/mL
and the 99th percentile values were 14 ng/mL for men and 11 ng/mL for women (see Supplementary Material
for detailed characteristics).

We wanted to ensure that: (i) our cTnl model could be applied to STEMI patients others than those from
our cohort, and (ii) that this model was extrapolable to others cTnl assays, including the newer and now recom-
mended hs cTnl.

Cardiac biomarker kinetics and LSS modeling.  The kinetic models development is described in details
elsewhere’. Briefly, these models described biomarker release, distribution and elimination steps and allowed
computing AUC for CK, c¢Tnl and CK-MB. Kinetic parameters were estimated using nonlinear mixed-effect
modelling approach®.

Based on our kinetic models, the interindividual distribution of parameters and individual values of AUC
were estimated in the learning data subset using all samples (TO to T72). Assessment of the predictive perfor-
mance of kinetic models was made by comparing computed biomarker AUC and AUC calculated by the reference
method, i.e. trapezoid rule. This comparison was made numerically by comparison of model-estimated AUC
with AUC calculated by trapezoid rule using coefficient of determination (R? %) and relative bias (%), which is



the systematic error of estimation relative to observation. A model was considered to provide accurate results
if R?>90% and relative bias < 10%. Among LSS leading to similar performance, strategy with the lowest time of
last sample was chosen, with all sampling times <24 h.

Statistical analyses. Coefficients of determination and bias were used to assess the predictive performance
of kinetic and LSS models. The analysis was made using R 3.2.3 (R Core Team, Vienna, Austria)®.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on
reasonable request.
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