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In this paper we consider existence and uniqueness of the three-dimensional static boundary-value problems in the framework of so-called gradient-incomplete strain-gradient elasticity. We call the straingradient elasticity model gradient-incomplete such model where the considered strain energy density depends on displacements and only on some specific partial derivatives of displacements of first-and second-order. Such models appear as a result of homogenization of pantographic beam lattices and in some physical models. Using anisotropic Sobolev spaces we analyze the mathematical properties of weak solutions. Null-energy solutions are discussed.

INTRODUCTION

Recent progress in technologies including additive ones results in appearance of new classes of materials called metamaterials or architectured materials. Among these it is worth to mention so-called pantographic beam lattices discussed in [START_REF] Dell'isola | Pantographic metamaterials: An example of mathematically driven design and of its technological challenges[END_REF][START_REF] Dell'isola | Advances in pantographic structures: Design, manufacturing, models, experiments and image analyses[END_REF]. Such material consists of few families of long elastic beams connected through relatively small and soft pivots. The related continual description of such materials results in a specific class of strain-gradient materials that is materials with a strain energy density dependent on first and second gradients of displacements. The general framework of the straingradient elasticity was established in the seminal papers by Toupin and Mindlin [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF][START_REF] Mindlin | On first strain-gradient theories in linear elasticity[END_REF][START_REF] Toupin | Elastic materials with couple-stresses[END_REF]. It is worth also to mention that an origin of such models can be found in earlier works of the continuum mechanics founders, see [START_REF] Maugin | Generalized continuum mechanics: Various paths[END_REF][START_REF] Maugin | Non-Classical Continuum Mechanics: A Dictionary[END_REF][START_REF] Auffray | Analytical continuum mechanics `a la Hamilton-Piola least action principle for second gradient continua and capillary fluids[END_REF][START_REF] Dell'isola | At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola[END_REF][START_REF] Dell'isola | Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives[END_REF].

Following the Toupin-Mindlin approach a strain energy density has the form W = W(e, k), where e = 1 2 (∇u + (∇u) T ), k = ∇∇u is the strain tensor and the second gradient of u, u = (u 1 , u 2 , u 3 ) is the vector of displacements, and ∇ is the three-dimensional (3D) nabla-operator [START_REF] Simmonds | A Brief on Tensor Analysis[END_REF][START_REF] Eremeyev | Applications of Tensor Analysis in Continuum Mechanics[END_REF].

In the framework of infinitesimal deformations W is a quadratic form of e and k

W = 1 2 e : C : e + 1 2 k . . .D . . .k, (1) 
where C and D are forth-and six-order tensors of elastic moduli, respectively. Here ":" and " . . ." stand for scalar (inner) products in the spaces of second-and third-order tensors, respectively. The standard assumption is that C and D to be positive definite

e : C : e ≥ C 1 e : e, k . . .D . . .k ≥ C 2 k . . .k with C 1 > 0, C 2 > 0.
This assumption leads to the existence and uniqueness of weak solutions of the corresponding boundary-value problems [START_REF] Healey | Injective weak solutions in second-gradient nonlinear elasticity[END_REF][START_REF] Mareno | Global continuation in second-gradient nonlinear elasticity[END_REF]. The homogenization of pantographic lattices leads to a strain energy density given by (1) but without positive definiteness. Here we have only k . . .D . . .k ≥ 0. As a result, the standard definition of coercitivity is violated and should be modified properly. In order to prove the existence and uniqueness of weak solutions for in-plane and out-of-plane deformations of pantographic sheets in [START_REF] Eremeyev | Linear pantographic sheets: Existence and uniqueness of weak solutions[END_REF][START_REF] Eremeyev | On existence and uniqueness of weak solutions for linear pantographic beam lattices models[END_REF] the anisotropic Sobolev spaces were used. This class of functional spaces was introduced by Sergey Nikolskii [START_REF] Nikol'skii | On imbedding, continuation and approximation theorems for differentiable functions of several variables[END_REF], see also [START_REF] Besov | Integral Representations of Functions and Imbedding Theorems[END_REF][START_REF] Besov | Integral Representations of Functions and Imbedding Theorems[END_REF][START_REF] Triebel | Theory of Function Spaces III[END_REF]. The aim of this paper is to extend the results of [START_REF] Eremeyev | Linear pantographic sheets: Existence and uniqueness of weak solutions[END_REF][START_REF] Eremeyev | On existence and uniqueness of weak solutions for linear pantographic beam lattices models[END_REF] to three-dimensional pantographic beam lattices with perfect pivots which undergo infinitesimal deformations. The paper is organized as follows. First, we introduce a strain energy density in Section 1. In Section 2 we discuss null-energy solutions. This class of deformations includes the rigid-body deformations and should be avoided in order to get the uniqueness of solutions. Finally, in Section 3 we formulate and prove the theorems of uniqueness and existence of weak solutions. Here we use the anisotropic Sobolev spaces as an energy functional space.

STRAIN ENERGY DENSITY

Following [START_REF] Eremeyev | Linear pantographic sheets: Existence and uniqueness of weak solutions[END_REF][START_REF] Eremeyev | On existence and uniqueness of weak solutions for linear pantographic beam lattices models[END_REF][START_REF] Boutin | Linear pantographic sheets: Asymptotic micro-macro models identification[END_REF][START_REF] Placidi | Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients[END_REF][START_REF] Placidi | A second gradient formulation for a 2D fabric sheet with inextensible fibres[END_REF] let us briefly introduce the strain energy density of a three-dimensional pantographic lattice. It consists of three orthogonal families of elastic beams connected through small soft pivots, see Fig. 1. In what follows we neglect bending and torsional deformations of the pivots. Such pivots we call perfect ones. In addition we neglect torsional deformations of beams.

Using an approach similar to [START_REF] Eremeyev | On existence and uniqueness of weak solutions for linear pantographic beam lattices models[END_REF] we come to a strain energy density in the following form

W = K (1) e 2 u 2 1,1 + K (2) e 2 u 2 2,2 + K (3) e 2 u 2 3,3 + K (1) b 2 u 2 2,11 + u 2 3,11 + K (2) b 2 u 2 1,22 + u 2 3,22 + K (3) b 2 u 2 1,33 + u 2 2,33 , (2) 
where the stiffness parameters

K (i) e > 0 and K (i) b > 0, u 1 , u 2 , u 3 are Cartesian components of u, i = 1, 2, 3
, are related to the extensional and bending stiffnesses of the beams at the interpivot scale, respectively. Hereinafter indices after comma denote derivatives with respect to x i , i = 1, 2, 3, where x i are Cartesian coordinates. So, for example, u 1,1 is the partial derivative of u 1 with respect to

x 1 , u 1,22 = ∂ 2 u 1 ∂x 2 2
, etc. Eq. ( 2) is a straightforward 3D generalization of 2D models of pantographic sheets [START_REF] Eremeyev | On existence and uniqueness of weak solutions for linear pantographic beam lattices models[END_REF].

Let us underline some similarities of (2) with other physical models known in the literature. Eq. ( 2) is a 3D analog of a strain energy of an extensible beams undergoing in-plane deformations

W = 1 2 K e (u 1 ) 2 + 1 2 K b (u 2 ) 2 , ( 3 
)
where K e > 0 and K b > 0 are the extensional and bending stiffnesses, u 1 = u 1 (x) and u 2 = u 2 (x) are longitudinal and transverse displacements, respectively, x is the coordinate along the beam axis, and the prime stands for derivative with respect to x.

Another example is the strain energy of small deformations of the smectics A given by [24-26]

W = 1 2 B(u ,3 ) 2 + 1 2 K (u ,11 + u ,22 ) 2 , ( 4 
)
x 1

x 2 x 3 Fig. 1. Three-dimensional pantographic beam lattice.

where B and K are elastic moduli describing the longitudinal stiffness along x 3 -direction and the bending stiffness of the smectic layers, respectively. Here the displacement vector has the simple form u = (0, 0, u(x 1 , x 2 , x 3 ).

Obviously, Eqs. ( 3) and ( 4) give 1D and 3D scalar examples of (2). Other physical models with nonsymmetric appearance of second-order derivatives are discussed in [START_REF] Eremeyev | A note on reduced strain gradient elasticity[END_REF]. We call the model based on (2) gradient-incomplete as W does not contain all second-order derivatives. Indeed, for example, W contains only u 1,1 , u 1,22 , and u 1,22 while u 1,11 and mixed derivatives are absent.

NULL-ENERGY SOLUTIONS

Let us recall that for classic linear elasticity there is an energy null-space which reduces to the socalled infinitesimal rigid-body deformations. The energy null-space is a set of admissible functions for which the given strain energy density is vanishing. The analysis of these null-energy solutions is important element of the analysis of existence and uniqueness of weak solutions, see [START_REF] Fichera | Existence theorems in elasticity[END_REF][START_REF] Ciarlet | Mathematical Elasticity, Three-Dimensional Elasticity[END_REF][START_REF] Eremeyev | Existence of weak solutions in elasticity[END_REF]. Let us find null-energy solutions considering solutions of W = 0.

In classic linear elasticity it is known that such solutions are so-called rigid-body deformations given by [START_REF] Eremeyev | Existence of weak solutions in elasticity[END_REF] 

u = a + b × x, (6) 
where a and b are constant vectors, x = (x 1 , x 2 , x 3 ) is the position vector, and × is the cross-product. So in the linear elasticity the null-energy solutions constitute a six-dimensional subspace.

For the constitutive equation ( 2) we also have finite-dimensional null-space. Indeed, considering (5) we get the solutions

u 1 = a 1 yz + b 1 z + c 1 z + d 1 , (7) u 2 = a 2 xz + b 1 x + c 2 z + d 2 , ( 8 
) u 3 = a 3 xy + b 3 x + c 3 y + d 3 , ( 9 
)
where a i , b i , c i , and d i , i = 1, 2, 3, are constants. So for the considered model we again have finitedimensional null-energy subspace. Unlike (6) here we have 12 additional parameters so the nullspace is 12-dimensional. Obviously, ( 7)-( 9) includes rigid-body deformations [START_REF] Maugin | Generalized continuum mechanics: Various paths[END_REF]. Thus, the gradientincompleteness of (2) results in a number of solutions with zero energy.

EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS

Let us consider an elastic solid body B with the strain energy density (2). B occupies a bounded volume V with smooth enough boundary S = ∂V , see, e.g., [START_REF] Adams | Sobolev Spaces[END_REF][START_REF] Lebedev | Functional Analysis in Mechanics[END_REF][START_REF] Maz'ya | Sobolev Spaces: With Applications to Elliptic Partial Differential Equations[END_REF] for the detailed requirements to S. Equilibrium conditions of B follow from the virtual principle

δ V W dV -δA = 0,
where δA is a work of external loads, see [START_REF] Auffray | Analytical continuum mechanics `a la Hamilton-Piola least action principle for second gradient continua and capillary fluids[END_REF][START_REF] Abali | Theory and computation of higher gradient elasticity theories based on action principles[END_REF] and references therein for virtual work principle in the framework of the higher gradient elasticity models. For simplicity we consider δA as in the case of linear elasticity [START_REF] Fichera | Existence theorems in elasticity[END_REF][START_REF] Ciarlet | Mathematical Elasticity, Three-Dimensional Elasticity[END_REF][START_REF] Eremeyev | Existence of weak solutions in elasticity[END_REF] 

δA = V f • δu dV + S 1 t • δu dS,
where f and t are given vector functions of body and surface forces, respectively, "•" stands for scalar product of vectors, and S 1 ⊂ S is a part of S where a traction t is given.

In the following we consider dimensionless form of W and other introduced quantities. Moreover, without loss of generality we use the following dimensionless form of

W 2W = u 2 1,1 + u 2 2,2 + u 2 3,3 + u 2 2,11 + u 2 3,11 + u 2 1,22 + u 2 3,22 + u 2 1,33 + u 2 2,33 .
Let us consider the quadratic functional N (u) given by N (u) = V 2W dV. Obviously, N (u) constitutes a seminorm, as N (u) = 0 results in ( 7)-( 9).

Let us recall the definitions of norms and seminorms in the anisotropic Sobolev spaces

H 1 = H (1,2,2) 2
,

H 2 = H (2,1,2) 2
, and

H 3 = H (2,2 ,1) 2 
.

Here we have [START_REF] Nikol'skii | On imbedding, continuation and approximation theorems for differentiable functions of several variables[END_REF][START_REF] Triebel | Theory of Function Spaces III[END_REF]]

||u|| 2 1 ≡ ||u|| 2 H (1,2,2) 2 = V u 2 + u 2 ,1 + u 2 ,22 + u 2 ,33 dV, ||u|| 2 2 ≡ ||u|| 2 H (2,1,2) 2 = V u 2 + u 2 ,2 + u 2 ,11 + u 2 ,33 dV, ||u|| 2 3 ≡ ||u|| 2 H (2,2 ,1) 2 = 
V u 2 + u 2 ,3 + u 2 ,22 + u 2 ,11 dV, |u| 2 1 ≡ |u| 2 H (1,2,2) 2 = V u 2 ,1 + u 2 ,22 + u 2 ,33 dV, |u| 2 2 ≡ |u| 2 H (2,1,2) 2 = V u 2 ,2 + u 2 ,11 + u 2 ,33 dV, |u| 2 3 ≡ |u| 2 H (2,2 ,1) 2 = 
V u 2 ,3 + u 2 ,22 + u 2 ,11 dV.
Obviously, with these definitions we have

N (u) = |u 1 | 2 1 + |u 2 | 2 2 + |u 3 | 2 3 .
In other words, N (u) is a sum of squared seminorms in the corresponding Sobolev's spaces.

The total energy functional is given by

E(u) = 1 2 N (u) -A(u), A(u) = V f • u dV + S 1 t • u dS.
In what follows we introduce a weak solution as a minimizer of E(u) on the given energy space H. First, let us consider Dirichlet-type boundary conditions.

Dirichlet-type Boundary Conditions

Let us consider the case when S is clamped

u S = 0. (10) 
Boundary condition [START_REF] Dell'isola | Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives[END_REF] prevents the appearance of null-energy solutions ( 7)-( 9). Thus, N (u) is a squared norm. We introduce the energy space H 0 as follows Definition 1. The space H 0 is the completion with respect to the norm u 2 H = N (u) of a set of vector functions u that are continuously differentiable on V and satisfy [START_REF] Dell'isola | Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives[END_REF]. There exists the inner product in H 0

(u, v) H = V u 1,1 v 1,1 + u 2,2 v 2,2 + u 3,3 v 3,3 + u 2,11 v 2,11 + u 3,11 v 3,11 + u 1,22 v 1,22 + u 3,22 v 3,22 + u 1,33 v 1,33 + u 2,33 v 2,33 dV. ( 11 
)
So H 0 is a Hilbert space. Moreover, here

H 0 = • H (1,2,2) 2 (V )⊕ • H (2,1,2) 2 (V )⊕ • H (2,2,1) 2 (V ),
where

• H 2 (V )
is the completion with the norm || • || H 2 (V ) od a set of functions that satisfy [START_REF] Dell'isola | Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives[END_REF], and is a multi-index, = (1, 2, 2), (2, 1, 2), (2, 2, 1). Now we introduce a weak (generalized) solution.

Definition 2. The element u ∈ H 0 is a weak of the equilibrium problem for the body B with external loads f if it minimizes E(u) on the energy space H 0 .

Calculating the first variation of E(u) we conclude that a weak solution satisfies the equation

(u, v) H - V f • v dV = 0, ∀ v ∈ H 0 . ( 12 
)
For simplicity we assume that f ∈ L 2 (V ). Then we have Theorem 1. A weak solution u ∈ H 0 to equation ( 12) exists and unique.

Proof. The proof mimics one given in [START_REF] Eremeyev | Linear pantographic sheets: Existence and uniqueness of weak solutions[END_REF][START_REF] Eremeyev | On existence and uniqueness of weak solutions for linear pantographic beam lattices models[END_REF] and we omit it for brevity. P

Mixed Boundary Conditions

Let us now relax the kinematic constraints assuming that only a part S 2 ⊂ S is clamped while on the rest S 1 = S\S 2 a traction t is given:

u S 2 = 0. (13) 
For simplicity we assume that t ∈ L 2 (S 2 ).

Unlike linear elasticity where (13) prevents rigid-body deformations, this is not the case in the framework of the gradient-incomplete strain-gradient elasticity, see few examples [START_REF] Eremeyev | On existence and uniqueness of weak solutions for linear pantographic beam lattices models[END_REF]. Following [START_REF] Eremeyev | Linear pantographic sheets: Existence and uniqueness of weak solutions[END_REF][START_REF] Eremeyev | On existence and uniqueness of weak solutions for linear pantographic beam lattices models[END_REF] we assume that assumed boundary conditions are non-singular. In other words we apply such kinematical constraints (13) that are sufficient for absence of null-energy deformations. In this case we define again a weak solution u ∈ H as a minimizer of the total energy functional E(u). Here the energy space H the completion of a set of differentiable functions, with respect to the norm || • || H , that satisfy [START_REF] Healey | Injective weak solutions in second-gradient nonlinear elasticity[END_REF]. H is a Hilbert space with inner product [START_REF] Simmonds | A Brief on Tensor Analysis[END_REF]. Moreover,

H = H (1,2,2) 2 (V ) ⊕ H (2,1,2) 2 (V ) ⊕ H (2,2,1) 2 (V ).
Similarly to [START_REF] Eremeyev | On existence and uniqueness of weak solutions for linear pantographic beam lattices models[END_REF][START_REF] Eremeyev | Existence of weak solutions in elasticity[END_REF] we can prove Theorem 2. Suppose the boundary conditions are non-singular. There exists a weak solution u ∈ H to the equilibrium problem that minimizes the total energy functional E(u) in H and satisfies the integral equation

(u, v) H - V f • v dV - S 1 t • v dS = 0, ∀ v ∈ H.
The weak solution is unique.

CONCLUSIONS

Following [START_REF] Eremeyev | Linear pantographic sheets: Existence and uniqueness of weak solutions[END_REF][START_REF] Eremeyev | On existence and uniqueness of weak solutions for linear pantographic beam lattices models[END_REF] we discussed the existence and uniqueness of weak solutions in the framework of the spatial gradient-incomplete strain-gradient elasticity. To this end we used the anisotropic Sobolev spaces. In this paper we considered non-singular boundary conditions that prevent null-energy solutions. The case of singular boundary conditions and free bodies can be also studied as in [START_REF] Eremeyev | Existence of weak solutions in elasticity[END_REF]. Clearly, in this case a weak solution is unique up to arbitrary rigid-body deformations given by ( 7)-( 9) whereas external loadings including hyper stresses should be orthogonal to these deformations.
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