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Abstract. The wave finite element method (WFE) has been developed originally for one di-
mensional periodic structures with advantage in calculation time. However, this method cannot
apply easily for 2D structures of arbitrary shape. This communication presents a new technique
of WFE to calculate the dynamic responses of such a structure subjected to external loads. The
structure is decomposed into rectangular domains which can be considered as periodic struc-
tures subjected to external loads and nodal reaction forces at the domains boundaries. Then,
by using the WFE for theses domains, we can obtain a relation between the external loads, the
DOF and the nodal reaction forces at the boundaries of the domains. Finally, by combining
this relation with the dynamic equation of the rest of the structure, we obtain an equation of
the whole structure to compute its response. This technique permits to reduce all the DOF of
the rectangular domains of the structure. Examples showing the efficiency of the method are
presented.
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1 INTRODUCTION

The wave finite element method has been developped originally for the wave propagation
along one-dimensional periodic elastic structures [1]. From the finite element method for a pe-
riod of the structure, we can obtain a relation (a transform) between the left and right boundaries
of the period. This relation leads to a wave base which is obtain from the eignenvectors of the
transform. Then, the response at the boundary of a period can be decomposed in this base to
compute with different approaches [2]. Recently, this method has been applied for many dif-
ferent problem of periodic structures [3, 4, 5, 6, 7, 8, 9, 10]. For 2D structures, WFE has been
developed by using superelements which are rectangular subdomains[11]. By considering each
rectangular domain as a periodic structure, this technique permits to obtain the wave decompo-
sitions of the domain responses and to combine in the global dynamic equation. However, this
technique cannot be applied easily when the structure is subjected to complex external loads or
density loads.

In this article, we present another technique of WFE using superelements for 2D structures
subjected to external loads. Let’s consider a 2D structure containing a rectangular domain P
with rectangular elements as shown in Figure 1 and the rest domain is denoted by R. The
domain P is subjected to external density force FE and the reaction force F∂ of the domain R
at the common boundary of the two domains. We will use the wave finite element method to
obtain a relation between the forces FE,F∂ and the DOF at the boundary of the two domains
q∂ .

Figure 1: Structure including a rectangular domain P and the restR

The rectangular domain P is a periodic structure of N periods where each one is a column
of elements with only nodes on the left and right boundaries as shown in Figure 2. The nodes
of P are denoted by each column (n) with 0 ≤ n ≤ N . From the dynamic equation of each

qL qR

Figure 2: A periodic structure subjected to external loads

column, we get the relation uR = SuL with u∗ is the column vector of DOF q∗ and nodal loads
F∗. Moreover, the right boundary of the column (n) is also the left boundary of the column
(n+ 1) and we have

F
(n+1)
L + F

(n)
R = −F

(n)
B
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where F
(n)
B are the loads applying on the common boundary of (n) and (n+ 1). Then, by using

the wave analysis approach of the wave finite element method [12], we can obtain the wave
bases ΦΦΦ,ΦΦΦ? with eigenvalues µµµ of the transform S. The wave decomposition of the response
can be written as follows

q(n) = Φqµµµ
nQ−Φ?

qµµµ
N−nQ? + Φq

n∑
k=1

µµµn−kQ
(k)
B + Φ?

q

N∑
k=n+1

µµµk−nQ
?(k)
B (1)

where Q,Q? are the wave amplitudes of the left and right ends of the domain and QB,Q
?
B are

the wave amplitude of the external loads which are calculated by

Q
(k)
B = ΦΦΦ?T

q F
(k)
B

Q
?(k)
B = ΦΦΦT

q F
(k)
B

(2)

where F
(k)
B is nodal loads on the right boundary of the period. Thus, we have

q(n) = Φqµµµ
nQ−Φ?

qµµµ
N−nQ? + Φq

n∑
k=1

µµµn−kΦΦΦ?T
q F

(k)
B + Φ?

q

N∑
k=n+1

µµµk−nΦΦΦT
q F

(k)
B (3)

Equation (3) presents the response of the rectangular domain in function of the external loads
applying on this domain and the wave ampltudes at the left and right ends of the domain.

2 FORMULATIONS

2.1 Wave analysis of rectangular domains

Now we will decompose the nodal loads F
(k)
B in function of the external loads and the reac-

tion force of the domainR. For 0 < n < N , we can write

F
(n)
B = F

(n)
E + F̃(n) (4)

where F
(n)
E are external loads at the column n and F̃(n) is the reaction force of the domain R

applying on the periodic domain which is almost zeros except the two nodes at the common
boundary of the column n and the domainR.

For the left boundary ∂L of the periodic domain P , we have

F(0) = −F
(1)
L = F

(0)
E + F∂L (5)

where F∂L is the reaction ofR at ∂L.
For the right boundary ∂R of the periodic domain P , we need to find out the expression of

the reaction force F∂R in function of F(N) which is the nodal load of the left boundary of period
(N + 1) (see Figure 3). We have

F(N) = −F
(N+1)
L = −

(
F∂R − Ḟ(N)

)
F

(N)
B = F

(N)
E + Ḟ(N)

(6)

where Ḟ(N) is the reaction forces of at the upper and lower node of ∂R. By combining equations
in (6), we obtain

F
(N)
B − F(N) = F

(N)
E + F∂R (7)
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(N) F(N)

Ḟ(N)

Figure 3: Nodal loads at the column (N) (right boundary of P)

In addition, we obtain the following results from the definition of the wave amplitude [12]

Q = Φ?TJu(0) = Φ?T
q F(0) −Φ?T

F q(0)

Q? = ΦTJu(N) = ΦT
q F(N) −ΦT

Fq(N)
(8)

Therefore, by combining equations (3), (4), (5), (7), and (8), we obtain

q(n) =−Φqµµµ
nΦ?T

F q(0) + Φ?
qµµµ

N−nΦT
Fq(N)

+ Φq

n∑
k=0

µµµn−kΦΦΦ?T
q

(
F

(k)
E + F̃(k)

)
+ Φ?

q

N∑
k=n+1

µµµk−nΦΦΦT
q

(
F

(k)
E + F̃(k)

) (9)

where F̃(0) = F∂L and F̃(N) = F∂R. We can rewrite the aforementioned equation in matrix
form as follows

I + ΦqΦ
?T
F 0 0 0 −Φ?

qµµµ
NΦT

F
... . . . ...

...
...

Φqµµµ
nΦ?T

F 0 I 0 −Φ?
qµµµ

N−nΦT
F

...
...

... . . . ...
Φqµµµ

NΦ?T
F 0 0 0 I−Φ?

qΦ
T
F




q(0)

...
q(n)

...
q(N)



=


ΦqΦΦΦ

?T
q · · · Φ?

qµµµ
nΦΦΦT

q · · · Φ?
qµµµ

NΦΦΦT
q

... . . . ...
...

...
Φqµµµ

nΦΦΦ?T
q · · · ΦqΦΦΦ

?T
q · · · Φ?

qµµµ
N−nΦΦΦT

q
...

...
... . . .

Φqµµµ
NΦΦΦ?T

q · · · Φqµµµ
N−nΦΦΦ?T

q · · · ΦqΦΦΦ
?T
q




F

(0)
E + F∂L

...
F

(n)
E + F̃∂n

...
F

(N)
E + F∂R



(10)

Equation (10) is a relation between the DOF and nodal loads of the whole domain. Moreover,
the matrix on the right side of equation (10) is a block Toeplitz matrix [13, 14].

2.2 Assembly of boundary nodes

We are interested in the boundary nodes of the domain. The left and right boundaries are
q(0) and q(N). Otherwise, the up and down boundaries at the column n (noted by ∂n) are the
first and the last nodes of the column and we can define a matrix L so that:

q∂n = Lq(n), F∂n = LF̃(n) 0 < n < N (11)

If we note
Φ̃q = LΦq, Φ̃?

q = LΦ?
q (12)

4



T. Hoang, D. Duhamel and G. Foret

Equation (10) become
I + ΦqΦ

?T
F 0 0 0 −Φ?

qµµµ
NΦT

F
... . . . ...

...
...

Φ̃qµµµ
nΦ?T

F 0 Ĩ 0 −Φ̃?
qµµµ

N−nΦT
F

...
...

... . . . ...
Φqµµµ

NΦ?T
F 0 0 0 I−Φ?

qΦ
T
F




q∂L

...
q∂n

...
q∂R



=


ΦqΦΦΦ

?T
q · · · Φ?

qµµµ
nΦ̃T

q · · · Φ?
qµµµ

NΦΦΦT
q

... . . . ...
...

...
Φ̃qµµµ

nΦ?T
q · · · Φ̃qΦ̃

?T
q · · · Φ̃?

qµµµ
N−nΦΦΦT

q
...

...
... . . .

Φqµµµ
NΦΦΦ?T

q · · · Φqµµµ
N−nΦ̃?T

q · · · ΦqΦΦΦ
?T
q




F∂L

...
F∂n

...
F∂R



+


ΦqΦΦΦ

?T
q · · · Φ?

qµµµ
nΦΦΦT

q · · · Φ?
qµµµ

NΦΦΦT
q

... . . . ...
...

...
Φ̃qµµµ

nΦΦΦ?T
q · · · Φ̃qΦΦΦ

?T
q · · · Φ̃?

qµµµ
N−nΦΦΦT

q
...

...
... . . .

Φqµµµ
NΦΦΦ?T

q · · · Φqµµµ
N−nΦΦΦ?T

q · · · ΦqΦΦΦ
?T
q




F

(0)
E
...

F
(n)
E
...

F
(N)
E



(13)

where Ĩ = LILT which is also an identity matrix. We can rewrite the aforementioned equation
as follows

Aq∂ = BF∂ + CFE (14)

where A,B,C are defined corresponding to the matrices in equation (13).

2.3 Assembly of the whole structure

For the domainR, we have D?
∂∂ D?

∂I D?
∂B

D?
I∂ D?

II D?
IB

D?
B∂ D?

BI D?
BB

 q∂

qI

q0

 =

 F∂

F?
0

F?
B

 (15)

where q0,F
?
0 are given by the boundary condition and the loads of the domain R . From the

aformentioned equation, we obtain[
D?

∂∂ D?
∂I

D?
I∂ D?

II

] [
q∂

qI

]
=

[
F∂

F?
0

]
−
[

D?
∂Bq0

D?
IBq0

]
(16)

Equations (14) and (16) decribe the relations between q∂ and F∂ with the external loads and the
boundary conditions of the whole structure. We can have different methods to combine these
two equations which cost different calculation times. It is possible to reduce the cost by using
the properties of the Toeplizt block matrix B,C [14]. However, this article is limited to a simple
method by substituting equation (14) into equation (16) and we obtain[

D?
∂∂ − B−1A D?

∂I

D?
I∂ D?

II

] [
q∂

qI

]
=

[
−B−1CFE

F?
0

]
−
[

D?
∂Bq0

D?
IBq0

]
(17)

5



T. Hoang, D. Duhamel and G. Foret

Equation (17) permits to calculate the response of the domainR. This technique permits to get
the final expression of the dynamic stiffness matrix (DSM) of the whole structure by modifying
only the diagonal block of DSM ofR corresponding to the rectangular domain boundary.

When the structure has severalrectangular domains, we can use the same technique for each
diagonal block to get the final DSM. For structures with connected rectangular domains, we
need to combine these domains as superelements before replacing into the DSM.

3 EXAMPLE

Let’s consider a 2D elipse of axes 6mx3m which contain a rectangular of size 4mx2m as
shown in Figure 4. The mesh is created by using 1586 elements S4 of thickness 0.1m. The stiff-
ness and mass matrices are generated by Abaqus and other calculations have been performed
with Matlab. Figure 5 shows the results obtained by the finite element method (for the whole

Figure 4: Example of 2D structure with a rectanglar domain (red), a fixed boundary (blue) and a load (green)
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Figure 5: Response of one node calculated by the finite element method and the new method

structure) and the new method. The two results agrees well. Althought the new method can
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reduce the number of DOF (from 3322 to 1840), the WFE cannot reduce the calculation time
in comparing with FEM (5.4s vs 20.9s). One reason is that the calculation of Toeplitz matrices
(which are full matrices) have not been optimized.

4 CONCLUSIONS

This article introduces a new technique for coupling the finite element method and the wave
finite element method by using superelements. For a 2D structure of arbtrary shapes, we define
superelements as rectangular domains. Each superelement is a periodic structure where we can
apply WFE. We obtain then a relation between the DOF at the superelement boundary and the
external nodal loads via Toeplitz matrices. The technique permits to reduce the number of DOF
but it needs to optimize the calculation of Toeplitz matrices in order to reduce the calculation
time.
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