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Abstract. The dynamics of a railway track on transition zones is the subject of numerous
analytical and numerical researches. This article presents a new development of the wave finite
element method for such a structure in order to reduce the calculation time. We consider a
transition zone which is between two half infinite periodic tracks (which could be of different
types, e.g. a zone between ballasted and non-ballasted tracks) and train loads are represented
by concentrated moving loads. We applied WFE for each half periodic track to obtain the
relationship that links the responses of the boundary zone of each periodic part with the help of
the wave analysis. Then, this relationship is combined with the dynamic equation of the zone to
get the global dynamic equation of the whole railway track. This technique permits to reduce
the degrees of freedom (DoF) of the track to those of the transition zone. Numerical studies
show the influence of the geometrical and mechanical parameters of the transition zone on the
mechanical response of the track with a transition zone compared to a uniform track.
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1 Introduction

Mechanical behaviour of railway tracks have been studied for a long time. The most common
model considers the track as an infinitely long beam resting on equally spaced identical supports.
The dynamics of the track under some known loads can be solved analytically by modelling each
support by a mass-springs-dampers system and the rail by an Euler beam [1–4] or a Timoshenko
beam [5]. Metrikine and Popp [6] also modelled the support and the ballast - for ballasted tracks
- as continuous media. All these studies used the Floquet’s theorem which takes into account the
spatial periodicity of the structure. In the case of transition zones, the structure is not periodic so
the Floquet’s theorem can’t be used.

The high speed transition zone between a ballast to ballastless track situated in Chauconin
(France) had been damaged by train traffic. These damages include hanging sleepers. Conse-
quently, the train speed in this zone has been reduced from 320 km · h−1 to 230 km · h−1. This
transition zone is the subject of both experimental and numerical studies [7, 8]. Fortunato et
al. [9] also pointed out hanging sleepers which are due to the deformation of the lowest vertical
stiffness part in transition zones. Wang [10] gave a review of studies dealing with transition
zones in the railway domain. The problems encountered points out a need to better understand
transition zones dynamics.

A default or a damage also breaks the track periodicity even if this default is very localised.
Hoang et al. [11] studied the mechanical behaviour of such a track considering a constant
moving load on a periodically supported beam. Considering a ”sufficiently large” computation
domain, Hoang et al. gave a digital method to compute this dynamic behaviour. Kouroussis
et al. [12] proposed a two steps method for a numerical computation of the rail-support-train
system response and applied it to some common defaults.

Dividing the structure into substructures and considering the equilibrium relationship in a
substructure, Germonpré et al. [13] studied the free wave modes in a substructure and then
computed the whole structure dynamics. By separating left going and right going modes,
Germonpré et al. [14] applied this method to a transition zone including a train-track-soil
coupling. Arlaud [15] developed a similar method excepted that it fixed the wave-number
instead of fixing the frequency. Then, a mode reduction was performed in order to increase the
calculation efficiency.

Like the method developed by Germonpré et al. [13], the wave finite element (WFE) method
is a computational method for periodic structures and waveguides. In the WFE method, for
each frequency, the equilibrium relationship in one pattern of the structure is transformed into a
recurrence relationship. Free wave modes of the recurrence operator calculation is described
in [16]. Hoang et al. improved this method by adding the possibility to take into account a load
which may be applied to any pattern of the structure [17] and used it for computation of railway
tracks dynamics [18].

In this article, a transition zone is defined as a zone between two semi-infinite periodic
structures which can be different or not. This can represent either a zone passing from ballast to
ballastless track or a damaged zone between two healthy identical zones. After this introduction,
the classical WFE method is presented. The third part of this article presents new developments
enabling the computation of transition zones mechanical behaviour. The forth part gives two
examples of results of this method on the mechanical behaviour: effects of a damaged zone in
an infinite periodic healthy track and effects of a variation in the support spacing. Then, the
conclusions of this work are given in the last part.
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2 WFE Method: Homogeneous Periodic Structure

In this part an homogeneous periodic structure is considered. It is assumed that all the loads
applied to the structure are known. The dynamic equation of one pattern (a substructure) at a
given angular frequency ω is given by the equation (1), where q is the vector containing the
degrees of freedom of one substructure and F the vector containing the external loads applied on
this substructure.

Dtotq = F (1)

The dynamic stiffness matrix (DSM) Dtot can be calculated using the finite element method
with Dtot = K + jωC− ω2M where K is the static stiffness matrix, M the mass matrix and
C the damping matrix. Then, (1) can be rewritten separating the nodes of the left and right
boundaries, and the inner nodes of the substructure respectively denoted with the subscripts
L,R and I . Hence, the relationship (2) is obtained. D̃II D̃IL D̃IR

D̃LI D̃LL D̃LR

D̃RI D̃RL D̃RR

 qI
qL
qR

 =

 FI

FL

FR

 (2)

As shown in [18], this relation leads to the recurrence equation (3) where the superscript (n)

denotes for the nth substructure.

u(n+1) = Su(n) + b(n) (3)

where

u(n) =

[
q
(n)
L

−F
(n)
L

]
, b(n) =

[
DqIF

(n)
I

DfIF
(n)
I − F

(n)
∂R

]
F

(n)
∂R is the external load applied at the right boundary of the nth substructure and S,DqI and DfI

definitions are given in [18].
That leads to the equation system (4):

u(n) = Snu(0) +
n∑
k=1

Sn−kb(k−1)

u(−n) = S−nu(0) −
n∑
k=1

S−n+k−1b(−k)

(4)

To compute the power of the S matrix, the eigenvalues and eigenvectors {µj, φj}j of the
S matrix are computed by a S + S−1 transformation. The eigenvalues come in pair

(
µj, µ

?
j

)
with ‖µj‖ 6 1 and µ?j =

1
µj

[16]. The corresponding eigenvectors are noted
(
φj, φ

?
j

)
. Let the

eigenbasis {Φ Φ?} be defined as: Φ = [φ1 ... φn] and Φ? = [φ?1 ... φ
?
n]. Where the subscript

”q” (respectively ”F ”) denotes for the components of this basis corresponding to the degrees of
freedom (DoF)1 (resp. the loads), leading to (5).

Φ =

[
Φq

ΦF

]
Φ? =

[
Φ?
q

Φ?
F

]
(5)

1Usually displacements/rotations

3



B. CLAUDET, T. HOANG, D. DUHAMEL, G. FORET, J-L. POCHET and F. SABATIER

In (6), u(n) and b(n) are written in this wave basis:

u(n) = ΦQ(n) −Φ?Q?(n)

b(n) = ΦQ
(n)
E −Φ?Q

?(n)
E

(6)

Hoang et al. proved [18]:

Q
(k)
E =

[(
µΦ?T

q DLI + Φ?T
q DRI

)
F

(k)
I −Φ?T

q F
(k)
∂R

]
Q
?(k)
E =

[(
µ?ΦT

q DLI + ΦT
q DRI

)
F

(k)
I −ΦT

q F
(k)
∂R

] (7)

3 Transition Zone between Two Semi-infinite Zones

In this part, a transition zone between two infinite periodic zones (see figure 1) is considered.
For railways the transition zone can for instance be a zone between a ballasted track and a
concrete slab track. These two types of track have different stiffness. Therefore, S can be
different in each zone and some formulas from the previous part are no longer valid.

Transition RightLeft

u(0) u(1)

Figure 1: Transition zone between two semi-infinite periodic railway tracks.

In the transition zone the equilibrium relationship is:

DH,trans

 qI
qL
qR

 =

 FI
FL
FR

 (8)

Where DH,trans is the dynamic stiffness matrix (DSM) of the transition zone.
The equilibrium relationships for one pattern in the left and right zones were written in the

same way replacing DH,trans by the DSM of the corresponding zone. So, applying the same
method as in the previous part, propagation equations (9) were obtained (instead of (3)) - with
”R” subscript denoting for the right zone and ”L” subscript the left zone.{

∀n > 1, u
(n+1)
R = SRu(n) + b(n)

∀n 6 0, u
(n−1)
L = S−1L u(n) − S−1L b(n−1)

(9)

With u(0) corresponding to the left boundary of the transition zone, and u(1) to the left boundary
of the right zone (see figure 1).
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3.1 Decomposition in the Right Zone and in the Left Zone

Thus, for the right zone the recurrence relationship is:

∀n > 1, u(n) = Sn−1R u(1) +
n∑
k=2

Sn−kR b(k−1) (10)

Let uR = u(1). As in the first part, uR was rewritten in the eigenbasis {QR,Q
?
R} of SR

associated with the eigenvalues {µR,µ
?
R} where ‖µR,j‖ 6 1 and ‖µ?R,j‖ > 1. That led to the

wave decomposition (11) for uR and (12) for u(n) and b(n):

uR = ΦRQR −Φ?
RQ?

R (11)

∀n > 1,

{
u(n) = ΦRQ(n) −Φ?

RQ?(n)

b(n) = ΦRQ
(n)
E −Φ?

RQ
?(n)
E

(12)

Using (10) with (11) and (12) led to:

u(n) = ΦRQ(n) −Φ?
RQ?(n)

= ΦRµ
n−1
R

(
QR +

n∑
k=2

µ?k−1
R Q

(k−1)
E

)
−Φ?

Rµ
?n−1
R

(
Q?
R +

n∑
k=2

µk−1
R Q

(k−1)
E

)
(13)

‖µ?
R‖ > 1, so taking the limit n→ +∞ led to Q?

R = −
∑+∞

k=2µ
k−1
R Q

(k−1)
E because DoF and

loads can’t be infinite. (13) then became (14).
qR = ΦR,qQR + Φ?

R,q

∞∑
k=1

µk
RQ

?(k)
E

FR − F∂R = ΦR,FQR + Φ?
R,F

∞∑
k=1

µk
RQ

?(k)
E

(14)

With the same reasoning on the left part of the structure, the relationship (15) was proved.
qL = ΦL,q

∞∑
k=1

µk−1
L Q

(−k)
E −Φ?

L,qQ
?
L

−FL = ΦL,F

∞∑
k=1

µk−1
L Q

(−k)
E −Φ?

L,FQ?
L

(15)

Finally, by substituting (14) and (15) into (8), (16) was obtained:

DH,trans

 qI
−Φ?

L,qQ
?
L

ΦR,qQR

+ DH,trans

 0

ΦL,q

∑∞
k=1 µ

k−1
L Q

(−k)
E

Φ?
R,q

∑∞
k=1 µ

k
RQ

?(k)
E

 =

 0
Φ?
L,FQ?

L

ΦR,FQR

+

 FI

−ΦL,F

∑∞
k=1µ

k−1
L Q

(−k)
E

F∂R + Φ?
R,F

∑∞
k=1 µ

k
RQ

?(k)
E


(16)
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Which was rewritten as follows:

(DH,transCq − CF ) q̃ = F̃ (17)

where

q̃ =

 qI
Q?
L

QR

 , Cq =

I 0 0
0 −Φ?

L,q 0
0 0 ΦR,q

 , CF =

0 0 0
0 Φ?

L,F 0
0 0 ΦR,F


F̃ =

 FI

−ΦL,F

∑∞
k=1µ

k−1
L Q

(−k)
E

F∂R + Φ?
R,F

∑∞
k=1µ

k
RQ

?(k)
E

− DH

 0

ΦL,q

∑∞
k=1 µ

k−1
L Q

(−k)
E

Φ?
R,q

∑∞
k=1 µ

k
RQ

?(k)
E

 (18)

In the case of a constant moving load2, Q
?(k)
E and Q

(−k)
E follow:

∀k > 1,

{
Q
?(k)
E = e−i(k−1)

ωL
v Q

?(1)
E

Q
(−k)
E = ei(k−1)

ωL
v Q

(−1)
E

(19)

That led to (20): 

∞∑
k=1

µk−1
L Q

(−k)
E =

1

1− µLe
iωL

v

Q
(−1)
E

∞∑
k=1

µk
RQ

?(k)
E =

µR

1− µRe
−iωL

v

Q
?(1)
E

(20)

With Q
?(k)
E and Q

(k)
E given by (7).

Then, q̃ can be computed by inverting the linear equation (17). This computation gives the
DoF of each node in the transition zone (qI) and at its boundaries (qL and qR calculated with
(15) and (14)). The DoF in the other zones can be calculated using the classical WFE method (ie.
using (10) for the right zone and a similar formula for the left zone).

4 Examples

In this part, the track considered is a ballastless track in which each support contains two
elastic floors: one under rail rubber pad and one under sleeper rubber pad. The support was
modelled as a mass (the sleeper) between two damper-spring systems (the pads). B21 elements
from ABAQUS were used to get the beam DSM and the supports dynamic stiffness were added
to the corresponding terms to obtain the DSM of each substructure. The beam cell length was
1 cm. In the results presented here, the spatial period choosen for the computation was of the
same length L = 3m for each zone (five sleepers per period). The right, left and transition zones
are represented in the figure 1. To simplify results understanding, only a single load moving at a
constant speed was applied. Table 1 gives the rail and supports mechanical characteristics and
the load characteristics.

4.1 Periodically Supported Beam with a Broken Support

We considered a periodically supported beam resting on identical supports which means that
the right and left zones were identical. To model a broken support, we assumed that this support
had no influence on the structure stiffness. This is equivalent to a lack of one support. This
broken support was located in the middle of the transition zone (x = 0m).

2(19) remains true if the load is repeated with a spatial period equal to the length of one substructure.
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Content Notation Value Unit
Rail linear mass ρS 60 kg ·m−1
Load speed v 38 m · s−1
Load applied Q 100 kN
Rail stiffness EI 6.38 MN ·m2

Sleeper mass m 100 kg
Sleeper spacing l 0.6 m
Under rail pad stiffness k1 192 MN ·m−1
Under rail pad damping coefficient η1 1.97 MN · s ·m−1
Under sleeper pad stiffness k2 26.4 MN ·m−1
Under sleeper pad damping coefficient η2 0.17 MN · s ·m−1

Table 1: Parameters of the load and railway track considered.

(a) Rail deflection against time and position.

0 0.1 0.2 0.3 0.4
-0.5

0

0.5

1

1.5

2

2.5

(b) Rail deflection against time for three dif-
ferent sleepers. WFE results (red curves) and
results obtained with the method of [11] (blue
curves).

Figure 2: Rail deflection for a track with a broken support.

Figure 2 shows the track deflection due to the load for this type of track. On the left side
(figure 2a) the deflection is plotted against time and position. As the WFE method works in the
frequency domain, an inverse Fourier transform was necessary to obtain temporal values. At
each position, the maximum of the deflection corresponds to the time when the load is over this
position. Consequently, the line of the maxima represents the load trajectory. As expected, the
deflection is maximum for the broken support. On the right part of this figure (figure 2b), the
deflection obtained by the WFE method (red curves) is compared with the one obtained with [11]
method (blue curves, 21 supports modelled, 80 iterations). In this graph the deflection is plotted
against time for three supports: the broken one (x = 0m) and two suports at x = ±6m . These
results show a good agreement which validated the WFE method for computing track deflection
in damaged zones.
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4.2 Variation of the Support Spacing

In this example, the influence of a variation in the support spacing on the track behaviour
was evaluated. In the left zone, the distance between two consecutive sleepers was lL = 0,3m
whereas in right and transition zones, this distance was lR = lT = 0,6m. All the other parameters
remained identical to the values given in the table 1.

The computed deflection of this track is given in figure 3. Once again, in the left part of the
figure (figure 3a), the deflection is plotted against time and position. There were two times more
support in the left zone, thus, as expected, this zone seems approximately two times stiffer. The
right part of the figure (figure 3a) gives the deflection at the frequency 5Hz. The results are
compared with analytical results obtained with an equivalent periodically supported Timoshenko
beams with supports spacing equal to the one of the left or right zones (formula from [5]).
Analytical formulas and WFE results are in close agreement for points sufficiently far from
the transition. Whereas the transition is steep, the rail needs several meters to pass from one
mechanical behaviour to the other one. This transition does not show overcharged support.

(a) Rail deflection against time and position.

-15 -10 -5 0 5 10 15
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

(b) Rail deflection in the frequency domain
(at 5Hz) against position. WFE results com-
pared with analytical results obtained for an
infinite track.

Figure 3: Rail deflection for a variation in the support spacing.

5 Conclusion

The Wave Finite Element method is very efficient to compute infinite periodic structures
mechanical behaviour under charges compared to classical finite element methods (see [18]).
This article presented new developments to apply this method to transition zones between two
semi-infinite periodic structures. Railway examples of application were presented and show a
strong agreement with other semi-analytical methods or analytical laws. This method can also
provide information on the damping of waves which can propagate over a given structure.
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[9] E. Fortunato, A. Paixão, and R. Calçada. Railway Track Transition Zones: Design,
Construction, Monitoring and Numerical Modelling. International Journal of Railway
Technology, 2(4):33–58, 2013.

[10] H. Wang and V. L. Markine. Methodology for the comprehensive analysis of railway
transition zones. Computers and Geotechnics, 99:64–79, jul 2018.

[11] T. Hoang, D. Duhamel, G. Foret, H.P. Yin, G. Cumunel, P. Joyez, and R. Caby. Response
of a Periodically Supported Beam on a Non-Uniform Viscoelastic Foundation subject to
Moving Loads. In J. Pombo, editor, Proceedings of the Third International Conference on
Railway Technology: Research, Development and Maintenance, number April, Stirlingshire,
Scotland, 2016. Civil-Comp Press.

[12] G. Kouroussis, D. P. Connolly, G. Alexandrou, and K. Vogiatzis. Railway ground vibrations
induced by wheel and rail singular defects. Vehicle System Dynamics, 53(10):1500–1519,
oct 2015.
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