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ABSTRACT 
Solving the Helmholtz equation by finite element methods is quite important in acoustics. When the 
frequency or the size of the problem increase, large meshes are necessary and consequently heavy 
computations are required. One possibility is to use domain decompositions for which the domain is 
decomposed into subdomains on which the solutions can be computed more easily. This involves an 
iterative scheme where data are transmitted between subdomains from the precedent iteration. The main 
problem is to have a low number of iterations so that the problem can be solved in a reasonable amount of 
time. 
In this work, we present a domain decomposition method based on two main features. The first one is to 
use extended domains with absorbing boundary conditions. The second feature is to decompose the whole 
domain into one-dimensional or two-dimensional networks of subdomains so that double sweep 
preconditioners can be used. Examples are shown where the number of iterations is usually low. This 
number of iterations is also shown to depend slowly on the number of domains and the frequency. 
 
Keywords: Domain decomposition, Finite Element, Helmholtz equation. 

1. INTRODUCTION 
We consider here the solution of the Helmholtz equation by finite element methods. When the 

frequency increases many degrees of freedom are needed. In such cases, it can be interesting to use domain 
decomposition methods for which the domain is decomposed into several subdomains over which the 
solutions can be computed more easily by solving independent small size problems. Then an iterative 
scheme needs to be developed to compute the solutions in the subdomains at a given step from the 
solutions over the other subdomains at the precedent step. The problem is to get as few iterations as 
possible and a number of iterations almost independent of the number of subdomains and the frequency. 

Many works, such that the development of FETI methods or Schwartz methods, have been done in the 
past on this subject, see (1-9) for instance. In overlapping Schwartz methods (3), the solutions are 
computed on overlapping domains and the boundary conditions for a given domain are defined at the 
boundary of this overlapping domain and so from the solutions at the precedent iteration obtained in the 
other domains that the present domain overlaps. In non-overlapping Schwartz methods (4, 5), the solutions 
are computed in each domain and transmission operators are defined at the boundary of the domains to give 
boundary conditions at a given iteration from the solutions of adjacent domains at the precedent iteration. 
The number of iterations to achieve the convergence of the algorithm is deeply dependent on the quality of 
these transmission operators.  

Different methods have been proposed to compute these transmission operators. The best one are 
non-local such as the Dirichlet to Neumann operator but are too complex to be really useful (6). Different 
local operators have been proposed, see for instance (7) and (8). A good one is the Perfectly Matched Layer 
(PML) as in (9) but it needs to define special layers around each domain with suitable absorption 
properties.  

Another possibility, which is developed here, is to define the transmission operator from the solutions of 
the Helmholtz equation in the subdomains completed with surrounding subdomains and with simple 
absorbing conditions at the exterior boundary. Then the transmission operator is obtained from the solutions 
in the surrounding subdomains. For being efficient, a preconditionner must be used with these methods 
such as the double sweep preconditionner found in (10, 11,12). This method is developed for the cases 
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where the subdomain decomposition is made of one-dimensional or two-dimensional networks so that the 
global domain is first decomposed into a sequel of slices at the first level and then each slice can also be   
decomposed into a second level of subslices. 

The paper is organized as follows. In section 2, the method is presented for the Helmholtz equation 
defined on a two-dimensional domain. Then in section 3, numerical results are given before a conclusion. 

2. COMPUTATION BY DOMAIN DECOMPOSITION 

2.1 General problem 
The objective is to solve by domain decomposition, the Helmholtz equation given by  

 
 = 0 (1) 

   
with p the pressure, k=ω/c the wavenumber, c the sound velocity, ω=2πf and f the frequency. This is defined 
on a two-dimensional domain Ω with a Neumann boundary condition  on the exterior boundary Γ 
of Ω. 
 

 
Figure 1: Domain decomposed into one-dimensional slices 

 
The classical way of solving the problem by domain decomposition is to divide the global domain into 

subdomains, for instance into slices like in Figure 1, and to solve the sequel of following problems indexed 
by n for each subdomain  

 (2) 

 
With  the boundary between the domains i and j and S is an operator that try to simulate the 

impedance of the domain that extends beyond the boundary. The values of g are updated by 
 

 (3) 

i-1

i

i,i+1 i+1,i+2i-2,i-1 i-1,i

i-1 i+i

i i+1

Absorbing boundaries
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Decomposing  with  the solution of problem (1) with  and  the solution 

with  = 0, the problem can be put under the form 
 

  (4) 
 

With the vector  obtained from , the matrix A from  and  is the vector of all the  for 
different i and j. The problem (3) is then solved by the GMRES algorithm associated to the double sweep 
preconditionner described in (10, 11, 12). The main problem consists in finding a good operator S such that 
the number of iterations to get the convergence is as low as possible and with a low dependency on the 
number of subdomains and the frequency. 

2.2 Transmission operator 
To get this operator S, one proposes to solve on extended domains by adding to the domain  the 

domains  associated to simple absorbing boundary conditions to the exterior of the global 
domain, that is on the boundaries  and , see Figure 1. So the problem (1) is transformed 
into  

 

 (5) 

Where  and  are values obtained from the precedent iteration by relation (3) and the operator S is 

obtained as the normal derivative of the solution of the pressure on the extended domains . 

More precisely on  one has on with u the solution of the following problem 

 (6) 

 

And a similar definition for the domain .  

2.3 Two-dimensional network 
The problem can be solved as in the precedent subsection or can be further decomposed into a 

two-dimensional network of subdomains as in Figure 2. In this latter case, the sequel of following problems 

indexed by m is solved. 
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Figure 2: Two-dimensional network of subdomains 

 
Where  is made of the domain  and its surrounding domains such that  
 

 =  (8) 
 

And  is the exterior boundary of . The iteration continues on m until convergence in slice i to 
get the solution of problem (5). Other points such as the definition of the transmission operator in slice i are 
defined in a similar way to relations (2) and (6). 

3. NUMERICAL EXAMPLES 

3.1 One-dimensional decomposition 
We consider the Helmholtz equation on a square domain of size 1m×1m. The sound velocity is 

c=340m/s. The domain is broken down into vertical slices as in Figure 3. First the boundary condition 
is defined by a plane wave such that the normal derivative of the pressure is . The number 
of iterations is given in Table 1 and an example of solutions for the frequency 1000Hz is presented in 
Figure 4. 

 
Table 1: Number of iterations for different frequencies f and number of subdomains n for a plane wave 

f     
500Hz 5 5 5 5 

1000Hz 5 5 5 5 
2000Hz 5 9 5 5 

 
In this example, one can see that the number of iterations is low and almost independent of the 

i-1 i i+1

j+1

j

j-1
ij

i+1j-1

Absorbing boundaries
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frequency and the number of subdomains. Figure 4 shows the plane wave on the whole domain with 
full continuity at the boundaries of the subdomains.  

 

Figure 3: Domain decomposition into 25 subdomains 

 

 
Figure 4: Pressure for a plane wave at 1000Hz 

Next the case of a higher order wave defined by 

 with  and L=1m is presented. 

The number of iterations is given in Table 2 and an example of results for the frequency 1000Hz is 

presented in Figure 4. 

 

Table 2: Number of iterations for different frequencies f and number of subdomains n for a higher mode 
f     

500Hz 4 10 12 13 
1000Hz 7 10 10 10 
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2000Hz 6 13 7 13 
 

In this case, the number of iterations depends on the frequency and the number of subdomains. 

However, it seems to reach rapidly a maximum value still independent of the frequency and the number of 

subdomains. Figure 5 presents the pressure for the frequency 1000Hz. A good continuous solution can be 

seen.  
 

 
Figure 5: Pressure for the fourth mode at 1000Hz 

3.2 Two-dimensional decomposition 
We first consider the case of a rectangular domain of size 1m×1m with a boundary condition given by a 

plane wave eikx on the left and right boundaries as in the precedent subsections. The domain is now 
divided into  subdomains and each subdomain is mesh with triangular elements of degree 1. An 
example of decomposition is presented in Figure 6. Each subdomain has approximately 400 elements so 
that the total number of elements will depend on the number of subdomains. Table 3 presents the number of 
iterations for different frequencies and number of subdomains. The number inside the parenthesis is the 
average number of subiterations for solving problem (7) into a slice. 
 

Table 3: Number of iterations for different frequencies and number of subdomains 
f     

500Hz 5 (8.3) 4 (8.2) 4 (9.9) 4 (11.0) 
1000Hz 5 (8.5) 4 (8.2) 4 (8.9) 5 (9.4) 
2000Hz 9 (12.6) 5 (8.4) 6 (8.0) 4 (8.2) 

 
One can see that the numbers of iterations is low and with a low dependency on the frequency or the 

number of subdomains. Almost the same observation can be made for the average number of subiterations 
in a slice. Figure 7 presents the equivalent of figure 5 for the same boundary conditions. The solution is the 
same even if in the present case the computation is made on the two-dimensional network.  
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Figure 6: Domain decomposition into 10x10 subdomains 

 

 
Figure 7: Pressure for the fourth mode at 1000Hz for 10x10 subdomains 

4. CONCLUSION 
We have presented transmission conditions which are intermediate between the local conditions on the 

boundary and domain conditions as provided by a PML layer. So it gives an equilibrium between the ease 
of implementation and the efficiency. It involves only modified matrices on the boundaries but no new 
matrix in the domains. This was shown to converge in a low number of iterations both for one-dimensional 

x 
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and two-dimensional networks of subdomains. Subsequent research should focus on the improvement of 
the boundary condition and the consideration of domains with more complex shapes. 
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