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An approximate discovery of closed itemsets is usually based on either setting a frequency threshold or computing a sequence of projections. Both approaches, being incremental, do not provide any estimate of the size of the next output and do not ensure that "more interesting patterns" will be generated first. We propose to generate closed itemsets incrementally, w.r.t. the size of the smallest (cardinality-minimal or minimum) generators and show that this approach (i) exhibits anytime property, and (ii) generates itemsets of decreasing quality.

Introduction

Closed itemsets (or intents of concepts in FCA) are widely used in Pattern Mining (PM) and Knowledge Discovery [START_REF] Singh | A comprehensive survey on formal concept analysis, its research trends and applications[END_REF]. They are of particular importance because (i) a closed itemset provides a concise representation of implications, (ii) it is a maximal set that embodies all other itemsets with the same support [START_REF] Pasquier | Efficient mining of association rules using closed itemset lattices[END_REF].

Itemsets (or patterns) are mostly used to solve the set cover problem, which is formulated for PM as follows. Let D be a dataset over attributes M and C be the set of all closed itemsets of D. Then the goal is to find the smallest set of itemsets S ⊆ C such that S covers entirely D 3 . This problem is known to be NP-complete [START_REF] Karp | Reducibility among combinatorial problems[END_REF]. One of the most common approaches in finding approximate solutions is based on the Minimum Description Length (MDL) principle [START_REF] Grünwald | The minimum description length principle[END_REF]. An MDL-based approach to PM [START_REF] Siebes | A structure function for transaction data[END_REF][START_REF] Vreeken | Krimp: mining itemsets that compress[END_REF] is realized in two steps: (i) computing a set of candidates F ⊆ C, (ii) selecting greedily those itemsets that minimize the total description length.

The problem of reducing C to F is one of the most important in PM [START_REF] Aggarwal | Frequent pattern mining[END_REF]. Given a set of itemsets S (solution of the set cover problem), the goal is to compute such a candidate set F ⊆ C that contains (i) (almost) all itemsets from S, and (ii) a small number of non-optimal itemsets, i.e., |F \ S| should be as small as possible.

There are two main approaches to compute F. The first one is based on frequency [START_REF] Aggarwal | Frequent pattern mining[END_REF], while the second one is based on projections [START_REF] Ganter | Pattern structures and their projections[END_REF][START_REF] Buzmakov | Revisiting pattern structure projections[END_REF]. Both approaches are incremental, i.e., they use the preceding output to compute the next one. A frequency-based approach consists in an incremental computing of itemsets of decreasing frequency. The problem is that by decreasing the threshold one can get exponentially many newly generated patterns. Moreover, the largest threshold that ensures the presence of all itemsets from S in F is unknown in advance. The second approach, in order to find "good projections", requires embedding of background knowledge, which is not always available. Moreover, adding a new projection does not always guarantee that the size of the output will not be exponential [START_REF] Buzmakov | Fast generation of best interval patterns for nonmonotonic constraints[END_REF].

An efficient approach to compute F should be not only incremental and background-knowledge-free but also should (i) have a polynomial delay [START_REF] Goldberg | Efficient algorithms for listing combinatorial structures[END_REF] (meaning that the time between the output of one itemset and the next is bounded by a polynomial function of the input size), (ii) generate itemsets of decreasing interestingness. Here, by interesting itemsets we mean those that provide a (sub)optimal solution of the set cover problem. The latter raises the question, which strategy of closed itemset discovery would meet all the requirements listed above?

In this paper we propose a minimum closure structure, which is induced by generators of the smallest size. We show that it (i) allows for exploring closed itemsets incrementally, (ii) has a polynomial delay, (iii) computes itemsets that ensure a complete data coverage after at most two iterations. Itemsets providing a better solution of the set cover problem might be found in subsequent iterations. We also revise two algorithms, namely Titanic [START_REF] Stumme | Computing iceberg concept lattices with titanic[END_REF] and Close-By-One (CbO) [START_REF] Kuznetsov | A fast algorithm for computing all intersections of objects from an arbitrary semilattice[END_REF], and show that they exhibit the anytime property. Both of them allow for generating the same subsets of closed itemsets iteratively, but CbO computes them in a more efficient way from a PM perspective.

The paper has the following structure. In Section 2 we recall the main definitions. In Section 3 we introduce the closure structure and minimum closure structure of closed itemsets and discuss anytime properties of Titanic and CbO w.r.t. the introduced structures. In Section 5 we discuss the empirical properties of closure structures. In Section 6 we conclude and give directions of future work.

Preliminaries

Concepts and the partial order between them. A formal context [START_REF] Ganter | Formal concept analysis-mathematical foundations[END_REF] is a triple (G, M, I), where G is called a set of objects, M is called a set of attributes and I ⊆ G × M is a relation called incidence relation, i.e., (g, m) ∈ I if object g has attribute m. The derivation operators (•) are defined for A ⊆ G and B ⊆ M as follows:

A = {m ∈ M | ∀g ∈ A : gIm}, B = {g ∈ G | ∀m ∈ B : gIm}.
Sets A ⊆ G, B ⊆ M , such that A = A and B = B , are said to be closed. For A ⊆ G, B ⊆ M , a pair (A, B) such that A = B and B = A, is called a formal concept, A and B are called extent and intent, respectively. In Data Mining, an intent is also called a closed itemset (or closed pattern).

A partial order ≤ is defined on the set of concepts as follows:

(A, B) ≤ (C, D) iff A ⊆ C (D ⊆ B), a pair (A, B
) is a subconcept of (C, D), while (C, D) is a superconcept of (A, B). With respect to this partial order, the set of all formal concepts forms a complete lattice L called the concept lattice of the formal context (G, M, I).

Equivalence classes and key sets. Let B be a closed itemset. Then all subsets D ⊆ B, such that D = B are called generators of B and the set of all generators is called the equivalence class of B, denoted by Equiv(B) = {D | D ⊆ B, D = B}. A subset D ∈ Equiv(B) is a key [START_REF] Stumme | Computing iceberg concept lattices with titanic[END_REF] or minimal generator of B if for every E ⊂ D one has E = D = B , i.e., every proper subset of a key is a member of the equivalence class of a smaller closed set. We denote a set of keys (key set) of B by K(B) [START_REF] Bastide | Mining frequent patterns with counting inference[END_REF]. The set of keys is an order ideal, i.e., any subset of a key is a key [START_REF] Stumme | Computing iceberg concept lattices with titanic[END_REF]. The minimum key set K min (B) ⊆ K(B) is a subset of the key set that contains the keys of the minimum size, i.e., K min (B) = {D | D ∈ K(B), |D| = min E∈K(B) |E|}. In an equivalence class there can be several keys, but only one closed itemset, which is maximal in this equivalence class. An equivalence class is called trivial if it consists only of a closed itemset.

The size of the equivalence class is the nominator of (extentional) stability [START_REF] Kuznetsov | Stability as an estimate of degree of substantiation of hypotheses derived on the basis of operational similarity[END_REF][START_REF] Kuznetsov | On stability of a formal concept[END_REF], which assesses the probability that the set of objects given by the closed itemset B remains closed when removing a subset of attributes from intent For the sake of simplicity, we denote attribute sets by strings of characters, e.g., abc instead of {a, b, c}. Example. Let us consider a formal context given in Table 1. Five concepts have nontrivial equivalence classes, namely ({g 1 }, acf ), ({g 3 }, ade), ({g 5 , g 6 }, bdf ), ({g 5 }, bdef ) and (∅, abcdef ). Among them, only bdf and abcdef have the minimum key sets that differ from the key sets, i.e., K min (bdf ) = {b}, K(bdf ) = {b, df }. K min (abcdef ) = {ab}, K(abcdef ) = {ab, adf, aef, cef }.

Stab(bdf ) = |{{g 5 , g 6 }, {g 6 }}|/2 2 = 1/2 and Stab(ac) = |{{g 1 , g 2 }}|/2 2 = 1/4, thus, if the analyzed dataset contains noise, bdf is more likely to be closed in the original dataset (without noise). Lectic order and lexicographic trees. Let M be a set of linearly ordered attributes m 1 < m 2 < . . . < m k . Then, an itemset B 1 ⊆ M is lectically smaller than the set B 2 ⊆ M , if the smallest differing element belongs to B 1 . A lexicographic tree is a tree that has the following properties: (i) the root corresponds to the null itemset; (ii) a node in the tree corresponds to an itemset, (iii) the parent of a node m 1 . . . m i-1 m i is a node m 1 . . . m i-1 .

a b c d e f g1 × × × g2 × × × g3 × × × g4 × × g5 × × × × g6 × × × C K min (C) K(C) Equiv(C)
Example. The lexicographic tree in Fig. 1 is built on closed itemsets with the minimum keys of size 1 and 2, i.e., all closed itemsets except ace from Fig. 1.

In the tree we distinguish nodes that correspond to closed itemsets (dark) and intermediate nodes (white), needed to respect property (iii) from the definition of the lexicographic tree. 

Incremental Generation of Closed Itemsets

In this section we introduce the closure structure and discuss how Titanic and CbO can be used to discover this structure incrementally. Both algorithms exhibit the anytime property, meaning that they (i) compute the whole set of closed itemsets given enough time and space, (ii) can be interrupted at any time providing an estimated number of closed itemsets at the next (and following) levels. The algorithms differ in (i) key sets they use, (ii) the approaches to derivation of new keys based on previously computed ones, which results in different estimates of the output size for the next iteration and different computational complexity.

Level-wise Structure on Key Sets

Let C be the set of all closed itemsets and K(B) be the key set of a closed itemset B ∈ C. Level : C → {1, . . . , |M |} is a function that maps a closed itemset to the set of sizes of its keys, i.e., Level(B) = {|D| | D ∈ K(B)}. The structural level k is given by all the keys of size k, i.e.,

K k = {D ∈ K(B) | B ∈ C, |D| = k}. We say that B belongs to the structural level k if there exists a key D ∈ K(B) of size k, i.e., B ∈ C k if k ∈ Level(B). The set of the corresponding closed itemsets is given by C k = {B | B ∈ C, k ∈ Level(B)}.
The set of all structural levels will be called closure structure. We call structural complexity of C the maximal index of non-empty levels,

N c = max{k | k = 1, . . . , |M |, K k = ∅ }.
Example. The levels of dataset from Fig. 1 are given in Fig. 1 (right). The structural complexity N c = 3. Closed itemset bdf belongs to structural levels C 1 and C 2 , because its equivalence class contains the keys from two structural levels, i.e., b ∈ K 1 and df ∈ K 2 , while acf is included only in C 2 since its keys af, cf are in K 2 .

Proposition 1. I = k=1,...,|M | K k is an order ideal w.r.t. ⊆.

Proof. Consider an itemset B ∈ I. Suppose the contrary, i.e., that an arbitrary subset D ⊂ B of size |B| -1 is not in I, thus, D is not a key. Then B can not be a key, since we can replace D with key E ⊂ D. Thus, our assumption is wrong and I is an order ideal. Titanic algorithm [START_REF] Stumme | Computing iceberg concept lattices with titanic[END_REF] computes closed itemsets based on their keys. However, the authors do not consider this algorithm as incremental and anytime. Instead, in case of limited time or space, they propose its version for computing an iceberg lattice.

In this paper we state that, in case of limited resources, we can compute just several levels rather than considering only frequent itemsets. The pseudocode is given as Algorithm 1 (this version is a little bit different from the original one, since we put all the steps related to computing keys into one procedure).

To obtain the next set K k it is sufficient to consider the union of two keys from K k-1 (line 1) and then check if each obtained key makes an order ideal with the previously computed keys (line 3-6, according to Proposition 1). However, itemsets from S may be just members of an equivalence class. To ensure that an itemset is a key, one needs to compare support supp(D) of candidate D ∈ S with the minimal support ind supp(D) of the keys of size k -1 contained in D (line 12). If these values are the same, then the support of D is inductively derived from the support of proper subsets, and D is not minimal (not a key).

Anytime property and the estimates of the size of the next output. Given the size of the current output |K k | (the number of keys), the estimated size of the next output

|K k+1 | is given by |C k+1 | ≤ |K k+1 | < |K k |(|K k | -1)/2. More generally, the number of keys at level k + n, n ∈ N is O(|K k | 2 n ).
Titanic computes all keys of closed itemsets. A closed itemset can have keys of different size. The latter means that the same closed itemset will be computed at different levels (e.g., an itemset bdf from Fig. 1 has key b ∈ K 1 and df ∈ K 2 ). From a PM perspective, computing keys that generate the same closed itemsets is redundant.

Algorithm 1 Titanic-Gen

Require: Kk-1, the key set of level k- 

: K * k ← ∅ 2: Tk ← Tk-1 3: for all X ∈ K * k-1 do 4: Y ← M \ X 5:
for all m ∈ Y do 6:

X * = X ∪ {m} 7:

S ← (X * ) 8:

if S / ∈ Tk then 9:

add(Tk, S) 10:

K * k ← K * k ∪ {X * } 11: end if 12:
end for 13: end for 14: return K * k In the next section we propose an approach where only one minimum key for each closed itemset is considered.

Level-wise Structure on Minimum Key Sets

Similar to the closeness structure induced by key sets, we introduce the minimum closeness structure induced by minimum key sets.

Let C be a set of all closed itemsets and K min (B) be the minimum key set of a closed itemset B ∈ C. We denote a function that maps a closed itemset to the size of its minimum key by level, i.e., level : C → {0, . . . , |M |}, such that level(B) = |D|, where D ∈ K min (B) is an arbitrary itemset chosen from K min (B). The minimal structural level k is given by all minimum keys of size k, i. The proposed algorithms is a version of Close-By-One (CbO) [START_REF] Kuznetsov | A fast algorithm for computing all intersections of objects from an arbitrary semilattice[END_REF]. The call trees (records of an execution) of both algorithms are the same. It means that a closed itemset is computed based on the same minimum key (provided that the attributes in M are considered in the same order). They differ in the test for uniqueness of closed itemsets, namely the canonicity test (in CbO) and lexicographic tree (in the proposed version).

Example. Let us consider how Algorithm 2 works using the dataset from Fig. 1. The intermediate steps are given in Table 2. At input we get K * 2 , a subset of minimum keys of size 2. For each closed itemset C min 

+ n, n ∈ N is O(|K * k ||M | n ).
4 Why Minimum Keys are Better?

In the previous section we introduced the structural levels K k (used in Algorithm 1) and the miminum structural levels K min k . The corresponding sets of closed itemsets are C k and C min k , respectively. We also consider subsets

K * k ⊆ K min k used in Algorithm 2.
At level k, both algorithms allow for discovering the same closed itemsets, i.e., i=1,...,k C min k = i=1,...,k C k . However, C k may intersect with another C n , while all C min k are disjoint. The latter means that in the second case closed itemsets will not be discovered twice. Redundant computations may take place not only w.r.t. different levels, but also within a (minimum) structural level, when a closed itemset has several keys of the same size. In Algorithm 2 this problem is solved by reducing K min k to K * k . Depending on data and the depth k of the closure structure, the performance of algorithms can differ drastically (see experiments in Section 5, Table 4). We illustrate this problem by means of a concrete example.

Example. Let us compare the structures that are used by the algorithms. The closure structure k=0,...,3 K k used by Titanic is given in Fig. 2. Four filled areas highlight the keys of four closed itemset. It means that Titanic discovers the same closed itemset several times (equal to the number of keys in the filled areas). The number of minimum keys (in bold) is much lower, while the number of minimum keys discovered by CbO (in dark bold) is even smaller. For instance, among the minimum keys K min (bdef ) = {be, ef } and K min (acf ) = {af, cf }, CbO uses only be and af , respectively. Computational redundancy can affect the estimates of the size of the next output. We will study how precise these estimates are in experiments (Section 5).

In addition to computational benefits, a minimum key is the best descriptor of an equivalence class according to the information theory [START_REF] Cover | Elements of inf. theory[END_REF]. Based on the reasoning from [START_REF] Li | Minimum description length principle: Generators are preferable to closed patterns[END_REF] it follows directly that the minimum keys provide the shortest description according to the Minimum Description Length principle [START_REF] Grünwald | The minimum description length principle[END_REF].

Experiments

In this section we report the results of an experimental study of the minimum closure structure, i.e., closed itemsets within levels C min k . We use freely available datasets from the LUCS/KDD data set repository [START_REF] Coenen | The LUCS-KDD discretised/normalised ARM and CARM Data Library[END_REF]. The dataset characteristics are given in Table 3.

In our experiments we focus on the following questions: . In experiments we study how the theoretical bounds differ from the actual values. The results are reported in Table 3. The percentage of closed itemsets at level k w.r.t. the total number |C| is given in column "|C min k |/|C|", the largest level is highlighted in bold. Our experiments show that the theoretical bounds are overestimated 6 times (on average), i.e., N min c ≈ |M |/6. The number of closed itemsets in the largest level on average is about 35% of the total number of closed itemsets. Thus, around 30% of closed itemsets can be computed before the largest level has been achieved. As expected, the largest levels are usually in the middle of the closure structure, i.e., N min c /2. 

Characteristics of Structural Levels

In the previous section we study the overall closure structure. In this section we consider the composition of each level in more detail.

Coverage ratio. Referring to the set cover problem, we need to reduce the whole set of itemsets to a subset of candidates F (see Section 1). Algorithms 1 and 2 suggest to compute the candidate sets incrementally, which raises the question "when the computation can be stopped?" In our experiments we compute the level-wise coverage ratio of closed itemsets (formal concepts), i.e., the ratio of cells covered by closed itemsets C min k to all non-empty entries. The background colors of cells in Table 3 show the coverage ratio for each structural level. The coverage ratio monotonically decreases with levels. For example, for "iris" dataset, closed itemsets from C min cover more than 60%, but less than 80%. Thus, the coverage ratio does not increase with each consecutive level.

It follows directly from the definitions of the (minimum) structural levels that it is enough to compute at most 2 levels in order to the complete covering (if we use for covering itemsets of length at least 2).

Level composition. Along with the coverage ratio, we study the composition of the levels, i.e., the distribution of closed itemsets w.r.t. their frequency. The typical structures are given in Figure 3 (left and middle). For example, for "iris" dataset, frequent closed itemsets (f r. ∈ (0.8, 1.0]) make 20% of C min The described behavior is typical for all datasets. The only difference is the initial ratio of infrequent closed itemsets. For instance, C min 1 of "iris" and "heartdisease" contain 20% and 53% of infrequent closed itemsets, respectively. Only closed itemsets of "pima" and "ecoli" have level-wise frequency distribution that differs from the typical one. We show level-wise frequency of "pima" dataset in Figure 3, right. Further we will show that level-wise quality of "pima" and "ecoli" itemsets differs from others. 4). In general, the quality of closed itemsets decreases with each subsequent level, except for "pima" and "ecoli" datasets. The reason of this unusual behavior needs a more careful study. 4. The results show that, except for levels 1 and 2, the estimates of Algorithm 2 provide more precise boundaries. Since the boundaries are closely related to the computational strategy, high values indicate the computational redundancy of Algorithm 1. 

Conclusion

In this paper we have studied the minimum closure structure of closed itemsets. This structure is induced by the smallest (minimum) generators. We have proposed an alternative point of view on the Titanic and Close-By-One algorithms, namely we have shown that they exhibit the anytime property and allow for incremental generation of closed itemsets w.r.t. the (minimum) closure structure. In the experiments we have shown that the algorithms generate itemsets of decreasing quality. One of the most interesting directions of future work is to study the connection between structural complexity and stability.

  B, or formally, Stab ext (A, B) = |{D ⊆ B | D = A}|/2 |B| . Intentional stability is defined similarly, i.e., Stab int (A, B) = |{C ⊆ A | C = B}|/2 |A| .
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 112 Fig. 1: Left: Lexicographic tree of a set of closed itemsets C min 1 ∪C min 2 = C \{ace}.A path from the root to a filled node corresponds to an itemset. Right: The closure structure is given by k=0,...,3 K k (Section 3.1). Keys are given in bold.
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 2 N c is the dimension of the maximal Boolean sublattice of the lattice of C. It follows directly from the definition of N c and Lemma 6 in [2]. Proposition 3. Structural complexity N c of C is the maximal n ∈ {1, . . . , |M |} such that there exists a concept (B , B) with |B| = n and Stab int (B , B) = 1/2 n . Proof. By Proposition 1, there exists B, |B| = N c that corresponds to the intent of the bottom element of the Boolean sublattice. Since every subset C ⊂ B is an extent of a concept (C, C ) such that C = B, then Stab int (B , B) = 1/2 n . 3.2 Generating closed itemsets using the closure structure.
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 1123234 min (B). We say that B belongs to the minimum structural level k if itemsets in K min (B) have size k. We denote the corresponding set of closed itemsets of level k by C min k . More formally, C min k = {B | B ∈ C, level(B) = k}. We call minimum structural complexity of C the maximal number of not empty levels, N min c = max{k | k = 1, . . . , |M |, K min k = ∅}. Proposition 4. I min = k=1,...,|M | K min k is an order ideal. Proof. The proof is similar to the proof of Proposition 1. Example. The structural levels K k of the dataset from Fig. 1 are given in Fig. 1 (right). The minimum structural levels are the following: K min K \ {df }, and K min {ace}. Set df is excluded because the size of b is smaller than df . The same for {adf, aef, cef } ⊆ K 3 . The minimum structural complexity is N min c = 3. In contrast to C k (induced by the structural level K k ) C min k (induced by the minimum structural level K min k ) does not intersect with sets of concepts from other levels, e.g., bdf is in C 1 = C min 1 and in C 2 , but not in C min Computing closed itemsets based on minimum closure structure. A closed itemset may have more than one munimum key. In this section we propose to compute closed itemsets based on a subset K * k of K min k . The algorithm sequentially generates subsets K * k ⊆ K min k , k = 1, . . . , |M | such that for each B ∈ C min k there exists only one D ∈ K * k . The pseudocode is given as Algorithm 2. By construction, I * = k=1,...,|M | K * k is an order ideal. An itemset from K * k ⊆ K min k is computed as the closure of a union of an itemset X ∈ K * k-1 and an attribute m ∈ M \ X . The minimality of keys can be easily checked by using lexicographic tree T k-1 that contains the closed itemsets of the minimum keys computed earlier. The tree storage takes O(2 | M |) memory. Checking the minimality takes O(|M |) time.
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 12 it contains only one minimum key. The lexicographic tree for C min given in Fig.1.

X ∈ K * 2 ab 3 ace

 23 ac ad ae af be ce de X abcdef ac ade ae acf bdef ce de Y = M \ X ∅ bdef bcf bcdf bde ac abdf abcf added to K * Anytime property and the estimates of the size of the next output. Given the size |K * k | of the output at the current iteration, the number of keys |K * k+1 | that will be generated at the next iteration is given by X∈K * k |M \ X |. More generally, the number of minimum keys at level k

Fig. 2 :

 2 Fig. 2: Key sets k=1,...,|M | K k (the closure structure), minimum key sets k=1,...,|M | K min k (the minimum closure structure, in bold), the subsets of minimum key sets used by Algorithm 2 (in dark bold). The keys corresponding to the same closed itemset are united by a filled area.
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 51 (i) what is the structure induced by the minimum keys, (ii) what concepts does level C min k (k = 1, . . . , |M |) contain, (iii) what is the quality of concepts in C min k Minimum Closure Structure Considering Algorithms 1 and 2, the structural complexity (N c and N min c ) is equal to the number of iterations required to compute the whole lattice. Theoretically, for a dataset over M attributes, N min c ≤ N c ≤ |M |, and the largest level |M
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  alone covers the whole dataset and C min 2 alone is able to cover the whole dataset. Each level from C min 3 to C min 6 covers more than 80% of dataset. The itemsets from the last level C min 7
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 122313 and only 0.1% of C min The ratio of infrequent closed itemsets (f r. ∈ (0., 0.2]), on the contrary, increases, e.g., they make 20% of C min and 77% of the last level C min
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Fig. 3 :

 3 Fig. 3: Distribution of frequent concepts by levels. A level C min k is represented by a horizontal bar. The level number k is given in parentheses, the percentage of closed itemsets |C min k |/|C k | is on the left of the level number. The proportion of closed itemsets of frequency (v 1 , v 2 ] among C min k is highlighted in colors.

Fig. 4 :

 4 Fig. 4: Average value of F 1 by levels.
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 3 Anytime property. Precision of the boundaries. Both algorithms provide boundaries on the number of keys that will be generated at the next iteration k + 1. For Algorithms 1 and 2 these values are |K k |(|K k | -1)/2 and X∈K * k |M \ X |. We compare these values with the true number of newly generated closed itemsets |C min k | = |C k \ ∪ i=1,...,k-1 C i |. The ratio of the predicted size to the actual one is reported in Table

Table 1 :

 1 Formal context and nontrivial equivalence classes.

Table 2 :

 2 Intermediate steps of Algorithm 2 for the minimum structural level 2.

Table 3 :

 3 The characteristics of datasets and their closure structure. The cell color corresponds to the coverage ratio * of concepts in C min

				|G| |M | k : 1 2	|C min k 3	|/|C| (in percentage) 4 5 6 7	8 9 10	N min c	|C|
	auto		205 129 0.2 4.7 21.7 36.9 26.4 8.7 1.3 0.1	8	57 788
	breast		699 14 3.3 13.9 31.0 34.6 15.2 1.9	6	361
	car ev.	1 728 21 0.3 2.3 10.6 27.5 37.8 21.6	6	7 999
	ecoli		327 24 5.6 32.5 43.5 15.8 2.4 0.2	6	425
	glass		214 40 1.2 13.9 37.5 32.1 11.9 3.0 0.4 0.0	8	3 245
	heart		303 45 0.2 2.2 10.6 25.0 31.2 21.1 8.0 1.6 0.1	9	25 538
	hepatitis		155 50 0.0 0.5 3.0 10.1 21.6 29.0 22.8 10.2 2.5 0.3 10	144 856
	iris			150 32 0.7 5.9 17.7 28.5 29.8 15.2 2.2	7	4 481
	led7		3 200 28 0.7 4.3 14.4 28.7 32.3 16.5 3.1	7	1 950
	pima		768 36 2.2 17.5 28.7 27.8 16.7 5.9 1.2 0.1	8	1 625
	soybean		683 99 0.0 0.1 1.4 6.9 18.0 27.6 25.6 14.4 5.0 1.0 10 2 870 926
	tic tac toe 958 27 0.1 0.8 5.3 22.6 39.8 24.9 6.6	7	42 711
	wine		178 65 0.5 9.7 36.1 38.0 13.5 2.0 0.1	7	13 228
	zoo			101 35 0.8 8.3 26.1 36.2 23.2 5.2 0.2	7	4 569
	*	CR = 1,	0.8 ≤ CR < 1.0,	0.6 ≤ CR < 0.8,	CR < 0.6.

k

.

Table 4 :

 4 The median values of the ratio of predicted size |C min k | to the actual one. Titanic-Gen 1.00 1.61 58.81 347.82 1348.19 5907.63 12058.46 CbO-Gen 1.00 3.21 8.45 17.16 32.16 56.21 123.94

	k	1	2	3	4	5	6	7

The problem can be studied in more general settings, i.e., by considering arbitrary itemsets X ⊆ M .

* The equivalence class includes all itemsets that contain a key from K(abcdef ).