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. We also prove that, as long as the first derivatives are bounded, singularities cannot appear.

Introduction and main results

Clamond and Dutykh [START_REF] Clamond | Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler) equations[END_REF] have proposed a non-dispersive Hamiltonian regularisation of the Saint-Venant (rSV) system with a constant bottom; this regularisation has been mathematically studied in [START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF][START_REF] Pu | Weakly singular shock profiles for a nondispersive regularization of shallow-water equations[END_REF]. Inspired by [START_REF] Clamond | Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler) equations[END_REF], similar regularisations have been proposed for the inviscid Burgers equation [START_REF] Guelmame | Global weak solutions of a Hamiltonian regularised Burgers equation[END_REF], the scalar conservation laws [START_REF] Guelmame | On a Hamiltonian regularization of scalar conservation laws[END_REF] and the barotropic Euler system [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF]. A regularisation of the Saint-Venant equations with uneven bottom (rSVub) has also been proposed by Clamond et al. [START_REF] Clamond | Hamiltonian regularisation of shallow water equations with uneven bottom[END_REF]. The latter equations, for the conservation of mass and momentum, can be written in the conservative form

h t + [ h u ] x = 0, ( 1a 
) [ h u ] t + h u 2 + 1 2 g h 2 + R x = ε g h 2 η x d xx + g h d x , (1b) 
R def = 2 h 3 u 2 x -h 3 [ u t + u u x + g η x ] x -1 2 g h 2 η 2 x + 2 η x d x . (1c) 
Here, u = u(t, x) is the depth-averaged horizontal velocity, h = h(t, x) def = η(t, x) + d(t, x) denotes the total water depth, η being the surface elevation from rest and d being the water depth for the unperturbed free surface. We can assume, without losing generality via a change of frame of reference, that the spacial average of the depth d is constant in time. In that case, the gravity acceleration g = g(t) may be a function of time. Introducing the Sturm-Liouville operator

L h def = h -ε ∂ x h 3 ∂ x , (2) 
if h > 0, the operator L h is invertible, then the system (1) can be written on the form

h t + [ h u ] x = 0, ( 3a 
)
u t + u u x + g η x = ε g L -1 h h 2 η x d xx -L -1 h ∂ x 2 h 3 u 2 x -1 2 g h 2 η 2 x + 2 η x d x . (3b) 1 
Smooth solutions of (3) satisfy an equation for the conservation of energy

1 2 h u 2 + 1 2 h 3 u 2 x + 1 2 g η 2 + 1 2 g h 2 η 2 x t + 1 2 h u 2 + g h η + 1 2 h 3 u 2 x + 1 2 g h 2 η 2 x + R u + g h 3 η x u x x = 1 2 ġ η 2 + ε h 2 η 2 x -g η d t -ε g h 2 η x d xt . (4) 
Note that, injecting (3b) in (1c), one obtains the alternative definition of R

R = 1 + ε h 3 ∂ x L -1 h ∂ x 2 h 3 u 2 x -1 2 g h 2 η 2 x + 2η x d x -ε h 3 ∂ x L -1 h g h 2 η x d xx .
The rSV and rSVub equations can be compared with the Serre-Green-Naghdi and the two-component Camassa-Holm equations. The local well-posedness of those equations have been studied in the literature (see, e.g., [START_REF] Israwi | Large time existence for 1D Green-Naghdi equations[END_REF][START_REF] Guan | Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation[END_REF]; see also [START_REF] Coclite | Well-posedness of higher-order Camassa-Holm equations[END_REF] for higher-order Camassa-Holm equations). Liu et al. [START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF] have proved the local well-posedness of the rSV equations introduced in [START_REF] Clamond | Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler) equations[END_REF] for constant depth. Liu et al. [START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF] have constructed some small initial data, such that the corresponding solutions blow-up in finite time. The goal of the present note is to prove the local (in time) well-posedness of the rSVub equations. To this aim, we prove first the local (in time) well-posedness of a general 2 × 2 symmetrisable hyperbolic system. Then, using some estimates of the operator L -1 h , we prove that the system (3) is locally well-posed in H s for any real number s 2. We also prove that if the L ∞ -norm of the first derivatives remain bounded, then the singularities cannot appear in finite time.

In order to state the main results of this note, let d be a smooth function of t and x and

h def = η + d, d def = lim |x|→+∞ d(t, x) > 0,
and inf

(t,x)∈R + ×R d(t, x) > 0, (5) 
then

Theorem 1. Let m s 2, 0 < g ∈ C 1 ([0, +∞[), d-d ∈ C([0, +∞], H s+1 )∩C 1 ([0, +∞], H s )
and let W 0 = (η 0 , u 0 ) ∈ H s satisfying inf x∈R h 0 (x) h * > 0, then there exist T > 0 and a unique solution W = (η, u) ∈ C([0, T ], H s ) ∩ C 1 ([0, T ], H s-1 ) of (3) satisfying the nonzero depth condition inf (t,x)∈[0,T ]×R h(t, x) > 0. Moreover, if the maximal time of existence T max < +∞, then

lim t→Tmax W H s = +∞ or inf (t,x)∈[0,Tmax[×R h(t, x) = 0. (6) 
Using the energy equation ( 4) and some estimates, the blow-up criteria (6) can be improved.

Theorem 2. For any interval [0, T ] ⊂ [0, T max [ (T max is the life span of the smooth solution), there exists C > 0, such that ∀t ∈ [0, T ] we have

E (t) def = R 1 2 h u 2 + 1 2 h 3 u 2 x + 1 2 g η 2 + 1 2 g h 2 η 2 x dx C. (7) 
Moreover, if T max < +∞, then

lim t→Tmax W x L ∞ = +∞. ( 8 
)
Section 2 is devoted to prove the local well-posedness of a general 2 × 2 system. The proofs of Theorems 1 and 2 are given in Section 3.

Local well-posedness of a general 2 × 2 system

We prove here the local well-posedness of a class of systems with non-local operators in the H s space with s > 3/2. Let d be a smooth function such that (5) holds. Let also N 1 be a natural number and G def = (g 1 , • • • , g N ) be a smooth function of t and x, possibly depending on d, such that

g ∞ (t) def = g 1 (t, ∞) = lim |x|→∞ g 1 (t, x) > 0 and g inf def = inf (t,x)∈R + ×R g 1 (t, x) > 0. ( 9 
)
Let f (d, h) be a positive function and let f 1 , f 2 be functions of d, h, u, η x , u x and G. Let also a, b, c, f 3 , f 4 be functions of d, h, u and G. We consider the symmetrisable hyperbolic system

η t + a(d, h, u, G) η x + b(d, h, u, G) u x = A 1 f 1 + A 3 f 3 , (10a) 
u t + g 1 f (d, h) b(d, h, u, G) η x + c(d, h, u, G) u x = A 2 f 2 + A 4 f 4 , (10b) 
where the A j are linear operators depending on h and u. In order to obtain the well-posedness of the system (10) in H s with s > 3/2, we define

W def = (η, u) T , G 0 def = (g ∞ , 0, • • • , 0) and B(W ) def = a(d, h, u, G) b(d, h, u, G) g 1 f (d, h) b(d, h, u, G) c(d, h, u, G) , F (W ) def = A 1 f 1 (d, h, u, h x , u x , G) + A 3 f 3 (d, h, u, G) A 2 f 2 (d, h, u, h x , u x , G) + A 4 f 4 (d, h, u, G) ,
the system (10) can be written as

W t + B(W ) W x = F (W ), W (0, x) = W 0 (x). (11) 
We assume that:

(A1) For s m ∈ N, we have -d -d, g 1 -g ∞ , g 2 , g 3 , • • • , g N ∈ C(R + , H s ) and d -d, g 1 -g ∞ ∈ C 1 (R + , H s-1 ); -f ∈ C m+2 (]0, +∞[ 2 ) and for all h 1 , h 2 > 0 we have f (h 1 , h 2 ) > 0; -f 1 , f 2 ∈ C m+2 (]0, +∞[ 2 ×R 3 ×]0, +∞[×R N -1 ); -a, b, c, f 3 , f 4 ∈ C m+2 (]0, +∞[ 2 ×R×]0, +∞[×R N -1 ); -f 1 ( d, d, 0, 0, 0, G 0 ) = f 2 ( d, d, 0, 0, 0, G 0 ) = f 3 ( d, d, 0, G 0 ) = f 4 ( d, d, 0, G 0 ) = 0. (A2) For all r ∈ [s -1, s], if φ ∈ H r and ψ ∈ H r-1 , then A 1 ψ H r + A 2 ψ H r C(s, r, d, W H r ) ψ H r-1 , A 3 φ H r + A 4 φ H r C(s, r, d, W H r ) φ H r . (A3) If φ, W, W ∈ H s and ψ ∈ H s-1 , then (A 1 (W ) -A 1 ( W )) ψ H s-1 + (A 2 (W ) -A 2 ( W )) ψ H s-1 C W -W H s-1 , (A 3 (W ) -A 3 ( W )) φ H s-1 + (A 4 (W ) -A 4 ( W )) φ H s-1 C W -W H s-1 ,
where

C = C s, d, W H s , W H s , φ H s , ψ H s-1 .
Note that if h is far from zero (i.e., inf h > 0), then g 1 f (d, h) is positive and far from zero. Then, the system (10) is symmetrisable and hyperbolic. The main result of this section is the following theorem:

Theorem 3. For s > 3/2 and under the assumptions (A1), (A2) and (A3), if W 0 ∈ H s satisfy the non-emptiness condition

inf x∈R h 0 (x) = inf x∈R (η 0 (x) + d(0, x)) h * > 0, (12) 
then there exist T > 0 and a unique solution W ∈ C([0, T ], H s ) ∩ C 1 ([0, T ], H s-1 ) of the system [START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF]. Moreover, if the maximal existence time T max < +∞, then inf

(t,x)∈[0,Tmax[×R h(t, x) = 0 or lim t→Tmax W H s = +∞. ( 13 
)
Remarks: (i) Theorem 3 holds also for periodic domains; (ii) The right-hand side of ( 11) can be replaced by a finite sum on the form

F (W ) = A 1 f 1 + A 3 f 3 A 2 f 2 + A 4 f 4 + B 1 k 1 + B 3 k 3 B 2 k 2 + B 4 k 4 + • • • , (14) 
where the additional terms satisfy also the conditions (A1), (A2) and (A3); (iii) Under some additional assumptions, the blow-up criteria (13) can be improved (see Theorem 2, for example); (iv) If for some 2 i N , the function g i appears only on f 1 and f 2 , then, due to (A2), the assumption g i ∈ C(R + , H s ) can be replaced by g i ∈ C(R + , H s-1 ).

In order to prove the local well-posedness of (11), we consider

∂ t W n+1 + B(W n ) ∂ x W n+1 = F (W n ), W n (0, x) = (η 0 (x), u 0 (x)) T , (15) 
where n 0 and W 0 (t, x) = (η 0 (x), u 0 (x)) . The idea of the proof is to solve the linear system (15), then, taking the limit n → ∞, we obtain a solution of [START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF]. Note that we have assumed that g 1 and f are positive, so g 1 f > 0, then the system (15) is hyperbolic; it is an important point to solve each iteration in (15). Note that a symmetriser of the matrix B(W

) is A(W ) def = g 1 f (d, h) 0 0 1 .
Let (•, •) be the scalar product in L 2 and let the energy of (15) be defined as

E n+1 (t) def = Λ s W n+1 , A n Λ s W n+1 ∀t 0.
If g 1 f is bounded and far from 0, then E n (t) is equivalent to W n H s . In order to prove Theorem 3, the following results are needed. Theorem 4. Let s > 3/2, h * > 0 and R > 0, then there exist K, T > 0 such that: if the initial data (η 0 , h 0 ) ∈ H s satisfy

inf x∈R h 0 (x) 2 h * , E n (0) < R, (16) 
and

W n ∈ C([0, T ], H s ) ∩ C 1 ([0, T ], H s-1 ), satisfying for all t ∈ [0, T ] h n h * , (W n ) t H s-1 K, E n (t) R, (17) 
then there exists a unique

W n+1 ∈ C([0, T ], H s ) ∩ C 1 ([0, T ], H s-1 ) a solution of (15) such that h n+1 h * , (W n+1 ) t H s-1 K, E n+1 (t) R. ( 18 
)
The proof of Theorem 4 is classic (it can be done following Guelmame et al. [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF], Israwi [START_REF] Israwi | Large time existence for 1D Green-Naghdi equations[END_REF], Liu et al. [START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF] and using the following lemmas).

Let Λ be defined such that Λf = (1 + ξ 2 ) 

f g H r f L ∞ g H r + f H r g L ∞ , ( 19 
) [Λ r , f ] g L 2 f x L ∞ g H r-1 + f H r g L ∞ . (20) Lemma 2. Let k ∈ N * , F ∈ C m+2 (R k ) with F (0, • • • , 0) = 0 and 0 s m, then there exists a continuous function F , such that for all f = (f 1 , • • • , f 2 ) ∈ H s ∩ W 1,∞ we have F (f ) H s F ( f W 1,∞ ) f H s . (21) 
Proof. The case k = 1 has been proved in [START_REF] Constantin | The initial value problem for a generalized Boussinesq equation[END_REF]. Here, we prove the inequality (21) by induction (on s). Note that

F (f 1 , • • • , f k ) = F (0, f 2 , • • • , f k ) + f1 0 F f1 (g 1 , f 2 , • • • , f k ) dg 1 = F (0, 0, f 3 , • • • , f k ) + f1 0 F f1 (g 1 , f 2 , • • • , f k ) dg 1 + f2 0 F f2 (0, g 2 , f 3 , • • • , f k ) dg 2 + • • • = f1 0 F f1 (g 1 , f 2 , • • • , f k ) dg 1 + • • • + f k 0 F f k (0, • • • , 0, g k ) dg k .
This implies that

F (f 1 , • • • , f k ) L 2 f L 2 , (22) which is (21) for s = 0. For s ∈]0, 1[, let F (f 1 (x + y), • • • , f k (x + y)) -F (f 1 (x), • • • , f k (x)) F (f 1 (x + y), • • • , f k (x + y)) -F (f 1 (x), f 2 (x + y), • • • , f k (x + y)) + F (f 1 (x), f 2 (x + y), • • • , f k (x + y)) -F (f 1 (x), f 2 (x), f 3 (x + y), • • • , f k (x + y)) + • • • + F (f 1 (x), • • • , f k-1 (x), f k (x + y)) -F (f 1 (x), • • • , f k (x)) k i=1 |f i (x + y) -f i (x)| F f i L ∞ .

The last inequality, with the definition

H s def = f ∈ L 2 , R R |f (x+y)-f (x)| 2 |y| 1+2 s
dx dy < +∞ , implies (21). For s 1, the proof is done by induction. Using (19) and ( 22), we obtain

F (f ) H s k i=1 F f i (f ) ∂ x f i H s-1 + F (f ) L 2 f H s + k i=1 F f i (f ) H s-1 .
Using the induction and the last inequality, we obtain (21) for all s 0.

Proof of Theorem 3. Using Theorem 4, one obtains that (

W n ) is uniformly bounded in C([0, T ], H s ) ∩ C 1 ([0, T ], H s-1 ) and satisfies h n h * . Defining Ẽn+1 (t) def = Λ s-1 (W n+1 -W n ), A n Λ s-1 (W n+1 -W n ) , (23) 
and using (15), one obtains

Ẽn+1 t = 2 Λ s-1 F n -F n-1 + (B n-1 -B n )W n x , A n Λ s-1 (W n+1 -W n ) -2 [Λ s-1 , B n ](W n+1 -W n ) x , A n Λ s-1 (W n+1 -W n ) + Λ s-1 (A n B n ) x (W n+1 -W n ) , Λ s-1 (W n+1 -W n ) + Λ s-1 (W n+1 -W n ), (A n ) t Λ s-1 (W n+1 -W n ) . (24) 
With (A2), (A3), ( 19) and ( 21), one obtains

F n -F n-1 H s-1 + (B n-1 -B n )∂ x W n H s-1 W n -W n-1 H s-1
Ẽn , (25) and using (20) and (21), we obtain

[Λ s-1 , B n ](W n+1 -W n ) x L 2 W n+1 -W n H s-1
Ẽn+1 .

From ( 19) and ( 21), it follows that

(A n B n ) x (W n+1 -W n ) H s-1 W n+1 -W n H s-1 Ẽn+1 . ( 27 
)
Combining the estimates above, we obtain that Ẽn+1 t Ẽn+1 + Ẽn , and using that Ẽn (0) = 0, we obtain Ẽn+1 e Ct -1 Ẽn . Taking T > 0 small enough, it follows that

W n+1 -W n H s-1 Ẽn+1 1 2 Ẽn 1 2 n Ẽ1 . (28) 
Finally, taking the limit n → ∞ in the weak formulation of (15) and using (A3), we obtain a solutions of the system [START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equations[END_REF]. This completes the proof of Theorem 3.

Proof of Theorems 1 and 2

The system (3) is written in the form (10) by replacing the right-hand side of (10), as in ( 14), taking N = 4 and G

(t, x) = (g, d x , d xx , d t ), a(d, h, u, g, d x , d xx , d t ) = c(d, h, u, g, d x , d xx , d t ) = u, b(d, h, u, g, d x , d xx , d t ) = h, f (d, h) = h -1 , f 1 = f 4 = k 1 = k 3 = k 4 = 0, f 2 (d, h, u, h x , u x , g, d x , d xx , d t ) = 2h 3 u 2 x -1 2 gh 2 (η 2 x +2η x d x ), f 3 (d, h, u, g, d x , d xx , d t ) = -d t -ud x , k 2 (d, h, u, h x , u x , g, d x , d xx , d t ) = gh 2 η x d xx , A 1 = A 4 = B 1 = B 3 = B 4 = 0, A 2 = -εL -1 h ∂ x and A 3 = 1, B 2 = εL -1
h . Then, in order to prove Theorem 1, the following lemma is needed:

Lemma 3. (Liu et al. [11]) Let 0 < h inf h ∈ W 1,∞ , then the operator L h is an isomorphism from H 2 to L 2 and if 0 s m ∈ N, then L -1 h ψ H s+1 + L -1 h ∂ x ψ H s+1 C ψ H s 1 + h -d H s , (29) 
where C depends on s, ε, h inf , h -d W 1,∞ and not on h -d H s .

Proof of Theorem 1. In order to prove Theorem 1, it suffices to verify (A1)-(A3). The assumption (A1) is obviously satisfied and (A2) follows from Lemma 3. In order to prove (A3), let W, W , ψ ∈ H s . Using Lemma 3 and (19), we obtain

L -1 h -L -1 h ψ H s-1 = L -1 h L h -L h L -1 h ψ H s-1 L h -L h L -1 h ψ H s-2 h -h H s-1 W -W H s-1 .
where the constants depend on s, d, W H s , W H s , ψ H s-1 . The same proof can be used with the operator A 2 .

Proof of Theorem 2. Using the characteristics χ(0, x) = x and χ t (t, x) = u(t, χ(t, x)), the conservation of the mass (3a) becomes dh/dt + u x h = 0, =⇒ h 0 (x) e -t ux L ∞ h(t, x) h 0 (x) e t ux L ∞ . (30)

The energy equation (4) implies that

E (t) (| ġ|/g + 1) E (t) + 1 2 g R d 2 t + ε h 2 d 2 xt dx, ( 31 
)
since h is bounded, the inequality [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF] follows by Gronwall lemma.

In order to prove the blow-up criterion, we first suppose that W x L ∞ is bounded and we show that the scenario ( 6) is impossible. The equation (30) implies that h is bounded and far from 0. Using W L ∞ W H 1 E (t), one obtains that W W 1,∞ is bounded on any interval [0, T ]. Using Lemma 3 and doing some classical energy estimates (see [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF][START_REF] Israwi | Large time existence for 1D Green-Naghdi equations[END_REF][START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF]), we can prove that W H s is also bounded. This ends the proof of Theorem 2.

1 2 f

 2 , and let [A, B] def = AB -BA be the commutator of the operators A and B. We have the following lemma. Lemma 1. (Kato and Ponce [10]) If r 0, then