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Abstract. This work is part of a more general idea consisting in developing a macroscopic model of grain
growth whose state variables contain for each material point the statistical descriptors of the microstructure
(e.g., disorientation, grain size and shape distributions). The strategy is to determine macroscopic free energy
and dissipation potentials on the basis of a large number of computations at the scale of the polycrystal. The
aim is to determine enriched macroscopic evolution laws. For sake of simplicity, this contribution only deals
with grain growth of a single phased metal without diffusion or segregation of alloying elements. In order
to test this upscaling strategy it is necessary to establish a simulation tool at the scale of the polycrystal.
It should be sufficiently simple and fast to enable a large number of simulations of various microstructures,
even if it leads to neglect some phenomena occurring at this scale. Usual grain growth models relying on
mobile finite element modeling, level set functions, phase field or molecular dynamics are too computationally
costly to be used within the proposed framework. Therefore, this paper focuses on the development of a “toy”
model. Tessellation techniques are usually used to approximate polycrystalline microstructures. Therefore,
one can approximate the real evolution of the microstructure as a succession of tessellation approximations.
It then becomes quite natural to attempt to establish the evolution law of the microstructure directly on the
parameters defining the tessellation. The obtained model is very light in terms of computational cost and
enables to compute a large number of evolutions within the framework of the proposed statistical upscaling
method.

Keywords: Grain growth / Voronoi-Laguerre tessellation / grain boundary energy / dissipation
/ grain mobility

1 Introduction

This work is part of a more general idea consisting in
developing a macroscopic model of grain growth whose
state variables contain for each material point the statisti-
cal descriptors of the microstructure (e.g., disorientation,
grain size and shape distributions). Statistical distribu-
tions are too much detailed to be processed at each
material point, thus reduced information is considered
instead: means and variances at each material point. This
ambition arises as very few information about microstruc-
ture is usually processed at the macroscopic scale. The
general framework is the standard generalized media char-
acterized by a free energy per unit mass and a dissipated
power potential. These two potentials arise in the balance
energy equation combining the first and second laws of
thermodynamics. The balance energy equation should be
verified for all possible virtual evolution. The two poten-
tials depend on macroscopic state variables and their time

* e-mail: weisz@lms.polytechnique.fr

derivatives. The determination of the macroscopic free
energy and dissipation potentials enables to establish the
evolution laws of the state variables characterizing the
microstructure evolution at macroscale.
The strategy is to determine macroscopic free energy

and dissipation potentials not axiomatically (with para-
metric functions) and calibration with experiments at
macroscale, but on the basis of a large number of com-
putations at the scale of the polycrystal. The aim is to
quantify for each microstructure evolution the total grain
boundary energy and the total dissipated power as a
function of the macroscopic state variables that charac-
terize the statistical distribution of the microstructure in
order to determine enriched macroscopic evolution laws.
For sake of simplicity, this contribution only deals with
grain growth of a single phased metal without diffusion
or segregation of alloying elements. In order to test this
upscaling strategy it is necessary to establish a simula-
tion tool at the scale of the polycrystal. It should be
sufficiently simple and fast to enable a large number of
simulations of various microstructures, even if it leads to
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neglect some phenomena occurring at this scale. Usual
grain growth models relying on cellular automaton [1–4],
mobile finite element modeling [5], level set functions [6,7],
phase field [8–11] or molecular dynamics [12–14] have
been intensively studied and very interesting results have
been obtained. However, the computational cost of such
approaches is usually incompatible with an intensive
use as suggested within the proposed framework. Ver-
tex methods [15–18] consist in establishing the evolution
law directly at the triple junctions and are sufficiently
simple in two dimensions to reach short computation
time. However, the extension in three dimensions is very
difficult.
Evolution of polycrystalline microstructures (such as

grain growth) involves coupled mechanisms at differ-
ent scales: (i) the atomic scale (crystal lattice), (ii) the
microscale including mechanisms at grain boundaries
(iii) the mesoscale revealing the grain structure ( i.e., poly-
crystalline Representative Volume Element) and (iv) the
macroscopic scale modeled as a continuous medium. Thus,
this paper focuses on the development of a “toy” model
formulated at mesoscale and enabling to simulate grain
growth within short computation time.
Voronoi-Laguerre tessellation techniques are usually

used to approximate polycrystalline microstructures at
mesoscale. Very efficient algorithms have been developed
with the possibility of controlling statistical distributions
of grain size and shape. Crystal lattice orientation can
also be specified for each grain. The tessellation equipped
with such an orientation field is called an Orientated Tes-
sellation (OT). One can approximate the real evolution of
the microstructure as a succession of OT approximations.
It then becomes quite natural to attempt to establish the
evolution law of the microstructure directly on the param-
eters defining the OT. This modeling strategy is called
in this contribution the Orientated Tessellation Updating
Method (OTUM).
As grain growth during annealing is essentially viscous,

the time derivatives of the OT parameters are obtained
as a function of the thermodynamic forces defined as the
partial derivatives of the total grain boundary energy with
respect to the OT parameters. This mesoscale evolution
law is obtained through the energy balance equation by
specifying two mechanisms at microscale: (i) the grain
boundary energy (disorientation) and (ii) the dissipated
power by crystal visco-plasticity through any grain bound-
ary virtual motion. For sake of simplicity, crystal lattice
rotation through crystal visco-plasticity is not considered
in this contribution. In addition, plane polycrystals are
considered with three slip directions in each grain. Thus,
the crystal lattice is plane hexagonal. This configuration
corresponds to the plane 〈1, 1, 1〉 of a face-centered cubic
(fcc) crystal, as shown in Figure 1. Disorientation between
two neighboring grains (characterized by five parameters
in 3D) is characterized only by two parameters in 2D: the
disorientation angle ∆θ and the orientation of the grain
boundary ϕ. Thus, the grain boundary energy considered
in this paper is computed from fcc crystals sharing the
same orientation 〈1, 1, 1〉 (asymmetric tilt boundaries).
The dissipative mechanism at microscale is calibrated

to correspond to the classic notion of grain boundary

Fig. 1. FCC and slip directions in 〈1, 1, 1〉 plane.

mobility. The overall mesoscale grain growth model is val-
idated by comparison with the classical curvature driven
shrinkage of a spherical grain. The proposed model is very
light in terms of computational cost and enables to com-
pute a large number of microstructure evolutions, which
is useful for the general statistical upscaling method.

2 Orientated Tessellation Updating Method

A tessellation is defined by n seeds whose Cartesian coor-
dinates are denoted by (xj , yj) and n weights denoted
by wj (where 1 ≤ j ≤ n). Coordinates (xj , yj) ∈ [0, 1]

2

are dimensionless as well as weights. The tessellation is
completely determined by the parameter vectors x =
(x1, · · · , xn), y = (y1, · · · , yn), w = (w1, · · · , wn). The
dimensionless tessellation is scaled by a physical length
L0 that represents the length of the tessellation edge.
Each cell (or grain) denoted by Cj (where 1 ≤ j ≤ n) is

defined by Voronoi-Laguerre tessellation as follows:

Cj =

{(
x
y

)
∈ R2, ∀k ∈ {1, · · · , n} ,

∥∥∥∥x− xjy − yj

∥∥∥∥2

−wj ≤
∥∥∥∥x− xky − yk

∥∥∥∥2

− wk

}
. (1)

It is clear from the definition (1) that weights are
defined up to a constant. Thus, the following constraint is
added to obtain a univocal definition:

n∑
j=1

wj = 1. (2)

Thus, weightsw lie in an affine hyperplane of dimension
n− 1 and denoted by P (n−1)

a =
{
w ∈ Rn,

∑n
j=1 wj = 1

}
,

whose support is the hyperplane denoted by P (n−1) ={
w ∈ Rn,

∑n
j=1 wj = 0

}
. In addition, it should be noted

that a cell Cj may be empty as shown in Figure 2. This
property will be intensively used as some grains should
disappear during grain growth.
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Fig. 2. Seed and weight in tessellation.

Fig. 3. Seed and weight in tessellation.

The crystallographic orientation is denoted by θ =
(θ1, · · · , θn). Since the crystal lattice is plane hexago-
nal ∀j ∈ {1, . . . , n} , θj ∈

[
0, π3

]
. The parameter set POT

defining the OT (see Fig. 3) reads:

POT =
{
α = (x,y,w,θ) ∈ Rn × Rn × P (n−1)

a ×
[
0,
π

3

]n}
.

(3)
A total energy E(T,α) is associated to the OT, where

T is the temperature. In this contribution, the total grain
boundary energy per unit depth is considered. The Orien-
tated Tessellation Updating Method consists in computing
a time evolution of the OT characterized by POT by
deriving an evolution law of the form:

α̇ = −M(T,α).
∂E(T,α)

∂α
. (4)

where M(T,α) is a second order tensor to be defined
by introducing a dissipative mechanism at microscale and
∂E(T,α)/∂α is the driving force.

This paper is limited to the evolution of weights (i.e.,
seeds and orientations are fixed parameters: ẋ = ẏ = 0
and θ̇ = 0), that is to say that the generalized vector
space of speed V∗ reads:

V∗ =

ẇ∗,
n∑
j=1

ẇ∗j = 0

 . (5)

3 Microscale mechanisms

As mentioned in the introduction, the mesoscopic evo-
lution law (4) is determined by introducing two local
mechanisms at microscale: (i) the grain boundary energy
and (ii) the dissipated power by crystal visco-plasticity
through any grain boundary virtual motion. Grain bound-
aries are indexed by pairs (i, j) where i and j denote two
neighboring grains. The set of pairs of neighboring grains
defining grain boundaries is denoted by IGB :

IGB =
{

(i, j) ∈ {1, · · · , n}2 , j ≥ i, Ci ∩ Cj 6= ∅
}
. (6)

The condition j ≥ i is meant to count each grain bound-
ary only once (otherwise if (i, j) ∈ IGB then (j, i) would
also be an element of IGB).
The grain boundary energy per unit area of each grain

(i, j) ∈ IGB is denoted Eij .

Eij = E(T,∆θij , ϕij) (7)

where ∆θij is the crystal lattice disorientation between
grains i and j defined by:

∆θij = |θj − θi| ∈
[
0,
π

3

]
. (8)

In addition ϕij is the angle of the grain boundary as
shown in Figure 4.
Several analytical formulations have been proposed for

E. The simplest and most widely used function is the
Read & Shockley formula [19]:

E(T,∆θ, ϕ) = E0(T, ϕ)∆θ [a(ϕ)− ln (∆θ)] . (9)

However, the range of validity of the Read & Shockley
formula is limited to small disorientation angles and do
not account for the energy cusps at certain disorientation
angles. To overcome this difficulty, Wolf [20] introduced
a piecewise interpolation function for the grain boundary
energy per unit area of the form:

E(T,∆θ, ϕ) = EM (T, ϕ) sin

(
π

2

∆θ −∆θm
∆θM −∆θm

)
×
[
1− a(ϕ) ln

(
sin

(
π

2

∆θ −∆θm
∆θM −∆θm

))]
(∆θm ≤ ∆θ ≤ ∆θM ).

(10)
This interpolation function is usually fitted on atom-

istic simulations. Other interpolations have been proposed
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Fig. 4. Notations.

within a three dimensional framework [21]. Since the main
goal of this contribution is to demonstrate the capability
of the OTUM and not to present a study on a specific
metal, a simplified grain boundary function is directly
defined in the form of (10). Since the crystal lattice is
plane hexagonal, a cusp is introduced at π/3. In addition
it is assumed that the dependance on ϕ is negligible. The
grain boundary energy per unit area is defined as follows:

E(T,∆θ) =
G(T )

G(0)
γ(∆θ) (11)

where G(T ) is the shear coefficient. In this paper, data for
pure iron [22] are used to calibrate G(T ):

G(T ) = aG T + bG (12)

where bG ≈ 88134 MPa and aG ≈ −24 MPa.K−1. The
temperature dependence G(T )/G(0) is a simple choice
similar to [23]. In addition:

γ(∆θ) = γπ
6

sin (3∆θ) [1− a1 ln (sin (3∆θ))](
0 ≤ ∆θ ≤ π

6

)
γ(∆θ) = γπ

6
sin (π − 3∆θ) [1− a2 ln (sin (π − 3∆θ))](π

6
≤ ∆θ ≤ π

3

)
(13)

where a1 = a2 = 1 and γπ
6

= 1 J.m−2, which roughly
corresponds to pure iron. The resulting simplified grain
boundary energy per unit area is presented in Figure 5.
In addition to the grain boundary energy per unit area,

the dissipated power per unit area through any virtual
grain boundary motion should be specified. Consider v∗ij a
virtual normal velocity of the grain boundary (i, j) ∈ IGB .
The dissipated power per unit area reads:

D∗ij = D(T,∆θij , v
∗
ij) (14)

where [24,25] used crystal plasticity to determine D ana-
lytically (for plane hexagonal crystals) when the boundary
between two semi-infinite crystals moves at the virtual
velocity v∗ij :

D(T,∆θij , v
∗
ij) = τcX(∆θij)

∣∣v∗ij∣∣ (15)

where τc is the critical shear stress and X : ∆θ 7→ X(∆θ)
is the following function:

X(∆θ) =
6

π

(
π

3
+ 2
√

3 ln

(√
3

2

))
min

{
∆θ,

π

3
−∆θ

}
.

(16)
Since grain growth is viscous, the analytical compu-

tation proposed by [24,25] is simply adapted for crystal
visco-plasticity by considering that the critical shear stress
τc linearly depends on

∣∣v∗ij∣∣:
τc =

∣∣v∗ij∣∣
m(T )

(17)

where the function m(T ) is homogenous to a grain mobil-
ity (m4.J−1.s−1). Hence the dissipated power per unit
area:

D(T,∆θij , v
∗
ij) =

X(∆θij)

m(T )

[
v∗ij
]2
. (18)

It should be noted from (10) and (16) that:{
γ(∆θ) ∼

∆θ→0
A∆θ ln (∆θ)

X(∆θ) ∼
∆θ→0

B∆θ.
(19)

In other words, the driving force (proportional to
γ(∆θ)) tends to zero when the disorientation tends
to zero. However, the dissipative cost (proportional to
X(∆θ)) that resists to the driving force, tends to zero
much faster because of the logarithmic term in (19). Thus,
for arbitrarily small disorientation, the grain boundary
is unstable as the driving force is arbitrarily large in
comparison to the resistive mechanism (the ratio is in
ln (∆θ)).

4 Mesoscale evolution law

The mesoscale evolution law is derived by considering
the total grain boundary energy per unit depth and the
total dissipated power per unit depth through any virtual
grain boundary normal velocity field, which are defined as
follows: 

E(T,α) = L0

∑
(i,j)∈IGB

lijEij

D(T,α,v∗) = L0

∑
(i,j)∈IGB

lijD
∗
ij

(20)



D. Weisz-Patrault et al.: Mechanics & Industry 21, 513 (2020) 5

Fig. 5. Grain boundary energy per unit area at T = 0 K.

where lij the joint length and v∗ =
(
v∗ij
)

(i,j)∈IGB
. The

dependance on α = (x,y,w,θ) comes from the grain
boundary lengths lij that depend on (x,y,w) and Eij , D∗ij
that depend on θ. The number of grain boundary is
nGB = card [IGB ]. There exists a bijection between IGB
and {1, · · · , nGB} that defines the numbering of grain
boundaries. Thus, for each grain boundary denoted by
(i, j) ∈ IGB there exists a unique pij ∈ {1, · · · , nGB}.
Therefore the total dissipated power per unit area reads:

D(T,α,v∗) = L0v
∗.
χ(α)

m(T )
.v∗ (21)

where χ(α) is a dimensionless diagonal second order
tensor of size nGB × nGB of diagonal:

∀pij ∈ {1, · · · , nGB} , χpij (α) = lijX(∆θij). (22)

As seeds and crystalline orientations are fixed (i.e., ẋ =

ẏ = 0 and θ̇ = 0) and considering any virtual variation of
weights ẇ∗, it is straightforward to demonstrate that:

v∗ij = L0

ẇ∗i − ẇ∗j
2dij

(23)

where dij is the dimensionless distance between seeds:

dij =

∥∥∥∥( xi
yi

)
−
(
xj
yj

)∥∥∥∥ . (24)

It is clear in (23) that for each grain boundary an
arbitrary choice is made for the positive direction of
the normal velocity v∗ij , which has no consequence as
the square of the virtual velocity arises in the dissipated
power. Hence:

v∗ = L0K(α).ẇ∗ (25)

where K(α) is a dimensionless second order tensor of size
nGB × n, which can be evaluated analytically:

See equation (26) next page

The constraint (2) leads to:

n∑
j=1

ẇ∗j = 0 (27)

which defines a hyperplane of dimension n − 1 denoted
by P (n−1), whose normal vector is denoted by 1 =
(1, · · · , 1) ∈ Rn. It is clear that the kernel of K(α) is
ker (K(α)) = 1R. The total dissipated power per unit
depth reads:

D(T,α,v∗) = L3
0ẇ
∗.
R(α)

m(T )
.ẇ∗ (28)

where R(α) = K(α)T .χ(α).K(α) is a dimensionless
second order tensor of size n× n.
The “real” weight variation ẇ is determined for isother-

mal (i.e., Ṫ = 0) and homogenous temperature fields (i.e.,
∇T = 0) by using the general energy balance equation
(combining the first and second thermodynamic laws),
which is established for “real” evolution (and not virtual):

Ė +D = 0. (29)

Hence:

ẇ.

(
∂E
∂w

+ L3
0

R(α)

m(T )
.ẇ

)
= 0. (30)

Thus, the energy balance (30) arises as a constraint
on the “real” weight variation. The maximum dissipa-
tion principle [26], enables to determine the “real” weight
variation as the maximum of the dissipation under the
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K(α) =


i j

...
...

...
...

...
...

...
...

...
...

...
pij 0 · · · 0 1

2dij
0 · · · 0 − 1

2dij
0 · · · 0

...
...

...
...

...
...

...
...

...
...

...

 (26)

constraint (30):

ẇ =


argmax
ẇ

[
L3

0ẇ.
R(α)

m(T )
.ẇ

]
subjected to. ẇ.

(
∂E
∂w

+ L3
0

R(α)

m(T )
.ẇ

)
= 0.

(31)
Consider µ the Lagrangian multiplier and L the

Lagrangian:

L(ẇ, µ) = L3
0ẇ.

R(α)

m(T )
.ẇ + µ ẇ.

(
∂E
∂w

+ L3
0

R(α)

m(T )
.ẇ

)
.

(32)
The optimality condition reads:
∂L

∂ẇ
(ẇ, µ) = 2L3

0

R(α)

m(T )
.ẇ + µ

(
∂E
∂w

+ 2L3
0

R(α)

m(T )
.ẇ

)
= 0

∂L

∂µ
(ẇ, µ) = ẇ.

(
∂E
∂w

+ L3
0

R(α)

m(T )
.ẇ

)
= 0.

(33)
Hence µ = −2 and the evolution law reads:

R(α).ẇ = −m(T )

L3
0

∂E(T,α)

∂w
. (34)

The evolution law (34) should be inverted. However
R(α) is not invertible because of the constrain (27).
The kernel of R(α) is ker (R(α)) = 1R. Thus, there are
n− 1 strictly positive singular values of R(α) denoted by
(λ1, · · · , λn−1) and there exist two orthogonal tensors U
and V such as:

R(α) = U .


λ1 · · · 0
...

. . .
...

0 · · · λn−1

0

0 0

 .V (35)

The singular value decomposition is computed in
Scilab [27] and gives (λ1, · · · , λn−1), U and V . The
Moore-Penrose pseudo-inverse matrix is introduced as
follows:

Σ† =



1

λ1
· · · 0

...
. . .

...

0 · · · 1

λn−1

0

0 0

 . (36)

Hence the evolution law:

ẇ = −m(T )

L3
0

M(α).
∂E(T,α)

∂w
(37)

where:

M(α) =
(
V T .Σ†.UT

)
. (38)

It should be noted that a scale effect is demonstrated in
the evolution law (37) as the physical dimension L0 arises.

5 Driving force

The driving force involved in the evolution law (37)
should be evaluated. An analytic solution is derived in
this section, which contributes to reach short computation
time. From (20) and (11) one obtains:

E(T,α) = L0
G(T )

G(0)

∑
(i,j)∈IGB

lijγ(∆θij). (39)

Hence:

∂E(T,α)

∂w
= L0

G(T )

G(0)

∑
(i,j)∈IGB

∂lij
∂w

γ(∆θij). (40)

Consider the set of triple junctions:

I3 =
{

(i, j, k) ∈ {1, · · · , n}3 , Ci ∩ Cj ∩ Ck 6= ∅
}
. (41)

There is no condition such as k ≥ j ≥ i, thus if (i, j, k) ∈
I3 then all permutations are also in I3. Consider the third
order tensor δ:

δ̃ijk =

{
1 if (i, j, k) ∈ I3
0 if (i, j, k) /∈ I3 (42)

Thus, the third order tensor β representing angles at
the triple junctions as shown in Figure 6 are defined as
follows:

βijk =

{
βijk if (i, j, k) ∈ I3
π

2
if (i, j, k) /∈ I3 (43)

where the following symmetry rule holds βijk = βkji.
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Fig. 6. Triple junctions.

Consider a virtual weight variation ẇ∗ ∈ P (n−1) (i.e.,
verifying the constrain (27)). One obtains:

l̇ij =
tan

(
βijk − π

2

)
+ tan

(
βijm − π

2

)
2dij

ẇ∗i

+
tan

(
βjik − π

2

)
+ tan

(
βjim − π

2

)
2dij

ẇ∗j

− 1

2djk cos
(
βijk − π

2

) ẇ∗k − 1

2djm cos
(
βijm − π

2

) ẇ∗m.
(44)

Moreover:

l̇ij =

(
∂lij
∂w

)
.ẇ∗. (45)

Hence by combining (44) and (45) and ∂lij/∂w =
(∂lij/∂wq)q∈{1,··· ,n}:

∂lij
∂wq

=

n∑
p=1

δ̃ijp

(
tan

(
βijp − π

2

)
2dij

δiq +
tan

(
βjip − π

2

)
2dij

δjq

− δpq

2djp cos
(
βijp − π

2

)) (46)

where δ is the Kronecker symbol.

6 Calibration

The proposed approach is calibrated by comparison with
the classic curvature driven grain growth. Within this
framework, the driving force acting on any grain boundary
reads:

F̃ =
G(T )

G(0)
γ(∆θ)

(
1

RI
+

1

RII

)
(47)

Fig. 7. Validation by comparison to curvature driven spherical
grain shrinkage.

where RI and RII are the radii of curvature along the
principal directions (in three dimensions). For plane poly-
crystals RI = R and RII =∞. A simple linear evolution
law accounting for viscosity is usually used:

ṽ = m̃(T,∆θ) F̃ (48)

where ṽ is the inward normal speed of the considered
grain boundary and m̃(T,∆θ) the classical grain boundary
mobility for the curvature driven model (where the symbol
.̃ refers to the curvature driven model). In the following,
a circular grain shrinkage is compared to an hexagonal
configuration as shown in Figure 7 in order to determine
the mobilitym(T ) introduced in the dissipated power (17)
as a function of m̃(T,∆θ). Thus for the curvature driven
model the inward normal speed reads:

ṽ = m̃(T,∆θ)
G(T )

G(0)

γ(∆θ)

R
. (49)

The proposed approach is applied to the hexagonal
situation. The partial derivative (46) reads:

∀j ∈ {2, · · · , 7}
∂l1j
∂w1

=
∂l1j
∂wj

= − ∂l1j
∂wj−1

= − ∂l1j
∂wj+1

=
1

2
√

3R
. (50)

Hence:

∂l12

∂w
=

1

2
√

3R
(1, 1,−1, 0, 0, 0,−1)

T

∂l13

∂w
=

1

2
√

3R
(1,−1, 1,−1, 0, 0, 0)

T

∂l14

∂w
=

1

2
√

3R
(1, 0,−1, 1,−1, 0, 0)

T

∂l15

∂w
=

1

2
√

3R
(1, 0, 0,−1, 1,−1, 0)

T

∂l16

∂w
=

1

2
√

3R
(1, 0, 0, 0,−1, 1,−1)

T

∂l17

∂w
=

1

2
√

3R
(1,−1, 0, 0, 0,−1, 1)

T
.

(51)
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The driving force (40) reads:

∂E(T,α)

∂w
=
G(T )

G(0)

γ(∆θ)

2
√

3R
(6,−1,−1,−1,−1,−1,−1)

T
.

(52)
The second order tensor K introduced in (26) reads for

this configuration:

K =



1 2 3 4 5 6 7

p12 −1 1 0 0 0 0 0
p13 −1 0 1 0 0 0 0
p14 −1 0 0 1 0 0 0
p15 −1 0 0 0 1 0 0
p16 −1 0 0 0 0 1 0
p17 −1 0 0 0 0 0 1


1

4R
. (53)

The second order tensor χ introduced in (22) reads:

χ =
2R√

3
X(∆θ)I (54)

where I is the identity of size 6 × 6. The second order
tensor R introduced in (28) reads:

R = KT .χ.K

=
X(∆θ)

8
√

3R



6 −1 −1 −1 −1 −1 −1
−1 1 0 0 0 0 0
−1 0 1 0 0 0 0
−1 0 0 1 0 0 0
−1 0 0 0 1 0 0
−1 0 0 0 0 1 0
−1 0 0 0 0 0 1

 . (55)

Thus, the second order tensor M introduced in (38)
reads:

M = m(T )
8
√

3R

X(∆θ)

1

49



6 −1 −1 −1 −1 −1 −1
−1 41 −8 −8 −8 −8 −8
−1 −8 41 −8 −8 −8 −8
−1 −8 −8 41 −8 −8 −8
−1 −8 −8 −8 41 −8 −8
−1 −8 −8 −8 −8 41 −8
−1 −8 −8 −8 −8 −8 41

 .

(56)

Hence the evolution law (37) for the hexagonal situa-
tion:

ẇ = −m(T )
4

7

G(T )

G(0)

γ(∆θ)

X(∆θ)
(6,−1,−1,−1,−1,−1,−1)

T
.

(57)
Thus, by using (23) one obtains the inward normal

speed according to the proposed model:

v =
m(T )

R

G(T )

G(0)

γ(∆θ)

X(∆θ)
. (58)

The comparison between the inward normal speed from
the curvature driven model (49) and from the proposed

Fig. 8. Algorithm.

approach (58) reads:

m̃(T,∆θ) =
m(T )

X(∆θ)
. (59)

For the sake of simplicity it is assumed that m̃(T,∆θ)
depends on disorientation in 1/X(∆θ) even though more
realistic mobilities could be obtained by considering
m(T,∆θ) instead of m(T ) in (17).

m̃(T,∆θ)X(∆θ) ≈ ˜̃m(T ). (60)

To estimate m(T ) one can use the pure iron grain
boundary mobility determined by [28]:

m(T ) = β
DFe(T )Vmδ

b2RT
(61)

where the molar volume of fcc-Fe is Vm = 7.09× 10−6 m3,
the boundary thickness is δ = 1 nm, the burgers vec-
tor is b = 2.48 × 10−10 m, the gas constant is R =
8.3144621 J.mol−1.K−1. In addition, DFe(T ) is the dif-
fusivity of Fe atoms along the grain boundary (for fcc)
and follows an Arrhenius law:

DFe(T ) = D0
Fe exp

(
− Q

RT

)
(62)

where the pre-factor is D0
Fe = 1.5 × 10−4 m2.s−1 the

activation energy is Q = 148 kJ.mol−1.
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Fig. 9. Disorientation distributions of three OT at 800 ◦C.

Fig. 10. Grain growth of the OT1 at 800 ◦C during approximately 4 h.

7 Time discretization and numerical results

The temperature kinetics is imposed in the following, thus
T (t) is a known function. Voronoi-Laguerre tessellations
(x,y,w) are generated with the free software Neper [29]
and orientations θ are set in Scilab [27]. Weights are ini-
tially set to a common value and are updated at each time
step according to the evolution law (37) and the driving
force (46). The numerical discretization consists in a sim-
ple explicit scheme with adaptive time step in order to
capture accurately growth rate variations. The time step
is determined as follows:

N =

∥∥∥∥M(T,α).
∂E(T,α)

∂w

∥∥∥∥ (63)

dt =
δw
N

(64)

where δw > 0 is a constant value. As the simple model
proposed in this paper is purely viscous, even though the
temperature is maintained constant, grain growth never
stops strictly speaking. The evolution becomes only slower
and slower. Thus, a stopping criterion needs to be defined.
The algorithm is simply presented in Figure 8.
Different Orientated Tessellations with different distri-

butions of sphericity and grain size are generated. The
orientation field correspond to a disorientation distribu-
tion very similar for each OT as shown in Figure 9. The
temperature is set to T = 800 ◦C and grain growth is sim-
ulated by Orientated Tessellation Updating Method during
approximately 4 h. The code is not optimized as Scilab
has been used to compute the evolution law and Neper
to generate tessellations. (Computation time is roughly
15 min for 1000 time steps and is mainly due to writing
and reading text files between Scilab and Neper. Thus, a
unifed code not relying on text files would significantly
reduce computation time.)
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Fig. 11. Grain growth of the OT2 at 800 ◦C during approximately 4 h.

Fig. 12. Grain growth of the OT3 at 800 ◦C during approximately 4 h.

Grain growth at 800 ◦C is presented for three OT
(denoted by OT1, OT2, OT3) in Figures 10, 11 and 12
(orientations are in degrees). Simulations show grain

coarsening and are consistent with experimental observa-
tions [30] on an other material (tantalum). Grain growth
is heterogeneous depending on the local disorientation and
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Fig. 13. Grain growth of the OT1 at 700 ◦C during approximately 4 h.

grain size arrangement leading to heterogeneous grain size
distribution during the transient state. Of course, grain
size heterogeneity eventually reduce as bigger grain tends
to grow at the expense of smaller grains. In addition,
the disorientation distribution tends to favor small dis-
orientations as shown in Figure 9. Sphericity tends to
increase as shown in Figure 11 but this may be due
to the fact that weights w are the only state variables.
Future developments will include seeds x and y as state
variables, which will enable to consider additional degrees
of freedom to approximate more accurately grain shape
evolution. In addition, orientations θ can also be added
as state variables with an associated dissipative mecha-
nism related to crystal plasticity in the grain bulk. Thus,
reorientation is likely to occur for small grain sizes as sug-
gested by molecular dynamics [14] because reorientation
involves dissipated energy per unit volume although grain
boundary migration involves dissipated energy per unit
area.
Grain growth is a thermally activated process as cap-

tured by the Arrhenius law (62). This is illustrated by
simulating the same OT as those presented in Figure 10
at 700 ◦C. The resulting evolution is much slower than at
800 ◦C as shown in Figure 13.

8 Conclusion

In this paper the Orientated Tessellation Updating Method
has been introduced to simulate grain growth at mesoscale
(i.e., at the scale of the polycrystalline structure). The
method relies on Voronoi-Laguerre tessellation techniques
and energetic contributions at microscale (i.e., at the scale
of the grain boundary), namely the grain boundary energy
due to the crystal disorientation and the dissipated power
by crystal plasticity for any virtual motion of the grain
boundary. The method is very light in terms of computa-
tion cost. Even though 2D structures have been studied in
this contribution, the extension in 3D is straightforward
and future works will focus on this aspect. In addition,
the only state variables are the weights of the tessellation.
Thus, further developments including seeds and orienta-
tions as state variables are needed to approximate more
accurately structural evolution of polycrystals. Further-
more, tessellation techniques include options to generate

subgrain structures that could also be introduced in the
framework presented in this paper.
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