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Abstract. This paper presents the development made around the SeaBot, a new low-cost profiling float
design for shallow water. We introduce a simplified dynamical model of the float and propose a state feedback
depth controller coupled with an Extended Kalman Filter (EKF) to estimate model parameters. We show
experimental results of the depth control that validate the model and the controller. We finally propose a loop
design method to build low-cost floats by highlighting key design choices along with design rules.
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1 Introduction

Profiling floats, which are a specific kind of Autonomous
Underwater Vehicle (AUV) widely used in oceanogra-
phy, can only regulate their depth. They are commonly
equipped with instruments such as temperature, pressure,
conductivity or biochemical sensors that measure the state
of the water column. Most of them carry out profiles in
the open ocean and the last generation can dive up to
4000 m [1]. They help to a better understanding of the
ocean and provide crucial data to oceanographic models
through several years missions. The most well-known pro-
filing floats are those of the Argo project [2]: about 4000
floats that gather data continuously all over the world.

More recently, the oceanographic community has
been focused on swarm of profiling floats for shallow
water [3,4] to better understand submesoscales dynamics
(<1−10 km). In shallow water, the vertical and horizon-
tal variation of biochemical parameters can be important.
This is why oceanographers seek to increase the density
of data gathered.

Designing a low-cost profiling float that can conduct
shallow water mission is then a key challenge. By low-cost
we mean a fast design and development phase, low or no
calibration steps before using the float and obviously a low
cost per unit, while maintaining a high level of energetic
and dynamical performances. The cost of the whole life
cycle should be taken into account.

After introducing the dynamic model of a float, a focus
will be given on the mechanical and electronic parts. A
new command law based on a full state feedback coupled
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with an Extended Kalman Filter (EKF) will then be intro-
duced and validated with experimental trials. We will
finally propose a loop iteration design that are guidance
rules to build such robots.

2 Float dynamics

A profiling float controls its buoyancy to regulate its ver-
tical position. There exists several mechanical systems to
perform this task that either adjust the mass or the vol-
ume of the float. They are mainly based on hydraulic
pump or piston system. Some floats are also equipped with
a passive system: they are designed to stabilize themselves
at a unique density.

We will choose the case of a piston based system (see
Fig. 1) which is simple to design and suitable for shallow
water.

The principle is to adjust the volume of the float by
pushing in or pulling out a piston that will modify the
density and so the buoyancy. A float is primarily sub-
ject to gravity, buoyancy and drag forces. We make the
assumption that the float has only vertical motion, with
no rotation, that it is in thermal equilibrium with sur-
rounding water, that the density of water is constant and
that there is no vertical water velocity. A more complex
model could be developed for more precise studies but a
basic one seems to be sufficient to achieve an effective
control (see the experimental results in Sect. 5). We have:

(mf +ma) z̈ = Fb + Fd −mfg (1)

where Fb and Fd are respectively the buoyancy force and
the drag force. mf is the mass of the float and ma is
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Table 1. Float physical parameters.

Parameter Description Unity Typical Seabot value
z̈ Float vertical acceleration m s−2

ż Float vertical velocity m s−1 [−0.3, 0.3]
z Float depth m [0, 50]
mv Virtual mass kg 18
mf Float mass kg 9
ma Added mass kg 9
ρ Water density kg m−3 1025
g Acceleration due to gravity m s−3 9.81
Vt Total float volume m3 Vf + Vp

Vf Float volume m3 ≈8.8× 10−3

Vp Piston volume m3 ∆Vp = 1.7× 10−4

S Float’s cross sectional area m2 4.5× 10−2

Pm Motor power W ≈19.8
Cd Drag coefficient − ≈1 (theoretical)
Kw Water compressibility Pa−1 4.27× 10−10

Kf Float compressibility Pa−1 ≈4.30× 10−9(theoretical)
χ Loss of volume per meter m2 2.15× 10−6

Fig. 1. Float equipped with a piston system.

the added mass which cannot be neglected in the case
of water [5]. Table 1 summarizes all the parameters. The
virtual mass mv = mf +ma is the sum of the two masses.
We then have

mv z̈ = −ρgVt −
1

2
CdSρ |ż| ż −mfg (2)

where Vt is the total volume of the float composed of the
sum of the piston volume Vp and the float volume Vf . Note
that the volume of the float Vf is supposed to be equal at
zero depth to mf/ρ: the float has a neutral buoyancy. The
piston volume Vp is then defined as a positive or negative
volume from neutral buoyancy at zero depth. Equation (2)
can then be simplified to:

mv z̈ = −ρg (Vf + Vp)−
1

2
CdSρ |ż| ż − ρVfg

z̈ = − ρg
mv

Vp −
CdSρ

2mv
|ż| ż (3)

A last phenomenon must be taken into account: the
compressibility of the float. While increasing external

pressure, the float’s volume will decrease. This is also
the case for water. The isothermal compressibility KT =
− 1
V

(
∂V
∂P

)
T

measures the relative change of volume as a
response to a pressure. We will assume that the water
and float temperatures are constant which means that
Kw, the water compressibility, and Kf , the float compress-
ibility are constant. We will also assume that the relation
between the pressure P and the depth z is linear equal to
P (z) = ρgz.

We can then deduce the loss of buoyancy of the float
which is explained by the relative variation of volume δV
of the float compared to the equivalent one of water under
the same pressure:

FK = ρgδV = ρg(Kf −Kw)P (z)Vf = (Kf −Kw)mfρg
2z.
(4)

Note that we have neglected the loss associated to the
piston volume and we have supposed that the volume of
the float is constant. Equation (3) can then be rewritten
to take into account the compressibility:

z̈ = − ρg
mv

Vp −
CdSρ

2mv
|ż| z + (Kf −Kw)

mfρg
2z

mv
. (5)

We set χ = mf (Kf −Kw) g, the loss of volume per
meter depth, which is homogeneous to m2. We obtain

z̈ = − ρg
mv

(Vp − χz)−
CdSρ

2mv
|ż| ż. (6)

Set A = ρg
mv

and B = CdSρ
2mv

, we obtain:

z̈ = −A (Vp − χz)−B |ż| ż. (7)

The sign of the χ coefficient significantly affects the
stability of the system. The float is stable for a negative χ
and unstable for a positive value. Let us take a float that is
neutral buoyant for a depth z. Let us then move the float
of δz in the case of a negative χ: the variation of volume
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Fig. 2. Evolution of float depth for a positive and a negative χ.

δV will be of the same sign as δz which will produce a
force in the opposite direction of the movement. The float
will then go back to its previous depth z. In the case of a
positive χ the movement is on the contrary amplified by
the variation of volume. Figure 2 shows the trajectory over
time of two floats with a negative and positive χ. The float
is stable for z = 0 and was moved of δz = 0.1 m. In the
case of a negative χ the drag force progressively reduces
the oscillations while in the case of a positive χ the system
is clearly unstable and reaches rapidly a constant positive
velocity.

3 Robot design

The SeaBot float is a 80 cm low-cost system design for
shallow water up to 50 m (see Fig. 3). The whole sys-
tem uses as much as possible standard and off-the-shelf
mechanical and electronic components. We also tried to
limit machining operations for manufacturing the robot.

3.1 Mechanical architecture

We will give here an overview of the different design prob-
lems that have to be considered in order to build a low-cost
float. The idea is to give simple and first step design rules.

3.1.1 Float hull

To avoid corrosion phenomenon and to facilitate the devel-
opment of the float, we have chosen to use a full plastic
hull and a transparent tube. The caps and the piston
are in polyoxymethylene (POM-C) and the tube is in
polycarbonate (PC).

To design the thickness of the tube and the tube caps,
we have to verify that [6,7]:

– epipe >
P ·dpipe

2σe
where epipe is the thickness of the tube, P

the external pressure, dpipe the diameter of the tube, σe
the elastic limit,

Fig. 3. The Seabot float.

– ecaps > rcaps

√
2
3
P
σe

where rcaps is the radius of the caps.

In the case of the SeaBot, we obtain, for a 50 m depth limit
and a 120 mm tube, using Table 2, epipe > 0.4 mm. We
have chosen a thickness of 5 mm that takes into account a
safety coefficient and that limits the compressibility issue
which will be studied later. We obtain ecaps > 8 mm for
the caps.

Using stainless steel or aluminum would have allowed
to reduce the thickness of the tube to few millimeters
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Table 2. Approximate values of material mechanical properties.

Material Young modulus Elastic limit Poisson’s ratio Density
E σe ν ρ
GPa MPa kg m−3

POM-C 2.8 67 0.35 1410
PC 2.3 65 0.37 1200
Stainless steel 190 170 0.3 8000
Aluminum 69 30 0.35 2800

but it raises issues with the propagation of wireless sig-
nal, with the tube ovalization at small thickness and with
the issue of galvanic corrosion. Moreover stainless steel is
more dense than plastic materials, so the gain in thickness
should be balanced with the additional mass that reduces
the payload mass.

3.1.2 Float compressibility

Estimating the float compressibility is important to know
if the system will be stable or unstable. At a first approxi-
mation, we can model the tube by an infinite cylinder. We
know from classic results [8, p.240] that the total radial
travel for the external radius of a pressured thick-walled
tube is:

u =
1− ν
E

a2PI − b2PE
b2 − a2

b+
1 + ν

E

a2b2(PI − PE)

(b2 − a2) b
(8)

where u is the total radial travel, ν the poisson’s ratio,
E the young modulus, a the internal radius, b the exter-
nal radius, PE the external pressure and PI the internal
pressure.

If we neglect the effect of the two caps, the loss of
volume can be approximated by:

Vlost = π(b2 − (b− u)2)L (9)

where L is the length of the tube. We can then deduce an
approximation of the float compressibility:

Kf = − Vlost

VfPE
(10)

In the case of the SeaBot float, we obtain a mean com-
pressibility for PE = 5 bar, PI = 0.6 bar and L = 0.6 m
of Kf = 4.30× 10−9 Pa−1. We can then deduce the loss
of volume per meter χ = 7.22× 10−7 m3 m−1. The float is
found to be passively unstable.

The χtheory is similar to the χmeasured '
2.14× 10−6 m3 m−1. A more detailed study using
numerical simulation should be undertaken to obtain a
better estimation of the χtheory. By comparison, a 2 mm
thick aluminum tube would have made the float less
compressible than water.

Fig. 4. Mechanical design of the ABS system.

3.1.3 Auto-ballasting system

The auto-ballasting system (ABS) is based on a 5 cm
diameter piston that moves along a M12 steel threaded
rod which is rotated with a brushed motor. The posi-
tion of the piston is given by an optical codewheel (48
counts per revolution) and two reed switches that pro-
vide two mechanical zero position and maximum position
references. Figure 4 shows the mechanical design of the
system.

The required torque that the motor has to deliver can
be calculated classically [6,7] by the following equation:

T = FP rmean tan (i+ ϕ) (11)

where T is the torque (in N m), FP is the normal force
applied to the piston (in N), rmean the mean radius of the
threaded rod (in m), i the thread angle and ϕ the angle
of friction that depends on the materials.

In the SeaBot case, we have FP = ρgzmaxS, rmean =
6 mm, the screw thread is 1.75 mm which gives i = 8◦ and
if we assume a friction coefficient of 0.4 between steel and
POM-C, ϕ = 22◦. We obtain Tmax = 3.4 N m.

The SeaBot motor (MFA Como 970D1561) is a Pm =
19.8 W, of 0.015 N m at maximum efficiency and 0.1 N m
at the maximum torque, with a 156:1 reduction gearbox,
which gives a maximum output torque between 2.34 N m
and 15.6 N m > Tmax. The output rotation speed is 93RPM
so we can compute the theoretical maximum volume
variation of the piston per time: V̇p = 5.32× 10−6 m3 s−1.

A compromise has to be found between the diameter
of the piston, the maximum torque of the motor and the
maximum volume rate of the piston.

3.1.4 Additional systems

The SeaBot float is also equipped with two low-cost
thrusters that can be used at surface to correct its
position.
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Fig. 5. Electronic design.

In addition, the internal part of the float is maintained
at a pressure of 600 mbar. This low pressure maintains
the O-rings an the two caps even at the surface of the sea.
This also provides an easy way to detect important leak
issues.

3.2 Electronic system

The main electronic is based on a Raspberry Pi 3 B+
board and microcontrollers (µC) dedicated to real time
control and hardware interfaces.

The float is equipped with a 18 cm accuracy, 0.1 mm res-
olution pressure sensor, an external temperature sensor, a
MEMS IMU, a GNSS receiver, an Iridium transceiver, an
optical codewheel for the piston and an internal temper-
ature, pressure and humidity sensor to detect water leak
issues. Figure 5 shows the electronic architecture.

Monitoring the humidity level appears to be more effi-
cient to detect small leaks than monitoring the internal
pressure which requires important water ingress to change.

The float has four 5Ah 3S LiPo batteries that provide
a total of 20Ah. This gives around 226 W h which means
about one day autonomy.1 The electronic system with-
out the motor and thrusters consumes around 2.5 W. The
electronic energy consumption could be greatly optimized
in a second step design.

3.3 Software architecture

The software is based on the ROS middleware. It is
built around nodes that handle specific tasks and can
communicate with each other. The SeaBot source code
is available online (https://github.com/ThomasLeMezo/
seabot). Figure 6 shows a simplified functional architec-
ture of the software. Note that the robot implements a

1 This depends heavily on the use of thrusters and on the dive curve.

safety observer that constantly checks the parameters of
the float (maximum depth, leak issue, etc.) and triggers
an emergency surfacing if necessary.

4 Depth controller

In this section, we will deal with the depth controller of
the float during diving. A key point, in the context of low-
cost actuators and sensors, is to implement an efficient
control law that minimizes the energy consumption while
maintaining a low error relative to the depth set point.

Several approaches have been used in the literature: a
survey of profiling float controllers can be found in [9].
Classic PID based controllers are not suitable in the con-
text of low-cost floats as underlined in [10] because of the
time required to tune experimentally their coefficients.
State of the art float controllers now use state feedback
[4] or adaptive controller [11] techniques. The main diffi-
culty of those controllers is the ability to know an accurate
dynamical model of the robot. Indeed, several parame-
ters such as buoyancy depend on the surrounding water’s
properties. An online estimator must therefore be imple-
mented. To solve the problem, several techniques have
been used including fuzzy inferences [4] and full state
observers [10].

In the following section, we will propose a new method
built on a state feedback controller and on an online esti-
mator based on an Extended Kalman Filter (EKF). This
new method better takes into account the compressibil-
ity of the float. It also drives the float with a velocity
constraint which is new. Indeed, from a theoretical point
of view, the energy loss of the system is mainly due to
drag forces which are linked to the velocity of the float. A
precise control of the float velocity is therefore crucial.

The float system can be modeled through the following
equation: ẋ = f (x,u) where x = (ż, z, Vp)

ᵀ is the state

https://github.com/ThomasLeMezo/seabot
https://github.com/ThomasLeMezo/seabot
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Fig. 6. Software functional architecture.

vector of the system, f the evolution function of the system
and u the input. From equation (7), we obtain:

ẋ =

 z̈

ż

V̇p

 =

 −A (Vp − χz)−B |ż| ż
ż

u

 (12)

where u is the piston volume rate.

4.1 Control law

In a context of low energy consumption, we want to
avoid as much as possible any overshoot of the control
which would cause unnecessary movements of the piston.
In terms of energy, the mechanical work of the piston
depends of the velocity and of the loss of volume per
meter χ. If χ = 0, the float can move from an equilib-
rium depth position to an other with an ε move of the
piston: the work is then directly linked to the velocity of
the movement and not to the traveled depth.

To be able to limit the velocity while reaching the
desired depth, we chose to control the float with a vec-
tor field that links the velocity and the depth error to the
depth set-point (see Fig. 7):

ż = β arctan

(
z̄ − z
α

)
(13)

where z̄ is the depth set-point and (α, β) is a pair of
constant parameters. Other functions such as sigmoids
could have been chosen as long as they are smooth, as
this is required to apply state feedback techniques. The

coefficients α and β will be chosen depending on the per-
formances required by the user application in particular
the maximum velocity żmax = β π2 and the deceleration
phase near the depth set-point though β

α . The adjustment
of these parameters will be discussed in Section 6. Unless
stated otherwise, we will let α = 1.

To apply state feedback linearization technique [12], we
chose for the system output y = ż − β arctan

(
z̄−z
α

)
. Our

system has a relative degree of 2 which requires to derive
two times the output.

ẏ = z̈ − β

α

−ż
1 + e2

= z̈ + γ
ż

D
(14)

where e = 1
α (z̄ − z), D = 1 + e2, γ = β

α ,

ÿ =
...
z + γ

z̈D − żḊ
D2

=
...
z + γ

z̈D + 2α−2eż2

D2
(15)

as Ḋ = −2α−2eż and with ...
z = −A(u− χż)− 2B |ż| z̈,

ÿ = −Au+Aχż − 2B |ż| z̈ + γ
z̈D + 2α−2eż2

D2
. (16)

We then chose u such that y is solution of λ3ÿ + λ2ẏ +
λ1y = 0 where λ1, λ2, λ3 are constant coefficients. In order
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Fig. 7. Map of the set-point velocity as a function of the depth error δz.

to avoid any overshoot we want a single negative pole
s such that the characteristic equation of the previous
equality is (1− s)2, which gives the coefficient values:
λ3 = 1, λ2 = −2s and λ1 = s2. The control law can be
then expressed as:

u =
1

A

(
−2sẏ + s2y + γ

z̈D + 2α−2eż2

D2
− 2B |ż| z̈

)
+ χż.

(17)
This allows y to converge towards 0 at a speed of ∼ est.

The pole s should be chosen according to the dynamics of
the system.

The previous model is only valid when the float is com-
pletely immersed. This is not the case at surface when
antennas are emerged. This is why a simple finite-state
machine switches between a simple sinking procedure that
slowly retracts the piston until a certain depth zf is
reached, and a state feedback controller that is activated
below this depth.

4.2 Estimation of unknown parameters

The main issue, with the control law described above, is
that the exact volume Vp of the piston and the χ param-
eter are unknown. Concerning the volume, we measure
with a high precision the volume of the piston Vm from
a mechanical zero reference but we do not know the off-
set Vo such that the float is at equilibrium for a zero
depth (Vp = Vm + Vo). The parameter χ is even more
complex to estimate as it also depends of surrounding
water properties.

This is why an EKF will be used to estimate Vo and χ.
Note that some of the modeling errors would be also com-
pensated by the estimation of both variables. By using
equation (12), we can obtain a specific system for the
estimation of Vo and χ. Note that Vp is here consid-
ered as the input u. We measure z and we assume that
V0 and χ are constant over time. With the state vector

x = (ż, z, V0, χ)
ᵀ, we have for the continuous system:

ẋ = fc (ẋ, u) =


−A (u− χz)−B |ż| ż

ż

0

0


y = g (x) = (z)

(18)

We recall the Kalman prediction and corrector equa-
tions2, in the case of a discrete time system, with an Euler
integration scheme at step k, and a dt duration between
steps:

– Prediction


x̂k+1|k = f(x̂k|k,uk) (predicted

= x̂k|k + dt · fc(xk,uk) estimation)
Γk+1|k = Ak · Γk|k (predicted)
·Aᵀ

k + Γαk
covariance)

– Update



x̂k|k = x̂k|k−1 + Kkz̃k (corrected estimation)
Γk|k = (I−KkCk)

×Γk|k−1 (corrected covariance)
z̃k = yk −Ckx̂k|k−1 (innovation)
Sk = CkΓk|k−1C

ᵀ
k (covariance of the

+Γβk
innovation)

Kk = Γk|k−1C
ᵀ
kS
−1
k (Kalman gain)

where

– Ak =
∂f(x̂k|k,uk)

∂x =


−2B

∣∣∣ˆ̇z∣∣∣ Aχ̂ −A Aẑ

1 0 0 0

0 0 0 0

0 0 0 0

 · dt
+ I4×4 is the evolution matrix,

– Ck =
dg(x̂k|k−1)

dx = ( 0 1 0 0 ) is the observation
matrix,

– and Γα, Γβ are respectively the process and the obser-
vation noise covariance matrices. In our case we set
2 Notations are taken from [12].
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Fig. 8. Depth controller structure.

them diagonal and constant. Their coefficients depend
on the accuracy of the sensors and of the dynamic of
the float.

Figure 8 illustrates the depth controller structure with the
EKF and the state-feedback.

5 Experimental results

5.1 Tests in a controlled environment

The float system was tested in a 20 m deep sea water
basin at Ifremer3 Brest (see Fig. 9). The state feedback
controller and the EKF were running at 5 Hz with a tran-
sition depth zf = 0.3 m. The mission was to reach five
different depth levels {1, 5, 10, 15, 18}m with a maximum
speed of |żmax| = 0.04 m s−1, α = 1 and s = −1. Figure 10
shows the trajectory over time and Figure 11 shows the
piston volume measured Vm. There is no overshoot along
z and we clearly see, on the volume Vm plot, the compen-
sation of the loss of volume: the deeper the robot is, the
larger the volume of the piston output must be.

Evolution of χ Measuring the volume of the pis-
ton once the float is stabilized at every depth level gives
an idea of the value of χ. From experimental data, the
loss of volume appears not to be linear with depth z but
quadratic with respect to z. However, the EKF handles
this model error and adjust the value of χ and V0 (see
Fig. 12): this is why χ is not constant over time.4 The
associated evolution of variances over time of χ and V0

are shown in Figure 13. We can notice that the variance
of V0 increases when the variance of χ decreases. This
could be due to the fact that the dynamic model of the
system is oversimplified.

Energy consumption To reduce the energy con-
sumption during ascending and descending phases, we
compute an interval of input [u] for an interval of max-
imum velocity [żmax] and we choose the command that
minimizes |u|. A no piston movement strategy could also
be adopted when the set-point is reached in the case of a
stable float but this is not the case for our system.

Depth error For this first test, the depth error after
the depth set-point is reached is of few centimeters (in

3 Institut Français de Recherche pour l’Exploitation de la Mer.
4 The deformation of the tube is not constant but looks like an hour-

glass. Indeed, the caps at the end prevent the tube to be compressed
regularly.

most cases under 2 cm). Some depth bias of up to 4 cm can
be observed which could come from mechanical hysteresis
or error in the model. Adding an integral effect to the
control law could be a solution to compensate these small
biases.

We can also note that the pressure sensor, which drives
in our case the performance limit of the system, has an
equivalent resolution of around 0.9 mm. This means that
the depth controller has a performance of around ten to
twenty times the resolution of the sensor.

5.2 Tests in real environments

Ocean trials have been conducted in the Brest bay (see
Fig. 15), in the Bertheaume cove (see Fig. 14) and in
the Guerlédan lake (see Fig. 16). Results are the subject
of ongoing analysis at the time these lines are written
concerning sea trials.

The Guerlédan lake mission consisted of 8 identical two-
hours series. The robot had to perform 20-min depth stops
at: {10, 17.5, 25, 17, 9.5, 2, 0}m for a total of 17 h mis-
sion. The mission started on the 10th of October 2019 at
15h06UTC and lasted all the night. Figure 17 shows the
result with a zoom on one of the stop. We can see that the
depth error is relatively low with an order of magnitude
of few millimeters.5

We can also note that just after 9 h of mission, the robot
encountered wrong pressure data that led to a return to
the surface. As a result of this event, the EKF diverged to
false values which explains why there are small overshoots
on the next depth stops. The situation came back to nor-
mal around 11 h of mission. Additional safety checks were
added to prevent this problem from happening again.

For each surface rise, the robot sent its position through
a satellite connection and used its thrusters to reach a next
predefined area to dive.

6 Validation of the depth control law

The SeaBot has mechanical constraints which bounds
the volume Vp ∈ [Vp] and the volume rate of the piston
V̇p ∈

[
V̇p

]
. These constraints narrow the α, β, s and z̄ pos-

sible values. The parameters for the SeaBot piston are
summarized in Table 3. The asymmetry between V +

p and
V −p is due to the need to have a sufficient buoyancy to
emerge antennas.

Maximum depth The maximum depth is not only
limited by the hull durability against pressure but also by
the loss of volume due to compressibility. It is equal to
around 70 m. At equilibrium in the case of the maximum
depth, we have from equation (7): Vp − χzmax = 0 which
implies that zmax = max

(
Vp

χ

)
Vp∈[Vp]

= 70 m. A stable

float (χ < 0) will not be able to go deeper whereas an
unstable float (χ > 0) will not be able to go back to a

5 The implementation of the controller was improved compared to the
first test.
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Fig. 9. Ifremer Brest water tank with the SeaBot float. The robot is secured along a rope guide.

Fig. 10. Depth z (in meter) of the float in function of time t (in seconds). The setpoint depth trajectory is in red and the float
depth trajectory is in black.

lower depth. Indeed, it will not have enough reserve buoy-
ancy to come back to surface, if it goes deeper than this
limit.

We have set a practical depth limit to zmax = 50 m to
keep a safety margin which covers the mechanical strength
of the tube and the compressibility issue.
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Fig. 11. Piston volume measured Vm in function of time t (in seconds).

Table 3. Seabot piston parameters (experimental results,
V̇p is limited by software compared to the maximum
possible values).

Parameter Lower bound Upper bound
[Vp] −2.148× 10−5 m3 1.503× 10−4 m3[
V̇p

]
−1.431× 10−6 m3 s−1 1.431× 10−6 m3 s−1

Maximum velocity Similarly, the float cannot
exceed a certain velocity żmax due to compressibility. If
we suppose that the float has stabilized its velocity to
żmax, we then have from equation (7): −A (Vp − χz) −
B |żmax| żmax = 0 which implies that

żmax| z =

(√∣∣∣∣AB (Vp − χz)
∣∣∣∣
)
Vp∈{V −p ,V +

p }
. (19)

In the case of the SeaBot, we obtain6:{
żmax| z = 0 ∈ {−0.255, 0.097}m s−1

żmax| z = 50 ∈ {−0.136, 0.236}m s−1 .

This is consistent with the fact that at surface there is
more positive reserve buoyancy than negative one that
explains the difference of velocity. The phenomenon is
reversed at 50 m due to the loss of volume. Note that
these maximum velocities are only based on the hypoth-
esis of stabilized velocity: higher values can be reached
for a depth z depending on the initial condition of the
trajectory.

6 The drag coefficient was not estimated accurately so the results only
give an order of magnitude.

Piston velocity limitation We consider now the
limitation induced by

[
V̇p

]
. The speed of the loss of vol-

ume due to compressibility is linked to the velocity of the
float. Therefore, the piston should move fast enough to
compensate this loss. Otherwise, in the case of an unsta-
ble float, it will not succeed in decelerating. In the stable
case, the velocity will be limited by:

żmax =
V̇p
χ
|V̇p∈{V̇ −p ,V̇ +

p }∈ {−0.66, 0.66} m s−1.

Therefore
[
V̇p

]
limits the maximum allowable velocity of

the float.

Vector field following An other important issue is
to verify that the maximum piston volume rate V̇p is
sufficient to follow the imposed trajectory, i.e. ∀t, u (t) ∈[
V̇p

]
.

We first consider that the float is stabilized on the tra-
jectory [13]. We know that ż = β arctan

(
z̄−z
α

)
and we

also know that ẏ = 0 so z̈ = γ−żD which implies that
Vp = 1

A

(
γż
D +B |ż| ż

)
+ χz. We can then compute u as

a function of z, as we know ż and Vp as functions of
z. In order to obtain a guaranteed evaluation of u (z)
and avoid numerical errors, we will use interval computa-
tions to bracket the value of the function and obtain two
boundaries u+ and u− such that u ∈ [u−, u+] [14].

If we take s = −1, β = 0.05 2
π , α = 1 and z = 0, we

obtain full black curves in Figure 18. We can see that
the control input is always inside the maximum and min-
imum piston volume rates. We can clearly see that when
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Fig. 12. Estimation of V0 and χ by the EKF over time.

the system is far from the target, it needs to compensate
χ. The local increase of u near the set point is due to the
deceleration. The maximum volume velocities computed
are

{
−1.383× 10−7, 1.383× 10−7

}
m3 s−1 ⊂

[
V̇p

]
.

We can also study the performance of the con-
troller near the desired velocity set-point. If we
assume now that ż = β arctan

(
z̄−z
α

)
+ w where w ∈[

−5× 10−3, 5× 10−3
]

m s−1, we obtain the dotted curves
of Figure 18 and the new maximum volume velocities:

{
−5.62× 10−7, 5.62× 10−7

}
m s−1 ⊂

[
V̇p

]
.

The study of the transition phase where the system
reaches the vector field is also an important key-point
that is not studied here. More generally, the computation
of the largest positive invariant set [15] of the system in
a context of a saturated input would be interesting. This
means to find the set of all states from which the system
will converge to the depth set-point. A sufficient reserve of
V̇p must be preserved to efficiently backtrack the correct
velocity.

Minimum piston volume increment Defining the
minimum codewheel step increment is a difficult task. A
way to estimate a minimum value is to evaluate from
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Fig. 13. Variance of V0 and χ over time in logarithmic scale.

equation (19) which error of velocity produces a step of
piston volume.

In the case of the SeaBot, if we allow a δż = 0.01 m s−1

velocity error at zero depth, we obtain an equivalent error
of volume of δVp,max = 2.306× 10−7 m3. We have chosen,
for the SeaBot, a 48 counts per revolution codewheel which
gives a δVp = 7.16× 10−8 m3 < δVp,max.

Energy consumption For a given maximum veloc-
ity żm and a depth change ∆z with a zero velocity at the
beginning, and at the end, we can deduce, for the piston,
the required variation of volume. By taking into account
the piston volume rate, we can obtain the amount of motor
run time if we suppose at a first approximation a one-time
movement. We can then deduce an under approximation
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Fig. 14. Last test of the Seabot depth controller in the ENSTA Bretagne 2.5m deep pool before a deployment in the Bertheaume
cove. Note that we added colored stripes to make it easier to find the robot at the end of the mission.

Fig. 15. Two SeaBot before their mission in the bay of Brest.

of the energy required for the mission:

E =
∆Vp

V̇p,max
Pm =

2
(
B
A ż

2
m

)
+ |χ∆z|

V̇p,max
Pm. (20)

We assume here, to simplify, that the piston movement
for the velocity and for the loss of volume are independent.
We also assume that the piston has to first move to reach
żm and then has to move to decelerate to zero velocity.
We recall that Pm is the power of the motor.
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Fig. 16. A Seabot after ending its mission in the lake of Guerlédan. We can only see the yellow antenna emerging from the surface
at the center of the picture. An air drone is filming the scene.

In the case of the SeaBot, for a ∆z = 50 m and
żm = 0.05 m s−1, we obtain a run time of 83 s and E =
0.457 W h.

7 Design loop

Similarly to the ship design loop technique from the
Naval Architecture community, we propose here a low-
cost float design loop. The idea is to compute from the
problem inputs, the minimum electronic and mechanical
characteristics of the float.

– Problem inputs:
• mass of the payload: mp,
• maximum float velocity required żmax, trajectory to

follow and error allowed,
• volume of the antennas Va,
• max depth: zm,
• mission duration T and number of typical depth

variation ∆z,
• environmental parameters: water density ρ.

– Design loop
1. Compute the diameter d and length L of the float

(function of mp). Choose a material for the hull and
compute its minimum thickness (function of zm).

2. Estimate the drag coefficient Cd (function of d) and
the loss of volume per meter χ.

3. Compute the interval volume of the piston [Vp]
required (i) to emerge antennas (Va), (ii) to com-
pensate the loss of volume (χ), (iii) and to reach the
maximum velocity (function of Cd).

4. Compute the interval velocity of the piston
[
V̇p

]
required to follow the trajectory and compensate χ.
Set the minimum motor specifications.

5. Compute the step increment of piston volume (δV )
and choose a depth sensor according to specifica-
tions.

6. Estimate the power consumption and choose the
battery capacity.

7. Go to step 1 if energy autonomy does not comply
with the maximum payload weight.

8 Conclusion and future work

In this paper, we presented a new low-cost profiling float
called SeaBot. It implements a new method based on a
full state feedback controller and an EKF estimator that
was tested experimentally. We also gave a special focus on
proposing tools that help to validate the system charac-
teristics. In particular, that the system is able to follow
the depth profile set-point. To summarize the validation
method, we proposed a design loop to develop low-cost
float.

This new controller has the advantage of not having
a depth overshoot which reduces power consumption. It
does not require fine calibration of coefficients since they
are estimated online. Compared to the state of the art, the
controller seems to be equivalent or better than existing
controllers in term of depth control accuracy. However,
there is no sufficiently detailed data in the literature to
make an accurate comparison. This work will therefore
allow in the future to establish a basis for comparison on
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Fig. 17. The Guerlédan lake mission. The depth set-point trajectory is in red and the float depth trajectory is in black.

the performance of a density based controller given the
accuracy of the pressure sensor.

This controller has several limitations that would be
interesting to address in future work. The dynamic model
on which the controller is based could be completed to
take into account a more realistic compressibility law.
The coefficient of friction of the float could also be esti-
mated assuming that it is observable. In our case of a
very high compressibility of the float compared to that
of water, the influence of temperature on the density of
water is negligible. This is no longer the case when the

compressibility are of the same order of magnitude: this
would need to be taken into account in the model. In
addition, a float less compressible than water would make
it stable and therefore would make it possible to have
zero energy consumption once the set point is reached
under the condition that there is no variation in ver-
tical currents. Finally, we found that in the presence
of shallow water, the swell can have an impact on the
depth measured by the pressure sensor. An adapted fil-
tering of the swell would therefore be necessary to avoid
compensating it.
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Fig. 18. Outer approximation of the controller as a function of depth for two configurations. The maximum bounds of V̇p are in
red. Dotted curves correspond to the model with noise.

This work has been supported by the French Government
Defense procurement and technology agency (DGA).
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