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We consider a Stackelberg game that arises in a security domain (SSG), where a defender can simultaneously protect m out of n targets from an adversary that observes the defense strategy before deciding on an utility maximizing attack.

Given the high stakes in security settings, it is reasonable that the defender in this game is risk averse with respect to the attacker's decisions.

Here we focus on developing efficient solution algorithms for a specific SSG, where the defender uses an entropic risk measure to model risk aversion to the attacker's strategies, and where multiple attackers select targets following logit quantal response equilibrium models. This problem can be formulated as a nonconvex nonlinear optimization problem. We propose two solution methods:

(1) approximate the problem through convex mixed integer nonlinear programs (MINR) and (2) a general purpose methodology (CELL) to optimize nonconvex and nonseparable fractional problems through mixed integer linear programming approximations. Both methods provide arbitrarily good incumbents and lower bounds on SSG. We present cutting plane methods to solve these problems for large instances. Our computational experiments illustrate the advantages of introducing risk aversion into the defender's behavior and show that MINR dominates CELL, producing in 2 hours solutions that are within 2% of optimal 1

Introduction

In this work we develop efficient solution methods for a fractional nonconvex optimization problem motivated from a Stackelberg game model in security applications. A Stackelberg game is defined as a game where the leader decides a mixed strategy to maximize its utility, taking into account that the follower will observe this strategy and in turn decide the action to maximize its utility [START_REF] Ordóñez | The theory of the market economy[END_REF].

In particular, Stackelberg game models have been used to represent the interaction between defenders (that act as the leader) and attackers (corresponding to followers) in diverse security settings [START_REF] Bier | Choosing what to protect[END_REF][START_REF] Brown | Defending critical infrastructure[END_REF][START_REF] Kar | Trends and applications in stackelberg security games[END_REF]. For example, when defenders patrol a subset of targets that can be attacked by multiple adversary types, who -knowing the patrolling strategy -select the target to attack [START_REF] Paruchuri | Playing games for security: An efficient exact algorithm for solving bayesian stackelberg games[END_REF][START_REF] Jain | Software assistants for randomized patrol planning for the LAX airport police and the federal air marshal service[END_REF]. Examples of such Stackelberg security games (SSGs) have been successfully deployed in real-world security applications to help plan the patrols conducted by the Los Angeles International Airport Police on LAX and the US Federal Air Marshal Service on transatlantic flights [START_REF] Jain | Software assistants for randomized patrol planning for the LAX airport police and the federal air marshal service[END_REF], the LA Sheriff department on Los Angeles' subway system [START_REF] Delle Fave | Game-theoretic security patrolling with dynamic execution uncertainty and a case study on a real transit system[END_REF], and the US Coast Guard on ports and waterways in Boston and New York City [START_REF] An | A deployed quantal responsebased patrol planning system for the U[END_REF]. In particular, the applications with Airport Police, Federal Air Marshal Service and LA Sheriff department consider multiple attacker types.

The SSG model we study makes two additional considerations, which have appeared previously: 1) it assumes adversaries use a logit discrete choice model to select their action [START_REF] Yang | Computing optimal strategy against quantal response in security games[END_REF], and 2) the leader includes risk considerations on its objective function, optimizing an entropic risk measure objective [START_REF] Chicoisne | Risk averse stackelberg security games with quantal response[END_REF]. The SSG models with a single adversary, introduced in [START_REF] Yang | Computing optimal strategy against quantal response in security games[END_REF], lead to problems with the following structure: β i e -γixi (a i -b i x i ) s.t. Hx ≤ h .

These models are extended in [START_REF] Chicoisne | Risk averse stackelberg security games with quantal response[END_REF] to the case when the defender uses an entropic risk measure, giving problems that maintain the above problem structure.

Solution strategies for these SSG against a single adversary consider a binary search procedure on the fractional objective and either (1) a non-linear variable transformation to obtain convex subproblems, when there are simple defender strategy constraints and (2) a piecewise linear approximation giving mixed linear optimization problems, when the defender strategy satisfies general polyhedral constraints.

Extending these solution strategies for the case with multiple attacker types has not been investigated. In this paper we focus on the computational challenge of efficiently solving this SSG model when facing multiple adversaries.

Boundedly rational adversaries and Quantal Response

Stackelberg games typically assume a perfectly rational attacker that maximizes its expected utility given the defense strategy [START_REF] Paruchuri | Playing games for security: An efficient exact algorithm for solving bayesian stackelberg games[END_REF][START_REF] Jain | Software assistants for randomized patrol planning for the LAX airport police and the federal air marshal service[END_REF], or that can deviate slightly from the optimal attack [START_REF] Pita | Solving stackelberg games in the real-world: Addressing bounded rationality and limited observations in human preference models[END_REF]. Nevertheless, humans sometimes make decisions that are different from the policy that optimizes a given reward function [START_REF] Camerer | A cognitive hierarchy model of games[END_REF]. Consequently, assuming a highly intelligent adversary can lead to weak defense strategies, that fail to take advantage of our knowledge about the attacker.

The Quantal Response (QR) Equilibrium model presented in [START_REF] Mckelvey | Quantal response equilibria for normal form games[END_REF] assumes that human adversaries do not behave rationally, sometimes selecting actions that do not maximize their utility. In this model, followers use a logit discrete choice model to decide between n possible actions, where action i (that gives a payoff U i ) is selected with probability:

P(selecting action i) = 1 n j=1 e λUj e λUi ,
where the parameter λ represents a degree of rationality, with perfect rationality (λ → ∞) or indifference (λ = 0) as special cases. The QR model has been used to model human behavior in various settings, including economics [START_REF] Haile | On the empirical content of quantal response equilibrium[END_REF][START_REF] Stahl | Experimental evidence on players' models of other players[END_REF], game theory [START_REF] Wright | Beyond equilibrium: Predicting human behavior in normal-form games[END_REF], transportation engineering [START_REF] Ben-Akiva | Discrete choice analysis: theory and application to travel demand[END_REF], marketing [START_REF] Gensch | The multinomial, multiattribute logit choice model[END_REF], and security applications [START_REF] Yang | Improving resource allocation strategy against human adversaries in security games[END_REF].

Risk-Averse defender and Entropic risk measure

As mentioned above, rational players in standard game theory models optimize expected reward functions. Even when considering mixed strategies, the objective can be seen as the expected reward with respect to the adversary's probability distribution over actions. However, in a security domain, the consequences of catastrophic unlikely events could far outweigh that of more common expected occurrences. Planning for the worst case can focus resources on scenarios that rarely occur, while planning for expected reward could divert key resources from catastrophic events. Different risk measures have been used to balance likely outcomes with rare but catastrophic ones in decision models. Less common is to consider risk measures to model risk-adverse behavior against the uncertainty due to the adversary's probability distribution over actions.

In this work, we use an entropic risk measure [START_REF] Pratt | Risk aversion in the small and in the large[END_REF] that amplifies the importance of outcomes that exceed a given threshold to model risk-adverse behavior against the attacker's probability over actions. The entropic risk measure of parameter α ≥ 0 of a random variable Y is defined by α ln E[e Y /α ]. While all outcomes are weighted, scenarios with a payoff larger than α contribute more to this measure. Therefore, the parameter α corresponds to a payoff value of risky outcomes and must be chosen carefully to tune the risk aversion level of the decision maker.

Consider now the example in Table 1 to illustrate the risk that can be present in an expected value maximizing policy. This example presents the expected value, variance and worst case probability for the optimal solutions of the SSG with an expected value objective (x * ) and the SSG with an entropic measure objective (x). The example has two targets, a single patrol, and a single attacker with rationality factor λ = 0.25. The payoffs of this game (where the defender is the row player and the attacker is the column player) are given in Table 1a. Both the expected utility objective problem and the entropic risk measure problem for this example can be expressed as a single variable non-linear maximization problem (presented in Section 2) that give the results summarized in Table 1b. The solution that optimizes the entropic risk measure, x, has a smaller variance and a smaller probability of the worst case scenario than the solution that optimizes the expected value, x * . Using an Entropic risk measure gives a solution that reduces the possible bad outcomes, thus reducing the variance that the solution observes at the expense of a worse expected value.
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Contributions and paper structure

To the best of our knowledge there is no prior work on risk averse SSGs with multiple QR followers. Given that multiple adversaries in Stackelberg games are modeled using a Bayesian model [START_REF] Harsanyi | Games with incomplete information played by "bayesian" players, i-iii: Part i. the basic model[END_REF], considering multiple adversaries is equivalent to considering uncertainty in the payoff functions. This makes the multiple follower problem a stochastic version of the single follower problem introduced in [START_REF] Yang | Computing optimal strategy against quantal response in security games[END_REF][START_REF] Chicoisne | Risk averse stackelberg security games with quantal response[END_REF]. In this work we develop efficient solution methods for the stochastic SSG with QR followers, which considers algorithms for problems with the following form:

min x p l=1 π l 1 n i=1 β l i e -γ l i xi n i=1 β l i e -γ l i xi a l i -b l i x i s.t. Hx ≤ h , (1a) (1b) 
with non-negative coefficients β l i , γ l i , a l i , and b l i . We note that the use of multinomial logit models in various settings has led to formulating problems with similar structure to (1) for different applications, such as in bundle pricing [START_REF] Bitran | On pricing and composition of bundles[END_REF] or transportation network design [START_REF] Liu | Global optimization method for network design problem with stochastic user equilibrium[END_REF].

In this work we investigate solution strategies to solve problem [START_REF] Ordóñez | The theory of the market economy[END_REF]. This problem has a non-linear non-convex objective with arbitrary polyhedral constraints. Due to the non-convexity of the problem, non-linear solution methods are not guaranteed to obtain the optimal solution. We therefore propose two decomposition solution strategies for problem [START_REF] Ordóñez | The theory of the market economy[END_REF] when it has general polyhedral constraints. The first solution method exploits problem structure to recast the problem as a non-convex nonlinear optimization problem that can be approximated using piecewise linear functions. The second uses a generic methodology to approximate multidimensional nonlinear functions via spatial discretization.

Both solution strategies require efficiently solving sequences of mixed integer linear optimization problems and are able to provide upper and lower bounds on the exact optimal solution.

We structure the rest of the paper as follows: in the next section, we introduce the problem formulation. In Sections 3 and 4 we present two different solution methods that approximately solve the SSG with multiple QR followers and show that both can provide lower bounds and arbitrarily good defender strategies. In Section 5 we present repair heuristics for both models and strategies to select the discretization points in order to speed up the solution methods and strengthen the relaxation bounds. We show experimental results in Section 6 on mid-sized artificial instances and compare the performance of our algorithms and the quality of the solution they provide. We present our conclusions in Section 7.

Notation and problem formulation

The SSG we consider consists of a single leader (defender) that patrols n targets that could be attacked by one of p followers (attackers). The leader can patrol up to m < n targets simultaneously and each follower selects one target to attack. The payoffs for the leader and the followers both depend on whether the target attacked is patrolled or not. If follower l ∈ {1, ..., p} attacks target i ∈ {1, ..., n}, then the payoffs received by attacker l are either a reward R l i > 0 if the target is not patrolled or a penalty P l i < 0 if the target is patrolled. Similarly, if attacker l attacks target i, we let the payoffs for the defender be a reward Rl i > 0 when the target is patrolled and a penalty P l i < 0 if it is not patrolled.

The set of actions for the defender are the feasible subsets of targets I ⊆ {1, ..., n} that can be patrolled simultaneously (|I| ≤ m). We denote by z := (z I ) I⊆{1,...,n} the mixed strategy over this action space, so that z I is the probability with which the defender patrols some set of targets I. Letting q l i denote the probablity with which follower l attacks target i, we can express the defender and l-th attacker utility for given strategies z, q as

Ū (z, q) = p l=1 I⊂{1...n}   i∈{1...n} i∈I Rl i z I q l i + i∈{1...n} i ∈I P l i z I q l i   U l (z, q) = I⊂{1...n}   i∈{1...n} i∈I P l i z I q l i + i∈{1...n} i ∈I R l i z I q l i   .
Since the payoffs only depend on whether a target i is patrolled or not, we consider the frequency of protecting target i, given by x i = I⊆{1,...,n}:i∈I z I , the sum of probabilities of the defender strategies that patrol i. With the frequency of patrolling target i, x i ∈ [0, 1], we can express the expected utility of the defender and attacker l when target i is attacked by follower l as Ū l i

(x i ) = x i Rl i + (1 -x i ) P l i and U l i (x i ) = x i P l i + (1 -x i )R l i
, respectively. Since follower l ∈ {1 . . . p} selects targets according to a QR model with a rationality parameter λ l > 0, we denote the probability of attacker l selecting target i by

y l i (x) = 1 n j=1 e λ l U l j (xj ) e λ l U l i (xi) = e λ l (xiP l i +(1-xi)R l i ) n j=1 e λ l (xj P l j +(1-xj )R l j )
.

(2)

Expected utility defender problem

Similar to prior work on Stackelberg security games [START_REF] Jain | Software assistants for randomized patrol planning for the LAX airport police and the federal air marshal service[END_REF][START_REF] Yang | Computing optimal strategy against quantal response in security games[END_REF], we formulate the defender optimization problem in terms of the frequency variables x, which by definition satisfy x ∈ [0, 1] n and n i=1 x i ≤ m. We assume that the vector of frequency variables must satisfy a set of linear constraints Hx ≤ h that can represent additional constraints on feasible patrols (e.g. targets i and i cannot (or must) be patrolled together). We denote X := {x : Hx ≤ h} the feasible set of defender frequency variables. For an integer k, let [k] := {1, ..., k}. Let π l represent the probability of facing follower l. With the notation introduced above, the defender decision problem that maximizes the expected defender utility by adjusting the frequency variables is:

max x∈X p l=1 n i=1 π l y l i (x) x i Rl i + (1 -x i ) P l i .
Substituting (2) above and multiplying the objective by -1 we observe that the above problem is equivalent to the minimization problem (1) by setting

β l i := e λ l R l i > 0, γ l i := λ l (R l i -P l i ) ≥ 0, a l i := -P l i ≥ 0 and b l i := Rl i -P l i ≥ 0.

Entropic utility defender problem

We now formulate the defender's problem with the entropic risk measure objective. The random variable of defender utilities takes the following values for each l ∈ [p], i ∈ [n]:

P l i with probability π l y l i (x)(1 -x i ) Rl i with probability π l y l i (x)x i .
Recall that the entropic risk with parameter α ≥ 0 of a random variable Y is

α ln E[e Y /α ],
which penalizes values of Y that exceed the threshold parameter α. Since the defender is interested in maximizing its utility, the payoffs that should be penalized by the risk measure are the small ones. This is achieved by minimizing minus the utility (i.e. a cost). The entropic risk objective of the cost of the defender is given by

E α (x) := α ln p l=1 n i=1 π l y l i (x) x i e -Rl i /α + (1 -x i ) e -P l i /α .
Risk averse model. The goal of the defender is to minimize this entropic risk objective by adjusting the frequency x ∈ X of the coverage variables, which is achieved by solving the following optimization problem:

min x∈X α ln p l=1 n i=1 π l y l i (x) x i e -Rl i /α + (1 -x i ) e -P l i /α
.

After 1) defining the constants P l i := e -P l i /α and R l i := e -Rl i /α , 2) substituting the expression of the quantal response (2) in the problem above and 3) noting that α ln is a monotonic increasing function, the problem above is equivalent to:

min x∈X p l=1 π l n i=1 β l i e -γ l i xi P l i -P l i -R l i x i n i=1 β l i e -γ l i xi .
Again, this problem is of the form of the minimization problem (1) with the same β l i > 0 and γ l i ≥ 0 and with a l i := P l i > 0 and b l i := P l i -R l i > 0. The solutions x * and x of the example in Table 1 are obtained by solving the problems introduced respectively in Subsections 2.1 and 2.2. Both problems have a single adversary and the defender variables satisfy x ∈ [0, 1] 2 such that

x 1 + x 2 ≤ 1.

Rescaling Trick

Observe that the numerators in each fractional term of the objective function in (1) can be considered non-negative without loss of generality. In fact, for any

constant A l ∈ R with l ∈ [p] we have that n i=1 β l i e -γ l i xi a l i -b l i x i n i=1 β l i e -γ l i xi = n i=1 β l i e -γ l i xi A l + a l i -b l i x i n i=1 β l i e -γ l i xi -A l .
Assuming A l ≥ max i∈[n] {b l i -a l i } and since x i ∈ [0, 1], we can show that each function

N l i (x i ) := β l i e -γ l i xi (A l + a l i -b l i x i
) is convex and nonnegative. To simplify our exposition, we also introduce the functions

D l i (x i ) := β l i e -γ l i xi , N l (x) := n i=1 N l i (x i ), and D l (x) := n i=1 D l i (x i ).
In the remainder of this paper, our goal is to solve the following scaled problem with constants A l satisfying the aforementioned condition:

ω := min x∈X ω(x) := p l=1 π l N l (x) D l (x) (3) 

A Mixed Integer Nonlinear Reformulation (MINR)

In this Section, we present a reformulation of (3) that takes advantage of its structure and allows a straightforward piecewise-linear approximation of every non-convex constraint.

A reformulation

We now use the fact that both the numerator and the denominator of these fractional components are positive to reformulate (3) as follows.

Proposition 1. For any A l ≥ max i∈[n] {b l i -a l i } and defining:

L u l := ln n i=1 N l i (1) U u l := ln n i=1 N l i (0) L v l := ln n i=1 D l i (1) U v l := ln n i=1 D l i (0), problem (3) is equivalent to ω = min x,u,v p l=1 π l e u l -v l s.t. x ∈ X -e u l + n i=1 β l i e -γ l i xi A l + a l i -b l i x i ≤ 0, ∀l ∈ [p] e v l - n i=1 β l i e -γ l i xi ≤ 0, ∀l ∈ [p] L u l ≤ u l ≤ U u l , ∀l ∈ [p] L v l ≤ v l ≤ U v l , ∀l ∈ [p] (4a) (4b) (4c) (4d) (4e) (4f) 
Proof. For each l ∈ [p] consider the extra variables (u l , v l ) ∈ R 2 . Since the functions N l and D l are nonnegative, (3) can be rewritten as follows:

ω = min x,u,v p l=1 π l e u l -v l s.t. x ∈ X e u l ≥ N l (x), ∀l ∈ [p] e v l ≤ D l (x), ∀l ∈ [p].
Noticing that any optimal solution (x * , u * , v * ) of the latter problem satisfies

e u * l = N l (x *
) and e v * l = D l (x * ), The range constraints on each u l (respectively v l ) are obtained by maximizing and minimizing N l (respectively

D l ) in x ∈ [0, 1] n ⊃ X . The facts that A l ≥ max i∈[n] {b l i -a l i }, γ l i ≥
0 and b l i ≥ 0 imply that both N l and D l are decreasing functions of each x i that attain their maximum value for x i = 0 and minimum value for x i = 1.

Given the choice of A l , the only sources of non-convexity of problem [START_REF] Kar | Trends and applications in stackelberg security games[END_REF] are the univariate functions u l → -e u l in constraints (4c) and x i → -e -γ l i xi in constraints (4d). This motivates the use of piecewise linear functions to approximate (4).

Piecewise linear approximations

Piecewise linear approximations of non-linear, non-convex functions are an important part of the solution methods proposed. Here we set the notation used to construct piecewise linear approximations using a few binary variables (a logarithm of the number of partitions), as described in [START_REF] Vielma | Modeling disjunctive constraints with a logarithmic number of binary variables and constraints[END_REF].

Consider a univariate function f : [l, u] → R and a partition of the interval [l, u] given by K + 1 points l = t 0 < t 1 < ... < t K = u. A piecewise linear approximation of f that matches the function at the partition points is given by

K k=0 λ k f (t k ) with K k=0 λ k = 1, λ ≥ 0,
and such that it has at most two coefficients that are non-zero and they must be consecutive (this last constraint is known as an SOS2 constraint). The work in [START_REF] Vielma | Modeling disjunctive constraints with a logarithmic number of binary variables and constraints[END_REF] provides an efficient representation of these SOS2 constraints, which directly implies the next result.

Let L(K) = log 2 K and consider B K : [K] -→ {0, 1} L(K) a bijective
mapping such that for all q ∈ [K -1], B K (q) and B K (q + 1) differ in at most one component (See reflected binary or Gray code in [START_REF] Gilbert | Gray codes and paths on the n-cube[END_REF]). Such a Gray code can be found quickly by the recursive algorithm of [START_REF] Knuth | The art of computer programming: sorting and searching[END_REF].

Proposition 2. [24] Given f : [l, u] → R and a partition l = t 0 < t 1 < ... < t K = u of [l, u], for every x ∈ [l, u] the piecewise linear function that equals f (x)
at the partition points is given by P

t [f ](x) = K k=0 λ k f (t k ), for a (λ, z) that satisfies x = K k=0 λ k t k K k=0 λ k = 1 p∈S + K (l) λ p z l , ∀l ∈ [L(K)] p∈S - K (l) λ p 1 -z l , ∀l ∈ [L(K)] z l ∈ {0, 1}, ∀l ∈ [L(K)] λ ≥ 0, (5a) (5b) 
(5c) (5d) (5e) (5f)
where defining

Q K (k) := {k, k + 1} if k ∈ [K -1] and Q K (K) = {K}, for k ∈ [L(K)]
we have:

S + K (k) := {p ∈ {0, ..., K} : ∀q ∈ Q K (p), (B K (q)) k = 1} S - K (k) := {p ∈ {0, ..., K} : ∀q ∈ Q K (p), (B K (q)) k = 0} .
This formulation uses only log 2 K extra binary variables. Given a partition set t = (t 0 , . . . , t K ) with K+1 points, we define the set of constraints that encode the piecewise linear approximation at x by:

LP L(t, K, x) := (λ k ) k∈[K] , (z l ) l∈[L(K)] satisfying (5) .
We refer to this construction of a piecewise linear approximation as the Logarithmic Piecewise Linear approximation (LPL). We can therefore express the approximation of f (x) by

P t [f ](x) = K k=0 λ k f (t k ) s.t. (λ, z) ∈ LP L(t, K, x) .
The next (known) result gives us some information about LPL approximations:

Proposition 1. The piecewise linear function P t [f ] which equals function f at all points in a partition set t of the interval [l, u] satisfies the following [START_REF] Thakur | Error analysis for convex separable programs: the piecewise linear approximation and the bounds on the optimal objective value[END_REF]:

1. If f is a convex function, then P t [f ](x) ≥ f (x) for all x ∈ [l, u]. 2. If f is L-Lipschitz over [l, u] (i.e. |f (x) -f (y)| ≤ L||x -y|| for any x, y), then max x∈[l,u] |P t [f ](x) -f (x)| ≤ L 2 max i∈[K-1] |t i+1 -t i |.

A Lower-Bounding Approximated Problem

The LPL formulation is used below to construct piecewise linear approximations of the non-convex portions in (4). The range constraints x i ∈ [0, 1] and

u l ∈ [L u l , U u l ]
inform where each approximation should be done.

For each target i ∈ [n], consider a partition t i of [0, 1] on K + 1 points (i.e. 0 = t i 0 < t i 1 < ... < t i K = 1). For each follower l ∈ [p], consider a partition τ l of [L u l , U u l ] on K + 1 points (i.e. L u l = τ l 0 < τ l 1 < ... < τ l K = U u l )
. Using these partitions we construct the following mixed integer convex optimization problem:

ω := min x, u, v, ρ, ϑ θ, λ, z, ξ, y p l=1 π l ρ l s.t. x ∈ X ρ l ≥ e u l -v l , ∀l ∈ [p] n i=1 θ i l ≤ K k=0 ξ l k e τ l k , ∀l ∈ [p] θ i l ≥ β l i e -γ l i xi A l + a l i -b l i x i , ∀l ∈ [p], i ∈ [n] ϑ l ≤ n i=1 β l i K k=0 λ i k e -γ l i t i k , ∀l ∈ [p] ϑ l ≥ e v l , ∀l ∈ [p] L u l ≤ u l ≤ U u l , ∀l ∈ [p] L v l ≤ v l ≤ U v l , ∀l ∈ [p] e L u l -U v l ≤ ρ l ≤ e U u l -L v l , ∀l ∈ [p] e L v l ≤ ϑ l ≤ e U v l , ∀l ∈ [p] λ i , z i ∈ LP L t i , K, x i , ∀i ∈ [n] ξ l , y l ∈ LP L τ l , K, u l , ∀l ∈ [p] (6a) (6b) (6c) (6d) (6e) (6f) (6g) (6h) (6i) (6j) (6k) (6l) (6m) 
This approximate problem has integer variables z and y defined in the LPL constraints and convex constraints in (6c), (6e) and (6g). For any x ∈ X , let us define ω(x) as the optimal value of (6) when x is fixed, implying that ω = min x∈X ω(x).

The next Proposition shows that (6) provides a lower bound for (3) and any of its optimal solutions provides a good solution to (3).

Proposition 3. Given uniform partitions t and τ of K + 1 points in the definition of (6) and (x, û, v, ρ, θ, θ, λ, ẑ, ξ, ŷ) an optimal solution of (6). We have

1. 0 ≤ ω -ω ≤ O(1/K) 2.
x is feasible for (3) and |ω(x) -ω| ≤ O(1/K).

Proof. Annex Section 8.1.

A Cutting Plane Algorithm

Solving problem ( 6) is challenging as it is a problem with convex constraints and integer variables. To avoid the non-linearity, we approximate the convex portions of the constraint functions by exploiting the fact that a convex function is the upper envelope of the linear support functions at every point. In particular we replace the convex non-linear terms of the functions e u l -v l , given l

∈ [p], e v l ,
and

N l i (x i ) = β l i e -γ l i xi A l + a l i -b l i x i
with their first order Taylor expansions. This modifies only constraints (6c), (6e), and (6g) giving the mixed integer linear optimization problem (with infinitely many constraints):

ω = min x, u, v, ρ, ϑ θ, λ, z, ξ, y p l=1 π l ρ l s.t. (6b), (6d), (6f ), (6h -6m) ρ l ≥ e ûl -v l (1 + u l -v l -ûl + vl ) , ∀(û l , vl ), l ∈ [p] θ i l ≥ N l i (x i ) + (N l i ) (x i ) (x i -xi ) , ∀x i , l ∈ [p], i ∈ [n] ϑ l ≥ e vl (1 + v l -vl ) , ∀v l , l ∈ [p] . (7a) (7b) (7c) (7d) (7e) 
To tackle the infinitely many constraints in the above problem, we will generate them as we need them with a cutting plane procedure. We set up the problem with an initial set of linear support functions. Let U u,v l be the set of points used to build a linear support function of (u l , v l ) → e u l -v l , given l ∈ [p].

Similarly let U v l and U x li be the set of points used to generate linear support functions of v l → e v l and N l i , respectively. The tractable optimization problem is [START_REF] Delle Fave | Game-theoretic security patrolling with dynamic execution uncertainty and a case study on a real transit system[END_REF] replacing the last three constraints (7c-7e) with the following.

ρ l ≥ e ûl -v l (1 + u l -v l -ûl + vl ) , ∀(û l , vl ) ∈ U u,v l , l ∈ [p] θ i l ≥ N l i (x i ) + N l i (x i ) (x i -xi ) , ∀x i ∈ U x li , l ∈ [p], i ∈ [n] ϑ l ≥ e vl (1 + v l -vl ) , ∀v l ∈ U v l , l ∈ [p].
We call ω[U] the optimal value of the corresponding relaxation.

Multidimensional cell approximation (CELL)

We now present a generic method to approximate nonseparable functions using linear constraints and variables, in the spirit of [START_REF] Rovatti | Optimistic milp modeling of non-linear optimization problems[END_REF]. Akin to the previous model, introducing new variables ρ, we recast (3) into the equivalent form:

min x∈X ,ρ p l=1 π l ρ l : N l (x) -ρ l D l (x) ≤ 0, ∀l ∈ [p] . ( 8 
)
This problem is in general not convex because of the products ρ l D l (x). To tackle this non-convexity, we take advantage of the partial separability in the constraints of ( 8) to efficiently approximate the products ρ l D l i (x i ) with a relatively small number of binary variables. We first present a generic way to approximate nonseparable multivariate functions.

Multidimensional Generic Approximations

The following Proposition is similar to a method coined optimistic MILP model in [START_REF] Rovatti | Optimistic milp modeling of non-linear optimization problems[END_REF]. It presents a piecewise linear approximation of several nonseparable multivariate functions defined on a common homogeneous grid. 

l i = t i 0 ≤ t i 1 ≤ ... ≤ t i K = u i , where t i ki = l i + k i (u i -l i ) /K, C t [f j ] is an L j ||u -l|| 1 /K approximation of every function f j on G: C t [f j ](x) = min µ,λ,z k∈{0,...,K} I µ k f j t 1 k1 , ..., t I k I s.t. λ i , z i ∈ LP L t i , K, x i , ∀i ∈ [I] µ k ≤ λ i ki , ∀k ∈ {0, ..., K} I , i ∈ [I] k∈{0,...,K} I µ k = 1 k∈{0,...,K} I µ k t i ki = x i , ∀i ∈ [I] µ ≥ 0 (9a) (9b) (9c) (9d) (9e) (9f) Proof. Annex Section 8.2.
This result shows that the maximum distance between C t [f j ] and f j is 

O(1/K). Notice that when I = 1, C t [f j ] = P t [f j ]. Also
λ i , z i ∈ LP L t i , K, x i , ∀i ∈ [I] µ k ≤ λ i ki , ∀k ∈ {0, ..., K} I , i ∈ [I] k∈{0,...,K} I µ k = 1 k∈{0,...,K} I µ k t i ki = x i , ∀i ∈ [I] µ ≥ 0 (10)
This formulation takes advantage of the fact that we only need to determine once to which cell x belongs and use this to approximate every function in the problem. The most important consequence of this fact is that the number of binary variables does not depend on the number of functions to approximate.

A Lower-Bounding Approximated Problem

We now show that the CELL-approximated problem provides a lower bound for [START_REF] An | A deployed quantal responsebased patrol planning system for the U[END_REF] and any of its optimal solutions provides a good solution to [START_REF] An | A deployed quantal responsebased patrol planning system for the U[END_REF]. Consider a discretization of the range of variables x i and ρ l into K subintervals with homogeneous partitions t i = t i 0 , ..., t i K and τ l = τ l 0 , ..., τ l K . Defining ω(x) := min

ρ, λ y, ξ z, µ p l=1 π l ρ l s.t. n i=1 K k=0 λ i k N l i t i k - n i=1 K k l =0 K ki=0 µ l,i k l ,ki τ l k l D l i t i ki ≤ 0, ∀l ∈ [p] λ i , z i ∈ LP L t i , K, x i , ∀i ∈ [n] ξ l , y l ∈ LP L τ l , K, ρ l , ∀l ∈ [p] 0 ≤ µ l,i k l ,ki ≤ ξ l k l , ∀k l , k i ∈ {0, ..., K}, ∀l ∈ [p], i ∈ [n] 0 ≤ µ l,i k l ,ki ≤ λ i ki , ∀k l , k i ∈ {0, ..., K}, ∀l ∈ [p], i ∈ [n] K k l =0 K ki=0 µ l,i k l ,ki = 1, ∀l ∈ [p], i ∈ [n] K k l =0 K ki=0 µ l,i k l ,ki t i ki = x i , ∀i ∈ [n] K k l =0 K ki=0 µ l,i k l ,ki τ l k l = ρ l , ∀l ∈ [p], (11a) (11b) (11c) (11d) (11e) (11f) (11g) (11h) (11i) 
the CELL-approximation of ( 8) is ω := min x∈X ω(x).

Proposition 6. Given uniform partitions t and τ with K + 1 points in the definition of (11) and (x, ρ, λ, ŷ, ξ, ẑ, μ) some optimal solution for (11) We have

1. 0 ≤ ω -ω ≤ O(1/K) 2.
x is feasible for (3) and |ω(x) -ω| ≤ O(1/K).

Proof. Annex Section 8.3

Notice that the approach is valid for any fractional programming problem having separable numerators and denominators. In our case, however, using the rescaling trick of Subsection 2.3 makes all the numerators convex. This implies that we are not forced to use an a priori cell approximation for them as depicted in (11b). In consequence we can use again a cutting plane approach by adding additional variables θ l and replacing constraints (11b) by the following:

n i=1 θ i l ≤ n i=1 K k l =0 K ki=0 µ l,i k l ,ki τ l k l D l i t i ki , ∀l ∈ [p] θ i l ≥ N l i (x i ) + N l i (x i ) (x i -xi ) , ∀x i , l ∈ [p], i ∈ [n] (12a) (12b) 
The same approximation bound is achieved with smaller tolerances. We can also consider the bounds for the objective ρ l and the new variables

θ l e L u l -U v l ≤ρ l ≤ e U u l -L v l , ∀l ∈ [p] e L u l ≤θ l ≤ e U u l , ∀l ∈ [p]

A cutting plane approach

The main problem with the cell-approximation ( 9) is the number of constraints (9c) and the dimension |{0, ..., K} I | of the variable µ. To bypass this issue, we now propose a cutting plane strategy for the generic optimization problem (10):

Proposition 7. Given fixed variables (x, λ, z) for problem [START_REF] Chicoisne | Risk averse stackelberg security games with quantal response[END_REF], consider the µ-subproblem of (10) (i.e. that optimizes only with respect to µ). Its dual is:

max p,c,d,s - I i=1 k∈{0,...,K} I p ki λ i ki + c + I i=1 d i x i - J j=1 s j b j s.t. - I i=1 p ki λ i ki + c + I i=1 d i t i ki - J j=1 s j g j t 1 k1 , ..., t I k I ≤ f t 1 k1 , ..., t I k I , ∀k ∈ {0, ..., K} I p, s ≥ 0.
It generates the following Benders cuts that are added to the relaxed problem:

η ≥ - I i=1 k∈{0,...,K} I pki λ i ki + ĉ + I i=1 di x i - J j=1 ŝj b j 0 ≥ - I i=1 k∈{0,...,K} I pki λ i ki + ĉ + I i=1 di x i - J j=1 ŝj b j
Note that given a feasible solution (x, λ, ẑ) for ( 9), the variables λ are mostly zero except for at most 2I of them, meaning that we can fix to zero all the corresponding variables p. This suggests a Benders decomposition approach [START_REF] Benders | Partitioning procedures for solving mixed-variables programming problems[END_REF] to solve our cell-approximation problem [START_REF] Pita | Solving stackelberg games in the real-world: Addressing bounded rationality and limited observations in human preference models[END_REF]. We begin with the following

master problem min x,ρ,θ,λ,y,ξ,z p l=1 π l ρ l s.t. x ∈ X λ i , z i ∈ LP L t i , K, x i , ∀i ∈ [n] ξ l , y l ∈ LP L τ l , K, ρ l , ∀l ∈ [p] e L u l -U v l ≤ ρ l ≤ e U u l -L v l , ∀l ∈ [p]
and add the cutting planes described in the nest proposition as we need them:

Proposition 8. When solving problem [START_REF] Pita | Solving stackelberg games in the real-world: Addressing bounded rationality and limited observations in human preference models[END_REF] with a cut generation strategy, consider the current incumbent (x, ρ, θ, λ, ξ) of the master problem. If x violates a linear support function constraint [START_REF] Camerer | A cognitive hierarchy model of games[END_REF] modeled by some θ i l , the following cut is added to the master problem:

θ i l ≥ N l i (x i ) + N l i (x i ) (x i -xi ) .
If (x, ρ, θ, λ, ξ) makes the subproblem in µ infeasible, the Benders cut to add to the master problem is:

p l=1 n i=1 K ki=0 K k l =0 rli k l ki ξ l k l + ŝli k l ki λ i ki - p l=1 ql n i=1 θ i l - p l=1 n i=1 (v li x i + ŵli ρ l ) ≥ p l=1 n i=1 ûli
where (q, r, ŝ, û, v, ŵ) is an optimal ray of the dual of the subproblem in µ.
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Notice that the dual of the subproblem in µ of formulation [START_REF] Pita | Solving stackelberg games in the real-world: Addressing bounded rationality and limited observations in human preference models[END_REF] is in fact separable in p smaller problems:

p l=1 max q l ,r l ,s l ,u l ,v l ,w l q l n i=1 θ i l - n i=1 K ki=0 K k l =0 r li k l ki ξl k l + s li k l ki λi ki + n i=1 (u li + v li xi + w li ρl ) s.t. q l τ l k l D l i t i ki -r li k l ki -s li k l ki + u li + v li t i ki + w li τ l k l ≤ 0, ∀i ∈ [n], (k l , k i ) ∈ {0, ..., K} 2
q l , r l , s l ≥ 0

From this dual we observe that only feasibility cuts are added as the variables µ do not appear in the objective function. Whenever ξl k l = 0, the objective coefficient for all the variables r li k l ki is zero, meaning that we can make r li k l ki tend to infinity and turn redundant the only constraint where said variable appears. The same phenomenon occurs with λi ki = 0 and the variables s li k l ki . Overall, when we are not cutting to solve the LP relaxation, for each pair (l, i) we will have only four non-redundant constraints and eight non-obviously zero variables r and s, leaving an LP of linear size in terms of n, K and p.

As for MINR, let ω[U] be the optimal value of the relaxed master problem with some cuts only, with Taylor cuts defined by a subset U x li of primal points xi , and Benders cuts defined by a subset U µ . of dual points (q, r, ŝ, û, v, ŵ).

Computational speedups

Primal upper bounds: embedded heuristics

When using a cutting plane approach, it can be hard to decide when to stop.

Of course, we can stop whenever we cannot separate the current incumbent, in which case it is feasible and the objective value of our master relaxed problem is that of the full approximated problem. However, waiting for full feasibility can -and does -make the method sloppy in practice. Any valid upper bound for the master problem can provide an optimality gap, therefore having some way to "repair" an incumbent (i.e. make it feasible for the full approximated problem) is of crucial importance.

The main idea of our heuristics is similar to the arguments "by construction" from Propositions 3 and 6. In both models, we fix the x components of the current incumbent, and solve the nonlinear approximated problems: 1) in (u, v, ρ, ϑ, θ, λ, z, ξ, y) at x fixed for MINR, which can be done by hand by making constraints tight, and 2) in (ρ, λ, z, ξ, y, µ) at x fixed for CELL, where optimizing in (ρ, λ, z, ξ, y, µ) is also doable by hand, but solving in µ requires to solve p LPs with O(n) variables and O(n) constraints each.

Smart grids

From an implementation point of view, it is always interesting to use uniform grids from their simplicity. However, it is well known that better approximations can be constructed by choosing wisely the discretization points. We present here a way to cleverly select a fixed number of points K out of the K K points of a uniform grid, such that some error measure is minimized.

"Low Error" Selection with "a few" points. In [START_REF] Ahuja | Network flows: theory, algorithms, and applications[END_REF], they show how to select a subset of the K points -without any restriction on the size of the subset -such that the loss in precision plus some "storage cost" is minimized. They formulate the problem as a shortest path problem in a directed acyclic network with K nodes and K (K -1) /2 edges. The problem can be seen as a minimization problem taking the form min y∈Y l y + α • e y where l and s are respectively a precision loss vector and a unitary weight vector e, the latter being ponderated by some penalization α ≥ 0. In their formulation, using more edges means selecting more points: the storage cost per point selected, α, is in fact a proxy to moderate the number of points selected.

Lowest Error Selection with exactly K points. With this observation in mind, our objective is to minimize the same precision loss, while enforcing that the number of points selected is exactly some number K. The problem can be written as: min y∈Y l y : e y = K .

Our main idea is to solve the latter problem via a Lagrangean algorithm that will select the best penalization α * that will give a "good" selection -wrt to the precision loss l -of exactly K points. Given some penalization α > 0, the lagrangean relaxation of our problem is min y∈Y l y + α • e y -αK .

If α = 0, all the points are kept by the optimal solution of the lagrangean relaxation, whereas if α is very large, only the first and last point of the grid defined by the K points will be selected. In between, the number of points selected by the optimal solution will be monotone nonincreasing wrt to α. The main idea of our algorithm is to select the smallest α such that the optimal solution of the corresponding lagrangean relaxation uses exactly K points.

Moreover, in the multiple adversaries setting, for each variable x i we use a single grid to approximate all the functions D i l for each l ∈ [p]. In consequence, we have to make sure that we are minimizing some kind of joint error amongst the adversaries. The easiest and most straightforward way to attain this goal was to minimize the sum of the errors induced by every function involving x i .

Computational results

The algorithms presented in this paper were coded in C programming language and run over Dell PowerEdge C6420 cluster nodes with Intel Xeon Gold 6152 CPUs at 2.10GHz with 64Gb RAM each. All the Mixed Integer Linear Programming problems are solved using the callable library of CPLEX [START_REF]CPLEX, V12. 1: User Manual for CPLEX[END_REF].

When generating the gradient and Benders cuts or building heuristic solutions from incumbents, we use the user cuts and callbacks technology of the callable library of CPLEX 12.6.

Parameters and instance generation

Parameters. We solve all our problems at relative precision 10 -9 in order to make sure that the cuts are taken into account and set a time limit of 3 hours for each run. During the Branch-and-Bound-and-Cut, we separate fractional incumbents only in the root node, and only integer incumbents during the tree search. The heuristics being very fast in practice, they are called each time an incumbent is found by the solver. K initial gradient cuts are added to approximate each of the convex real valued function.

Payoffs generation. Although we do not assume zero sum games -i.e. the payoff of any attacker is equal to minus the payoff of the defender -it seems reasonable to assume that in practice, the payoffs should be somehow related. In this goal, we draw the payoffs R l i , Rl i , -P l i and -P l i from a uniform distribution in [0, 1].

Adversaries. We test our algorithms with p ∈ {5, 7, 10, 12, 15}. The rationality coefficient λ l of each attacker is drawn from a uniform distribution in λ•[0.9, 1.1],

and we make vary λ ∈ {0.2, 0.7, 1.2, 1.7, 2.2}.

Defender's risk aversion. The parameter α captures an absolute risk aversion and penalizes greatly defense strategies whose bad realizations exceed α. Noticing that α has units -the same as the payoffs -we selected the parameter α of the Entropic risk measure α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} ⊂ [-1, 1]. Notice that α is a very subjective measure of the risk aversion of the decision maker and as such, it can be difficult to adjust in practice.

Instance size and operational constraints. We consider instances with a number of targets n ∈ {10, 20, 30, 40, 50} and a number of resources m = d • n where d ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We consider only the case where only the resource constraint is present, without any operational ones.

Grids. The approximation grids have K segments with K ∈ {2, 4, 8, 16, 32}.

When using smart grids, we consider K = 256 sampled points from which we select K.

Base case. To analyze the influence of each parameter, we took as a base case n = 20, m = 20 • 0.3 = 6, p = 7, α = 0.5, λ = 0.7 and K = 4. We then vary n, d, p, α, λ and K independently and repeat the experiment 10 times.

Algorithmic performances

We test the MINR reformulation and the cell model (CELL) with uniform grids (U) or smart grids (S). For each experiment, we test the expected value maximization (EX) and the entropic risk minimization with α = 0.5 (EN). For example, minimizing the entropic risk with the cell model using smart grids is denoted EN-CELL-S.

During the Branch and Bound and Cut procedure, let us define

L := ω[U]
as the best relaxation bound so far, U := ω(x) the objective value of the best solution so far x for the approximated problem, R := ω(x) the real objective value of the best solution so far x for the original problem. All the bounds found by each algorithm upon termination, L, U and R, are presented as the fraction of the best bound R * found on the same instance by any algorithm.

General impression. We show high level performance indicators in Table 2.

Solving EN and EXP take similar execution times, however, the bounds and gaps are better for ENT (higher L, lower U and R). We can also see that MINR is faster and provides better bounds than CELL. Using smart grids makes the overall solution slightly slower for both algorithms and provides worse bounds for CELL but improves them for MINR. The process takes longer using smart grids because the optimization problems become harder: in fact, selecting K points out of K for all the functions to approximate takes on average 4 seconds and 11 seconds in the worst case.

Parameters' influence. In Table 3, we present the final gaps and the execution times in function of the parameters. The execution time steadily increases until reaching the limit of 3 hours (marked "*") with every parameter n, d, p, K, λ and α. We have the confirmation at a finer level that the MINR model outperforms CELL, and that the smart grids help to close the final gaps. More Probability distribution calculation. To compare a risk neutral defense policy with a risk averse one, we want to see if there is some kind of stochastic dominance of a risk averse strategy versus a risk neutral one. To do so, we compare the payoffs distributions of the defender depending on its risk aversion. In practice, the defender can cover m targets out of n and the attackers target a single place each. The only possible outcomes for the defender are: 1)being attacked on a defended target i by attacker l with payoff V = Rl i > 0 or 2)being attacked on an undefended target i by attacker l with payoff V = P l i < 0. Consequently, if we assume that all the payoffs Rl i and P l i are different the only values possible are in

V ∈ {V 1 < V 2 < ... < V 2np-1 < V 2np } = p l=1 n i=1 Rl i , P l i .
Recall from Section 2 that given a mixed defense strategy x ∈ [0, 1] n and the associated QR y(x) ∈ [0, 1] n , the payoff of the defender is:

P l i with probability π l y l i (x)(1 -x i ) Rl i with probability π l y l i (x)x i .
This way we can compute the probability distribution of the payoff of any defender without sampling a large number of simulations. We compare the expected value, variance, Value at Risk (VaR) at level 10%, Conditional Value at Risk (CVaR) at level 10% and entropic risk at level α = 0.5 in function of α and λ.

General comments. We now compare all the solutions obtained with MINR-S, as the solutions it provides showed to be the most reliable. All the indicators are given as the fraction of the same indicator for the risk neutral solution with the base case parameter.

There is no clear influence of the parameters n, p and the number of breakpoints K. However, the remaining parameters do have a strong influence on the characteristics of a risk averse solution.

α influence. In Table 4, we can see that by decreasing α (i.e. getting more risk averse), there is a clear improvement in terms of all the risk aversion indicators.

That can come, however, at the cost of a significant loss in expected payoff. λ influence. In Table 5, we can see that facing increasingly rational adversaries has a significant negative impact on the risk neutral solution, whereas the risk averse solutions hedge well against smarter ennemies. d influence. In Table 6, we can observe -without surprise -that having more resources (higher values of d) has an extremely strong impact on the quality of the solution: in fact, when we are able to cover simultaneously half the targets (d = 0.5), the expected losses of both the risk averse and risk neutral policies become negative. Example of distributions E α Vs. E. In Figure 2, we compare the cumulative distributions of a risk averse solution (black) and that of a risk neutral solution (gray). We can see that past the loss 0.7, the risk averse solution dominates the risk averse one. The variance of the risk averse solution is 20% lower at the cost of losing a 30% in payoff.

Conclusions

In this paper, we extended the classic model of Stackelberg security games with quantal response to a risk averse setting for the defender and facing sev-eral adversaries with different degrees of rationality. We presented two ways of finding an approximately optimal defense strategy by solving nonlinear MIPs via cutting planes. The first methodology (CELL) has a broader range of applications, but the second (MINR) is more efficient, both in solution quality and execution time, and offers a reasonable performance for practical mid-sized cases. Computational results showed that minimizing an Entropic risk measure instead of maximizing the expected value can be advantageous from a qualitative point of view, allowing to significantly reduce the overall payoff variance and the probability of bad scenarios to occur.

Being cutting planes methods, our algorithms suffered from a sloppy behavior towards the end of the tree search. In a future work, we should investigate the use of stronger cuts, stabilization methods, or the fine tuning of the cut generation process. The Entropic risk measure is not the only way to introduce risk aversion in the behavior of an agent: In fact, there is a whole array of risk aversion-inducing tools in the literature that can be used instead. In an ongoing work, we show that using classical risk measures such as Value-at-Risk, Conditional-Value-at-Risk, upper semi-deviations, etc... the resulting optimization problems have the same structure as the ones described in this paper. (3), we now use an optimal solution (x, ũ, ṽ) for (4) to construct a feasible point in [START_REF] Jain | Software assistants for randomized patrol planning for the LAX airport police and the federal air marshal service[END_REF]. Given x and ũ, there is a unique tuple ( λ, z, ξ, ỹ) that satisfies the LPL constraints (6l) and (6m). Setting ρl := e ũl -ṽ l , θi l := N l i (x i ) and θl := e ṽl we have that (x, ũ, ṽ, ρ, θ, θ, λ, z, ξ, ỹ) is feasible for (6) after using the constraints of ( 4) that (x, ũ, ṽ) satisfies and Proposition 1. Its objective value in ( 6) is p l=1 π l e ũl -ṽ l ≥ ω. Given that ω = p l=1 π l e ũl -ṽ l , we obtain the result. We now show that a slight change in (x, û, v) is feasible for (4). Notice that x ∈ X and is thus feasible for [START_REF] Ordóñez | The theory of the market economy[END_REF]. We can see that (x, û, v, ρ, θ, θ, λ, ẑ, ξ, ŷ) satisfies:

ρl = e ûl -v l , P τ l [e • ](û l ) = N l (x), e vl = P t [D l ](x) := n i=1 P t i [D l i ](x i ) . (14) 
However, feasible solutions to (4) must satisfy e u l ≥ N l (x) and e v l ≤ D l (x).

Recall that P t [f ] is the LPL approximation of f on the grid t. From Proposition 

The solution (x, u , v ) is then feasible for (4), which means that

ω ≤ p l=1 π l e u l -v l = p l=1 π l e ûl + 2 e vl -1 . ( 16 
)
The first equation in [START_REF] Haile | On the empirical content of quantal response equilibrium[END_REF] implies that ω = 

0 ≤ ω -ω ≤ N + + D + + 1 D -(D --1 ) . 
2)Now we show that |ω -ω(x)| ≤ O(1/K). We already have that x is feasible for [START_REF] Ordóñez | The theory of the market economy[END_REF] and ω ≥ ω. This, and the inequalities in [START_REF] Stahl | Experimental evidence on players' models of other players[END_REF] imply

ω(x) ≥ ω ≥ ω = p l=1 π l e ûl e vl ≥ p l=1 π l N l (x) -2 D l (x) + 1 .
Since ω(x) = p l=1 π l N l (x)/D l (x), similar to the previous derivation we have

0 ≤ ω(x) -ω ≤ p l=1 π l N l (x) D l (x) - N l (x) -2 D l (x) + 1 ≤ N + + D + D -(D -+ 1 ) = O(1/K).

Proof of Proposition 4

Consider some j ∈ [J]. By definition, for any x ∈ G there exists some tuple (µ, λ, z) satisfying ( 9) such that

∆ j (x) := |f j (x) -C t [f j ](x)| = f j (x) - k∈{0,...,K} I µ k f j t 1 k1 , ..., t I k I = k∈{0,...,K} I µ k f j (x) -f j t 1 k1 , ..., t I k I ≤ k∈{0,...,K} I µ k1,...,k I f j (x) -f j t 1 k1 , ..., t I k I .
The second equality is due to ||µ|| 1 = 1 and the inequality comes from the

convexity of | • |. Next, because we have λ i , z i ∈ LP L(t i , K, x i ) for any i ∈ [I],
there is an index

k x i ∈ {0, ..., K -1} such that t i k x i ≤ x i ≤ t i k x i +1
and the only possible nonzero values of λ i are λ i k x i and λ i k x i +1 . In consequence, constraints (9c) enforce that the only possible nonzero components of µ are the µ k1,...,k I with k i ∈ {k x i , k x i + 1} for every i ∈ [I]. We then obtain:

∆ j (x) ≤ k x 1 +1 k1=k x 1 ... k x I +1 k I =k x I µ k1,...,k I f j (x) -f j t 1 k1 , ..., t I k I ≤ max ki∈{k x i ,k x i +1},i∈[I] f j (x) -f j t 1 k1 , ..., t I k I µ 1 ≤ max ki∈{k x i ,k x i +1},i∈[I] L j x -t 1 k1 , ..., t I k I 1 = L j I i=1 max ki∈{k x i ,k x i +1} x i -t i ki
Where the L j -Lipschitz assumption and µ 1 = 1 are used. Define G(x) as the cell of the discretization of G that contains x, i.e.

G(x)

:= x ∈ G : t i k x i ≤ x i ≤ t i k x i +1 , ∀i ∈ [I] .
Given that x ∈ G(x) we have that:

∆ j (x) ≤ max x ∈G(x) L j I i=1 max ki∈{k x i ,k x i +1} x i -t i ki = L j I i=1 max ki∈{k x i ,k x i +1} max x i ∈ t i k x i ,t i k x i +1 x i -t i ki = L j I i=1 t i k x i +1 -t i k x i = L j K I i=1 |u i -l i | = L j K ||u -l|| 1 .

Proof of Proposition 6

For any x ∈ X and

ρ l ∈ R, l ∈ [p], let us define N l (x) := n i=1 C t i [N l i ](x i ) and D l (x, ρ l ) := n i=1 C τ l ,t i [•D l i (•)](ρ l , x i ).
We have from Proposition 4 that

-l ≤ N l (x) -ρ l D l (x) -N l (x) -D l (x, ρ l ) ≤ l ,
for some l > 0 that is O(1/K). Defining ρl (x) := N l (x)/D l (x) and using D l (x) > 0, we obtain:

N l (x) -D l (x, ρ l ) -l D l (x) + ρ l ≤ ρl (x) ≤ N l (x) -D l (x, ρ l ) + l D l (x) + ρ l . (17) 
Because (x, ρ, λ, ŷ, ξ, ẑ, μ) is optimal -hence feasible -for [START_REF] Pita | Solving stackelberg games in the real-world: Addressing bounded rationality and limited observations in human preference models[END_REF], we have that N l (x) -D l (x, ρ) ≤ 0. Letting x be an optimal solution for (3) and using the right inequality in ( 17) at (x, ρ) gives

ω(x) = p l=1 π l ρl (x) ≤ p l=1 π l l D l (x) + ρl = p l=1 π l l D l (x) + ω ≤ p l=1 π l l D l (x) + ω (x) (18a) (18b) (18c) 
Second, consider a function f : R n → R and its cell-approximation

C t [f ]. No- tice that if the function y → f (x 1 , ..., x i-1 , y, x i+1 , ..., x n ) is nondecreasing, then so is the function y → C t [f ] (x 1 , ..., x i-1 , y, x i+1 , ..., x n ). Since ρ → -ρD l (x) is
decreasing then so is ρ → -D l (x, ρ). This means that there is ρl (x) such that N l (x) -D l (x, ρl (x)) = 0. The left inequality of ( 17) at x and ρl (x) implies 

ω(x) = p l=1 π l ρl (x) ≤ p l=1 π l ρl (x) + l D l (x) ≤ ω + p l=1 π l l D l (x) (19a) 
0 ≤ ω (x) -ω ≤ p l=1 π l l 1 D l (x) + 1 D l (x) ≤ 2 D -= O(1/K) .
We now prove |ω -ω| = O(1/K). From (18b) and by optimality of x we get

ω -ω ≤ ω(x) -ω ≤ p l=1 π l l D l (x) ≤ D -= O(1/K).
We now finish by proving ω ω. Let ρl (x) such that N l (x) -D l (x, ρl (x)) = l and remark that from optimality considerations, we have ρl (x) ρl (x). The left inequality of ( 

  a) Payoffs matrix. Each cell contains the utilities [defender, attacker].

Proposition 4 .

 4 Consider a ground set G := x ∈ R I : l ≤ x ≤ u and J functions f j : G → R being L j -Lipschitz. Given a discretization of G in each dimension:

  Example of bounds progress with time. In Figure1, we present an example of bound progression over time in the base case. It illustrates the fact that in terms of the relaxation bound L (solid line), LMINRP (no symbol) is very superior to CELL ( ) and that the smart grids (in black) do outperform the uniform grids (in gray). We can also confirm that in terms of real objective value R (dotted line) both algorithms are quite equivalent. More importantly the algorithms begin to stall after an hour, suggesting that the cut generation mechanisms in use might be improved 6.3. Qualitative results

Table 3 :

 3 Execution time (seconds) and final gaps (%) Vs. parameters. "*"= 3h time out. "-"= no EXP for α experiments.

Figure 1 :

 1 Figure 1: Normalized bounds over time (in seconds) in the base case.

Figure 2 :

 2 Figure 2: Cumulative distributions of the loss for x (E 0.5 ) (black) and x (E) (gray)

1 )

 1 We first show that ω ≤ ω. Since by Proposition 1, (4) is equivalent to

1

  we have that D l (x) ≤ P t [D l ](x) ≤ D l (x) + 1 and that e u l ≤ P τ l [e • ](u l ) ≤ e u l + 2 . The values 1 and 2 are of the form LC/(2K) = O(1/K), where L is a constant that depends on the function being approximated and C/K denotes the interval width in the uniform partition. Combining these bounds with the last two equalities in[START_REF] Haile | On the empirical content of quantal response equilibrium[END_REF], we can define u and v such that e u l := e ûl + 2 ≥ N l (x), e v l := e vl -1 ≤ D l (x) .

p l=1 π l e- e ûl e vl = p l=1 π l 2 e

 2 ûl -v l . Combining this with[START_REF] Wright | Beyond equilibrium: Predicting human behavior in normal-form games[END_REF] we obtain0 ≤ ω -ω ≤ p l=1 π l e ûl + 2e vl -1 vl + 1 e ûl e vl (e vl -1 ) .From Proposition 1 and (14) we have that N l (x) ≥ e ûl and e vl ≥ D l (x). Defining = max { 1 , 2 }, N + := max l∈[p],x∈X N l (x), D + := max l∈[p],x∈X D l (x) and D -:= min l∈[p],x∈X D l (x), the following gives the result since = O(1/K):

  ) and (19b) together and defining D -:= min l∈[p],x∈X D l (x) and := max l∈[p] l , we get:

Table 1 :

 1 Two targets, one defender resource example

  , the size of the optimization problem that approximates the functions f j does not depend on the number of functions J to approximate. The optimization problem uses L(K)I binary variables, O K I continuous variables and O IK I constraints.

	A direct consequence is the piecewise linear cell formulation of an optimization
	problem, stated below.
	Proposition 5. Given an optimization problem
	min

x∈X f (x) s.t. g j (x) ≤ b j ∀j ∈ {1, ...,

J}, its cell-approximation is given by the following optimization problem min x∈X ,µ,λ,z k∈{0,...,K} I µ k f t 1 k1 , ..., t I k I s.t. k∈{0,...,K} I µ k g j t 1 k1 , ..., t I k I ≤ b j , ∀j ∈ [J]

Table 2 :

 2 Overall average normalized bounds. Time in seconds, gaps in %.

	risk measure		EX				EN		
	model	CELL	MINR	CELL	MINR
	grid	U	S	U	S	U	S	U	S
	time	9171	9534	7436	7458	9364	9503	7232	7280
	L	0.870	0.869	0.973	0.975	0.894	0.892	0.977	0.980
	U	0.962	0.968	0.983	0.984	0.969	0.973	0.986	0.987
	R	1.001	1.001	1.000	1.000	1.002	1.002	1.000	1.000
	appGap	9.852	10.480	1.045	0.883	7.955	8.615	0.941	0.792
	realGap	13.071	13.171	2.755	2.490	10.808	10.991	2.294	2.041

detailed results can be found in the Appendix Section 8.4 (Tables

7, 8

, 9, 10, 11 and 12).

Table 4 :

 4 Quality Vs. α. All indicators are losses.

	risk m.	E α=0.1	E α=0.3	E α=0.5	E α=0.7	E α=0.9	E
	E	1.294	1.108	1.048	1.027	1.019	1
	V	0.840	0.881	0.919	0.939	0.949	1
	VaR 10	0.954	0.952	0.972	0.985	0.991	1
	CVaR 10	0.957	0.973	0.985	0.990	0.991	1
	E α=0.5	1.029	0.981	0.978	0.980	0.983	1

Table 5 :

 5 Quality Vs. λ. All indicators are losses.

	λ	0.2		0.7		1.2		1.7		2.2	
	risk m.	ENT	EXP	ENT	EXP	ENT	EXP	ENT	EXP	ENT	EXP
	E	0.979	0.921	1.048	1	1.061	1.013	1.070	1.016	1.096	1.019
	V	0.926	1.033	0.920	1	0.912	0.986	0.893	0.972	0.854	0.971
	VaR 10	0.952	0.994	0.973	1	0.976	0.998	0.966	0.998	0.955	0.999
	CVaR 10	0.974	0.992	0.985	1	0.987	1.001	0.983	0.999	0.977	0.999
	E α=0.5	0.952	0.977	0.979	1	0.981	1.000	0.975	0.995	0.966	0.995

Table 6 :

 6 Quality Vs. d. All indicators are losses.

	d	0.1		0.2		0.3		0.4		0.5	
	risk m.	ENT	EXP	ENT	EXP	ENT	EXP	ENT	EXP	ENT	EXP
	E	2.122	2.105	1.590	1.546	1.048	1	0.524	0.457	-0.027	-0.088
	V	0.568	0.608	0.761	0.834	0.92	1	1.009	1.095	1.052	1.128
	VaR 10	1.036	1.048	1.008	1.022	0.973	1	0.923	0.963	0.872	0.913
	CVaR 10	1.018	1.023	1.001	1.012	0.985	1	0.96	0.985	0.933	0.963
	E α=0.5	1.262	1.271	1.124	1.138	0.979	1	0.82	0.844	0.641	0.669

Table 9 :

 9 Performances Vs. p. "*"= 3h time out

	17) at x and ρl (x) implies that: 0 ρl (x)-ρl (x) ρl (x)-ρl (x),
	implying in turn that		
	p		
	0	π l (ρ l (x) -ρl (x)) = ω -	ω
	l=1		

Table 10 :

 10 Performances Vs. K. "*"= 3h time out

	risk measure			EX				EN		
	model		CELL	MINR	CELL	MINR
	grid		U	S	U	S	U	S	U	S
	time	λ	0.2	7743	8484	64	38	8567	8334	22	29
			0.7	*	*	3837	4387	*	*	5640	5479
			1.2	*	*	*	*	*	*	*	*
			1.7	*	*	*	*	*	*	*	*
			2.2	*	*	*	*	*	*	*	*
	L	λ	0.2	0.995	0.995	0.998	0.997	0.997	0.997	0.998	0.998
			0.7	0.918	0.912	0.990	0.988	0.940	0.937	0.991	0.990
			1.2	0.793	0.793	0.963	0.963	0.816	0.815	0.963	0.966
			1.7	0.628	0.626	0.916	0.924	0.643	0.644	0.914	0.926
			2.2	0.518	0.514	0.856	0.874	0.530	0.527	0.857	0.876
	U	λ	0.2	1.000	1.000	0.998	0.997	1.000	1.000	0.998	0.998
			0.7	0.983	0.984	0.990	0.988	0.985	0.987	0.991	0.990
			1.2	0.967	0.972	0.973	0.972	0.967	0.972	0.976	0.976
			1.7	0.838	0.866	0.948	0.953	0.845	0.874	0.953	0.958
			2.2	0.694	0.752	0.915	0.934	0.699	0.763	0.921	0.938
	R	λ	0.2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
			0.7	1.001	1.001	1.000	1.000	1.002	1.002	1.000	1.000
			1.2	1.001	1.001	1.000	1.000	1.002	1.002	1.000	1.000
			1.7	1.001	1.001	1.000	1.000	1.004	1.005	1.001	1.000
			2.2	1.001	1.001	1.000	1.001	1.006	1.005	1.001	1.000
	appGap	λ	0.2	0.471	0.460	0.010	0.010	0.264	0.268	0.010	0.010
			0.7	6.557	7.321	0.010	0.015	4.542	5.030	0.010	0.017
			1.2	17.947	18.375	0.999	0.936	15.668	16.091	1.374	1.022
			1.7	25.097	27.701	3.352	3.050	23.983	26.329	4.067	3.326
			2.2	25.278	31.597	6.418	6.424	24.221	31.014	6.881	6.599
	realGap	λ	0.2	0.521	0.509	0.212	0.289	0.300	0.302	0.170	0.181
			0.7	8.293	8.895	1.029	1.249	6.154	6.500	0.891	0.973
			1.2	20.762	20.790	3.686	3.753	18.609	18.631	3.773	3.387
			1.7	37.306	37.440	8.423	7.667	36.022	35.908	8.679	7.408
			2.2	48.272	48.624	14.400	12.667	47.343	47.604	14.365	12.443

Table 11 :

 11 Performances Vs. λ. "*"= 3h time out

	model		CELL	MINR
	grid		U	S	U	S
	time	α	0.1	*	*	3968	2022
			0.3	*	*	3905	3552
			0.5	*	*	5640	5479
			0.7	*	*	6829	7808
			0.9	*	*	7672	9496
	L	α	0.1	0.952	0.946	0.994	0.994
			0.3	0.943	0.943	0.992	0.991
			0.5	0.940	0.937	0.991	0.990
			0.7	0.935	0.935	0.991	0.990
			0.9	0.934	0.931	0.990	0.989
	U	α	0.1	0.991	0.992	0.995	0.994
			0.3	0.988	0.989	0.992	0.992
			0.5	0.985	0.987	0.991	0.990
			0.7	0.985	0.986	0.991	0.990
			0.9	0.984	0.986	0.991	0.990
	R	α	0.1	1.003	1.003	1.000	1.000
			0.3	1.002	1.003	1.000	1.000
			0.5	1.002	1.002	1.000	1.000
			0.7	1.002	1.002	1.000	1.000
			0.9	1.002	1.002	1.000	1.000
	appGap	α	0.1	3.914	4.641	0.034	0.010
			0.3	4.574	4.657	0.010	0.010
			0.5	4.542	5.030	0.010	0.017
			0.7	5.056	5.242	0.043	0.049
			0.9	5.145	5.568	0.051	0.084
	realGap	α	0.1	5.022	5.678	0.596	0.600
			0.3	5.939	5.938	0.809	0.859
			0.5	6.154	6.500	0.891	0.973
			0.7	6.656	6.702	0.950	1.033
			0.9	6.792	7.029	0.967	1.067

Table 12 :

 12 Performances Vs. α. "*"= 3h time out
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Full result Tables

 In Tables 7,8, 9, 10, 11 and 12 we present the full bounds over all the parameters.